Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / examples / Kaleidoscope / BuildingAJIT / Chapter4 / toy.cpp
blob2c8d4941291e08a67651fc746a74bcafa3f6d7e8
1 #include "llvm/ADT/APFloat.h"
2 #include "llvm/ADT/STLExtras.h"
3 #include "llvm/IR/BasicBlock.h"
4 #include "llvm/IR/Constants.h"
5 #include "llvm/IR/DerivedTypes.h"
6 #include "llvm/IR/Function.h"
7 #include "llvm/IR/Instructions.h"
8 #include "llvm/IR/IRBuilder.h"
9 #include "llvm/IR/LLVMContext.h"
10 #include "llvm/IR/Module.h"
11 #include "llvm/IR/Type.h"
12 #include "llvm/IR/Verifier.h"
13 #include "llvm/Support/TargetSelect.h"
14 #include "llvm/Target/TargetMachine.h"
15 #include "KaleidoscopeJIT.h"
16 #include <algorithm>
17 #include <cassert>
18 #include <cctype>
19 #include <cstdint>
20 #include <cstdio>
21 #include <cstdlib>
22 #include <map>
23 #include <memory>
24 #include <string>
25 #include <utility>
26 #include <vector>
28 using namespace llvm;
29 using namespace llvm::orc;
31 //===----------------------------------------------------------------------===//
32 // Lexer
33 //===----------------------------------------------------------------------===//
35 // The lexer returns tokens [0-255] if it is an unknown character, otherwise one
36 // of these for known things.
37 enum Token {
38 tok_eof = -1,
40 // commands
41 tok_def = -2,
42 tok_extern = -3,
44 // primary
45 tok_identifier = -4,
46 tok_number = -5,
48 // control
49 tok_if = -6,
50 tok_then = -7,
51 tok_else = -8,
52 tok_for = -9,
53 tok_in = -10,
55 // operators
56 tok_binary = -11,
57 tok_unary = -12,
59 // var definition
60 tok_var = -13
63 static std::string IdentifierStr; // Filled in if tok_identifier
64 static double NumVal; // Filled in if tok_number
66 /// gettok - Return the next token from standard input.
67 static int gettok() {
68 static int LastChar = ' ';
70 // Skip any whitespace.
71 while (isspace(LastChar))
72 LastChar = getchar();
74 if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]*
75 IdentifierStr = LastChar;
76 while (isalnum((LastChar = getchar())))
77 IdentifierStr += LastChar;
79 if (IdentifierStr == "def")
80 return tok_def;
81 if (IdentifierStr == "extern")
82 return tok_extern;
83 if (IdentifierStr == "if")
84 return tok_if;
85 if (IdentifierStr == "then")
86 return tok_then;
87 if (IdentifierStr == "else")
88 return tok_else;
89 if (IdentifierStr == "for")
90 return tok_for;
91 if (IdentifierStr == "in")
92 return tok_in;
93 if (IdentifierStr == "binary")
94 return tok_binary;
95 if (IdentifierStr == "unary")
96 return tok_unary;
97 if (IdentifierStr == "var")
98 return tok_var;
99 return tok_identifier;
102 if (isdigit(LastChar) || LastChar == '.') { // Number: [0-9.]+
103 std::string NumStr;
104 do {
105 NumStr += LastChar;
106 LastChar = getchar();
107 } while (isdigit(LastChar) || LastChar == '.');
109 NumVal = strtod(NumStr.c_str(), nullptr);
110 return tok_number;
113 if (LastChar == '#') {
114 // Comment until end of line.
116 LastChar = getchar();
117 while (LastChar != EOF && LastChar != '\n' && LastChar != '\r');
119 if (LastChar != EOF)
120 return gettok();
123 // Check for end of file. Don't eat the EOF.
124 if (LastChar == EOF)
125 return tok_eof;
127 // Otherwise, just return the character as its ascii value.
128 int ThisChar = LastChar;
129 LastChar = getchar();
130 return ThisChar;
133 //===----------------------------------------------------------------------===//
134 // Abstract Syntax Tree (aka Parse Tree)
135 //===----------------------------------------------------------------------===//
137 /// ExprAST - Base class for all expression nodes.
138 class ExprAST {
139 public:
140 virtual ~ExprAST() = default;
142 virtual Value *codegen() = 0;
145 /// NumberExprAST - Expression class for numeric literals like "1.0".
146 class NumberExprAST : public ExprAST {
147 double Val;
149 public:
150 NumberExprAST(double Val) : Val(Val) {}
152 Value *codegen() override;
155 /// VariableExprAST - Expression class for referencing a variable, like "a".
156 class VariableExprAST : public ExprAST {
157 std::string Name;
159 public:
160 VariableExprAST(const std::string &Name) : Name(Name) {}
162 Value *codegen() override;
163 const std::string &getName() const { return Name; }
166 /// UnaryExprAST - Expression class for a unary operator.
