Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Analysis / DependenceAnalysis.cpp
blob1bce9aae09bb26bf4a79be6e40779cd1aa6fed27
1 //===-- DependenceAnalysis.cpp - DA Implementation --------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // DependenceAnalysis is an LLVM pass that analyses dependences between memory
10 // accesses. Currently, it is an (incomplete) implementation of the approach
11 // described in
13 // Practical Dependence Testing
14 // Goff, Kennedy, Tseng
15 // PLDI 1991
17 // There's a single entry point that analyzes the dependence between a pair
18 // of memory references in a function, returning either NULL, for no dependence,
19 // or a more-or-less detailed description of the dependence between them.
21 // Currently, the implementation cannot propagate constraints between
22 // coupled RDIV subscripts and lacks a multi-subscript MIV test.
23 // Both of these are conservative weaknesses;
24 // that is, not a source of correctness problems.
26 // Since Clang linearizes some array subscripts, the dependence
27 // analysis is using SCEV->delinearize to recover the representation of multiple
28 // subscripts, and thus avoid the more expensive and less precise MIV tests. The
29 // delinearization is controlled by the flag -da-delinearize.
31 // We should pay some careful attention to the possibility of integer overflow
32 // in the implementation of the various tests. This could happen with Add,
33 // Subtract, or Multiply, with both APInt's and SCEV's.
35 // Some non-linear subscript pairs can be handled by the GCD test
36 // (and perhaps other tests).
37 // Should explore how often these things occur.
39 // Finally, it seems like certain test cases expose weaknesses in the SCEV
40 // simplification, especially in the handling of sign and zero extensions.
41 // It could be useful to spend time exploring these.
43 // Please note that this is work in progress and the interface is subject to
44 // change.
46 //===----------------------------------------------------------------------===//
47 // //
48 // In memory of Ken Kennedy, 1945 - 2007 //
49 // //
50 //===----------------------------------------------------------------------===//
52 #include "llvm/Analysis/DependenceAnalysis.h"
53 #include "llvm/ADT/Statistic.h"
54 #include "llvm/Analysis/AliasAnalysis.h"
55 #include "llvm/Analysis/Delinearization.h"
56 #include "llvm/Analysis/LoopInfo.h"
57 #include "llvm/Analysis/ScalarEvolution.h"
58 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
59 #include "llvm/Analysis/ValueTracking.h"
60 #include "llvm/IR/InstIterator.h"
61 #include "llvm/IR/Module.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/raw_ostream.h"
68 using namespace llvm;
70 #define DEBUG_TYPE "da"
72 //===----------------------------------------------------------------------===//
73 // statistics
75 STATISTIC(TotalArrayPairs, "Array pairs tested");
76 STATISTIC(SeparableSubscriptPairs, "Separable subscript pairs");
77 STATISTIC(CoupledSubscriptPairs, "Coupled subscript pairs");
78 STATISTIC(NonlinearSubscriptPairs, "Nonlinear subscript pairs");
79 STATISTIC(ZIVapplications, "ZIV applications");
80 STATISTIC(ZIVindependence, "ZIV independence");
81 STATISTIC(StrongSIVapplications, "Strong SIV applications");
82 STATISTIC(StrongSIVsuccesses, "Strong SIV successes");
83 STATISTIC(StrongSIVindependence, "Strong SIV independence");
84 STATISTIC(WeakCrossingSIVapplications, "Weak-Crossing SIV applications");
85 STATISTIC(WeakCrossingSIVsuccesses, "Weak-Crossing SIV successes");
86 STATISTIC(WeakCrossingSIVindependence, "Weak-Crossing SIV independence");
87 STATISTIC(ExactSIVapplications, "Exact SIV applications");
88 STATISTIC(ExactSIVsuccesses, "Exact SIV successes");
89 STATISTIC(ExactSIVindependence, "Exact SIV independence");
90 STATISTIC(WeakZeroSIVapplications, "Weak-Zero SIV applications");
91 STATISTIC(WeakZeroSIVsuccesses, "Weak-Zero SIV successes");
92 STATISTIC(WeakZeroSIVindependence, "Weak-Zero SIV independence");
93 STATISTIC(ExactRDIVapplications, "Exact RDIV applications");
94 STATISTIC(ExactRDIVindependence, "Exact RDIV independence");
95 STATISTIC(SymbolicRDIVapplications, "Symbolic RDIV applications");
96 STATISTIC(SymbolicRDIVindependence, "Symbolic RDIV independence");
97 STATISTIC(DeltaApplications, "Delta applications");
98 STATISTIC(DeltaSuccesses, "Delta successes");
99 STATISTIC(DeltaIndependence, "Delta independence");
100 STATISTIC(DeltaPropagations, "Delta propagations");
101 STATISTIC(GCDapplications, "GCD applications");
102 STATISTIC(GCDsuccesses, "GCD successes");
103 STATISTIC(GCDindependence, "GCD independence");
104 STATISTIC(BanerjeeApplications, "Banerjee applications");
105 STATISTIC(BanerjeeIndependence, "Banerjee independence");
106 STATISTIC(BanerjeeSuccesses, "Banerjee successes");
108 static cl::opt<bool>
109 Delinearize("da-delinearize", cl::init(true), cl::Hidden,
110 cl::desc("Try to delinearize array references."));
111 static cl::opt<bool> DisableDelinearizationChecks(
112 "da-disable-delinearization-checks", cl::Hidden,
113 cl::desc(