167 class UnaryExprAST : public ExprAST {
168 char Opcode;
169 std::unique_ptr<ExprAST> Operand;
171 public:
172 UnaryExprAST(char Opcode, std::unique_ptr<ExprAST> Operand)
173 : Opcode(Opcode), Operand(std::move(Operand)) {}
175 Value *codegen() override;
178 /// BinaryExprAST - Expression class for a binary operator.
179 class BinaryExprAST : public ExprAST {
180 char Op;
181 std::unique_ptr<ExprAST> LHS, RHS;
183 public:
184 BinaryExprAST(char Op, std::unique_ptr<ExprAST> LHS,
185 std::unique_ptr<ExprAST> RHS)
186 : Op(Op), LHS(std::move(LHS)), RHS(std::move(RHS)) {}
188 Value *codegen() override;
191 /// CallExprAST - Expression class for function calls.
192 class CallExprAST : public ExprAST {
193 std::string Callee;
194 std::vector<std::unique_ptr<ExprAST>> Args;
196 public:
197 CallExprAST(const std::string &Callee,
198 std::vector<std::unique_ptr<ExprAST>> Args)
199 : Callee(Callee), Args(std::move(Args)) {}
201 Value *codegen() override;
204 /// IfExprAST - Expression class for if/then/else.
205 class IfExprAST : public ExprAST {
206 std::unique_ptr<ExprAST> Cond, Then, Else;
208 public:
209 IfExprAST(std::unique_ptr<ExprAST> Cond, std::unique_ptr<ExprAST> Then,
210 std::unique_ptr<ExprAST> Else)
211 : Cond(std::move(Cond)), Then(std::move(Then)), Else(std::move(Else)) {}
213 Value *codegen() override;
216 /// ForExprAST - Expression class for for/in.
217 class ForExprAST : public ExprAST {
218 std::string VarName;
219 std::unique_ptr<ExprAST> Start, End, Step, Body;
221 public:
222 ForExprAST(const std::string &VarName, std::unique_ptr<ExprAST> Start,
223 std::unique_ptr<ExprAST> End, std::unique_ptr<ExprAST> Step,
224 std::unique_ptr<ExprAST> Body)
225 : VarName(VarName), Start(std::move(Start)), End(std::move(End)),
226 Step(std::move(Step)), Body(std::move(Body)) {}
228 Value *codegen() override;
231 /// VarExprAST - Expression class for var/in
232 class VarExprAST : public ExprAST {
233 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
234 std::unique_ptr<ExprAST> Body;
236 public:
237 VarExprAST(
238 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames,
239 std::unique_ptr<ExprAST> Body)
240 : VarNames(std::move(VarNames)), Body(std::move(Body)) {}
242 Value *codegen() override;
245 /// PrototypeAST - This class represents the "prototype" for a function,
246 /// which captures its name, and its argument names (thus implicitly the number
247 /// of arguments the function takes), as well as if it is an operator.
248 class PrototypeAST {
249 std::string Name;
250 std::vector<std::string> Args;
251 bool IsOperator;
252 unsigned Precedence; // Precedence if a binary op.
254 public:
255 PrototypeAST(const std::string &Name, std::vector<std::string> Args,
256 bool IsOperator = false, unsigned Prec = 0)
257 : Name(Name), Args(std::move(Args)), IsOperator(IsOperator),
258 Precedence(Prec) {}
260 Function *codegen();
261 const std::string &getName() const { return Name; }
263 bool isUnaryOp() const { return IsOperator && Args.size() == 1; }
264 bool isBinaryOp() const { return IsOperator && Args.size() == 2; }
266 char getOperatorName() const {
267 assert(isUnaryOp() || isBinaryOp());
268 return Name[Name.size() - 1];
271 unsigned getBinaryPrecedence() const { return Precedence; }
274 //===----------------------------------------------------------------------===//
275 // Parser
276 //===----------------------------------------------------------------------===//
278 /// CurTok/getNextToken - Provide a simple token buffer. CurTok is the current
279 /// token the parser is looking at. getNextToken reads another token from the
280 /// lexer and updates CurTok with its results.
281 static int CurTok;
282 static int getNextToken() { return CurTok = gettok(); }
284 /// BinopPrecedence - This holds the precedence for each binary operator that is
285 /// defined.
286 static std::map<char, int> BinopPrecedence;
288 /// GetTokPrecedence - Get the precedence of the pending binary operator token.
289 static int GetTokPrecedence() {
290 if (!isascii(CurTok))
291 return -1;
293 // Make sure it's a declared binop.
294 int TokPrec = BinopPrecedence[CurTok];
295 if (TokPrec <= 0)
296 return -1;
297 return TokPrec;
300 /// LogError* - These are little helper functions for error handling.
301 std::unique_ptr<ExprAST> LogError(const char *Str) {
302 fprintf(stderr, "Error: %s\n", Str);
303 return nullptr;
306 std::unique_ptr<PrototypeAST> LogErrorP(const char *Str) {
307 LogError(Str);
308 return nullptr;
311 static std::unique_ptr<ExprAST> ParseExpression();
313 /// numberexpr ::= number
314 static std::unique_ptr<ExprAST> ParseNumberExpr() {
315 auto Result = std::make_unique<NumberExprAST>(NumVal);
316 getNextToken(); // consume the number
317 return std::move(Result);
320 /// parenexpr ::= '(' expression ')'
321 static std::unique_ptr<ExprAST> ParseParenExpr() {
322 getNextToken(); // eat (.
323 auto V = ParseExpression();
324 if (!V)
325 return nullptr;
327 if (CurTok != ')')
328 return LogError("expected ')'");
329 getNextToken(); // eat ).
330 return V;
333 /// identifierexpr
334 /// ::= identifier
335 /// ::= identifier '(' expression* ')'
336 static std::unique_ptr<ExprAST> ParseIdentifierExpr() {
337 std::string IdName = IdentifierStr;
339 getNextToken(); // eat identifier.
341 if (CurTok != '(') // Simple variable ref.
342 return std::make_unique<VariableExprAST>(IdName);
344 // Call.
345 getNextToken(); // eat (
346 std::vector<std::unique_ptr<ExprAST>> Args;
347 if (CurTok != ')') {
348 while (true) {
349 if (auto Arg = ParseExpression())
350 Args.push_back(std::move(Arg));
351 else
352 return nullptr;
354 if (CurTok == ')')
355 break;
357 if (CurTok != ',')
358 return LogError("Expected ')' or ',' in argument list");
359 getNextToken();
363 // Eat the ')'.
364 getNextToken();
366 return std::make_unique<CallExprAST>(IdName, std::move(Args));
369 /// ifexpr ::= 'if' expression 'then' expression 'else' expression
370 static std::unique_ptr<ExprAST> ParseIfExpr() {
371 getNextToken(); // eat the if.
373 // condition.
374 auto Cond = ParseExpression();
375 if (!Cond)
376 return nullptr;
378 if (CurTok != tok_then)
379 return LogError("expected then");
380 getNextToken(); // eat the then
382 auto Then = ParseExpression();
383 if (!Then)
384 return nullptr;
386 if (CurTok != tok_else)
387 return LogError("expected else");
389 getNextToken();
391 auto Else = ParseExpression();
392 if (!Else)
393 return nullptr;
395 return std::make_unique<IfExprAST>(std::move(Cond), std::move(Then),
396 std::move(Else));
399 /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression
400 static std::unique_ptr<ExprAST> ParseForExpr() {
401 getNextToken(); // eat the for.
403 if (CurTok != tok_identifier)
404 return LogError("expected identifier after for");
406 std::string IdName = IdentifierStr;
407 getNextToken(); // eat identifier.
409 if (CurTok != '=')
410 return LogError("expected '=' after for");
411 getNextToken(); // eat '='.
413 auto Start = ParseExpression();
414 if (!Start)
415 return nullptr;
416 if (CurTok != ',')
417 return LogError("expected ',' after for start value");
418 getNextToken();
420 auto End = ParseExpression();
421 if (!End)
422 return nullptr;
424 // The step value is optional.
425 std::unique_ptr<ExprAST> Step;
426 if (CurTok == ',') {
427 getNextToken();
428 Step = ParseExpression();
429 if (!Step)
430 return nullptr;
433 if (CurTok != tok_in)
434 return LogError("expected 'in' after for");
435 getNextToken(); // eat 'in'.
437 auto Body = ParseExpression();
438 if (!Body)
439 return nullptr;
441 return std::make_unique<ForExprAST>(IdName, std::move(Start), std::move(End),
442 std::move(Step), std::move(Body));
445 /// varexpr ::= 'var' identifier ('=' expression)?
446 // (',' identifier ('=' expression)?)* 'in' expression
447 static std::unique_ptr<ExprAST> ParseVarExpr() {
448 getNextToken(); // eat the var.
450 std::vector<std::pair<std::string, std::unique_ptr<ExprAST>>> VarNames;
452 // At least one variable name is required.
453 if (CurTok != tok_identifier)
454 return LogError("expected identifier after var");
456 while (true) {
457 std::string Name = IdentifierStr;
458 getNextToken(); // eat identifier.
460 // Read the optional initializer.
461 std::unique_ptr<ExprAST> Init = nullptr;
462 if (CurTok == '=') {
463 getNextToken(); // eat the '='.
465 Init = ParseExpression();
466 if (!Init)
467 return nullptr;
470 VarNames.push_back(std::make_pair(Name, std::move(Init)));
472 // End of var list, exit loop.
473 if (CurTok != ',')
474 break;
475 getNextToken(); // eat the ','.
477 if (CurTok != tok_identifier)
478 return LogError("expected identifier list after var");
481 // At this point, we have to have 'in'.
482 if (CurTok != tok_in)
483 return LogError("expected 'in' keyword after 'var'");
484 getNextToken(); // eat 'in'.