114 "Disable checks that try to statically verify validity of "
115 "delinearized subscripts. Enabling this option may result in incorrect "
116 "dependence vectors for languages that allow the subscript of one "
117 "dimension to underflow or overflow into another dimension."));
119 static cl::opt<unsigned> MIVMaxLevelThreshold(
120 "da-miv-max-level-threshold", cl::init(7), cl::Hidden,
121 cl::desc("Maximum depth allowed for the recursive algorithm used to "
122 "explore MIV direction vectors."));
124 //===----------------------------------------------------------------------===//
125 // basics
127 DependenceAnalysis::Result
128 DependenceAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
129 auto &AA = FAM.getResult<AAManager>(F);
130 auto &SE = FAM.getResult<ScalarEvolutionAnalysis>(F);
131 auto &LI = FAM.getResult<LoopAnalysis>(F);
132 return DependenceInfo(&F, &AA, &SE, &LI);
135 AnalysisKey DependenceAnalysis::Key;
137 INITIALIZE_PASS_BEGIN(DependenceAnalysisWrapperPass, "da",
138 "Dependence Analysis", true, true)
139 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
140 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
141 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
142 INITIALIZE_PASS_END(DependenceAnalysisWrapperPass, "da", "Dependence Analysis",
143 true, true)
145 char DependenceAnalysisWrapperPass::ID = 0;
147 DependenceAnalysisWrapperPass::DependenceAnalysisWrapperPass()
148 : FunctionPass(ID) {
149 initializeDependenceAnalysisWrapperPassPass(*PassRegistry::getPassRegistry());
152 FunctionPass *llvm::createDependenceAnalysisWrapperPass() {
153 return new DependenceAnalysisWrapperPass();
156 bool DependenceAnalysisWrapperPass::runOnFunction(Function &F) {
157 auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
158 auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
159 auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
160 info.reset(new DependenceInfo(&F, &AA, &SE, &LI));
161 return false;
164 DependenceInfo &DependenceAnalysisWrapperPass::getDI() const { return *info; }
166 void DependenceAnalysisWrapperPass::releaseMemory() { info.reset(); }
168 void DependenceAnalysisWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
169 AU.setPreservesAll();
170 AU.addRequiredTransitive<AAResultsWrapperPass>();
171 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
172 AU.addRequiredTransitive<LoopInfoWrapperPass>();
175 // Used to test the dependence analyzer.
176 // Looks through the function, noting instructions that may access memory.
177 // Calls depends() on every possible pair and prints out the result.
178 // Ignores all other instructions.
179 static void dumpExampleDependence(raw_ostream &OS, DependenceInfo *DA,
180 ScalarEvolution &SE, bool NormalizeResults) {
181 auto *F = DA->getFunction();
182 for (inst_iterator SrcI = inst_begin(F), SrcE = inst_end(F); SrcI != SrcE;
183 ++SrcI) {
184 if (SrcI->mayReadOrWriteMemory()) {
185 for (inst_iterator DstI = SrcI, DstE = inst_end(F);
186 DstI != DstE; ++DstI) {
187 if (DstI->mayReadOrWriteMemory()) {
188 OS << "Src:" << *SrcI << " --> Dst:" << *DstI << "\n";
189 OS << " da analyze - ";
190 if (auto D = DA->depends(&*SrcI, &*DstI, true)) {
191 // Normalize negative direction vectors if required by clients.
192 if (NormalizeResults && D->normalize(&SE))
193 OS << "normalized - ";
194 D->dump(OS);
195 for (unsigned Level = 1; Level <= D->getLevels(); Level++) {
196 if (D->isSplitable(Level)) {
197 OS << " da analyze - split level = " << Level;
198 OS << ", iteration = " << *DA->getSplitIteration(*D, Level);
199 OS << "!\n";
203 else
204 OS << "none!\n";
211 void DependenceAnalysisWrapperPass::print(raw_ostream &OS,
212 const Module *) const {
213 dumpExampleDependence(OS, info.get(),
214 getAnalysis<ScalarEvolutionWrapperPass>().getSE(), false);
217 PreservedAnalyses
218 DependenceAnalysisPrinterPass::run(Function &F, FunctionAnalysisManager &FAM) {
219 OS << "'Dependence Analysis' for function '" << F.getName() << "':\n";
220 dumpExampleDependence(OS, &FAM.getResult<DependenceAnalysis>(F),
221 FAM.getResult<ScalarEvolutionAnalysis>(F),
222 NormalizeResults);
223 return PreservedAnalyses::all();
226 //===----------------------------------------------------------------------===//
227 // Dependence methods
229 // Returns true if this is an input dependence.
230 bool Dependence::isInput() const {
231 return Src->mayReadFromMemory() && Dst->mayReadFromMemory();
235 // Returns true if this is an output dependence.
236 bool Dependence::isOutput() const {
237 return Src->mayWriteToMemory() && Dst->mayWriteToMemory();
241 // Returns true if this is an flow (aka true) dependence.
242 bool Dependence::isFlow() const {
243 return Src->mayWriteToMemory() && Dst->mayReadFromMemory();
247 // Returns true if this is an anti dependence.
248 bool Dependence::isAnti() const {
249 return Src->mayReadFromMemory() && Dst->mayWriteToMemory();
253 // Returns true if a particular level is scalar; that is,
254 // if no subscript in the source or destination mention the induction
255 // variable associated with the loop at this level.