486 auto Body = ParseExpression();
487 if (!Body)
488 return nullptr;
490 return std::make_unique<VarExprAST>(std::move(VarNames), std::move(Body));
493 /// primary
494 /// ::= identifierexpr
495 /// ::= numberexpr
496 /// ::= parenexpr
497 /// ::= ifexpr
498 /// ::= forexpr
499 /// ::= varexpr
500 static std::unique_ptr<ExprAST> ParsePrimary() {
501 switch (CurTok) {
502 default:
503 return LogError("unknown token when expecting an expression");
504 case tok_identifier:
505 return ParseIdentifierExpr();
506 case tok_number:
507 return ParseNumberExpr();
508 case '(':
509 return ParseParenExpr();
510 case tok_if:
511 return ParseIfExpr();
512 case tok_for:
513 return ParseForExpr();
514 case tok_var:
515 return ParseVarExpr();
519 /// unary
520 /// ::= primary
521 /// ::= '!' unary
522 static std::unique_ptr<ExprAST> ParseUnary() {
523 // If the current token is not an operator, it must be a primary expr.
524 if (!isascii(CurTok) || CurTok == '(' || CurTok == ',')
525 return ParsePrimary();
527 // If this is a unary operator, read it.
528 int Opc = CurTok;
529 getNextToken();
530 if (auto Operand = ParseUnary())
531 return std::make_unique<UnaryExprAST>(Opc, std::move(Operand));
532 return nullptr;
535 /// binoprhs
536 /// ::= ('+' unary)*
537 static std::unique_ptr<ExprAST> ParseBinOpRHS(int ExprPrec,
538 std::unique_ptr<ExprAST> LHS) {
539 // If this is a binop, find its precedence.
540 while (true) {
541 int TokPrec = GetTokPrecedence();
543 // If this is a binop that binds at least as tightly as the current binop,
544 // consume it, otherwise we are done.
545 if (TokPrec < ExprPrec)
546 return LHS;
548 // Okay, we know this is a binop.
549 int BinOp = CurTok;
550 getNextToken(); // eat binop
552 // Parse the unary expression after the binary operator.
553 auto RHS = ParseUnary();
554 if (!RHS)
555 return nullptr;
557 // If BinOp binds less tightly with RHS than the operator after RHS, let
558 // the pending operator take RHS as its LHS.
559 int NextPrec = GetTokPrecedence();
560 if (TokPrec < NextPrec) {
561 RHS = ParseBinOpRHS(TokPrec + 1, std::move(RHS));
562 if (!RHS)
563 return nullptr;
566 // Merge LHS/RHS.
567 LHS =
568 std::make_unique<BinaryExprAST>(BinOp, std::move(LHS), std::move(RHS));
572 /// expression
573 /// ::= unary binoprhs
575 static std::unique_ptr<ExprAST> ParseExpression() {
576 auto LHS = ParseUnary();
577 if (!LHS)
578 return nullptr;
580 return ParseBinOpRHS(0, std::move(LHS));
583 /// prototype
584 /// ::= id '(' id* ')'
585 /// ::= binary LETTER number? (id, id)
586 /// ::= unary LETTER (id)
587 static std::unique_ptr<PrototypeAST> ParsePrototype() {
588 std::string FnName;
590 unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary.
591 unsigned BinaryPrecedence = 30;
593 switch (CurTok) {
594 default:
595 return LogErrorP("Expected function name in prototype");
596 case tok_identifier:
597 FnName = IdentifierStr;
598 Kind = 0;
599 getNextToken();
600 break;
601 case tok_unary:
602 getNextToken();
603 if (!isascii(CurTok))
604 return LogErrorP("Expected unary operator");
605 FnName = "unary";
606 FnName += (char)CurTok;
607 Kind = 1;
608 getNextToken();
609 break;
610 case tok_binary:
611 getNextToken();
612 if (!isascii(CurTok))
613 return LogErrorP("Expected binary operator");
614 FnName = "binary";
615 FnName += (char)CurTok;
616 Kind = 2;
617 getNextToken();
619 // Read the precedence if present.
620 if (CurTok == tok_number) {
621 if (NumVal < 1 || NumVal > 100)
622 return LogErrorP("Invalid precedecnce: must be 1..100");
623 BinaryPrecedence = (unsigned)NumVal;
624 getNextToken();
626 break;
629 if (CurTok != '(')
630 return LogErrorP("Expected '(' in prototype");
632 std::vector<std::string> ArgNames;
633 while (getNextToken() == tok_identifier)
634 ArgNames.push_back(IdentifierStr);
635 if (CurTok != ')')
636 return LogErrorP("Expected ')' in prototype");
638 // success.
639 getNextToken(); // eat ')'.
641 // Verify right number of names for operator.
642 if (Kind && ArgNames.size() != Kind)
643 return LogErrorP("Invalid number of operands for operator");
645 return std::make_unique<PrototypeAST>(FnName, ArgNames, Kind != 0,
646 BinaryPrecedence);
649 /// definition ::= 'def' prototype expression
650 static std::unique_ptr<FunctionAST> ParseDefinition() {
651 getNextToken(); // eat def.