256 // Leave this out of line, so it will serve as a virtual method anchor
257 bool Dependence::isScalar(unsigned level) const {
258 return false;
262 //===----------------------------------------------------------------------===//
263 // FullDependence methods
265 FullDependence::FullDependence(Instruction *Source, Instruction *Destination,
266 bool PossiblyLoopIndependent,
267 unsigned CommonLevels)
268 : Dependence(Source, Destination), Levels(CommonLevels),
269 LoopIndependent(PossiblyLoopIndependent) {
270 Consistent = true;
271 if (CommonLevels)
272 DV = std::make_unique<DVEntry[]>(CommonLevels);
275 // FIXME: in some cases the meaning of a negative direction vector
276 // may not be straightforward, e.g.,
277 // for (int i = 0; i < 32; ++i) {
278 // Src: A[i] = ...;
279 // Dst: use(A[31 - i]);
280 // }
281 // The dependency is
282 // flow { Src[i] -> Dst[31 - i] : when i >= 16 } and
283 // anti { Dst[i] -> Src[31 - i] : when i < 16 },
284 // -- hence a [<>].
285 // As long as a dependence result contains '>' ('<>', '<=>', "*"), it
286 // means that a reversed/normalized dependence needs to be considered
287 // as well. Nevertheless, current isDirectionNegative() only returns
288 // true with a '>' or '>=' dependency for ease of canonicalizing the
289 // dependency vector, since the reverse of '<>', '<=>' and "*" is itself.
290 bool FullDependence::isDirectionNegative() const {
291 for (unsigned Level = 1; Level <= Levels; ++Level) {
292 unsigned char Direction = DV[Level - 1].Direction;
293 if (Direction == Dependence::DVEntry::EQ)
294 continue;
295 if (Direction == Dependence::DVEntry::GT ||
296 Direction == Dependence::DVEntry::GE)
297 return true;
298 return false;
300 return false;
303 bool FullDependence::normalize(ScalarEvolution *SE) {
304 if (!isDirectionNegative())
305 return false;
307 LLVM_DEBUG(dbgs() << "Before normalizing negative direction vectors:\n";
308 dump(dbgs()););
309 std::swap(Src, Dst);
310 for (unsigned Level = 1; Level <= Levels; ++Level) {
311 unsigned char Direction = DV[Level - 1].Direction;
312 // Reverse the direction vector, this means LT becomes GT
313 // and GT becomes LT.
314 unsigned char RevDirection = Direction & Dependence::DVEntry::EQ;
315 if (Direction & Dependence::DVEntry::LT)
316 RevDirection |= Dependence::DVEntry::GT;
317 if (Direction & Dependence::DVEntry::GT)
318 RevDirection |= Dependence::DVEntry::LT;
319 DV[Level - 1].Direction = RevDirection;
320 // Reverse the dependence distance as well.
321 if (DV[Level - 1].Distance != nullptr)
322 DV[Level - 1].Distance =
323 SE->getNegativeSCEV(DV[Level - 1].Distance);
326 LLVM_DEBUG(dbgs() << "After normalizing negative direction vectors:\n";
327 dump(dbgs()););
328 return true;
331 // The rest are simple getters that hide the implementation.
333 // getDirection - Returns the direction associated with a particular level.
334 unsigned FullDependence::getDirection(unsigned Level) const {
335 assert(0 < Level && Level <= Levels && "Level out of range");
336 return DV[Level - 1].Direction;
340 // Returns the distance (or NULL) associated with a particular level.
341 const SCEV *FullDependence::getDistance(unsigned Level) const {
342 assert(0 < Level && Level <= Levels && "Level out of range");
343 return DV[Level - 1].Distance;
347 // Returns true if a particular level is scalar; that is,
348 // if no subscript in the source or destination mention the induction
349 // variable associated with the loop at this level.
350 bool FullDependence::isScalar(unsigned Level) const {
351 assert(0 < Level && Level <= Levels && "Level out of range");
352 return DV[Level - 1].Scalar;
356 // Returns true if peeling the first iteration from this loop
357 // will break this dependence.
358 bool FullDependence::isPeelFirst(unsigned Level) const {
359 assert(0 < Level && Level <= Levels && "Level out of range");
360 return DV[Level - 1].PeelFirst;
364 // Returns true if peeling the last iteration from this loop
365 // will break this dependence.
366 bool FullDependence::isPeelLast(unsigned Level) const {
367 assert(0 < Level && Level <= Levels && "Level out of range");
368 return DV[Level - 1].PeelLast;
372 // Returns true if splitting this loop will break the dependence.
373 bool FullDependence::isSplitable(unsigned Level) const {
374 assert(0 < Level && Level <= Levels && "Level out of range");
375 return DV[Level - 1].Splitable;
379 //===----------------------------------------------------------------------===//
380 // DependenceInfo::Constraint methods
382 // If constraint is a point <X, Y>, returns X.
383 // Otherwise assert.
384 const SCEV *DependenceInfo::Constraint::getX() const {
385 assert(Kind == Point && "Kind should be Point");
386 return A;
390 // If constraint is a point <X, Y>, returns Y.
391 // Otherwise assert.
392 const SCEV *DependenceInfo::Constraint::getY() const {
393 assert(Kind == Point && "Kind should be Point");
394 return B;
398 // If constraint is a line AX + BY = C, returns A.
399 // Otherwise assert.
400 const SCEV *DependenceInfo::Constraint::getA() const {
401 assert((Kind == Line || Kind == Distance) &&
402 "Kind should be Line (or Distance)");
403 return A;
407 // If constraint is a line AX + BY = C, returns B.
408 // Otherwise assert.
409 const SCEV *DependenceInfo::Constraint::getB() const {
410 assert((Kind == Line || Kind == Distance) &&
411 "Kind should be Line (or Distance)");
412 return B;
416 // If constraint is a line AX + BY = C, returns C.
417 // Otherwise assert.
418 const SCEV *DependenceInfo::Constraint::getC() const {
419 assert((Kind == Line || Kind == Distance) &&
420 "Kind should be Line (or Distance)");
421 return C;
425 // If constraint is a distance, returns D.
426 // Otherwise assert.
427 const SCEV *DependenceInfo::Constraint::getD() const {
428 assert(Kind == Distance && "Kind should be Distance");
429 return SE->getNegativeSCEV(C);
433 // Returns the loop associated with this constraint.
434 const Loop *DependenceInfo::Constraint::getAssociatedLoop() const {
435 assert((Kind == Distance || Kind == Line || Kind == Point) &&
436 "Kind should be Distance, Line, or Point");
437 return AssociatedLoop;
440 void DependenceInfo::Constraint::setPoint(const SCEV *X, const SCEV *Y,
441 const Loop *CurLoop) {
442 Kind = Point;
443 A = X;
444 B = Y;
445 AssociatedLoop = CurLoop;
448 void DependenceInfo::Constraint::setLine(const SCEV *AA, const SCEV *BB,
449 const SCEV *CC, const Loop *CurLoop) {
450 Kind = Line;
451 A = AA;
452 B = BB;
453 C = CC;
454 AssociatedLoop = CurLoop;
457 void DependenceInfo::Constraint::setDistance(const SCEV *D,
458 const Loop *CurLoop) {
459 Kind = Distance;
460 A = SE->getOne(D->getType());
461 B = SE->getNegativeSCEV(A);
462 C = SE->getNegativeSCEV(D);
463 AssociatedLoop = CurLoop;
466 void DependenceInfo::Constraint::setEmpty() { Kind = Empty; }
468 void DependenceInfo::Constraint::setAny(ScalarEvolution *NewSE) {
469 SE = NewSE;
470 Kind = Any;
473 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
474 // For debugging purposes. Dumps the constraint out to OS.
475 LLVM_DUMP_METHOD void DependenceInfo::Constraint::dump(raw_ostream &OS) const {
476 if (isEmpty())
477 OS << " Empty\n";
478 else if (isAny())
479 OS << " Any\n";
480 else if (isPoint())
481 OS << " Point is <" << *getX() << ", " << *getY() << ">\n";
482 else if (isDistance())
483 OS << " Distance is " << *getD() <<
484 " (" << *getA() << "*X + " << *getB() << "*Y = " << *getC() << ")\n";
485 else if (isLine())
486 OS << " Line is " << *getA() << "*X + " <<
487 *getB() << "*Y = " << *getC() << "\n";
488 else
489 llvm_unreachable("unknown constraint type in Constraint::dump");
491 #endif
494 // Updates X with the intersection
495 // of the Constraints X and Y. Returns true if X has changed.
496 // Corresponds to Figure 4 from the paper
498 // Practical Dependence Testing
499 // Goff, Kennedy, Tseng
500 // PLDI 1991
501 bool DependenceInfo::intersectConstraints(Constraint *X, const Constraint *Y) {
502 ++DeltaApplications;
503 LLVM_DEBUG(dbgs() << "\tintersect constraints\n");
504 LLVM_DEBUG(dbgs() << "\t X ="; X->dump(dbgs()));
505 LLVM_DEBUG(dbgs() << "\t Y ="; Y->dump(dbgs()));
506 assert(!Y->isPoint() && "Y must not be a Point");
507 if (X->isAny()) {
508 if (Y->isAny())
509 return false;
510 *X = *Y;
511 return true;
513 if (X->isEmpty())
514 return false;
515 if (Y->isEmpty()) {
516 X->setEmpty();
517 return true;
520 if (X->isDistance() && Y->isDistance()) {
521 LLVM_DEBUG(dbgs() << "\t intersect 2 distances\n");
522 if (isKnownPredicate(CmpInst::ICMP_EQ, X->getD(), Y->getD()))
523 return false;
524 if (isKnownPredicate(CmpInst::ICMP_NE, X->getD(), Y->getD())) {
525 X->setEmpty();
526 ++DeltaSuccesses;
527 return true;
529 // Hmmm, interesting situation.
530 // I guess if either is constant, keep it and ignore the other.
531 if (isa<SCEVConstant>(Y->getD())) {
532 *X = *Y;
533 return true;
535 return false;
538 // At this point, the pseudo-code in Figure 4 of the paper
539 // checks if (X->isPoint() && Y->isPoint()).
540 // This case can't occur in our implementation,
541 // since a Point can only arise as the result of intersecting
542 // two Line constraints, and the right-hand value, Y, is never
543 // the result of an intersection.