652 auto Proto = ParsePrototype();
653 if (!Proto)
654 return nullptr;
656 if (auto E = ParseExpression())
657 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
658 return nullptr;
661 /// toplevelexpr ::= expression
662 static std::unique_ptr<FunctionAST> ParseTopLevelExpr() {
663 if (auto E = ParseExpression()) {
664 // Make an anonymous proto.
665 auto Proto = std::make_unique<PrototypeAST>("__anon_expr",
666 std::vector<std::string>());
667 return std::make_unique<FunctionAST>(std::move(Proto), std::move(E));
669 return nullptr;
672 /// external ::= 'extern' prototype
673 static std::unique_ptr<PrototypeAST> ParseExtern() {
674 getNextToken(); // eat extern.
675 return ParsePrototype();
678 //===----------------------------------------------------------------------===//
679 // Code Generation
680 //===----------------------------------------------------------------------===//
682 static std::unique_ptr<KaleidoscopeJIT> TheJIT;
683 static std::unique_ptr<LLVMContext> TheContext;
684 static std::unique_ptr<IRBuilder<>> Builder;
685 static std::unique_ptr<Module> TheModule;
686 static std::map<std::string, AllocaInst *> NamedValues;
687 static std::map<std::string, std::unique_ptr<PrototypeAST>> FunctionProtos;
688 static ExitOnError ExitOnErr;
690 Value *LogErrorV(const char *Str) {
691 LogError(Str);
692 return nullptr;
695 Function *getFunction(std::string Name) {
696 // First, see if the function has already been added to the current module.
697 if (auto *F = TheModule->getFunction(Name))
698 return F;
700 // If not, check whether we can codegen the declaration from some existing
701 // prototype.
702 auto FI = FunctionProtos.find(Name);
703 if (FI != FunctionProtos.end())
704 return FI->second->codegen();
706 // If no existing prototype exists, return null.
707 return nullptr;
710 /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of
711 /// the function. This is used for mutable variables etc.
712 static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction,
713 StringRef VarName) {
714 IRBuilder<> TmpB(&TheFunction->getEntryBlock(),
715 TheFunction->getEntryBlock().begin());
716 return TmpB.CreateAlloca(Type::getDoubleTy(*TheContext), nullptr, VarName);
719 Value *NumberExprAST::codegen() {
720 return ConstantFP::get(*TheContext, APFloat(Val));
723 Value *VariableExprAST::codegen() {
724 // Look this variable up in the function.
725 Value *V = NamedValues[Name];
726 if (!V)
727 return LogErrorV("Unknown variable name");
729 // Load the value.
730 return Builder->CreateLoad(Type::getDoubleTy(*TheContext), V, Name.c_str());
733 Value *UnaryExprAST::codegen() {
734 Value *OperandV = Operand->codegen();
735 if (!OperandV)
736 return nullptr;
738 Function *F = getFunction(std::string("unary") + Opcode);
739 if (!F)
740 return LogErrorV("Unknown unary operator");
742 return Builder->CreateCall(F, OperandV, "unop");
745 Value *BinaryExprAST::codegen() {
746 // Special case '=' because we don't want to emit the LHS as an expression.
747 if (Op == '=') {
748 // Assignment requires the LHS to be an identifier.
749 // This assume we're building without RTTI because LLVM builds that way by
750 // default. If you build LLVM with RTTI this can be changed to a
751 // dynamic_cast for automatic error checking.
752 VariableExprAST *LHSE = static_cast<VariableExprAST *>(LHS.get());
753 if (!LHSE)
754 return LogErrorV("destination of '=' must be a variable");
755 // Codegen the RHS.
756 Value *Val = RHS->codegen();
757 if (!Val)
758 return nullptr;
760 // Look up the name.
761 Value *Variable = NamedValues[LHSE->getName()];
762 if (!Variable)
763 return LogErrorV("Unknown variable name");
765 Builder->CreateStore(Val, Variable);
766 return Val;
769 Value *L = LHS->codegen();
770 Value *R = RHS->codegen();
771 if (!L || !R)
772 return nullptr;
774 switch (Op) {
775 case '+':
776 return Builder->CreateFAdd(L, R, "addtmp");
777 case '-':
778 return Builder->CreateFSub(L, R, "subtmp");
779 case '*':
780 return Builder->CreateFMul(L, R, "multmp");
781 case '<':
782 L = Builder->CreateFCmpULT(L, R, "cmptmp");
783 // Convert bool 0/1 to double 0.0 or 1.0
784 return Builder->CreateUIToFP(L, Type::getDoubleTy(*TheContext), "booltmp");
785 default:
786 break;
789 // If it wasn't a builtin binary operator, it must be a user defined one. Emit
790 // a call to it.
791 Function *F = getFunction(std::string("binary") + Op);
792 assert(F && "binary operator not found!");
794 Value *Ops[] = {L, R};
795 return Builder->CreateCall(F, Ops, "binop");
798 Value *CallExprAST::codegen() {
799 // Look up the name in the global module table.
800 Function *CalleeF = getFunction(Callee);
801 if (!CalleeF)
802 return LogErrorV("Unknown function referenced");
804 // If argument mismatch error.