544 assert(!(X->isPoint() && Y->isPoint()) &&
545 "We shouldn't ever see X->isPoint() && Y->isPoint()");
547 if (X->isLine() && Y->isLine()) {
548 LLVM_DEBUG(dbgs() << "\t intersect 2 lines\n");
549 const SCEV *Prod1 = SE->getMulExpr(X->getA(), Y->getB());
550 const SCEV *Prod2 = SE->getMulExpr(X->getB(), Y->getA());
551 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2)) {
552 // slopes are equal, so lines are parallel
553 LLVM_DEBUG(dbgs() << "\t\tsame slope\n");
554 Prod1 = SE->getMulExpr(X->getC(), Y->getB());
555 Prod2 = SE->getMulExpr(X->getB(), Y->getC());
556 if (isKnownPredicate(CmpInst::ICMP_EQ, Prod1, Prod2))
557 return false;
558 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
559 X->setEmpty();
560 ++DeltaSuccesses;
561 return true;
563 return false;
565 if (isKnownPredicate(CmpInst::ICMP_NE, Prod1, Prod2)) {
566 // slopes differ, so lines intersect
567 LLVM_DEBUG(dbgs() << "\t\tdifferent slopes\n");
568 const SCEV *C1B2 = SE->getMulExpr(X->getC(), Y->getB());
569 const SCEV *C1A2 = SE->getMulExpr(X->getC(), Y->getA());
570 const SCEV *C2B1 = SE->getMulExpr(Y->getC(), X->getB());
571 const SCEV *C2A1 = SE->getMulExpr(Y->getC(), X->getA());
572 const SCEV *A1B2 = SE->getMulExpr(X->getA(), Y->getB());
573 const SCEV *A2B1 = SE->getMulExpr(Y->getA(), X->getB());
574 const SCEVConstant *C1A2_C2A1 =
575 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1A2, C2A1));
576 const SCEVConstant *C1B2_C2B1 =
577 dyn_cast<SCEVConstant>(SE->getMinusSCEV(C1B2, C2B1));
578 const SCEVConstant *A1B2_A2B1 =
579 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A1B2, A2B1));
580 const SCEVConstant *A2B1_A1B2 =
581 dyn_cast<SCEVConstant>(SE->getMinusSCEV(A2B1, A1B2));
582 if (!C1B2_C2B1 || !C1A2_C2A1 ||
583 !A1B2_A2B1 || !A2B1_A1B2)
584 return false;
585 APInt Xtop = C1B2_C2B1->getAPInt();
586 APInt Xbot = A1B2_A2B1->getAPInt();
587 APInt Ytop = C1A2_C2A1->getAPInt();
588 APInt Ybot = A2B1_A1B2->getAPInt();
589 LLVM_DEBUG(dbgs() << "\t\tXtop = " << Xtop << "\n");
590 LLVM_DEBUG(dbgs() << "\t\tXbot = " << Xbot << "\n");
591 LLVM_DEBUG(dbgs() << "\t\tYtop = " << Ytop << "\n");
592 LLVM_DEBUG(dbgs() << "\t\tYbot = " << Ybot << "\n");
593 APInt Xq = Xtop; // these need to be initialized, even
594 APInt Xr = Xtop; // though they're just going to be overwritten
595 APInt::sdivrem(Xtop, Xbot, Xq, Xr);
596 APInt Yq = Ytop;
597 APInt Yr = Ytop;
598 APInt::sdivrem(Ytop, Ybot, Yq, Yr);
599 if (Xr != 0 || Yr != 0) {
600 X->setEmpty();
601 ++DeltaSuccesses;
602 return true;
604 LLVM_DEBUG(dbgs() << "\t\tX = " << Xq << ", Y = " << Yq << "\n");
605 if (Xq.slt(0) || Yq.slt(0)) {
606 X->setEmpty();
607 ++DeltaSuccesses;
608 return true;
610 if (const SCEVConstant *CUB =
611 collectConstantUpperBound(X->getAssociatedLoop(), Prod1->getType())) {
612 const APInt &UpperBound = CUB->getAPInt();
613 LLVM_DEBUG(dbgs() << "\t\tupper bound = " << UpperBound << "\n");
614 if (Xq.sgt(UpperBound) || Yq.sgt(UpperBound)) {
615 X->setEmpty();
616 ++DeltaSuccesses;
617 return true;
620 X->setPoint(SE->getConstant(Xq),
621 SE->getConstant(Yq),
622 X->getAssociatedLoop());
623 ++DeltaSuccesses;
624 return true;
626 return false;
629 // if (X->isLine() && Y->isPoint()) This case can't occur.
630 assert(!(X->isLine() && Y->isPoint()) && "This case should never occur");
632 if (X->isPoint() && Y->isLine()) {
633 LLVM_DEBUG(dbgs() << "\t intersect Point and Line\n");
634 const SCEV *A1X1 = SE->getMulExpr(Y->getA(), X->getX());
635 const SCEV *B1Y1 = SE->getMulExpr(Y->getB(), X->getY());
636 const SCEV *Sum = SE->getAddExpr(A1X1, B1Y1);
637 if (isKnownPredicate(CmpInst::ICMP_EQ, Sum, Y->getC()))
638 return false;
639 if (isKnownPredicate(CmpInst::ICMP_NE, Sum, Y->getC())) {
640 X->setEmpty();
641 ++DeltaSuccesses;
642 return true;
644 return false;
647 llvm_unreachable("shouldn't reach the end of Constraint intersection");
648 return false;
652 //===----------------------------------------------------------------------===//
653 // DependenceInfo methods
655 // For debugging purposes. Dumps a dependence to OS.