805 if (CalleeF->arg_size() != Args.size())
806 return LogErrorV("Incorrect # arguments passed");
808 std::vector<Value *> ArgsV;
809 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
810 ArgsV.push_back(Args[i]->codegen());
811 if (!ArgsV.back())
812 return nullptr;
815 return Builder->CreateCall(CalleeF, ArgsV, "calltmp");
818 Value *IfExprAST::codegen() {
819 Value *CondV = Cond->codegen();
820 if (!CondV)
821 return nullptr;
823 // Convert condition to a bool by comparing equal to 0.0.
824 CondV = Builder->CreateFCmpONE(
825 CondV, ConstantFP::get(*TheContext, APFloat(0.0)), "ifcond");
827 Function *TheFunction = Builder->GetInsertBlock()->getParent();
829 // Create blocks for the then and else cases. Insert the 'then' block at the
830 // end of the function.
831 BasicBlock *ThenBB = BasicBlock::Create(*TheContext, "then", TheFunction);
832 BasicBlock *ElseBB = BasicBlock::Create(*TheContext, "else");
833 BasicBlock *MergeBB = BasicBlock::Create(*TheContext, "ifcont");
835 Builder->CreateCondBr(CondV, ThenBB, ElseBB);
837 // Emit then value.
838 Builder->SetInsertPoint(ThenBB);
840 Value *ThenV = Then->codegen();
841 if (!ThenV)
842 return nullptr;
844 Builder->CreateBr(MergeBB);
845 // Codegen of 'Then' can change the current block, update ThenBB for the PHI.
846 ThenBB = Builder->GetInsertBlock();
848 // Emit else block.
849 TheFunction->insert(TheFunction->end(), ElseBB);
850 Builder->SetInsertPoint(ElseBB);
852 Value *ElseV = Else->codegen();
853 if (!ElseV)
854 return nullptr;
856 Builder->CreateBr(MergeBB);
857 // Codegen of 'Else' can change the current block, update ElseBB for the PHI.
858 ElseBB = Builder->GetInsertBlock();
860 // Emit merge block.
861 TheFunction->insert(TheFunction->end(), MergeBB);
862 Builder->SetInsertPoint(MergeBB);
863 PHINode *PN = Builder->CreatePHI(Type::getDoubleTy(*TheContext), 2, "iftmp");
865 PN->addIncoming(ThenV, ThenBB);
866 PN->addIncoming(ElseV, ElseBB);
867 return PN;
870 // Output for-loop as:
871 // var = alloca double
872 // ...
873 // start = startexpr
874 // store start -> var
875 // goto loop
876 // loop:
877 // ...
878 // bodyexpr
879 // ...
880 // loopend:
881 // step = stepexpr
882 // endcond = endexpr
884 // curvar = load var
885 // nextvar = curvar + step
886 // store nextvar -> var
887 // br endcond, loop, endloop
888 // outloop:
889 Value *ForExprAST::codegen() {
890 Function *TheFunction = Builder->GetInsertBlock()->getParent();
892 // Create an alloca for the variable in the entry block.
893 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
895 // Emit the start code first, without 'variable' in scope.
896 Value *StartVal = Start->codegen();
897 if (!StartVal)
898 return nullptr;
900 // Store the value into the alloca.
901 Builder->CreateStore(StartVal, Alloca);
903 // Make the new basic block for the loop header, inserting after current
904 // block.
905 BasicBlock *LoopBB = BasicBlock::Create(*TheContext, "loop", TheFunction);
907 // Insert an explicit fall through from the current block to the LoopBB.
908 Builder->CreateBr(LoopBB);
910 // Start insertion in LoopBB.
911 Builder->SetInsertPoint(LoopBB);
913 // Within the loop, the variable is defined equal to the PHI node. If it
914 // shadows an existing variable, we have to restore it, so save it now.
915 AllocaInst *OldVal = NamedValues[VarName];
916 NamedValues[VarName] = Alloca;
918 // Emit the body of the loop. This, like any other expr, can change the
919 // current BB. Note that we ignore the value computed by the body, but don't
920 // allow an error.
921 if (!Body->codegen())
922 return nullptr;
924 // Emit the step value.
925 Value *StepVal = nullptr;
926 if (Step) {
927 StepVal = Step->codegen();
928 if (!StepVal)
929 return nullptr;
930 } else {
931 // If not specified, use 1.0.
932 StepVal = ConstantFP::get(*TheContext, APFloat(1.0));
935 // Compute the end condition.
936 Value *EndCond = End->codegen();
937 if (!EndCond)
938 return nullptr;
940 // Reload, increment, and restore the alloca. This handles the case where
941 // the body of the loop mutates the variable.
942 Value *CurVar = Builder->CreateLoad(Type::getDoubleTy(*TheContext), Alloca,
943 VarName.c_str());
944 Value *NextVar = Builder->CreateFAdd(CurVar, StepVal, "nextvar");
945 Builder->CreateStore(NextVar, Alloca);
947 // Convert condition to a bool by comparing equal to 0.0.