656 void Dependence::dump(raw_ostream &OS) const {
657 bool Splitable = false;
658 if (isConfused())
659 OS << "confused";
660 else {
661 if (isConsistent())
662 OS << "consistent ";
663 if (isFlow())
664 OS << "flow";
665 else if (isOutput())
666 OS << "output";
667 else if (isAnti())
668 OS << "anti";
669 else if (isInput())
670 OS << "input";
671 unsigned Levels = getLevels();
672 OS << " [";
673 for (unsigned II = 1; II <= Levels; ++II) {
674 if (isSplitable(II))
675 Splitable = true;
676 if (isPeelFirst(II))
677 OS << 'p';
678 const SCEV *Distance = getDistance(II);
679 if (Distance)
680 OS << *Distance;
681 else if (isScalar(II))
682 OS << "S";
683 else {
684 unsigned Direction = getDirection(II);
685 if (Direction == DVEntry::ALL)
686 OS << "*";
687 else {
688 if (Direction & DVEntry::LT)
689 OS << "<";
690 if (Direction & DVEntry::EQ)
691 OS << "=";
692 if (Direction & DVEntry::GT)
693 OS << ">";
696 if (isPeelLast(II))
697 OS << 'p';
698 if (II < Levels)
699 OS << " ";
701 if (isLoopIndependent())
702 OS << "|<";
703 OS << "]";
704 if (Splitable)
705 OS << " splitable";
707 OS << "!\n";
710 // Returns NoAlias/MayAliass/MustAlias for two memory locations based upon their
711 // underlaying objects. If LocA and LocB are known to not alias (for any reason:
712 // tbaa, non-overlapping regions etc), then it is known there is no dependecy.
713 // Otherwise the underlying objects are checked to see if they point to
714 // different identifiable objects.
715 static AliasResult underlyingObjectsAlias(AAResults *AA,
716 const DataLayout &DL,
717 const MemoryLocation &LocA,
718 const MemoryLocation &LocB) {
719 // Check the original locations (minus size) for noalias, which can happen for
720 // tbaa, incompatible underlying object locations, etc.
721 MemoryLocation LocAS =
722 MemoryLocation::getBeforeOrAfter(LocA.Ptr, LocA.AATags);
723 MemoryLocation LocBS =
724 MemoryLocation::getBeforeOrAfter(LocB.Ptr, LocB.AATags);
725 if (AA->isNoAlias(LocAS, LocBS))
726 return AliasResult::NoAlias;
728 // Check the underlying objects are the same
729 const Value *AObj = getUnderlyingObject(LocA.Ptr);
730 const Value *BObj = getUnderlyingObject(LocB.Ptr);
732 // If the underlying objects are the same, they must alias
733 if (AObj == BObj)
734 return AliasResult::MustAlias;
736 // We may have hit the recursion limit for underlying objects, or have
737 // underlying objects where we don't know they will alias.
738 if (!isIdentifiedObject(AObj) || !isIdentifiedObject(BObj))
739 return AliasResult::MayAlias;
741 // Otherwise we know the objects are different and both identified objects so
742 // must not alias.
743 return AliasResult::NoAlias;
747 // Returns true if the load or store can be analyzed. Atomic and volatile
748 // operations have properties which this analysis does not understand.
749 static
750 bool isLoadOrStore(const Instruction *I) {
751 if (const LoadInst *LI = dyn_cast<LoadInst>(I))
752 return LI->isUnordered();
753 else if (const StoreInst *SI = dyn_cast<StoreInst>(I))
754 return SI->isUnordered();
755 return false;
759 // Examines the loop nesting of the Src and Dst
760 // instructions and establishes their shared loops. Sets the variables
761 // CommonLevels, SrcLevels, and MaxLevels.
762 // The source and destination instructions needn't be contained in the same
763 // loop. The routine establishNestingLevels finds the level of most deeply
764 // nested loop that contains them both, CommonLevels. An instruction that's
765 // not contained in a loop is at level = 0. MaxLevels is equal to the level
766 // of the source plus the level of the destination, minus CommonLevels.
767 // This lets us allocate vectors MaxLevels in length, with room for every
768 // distinct loop referenced in both the source and destination subscripts.
769 // The variable SrcLevels is the nesting depth of the source instruction.
770 // It's used to help calculate distinct loops referenced by the destination.
771 // Here's the map from loops to levels:
772 // 0 - unused
773 // 1 - outermost common loop
774 // ... - other common loops
775 // CommonLevels - innermost common loop
776 // ... - loops containing Src but not Dst
777 // SrcLevels - innermost loop containing Src but not Dst
778 // ... - loops containing Dst but not Src
779 // MaxLevels - innermost loops containing Dst but not Src
780 // Consider the follow code fragment:
781 // for (a = ...) {
782 // for (b = ...) {
783 // for (c = ...) {
784 // for (d = ...) {
785 // A[] = ...;
786 // }
787 // }
788 // for (e = ...) {
789 // for (f = ...) {
790 // for (g = ...) {
791 // ... = A[];
792 // }
793 // }
794 // }
795 // }
796 // }
797 // If we're looking at the possibility of a dependence between the store
798 // to A (the Src) and the load from A (the Dst), we'll note that they
799 // have 2 loops in common, so CommonLevels will equal 2 and the direction
800 // vector for Result will have 2 entries. SrcLevels = 4 and MaxLevels = 7.
801 // A map from loop names to loop numbers would look like
802 // a - 1
803 // b - 2 = CommonLevels
804 // c - 3
805 // d - 4 = SrcLevels
806 // e - 5
807 // f - 6
808 // g - 7 = MaxLevels
809 void DependenceInfo::establishNestingLevels(const Instruction *Src,
810 const Instruction *Dst) {
811 const BasicBlock *SrcBlock = Src->getParent();
812 const BasicBlock *DstBlock = Dst->getParent();
813 unsigned SrcLevel = LI->getLoopDepth(SrcBlock);
814 unsigned DstLevel = LI->getLoopDepth(DstBlock);
815 const Loop *SrcLoop = LI->getLoopFor(SrcBlock);
816 const Loop *DstLoop = LI->getLoopFor(DstBlock);
817 SrcLevels = SrcLevel;
818 MaxLevels = SrcLevel + DstLevel;
819 while (SrcLevel > DstLevel) {
820 SrcLoop = SrcLoop->getParentLoop();
821 SrcLevel--;
823 while (DstLevel > SrcLevel) {
824 DstLoop = DstLoop->getParentLoop();
825 DstLevel--;
827 while (SrcLoop != DstLoop) {
828 SrcLoop = SrcLoop->getParentLoop();
829 DstLoop = DstLoop->getParentLoop();
830 SrcLevel--;
832 CommonLevels = SrcLevel;
833 MaxLevels -= CommonLevels;
837 // Given one of the loops containing the source, return
838 // its level index in our numbering scheme.
839 unsigned DependenceInfo::mapSrcLoop(const Loop *SrcLoop) const {
840 return SrcLoop->getLoopDepth();
844 // Given one of the loops containing the destination,
845 // return its level index in our numbering scheme.
846 unsigned DependenceInfo::mapDstLoop(const Loop *DstLoop) const {
847 unsigned D = DstLoop->getLoopDepth();
848 if (D > CommonLevels)
849 // This tries to make sure that we assign unique numbers to src and dst when
850 // the memory accesses reside in different loops that have the same depth.
851 return D - CommonLevels + SrcLevels;
852 else
853 return D;
857 // Returns true if Expression is loop invariant in LoopNest.
858 bool DependenceInfo::isLoopInvariant(const SCEV *Expression,
859 const Loop *LoopNest) const {
860 // Unlike ScalarEvolution::isLoopInvariant() we consider an access outside of
861 // any loop as invariant, because we only consier expression evaluation at a
862 // specific position (where the array access takes place), and not across the
863 // entire function.
864 if (!LoopNest)
865 return true;
867 // If the expression is invariant in the outermost loop of the loop nest, it
868 // is invariant anywhere in the loop nest.
869 return SE->isLoopInvariant(Expression, LoopNest->getOutermostLoop());
874 // Finds the set of loops from the LoopNest that
875 // have a level <= CommonLevels and are referred to by the SCEV Expression.
876 void DependenceInfo::collectCommonLoops(const SCEV *Expression,
877 const Loop *LoopNest,
878 SmallBitVector &Loops) const {
879 while (LoopNest) {
880 unsigned Level = LoopNest->getLoopDepth();
881 if (Level <= CommonLevels && !SE->isLoopInvariant(Expression, LoopNest))
882 Loops.set(Level);
883 LoopNest = LoopNest->getParentLoop();
887 void DependenceInfo::unifySubscriptType(ArrayRef<Subscript *> Pairs) {
889 unsigned widestWidthSeen = 0;
890 Type *widestType;
892 // Go through each pair and find the widest bit to which we need
893 // to extend all of them.
894 for (Subscript *Pair : Pairs) {
895 const SCEV *Src = Pair->Src;
896 const SCEV *Dst = Pair->Dst;
897 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
898 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
899 if (SrcTy == nullptr || DstTy == nullptr) {
900 assert(SrcTy == DstTy && "This function only unify integer types and "
901 "expect Src and Dst share the same type "
902 "otherwise.");
903 continue;
905 if (SrcTy->getBitWidth() > widestWidthSeen) {
906 widestWidthSeen = SrcTy->getBitWidth();
907 widestType = SrcTy;
909 if (DstTy->getBitWidth() > widestWidthSeen) {
910 widestWidthSeen = DstTy->getBitWidth();
911 widestType = DstTy;
916 assert(widestWidthSeen > 0);
918 // Now extend each pair to the widest seen.
919 for (Subscript *Pair : Pairs) {
920 const SCEV *Src = Pair->Src;
921 const SCEV *Dst = Pair->Dst;
922 IntegerType *SrcTy = dyn_cast<IntegerType>(Src->getType());
923 IntegerType *DstTy = dyn_cast<IntegerType>(Dst->getType());
924 if (SrcTy == nullptr || DstTy == nullptr) {
925 assert(SrcTy == DstTy && "This function only unify integer types and "
926 "expect Src and Dst share the same type "
927 "otherwise.");
928 continue;
930 if (SrcTy->getBitWidth() < widestWidthSeen)
931 // Sign-extend Src to widestType
932 Pair->Src = SE->getSignExtendExpr(Src, widestType);
933 if (DstTy->getBitWidth() < widestWidthSeen) {
934 // Sign-extend Dst to widestType
935 Pair->Dst = SE->getSignExtendExpr(Dst, widestType);
940 // removeMatchingExtensions - Examines a subscript pair.
941 // If the source and destination are identically sign (or zero)
942 // extended, it strips off the extension in an effect to simplify
943 // the actual analysis.