948 EndCond = Builder->CreateFCmpONE(
949 EndCond, ConstantFP::get(*TheContext, APFloat(0.0)), "loopcond");
951 // Create the "after loop" block and insert it.
952 BasicBlock *AfterBB =
953 BasicBlock::Create(*TheContext, "afterloop", TheFunction);
955 // Insert the conditional branch into the end of LoopEndBB.
956 Builder->CreateCondBr(EndCond, LoopBB, AfterBB);
958 // Any new code will be inserted in AfterBB.
959 Builder->SetInsertPoint(AfterBB);
961 // Restore the unshadowed variable.
962 if (OldVal)
963 NamedValues[VarName] = OldVal;
964 else
965 NamedValues.erase(VarName);
967 // for expr always returns 0.0.
968 return Constant::getNullValue(Type::getDoubleTy(*TheContext));
971 Value *VarExprAST::codegen() {
972 std::vector<AllocaInst *> OldBindings;
974 Function *TheFunction = Builder->GetInsertBlock()->getParent();
976 // Register all variables and emit their initializer.
977 for (unsigned i = 0, e = VarNames.size(); i != e; ++i) {
978 const std::string &VarName = VarNames[i].first;
979 ExprAST *Init = VarNames[i].second.get();
981 // Emit the initializer before adding the variable to scope, this prevents
982 // the initializer from referencing the variable itself, and permits stuff
983 // like this:
984 // var a = 1 in
985 // var a = a in ... # refers to outer 'a'.
986 Value *InitVal;
987 if (Init) {
988 InitVal = Init->codegen();
989 if (!InitVal)
990 return nullptr;
991 } else { // If not specified, use 0.0.
992 InitVal = ConstantFP::get(*TheContext, APFloat(0.0));
995 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName);
996 Builder->CreateStore(InitVal, Alloca);
998 // Remember the old variable binding so that we can restore the binding when
999 // we unrecurse.
1000 OldBindings.push_back(NamedValues[VarName]);
1002 // Remember this binding.
1003 NamedValues[VarName] = Alloca;
1006 // Codegen the body, now that all vars are in scope.
1007 Value *BodyVal = Body->codegen();
1008 if (!BodyVal)
1009 return nullptr;
1011 // Pop all our variables from scope.
1012 for (unsigned i = 0, e = VarNames.size(); i != e; ++i)
1013 NamedValues[VarNames[i].first] = OldBindings[i];
1015 // Return the body computation.
1016 return BodyVal;
1019 Function *PrototypeAST::codegen() {
1020 // Make the function type: double(double,double) etc.
1021 std::vector<Type *> Doubles(Args.size(), Type::getDoubleTy(*TheContext));
1022 FunctionType *FT =
1023 FunctionType::get(Type::getDoubleTy(*TheContext), Doubles, false);
1025 Function *F =
1026 Function::Create(FT, Function::ExternalLinkage, Name, TheModule.get());
1028 // Set names for all arguments.
1029 unsigned Idx = 0;
1030 for (auto &Arg : F->args())
1031 Arg.setName(Args[Idx++]);
1033 return F;
1036 const PrototypeAST& FunctionAST::getProto() const {
1037 return *Proto;
1040 const std::string& FunctionAST::getName() const {
1041 return Proto->getName();
1044 Function *FunctionAST::codegen() {
1045 // Transfer ownership of the prototype to the FunctionProtos map, but keep a
1046 // reference to it for use below.
1047 auto &P = *Proto;
1048 FunctionProtos[Proto->getName()] = std::move(Proto);
1049 Function *TheFunction = getFunction(P.getName());
1050 if (!TheFunction)
1051 return nullptr;
1053 // If this is an operator, install it.
1054 if (P.isBinaryOp())
1055 BinopPrecedence[P.getOperatorName()] = P.getBinaryPrecedence();
1057 // Create a new basic block to start insertion into.
1058 BasicBlock *BB = BasicBlock::Create(*TheContext, "entry", TheFunction);
1059 Builder->SetInsertPoint(BB);
1061 // Record the function arguments in the NamedValues map.
1062 NamedValues.clear();
1063 for (auto &Arg : TheFunction->args()) {
1064 // Create an alloca for this variable.
1065 AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, Arg.getName());
1067 // Store the initial value into the alloca.
1068 Builder->CreateStore(&Arg, Alloca);
1070 // Add arguments to variable symbol table.
1071 NamedValues[std::string(Arg.getName())] = Alloca;
1074 if (Value *RetVal = Body->codegen()) {
1075 // Finish off the function.
1076 Builder->CreateRet(RetVal);
1078 // Validate the generated code, checking for consistency.
1079 verifyFunction(*TheFunction);
1081 return TheFunction;
1084 // Error reading body, remove function.
1085 TheFunction->eraseFromParent();
1087 if (P.isBinaryOp())
1088 BinopPrecedence.erase(P.getOperatorName());
1089 return nullptr;
1092 //===----------------------------------------------------------------------===//
1093 // Top-Level parsing and JIT Driver
1094 //===----------------------------------------------------------------------===//
1096 static void InitializeModule() {
1097 // Open a new context and module.
1098 TheContext = std::make_unique<LLVMContext>();
1099 TheModule = std::make_unique<Module>("my cool jit", *TheContext);
1100 TheModule->setDataLayout(TheJIT->getDataLayout());
1102 // Create a new builder for the module.
1103 Builder = std::make_unique<IRBuilder<>>(*TheContext);
1106 ThreadSafeModule irgenAndTakeOwnership(FunctionAST &FnAST,
1107 const std::string &Suffix) {
1108 if (auto *F = FnAST.codegen()) {
1109 F->setName(F->getName() + Suffix);
1110 auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
1111 // Start a new module.
1112 InitializeModule();
1113 return TSM;
1114 } else
1115 report_fatal_error("Couldn't compile lazily JIT'd function");
1118 static void HandleDefinition() {
1119 if (auto FnAST = ParseDefinition()) {
1120 FunctionProtos[FnAST->getProto().getName()] =
1121 std::make_unique<PrototypeAST>(FnAST->getProto());
1122 ExitOnErr(TheJIT->addAST(std::move(FnAST)));
1123 } else {
1124 // Skip token for error recovery.
1125 getNextToken();
1129 static void HandleExtern() {
1130 if (auto ProtoAST = ParseExtern()) {
1131 if (auto *FnIR = ProtoAST->codegen()) {
1132 fprintf(stderr, "Read extern: ");
1133 FnIR->print(errs());
1134 fprintf(stderr, "\n");
1135 FunctionProtos[ProtoAST->getName()] = std::move(ProtoAST);
1137 } else {
1138 // Skip token for error recovery.
1139 getNextToken();
1143 static void HandleTopLevelExpression() {
1144 // Evaluate a top-level expression into an anonymous function.
1145 if (auto FnAST = ParseTopLevelExpr()) {
1146 if (FnAST->codegen()) {
1147 // Create a ResourceTracker to track JIT'd memory allocated to our
1148 // anonymous expression -- that way we can free it after executing.
1149 auto RT = TheJIT->getMainJITDylib().createResourceTracker();
1151 auto TSM = ThreadSafeModule(std::move(TheModule), std::move(TheContext));
1152 ExitOnErr(TheJIT->addModule(std::move(TSM), RT));
1153 InitializeModule();
1155 // Get the anonymous expression's JITSymbol.
1156 auto Sym = ExitOnErr(TheJIT->lookup("__anon_expr"));
1158 // Get the symbol's address and cast it to the right type (takes no
1159 // arguments, returns a double) so we can call it as a native function.
1160 auto *FP = Sym.getAddress().toPtr<double (*)()>();
1161 fprintf(stderr, "Evaluated to %f\n", FP());
1163 // Delete the anonymous expression module from the JIT.
1164 ExitOnErr(RT->remove());
1166 } else {
1167 // Skip token for error recovery.
1168 getNextToken();
1172 /// top ::= definition | external | expression | ';'
1173 static void MainLoop() {
1174 while (true) {
1175 fprintf(stderr, "ready> ");
1176 switch (CurTok) {
1177 case tok_eof:
1178 return;
1179 case ';': // ignore top-level semicolons.
1180 getNextToken();
1181 break;
1182 case tok_def:
1183 HandleDefinition();
1184 break;
1185 case tok_extern:
1186 HandleExtern();
1187 break;
1188 default:
1189 HandleTopLevelExpression();
1190 break;
1195 //===----------------------------------------------------------------------===//
1196 // "Library" functions that can be "extern'd" from user code.
1197 //===----------------------------------------------------------------------===//
1199 /// putchard - putchar that takes a double and returns 0.
1200 extern "C" double putchard(double X) {
1201 fputc((char)X, stderr);
1202 return 0;
1205 /// printd - printf that takes a double prints it as "%f\n", returning 0.
1206 extern "C" double printd(double X) {
1207 fprintf(stderr, "%f\n", X);
1208 return 0;
1211 //===----------------------------------------------------------------------===//
1212 // Main driver code.
1213 //===----------------------------------------------------------------------===//
1215 int main() {
1216 InitializeNativeTarget();
1217 InitializeNativeTargetAsmPrinter();
1218 InitializeNativeTargetAsmParser();
1220 // Install standard binary operators.
1221 // 1 is lowest precedence.
1222 BinopPrecedence['='] = 2;
1223 BinopPrecedence['<'] = 10;
1224 BinopPrecedence['+'] = 20;
1225 BinopPrecedence['-'] = 20;
1226 BinopPrecedence['*'] = 40; // highest.
1228 // Prime the first token.
1229 fprintf(stderr, "ready> ");
1230 getNextToken();
1232 TheJIT = ExitOnErr(KaleidoscopeJIT::Create());
1233 InitializeModule();
1235 // Run the main "interpreter loop" now.
1236 MainLoop();
1238 return 0;