944 void DependenceInfo::removeMatchingExtensions(Subscript *Pair) {
945 const SCEV *Src = Pair->Src;
946 const SCEV *Dst = Pair->Dst;
947 if ((isa<SCEVZeroExtendExpr>(Src) && isa<SCEVZeroExtendExpr>(Dst)) ||
948 (isa<SCEVSignExtendExpr>(Src) && isa<SCEVSignExtendExpr>(Dst))) {
949 const SCEVIntegralCastExpr *SrcCast = cast<SCEVIntegralCastExpr>(Src);
950 const SCEVIntegralCastExpr *DstCast = cast<SCEVIntegralCastExpr>(Dst);
951 const SCEV *SrcCastOp = SrcCast->getOperand();
952 const SCEV *DstCastOp = DstCast->getOperand();
953 if (SrcCastOp->getType() == DstCastOp->getType()) {
954 Pair->Src = SrcCastOp;
955 Pair->Dst = DstCastOp;
960 // Examine the scev and return true iff it's affine.
961 // Collect any loops mentioned in the set of "Loops".
962 bool DependenceInfo::checkSubscript(const SCEV *Expr, const Loop *LoopNest,
963 SmallBitVector &Loops, bool IsSrc) {
964 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
965 if (!AddRec)
966 return isLoopInvariant(Expr, LoopNest);
968 // The AddRec must depend on one of the containing loops. Otherwise,
969 // mapSrcLoop and mapDstLoop return indices outside the intended range. This
970 // can happen when a subscript in one loop references an IV from a sibling
971 // loop that could not be replaced with a concrete exit value by
972 // getSCEVAtScope.
973 const Loop *L = LoopNest;
974 while (L && AddRec->getLoop() != L)
975 L = L->getParentLoop();
976 if (!L)
977 return false;
979 const SCEV *Start = AddRec->getStart();
980 const SCEV *Step = AddRec->getStepRecurrence(*SE);
981 const SCEV *UB = SE->getBackedgeTakenCount(AddRec->getLoop());
982 if (!isa<SCEVCouldNotCompute>(UB)) {
983 if (SE->getTypeSizeInBits(Start->getType()) <
984 SE->getTypeSizeInBits(UB->getType())) {
985 if (!AddRec->getNoWrapFlags())
986 return false;
989 if (!isLoopInvariant(Step, LoopNest))
990 return false;
991 if (IsSrc)
992 Loops.set(mapSrcLoop(AddRec->getLoop()));
993 else
994 Loops.set(mapDstLoop(AddRec->getLoop()));
995 return checkSubscript(Start, LoopNest, Loops, IsSrc);
998 // Examine the scev and return true iff it's linear.
999 // Collect any loops mentioned in the set of "Loops".
1000 bool DependenceInfo::checkSrcSubscript(const SCEV *Src, const Loop *LoopNest,
1001 SmallBitVector &Loops) {
1002 return checkSubscript(Src, LoopNest, Loops, true);
1005 // Examine the scev and return true iff it's linear.
1006 // Collect any loops mentioned in the set of "Loops".
1007 bool DependenceInfo::checkDstSubscript(const SCEV *Dst, const Loop *LoopNest,
1008 SmallBitVector &Loops) {
1009 return checkSubscript(Dst, LoopNest, Loops, false);
1013 // Examines the subscript pair (the Src and Dst SCEVs)
1014 // and classifies it as either ZIV, SIV, RDIV, MIV, or Nonlinear.
1015 // Collects the associated loops in a set.
1016 DependenceInfo::Subscript::ClassificationKind
1017 DependenceInfo::classifyPair(const SCEV *Src, const Loop *SrcLoopNest,
1018 const SCEV *Dst, const Loop *DstLoopNest,
1019 SmallBitVector &Loops) {
1020 SmallBitVector SrcLoops(MaxLevels + 1);
1021 SmallBitVector DstLoops(MaxLevels + 1);
1022 if (!checkSrcSubscript(Src, SrcLoopNest, SrcLoops))
1023 return Subscript::NonLinear;
1024 if (!checkDstSubscript(Dst, DstLoopNest, DstLoops))
1025 return Subscript::NonLinear;
1026 Loops = SrcLoops;
1027 Loops |= DstLoops;
1028 unsigned N = Loops.count();
1029 if (N == 0)
1030 return Subscript::ZIV;
1031 if (N == 1)
1032 return Subscript::SIV;
1033 if (N == 2 && (SrcLoops.count() == 0 ||
1034 DstLoops.count() == 0 ||
1035 (SrcLoops.count() == 1 && DstLoops.count() == 1)))
1036 return Subscript::RDIV;
1037 return Subscript::MIV;
1041 // A wrapper around SCEV::isKnownPredicate.
1042 // Looks for cases where we're interested in comparing for equality.
1043 // If both X and Y have been identically sign or zero extended,
1044 // it strips off the (confusing) extensions before invoking
1045 // SCEV::isKnownPredicate. Perhaps, someday, the ScalarEvolution package
1046 // will be similarly updated.
1048 // If SCEV::isKnownPredicate can't prove the predicate,
1049 // we try simple subtraction, which seems to help in some cases
1050 // involving symbolics.
1051 bool DependenceInfo::isKnownPredicate(ICmpInst::Predicate Pred, const SCEV *X,
1052 const SCEV *Y) const {
1053 if (Pred == CmpInst::ICMP_EQ ||
1054 Pred == CmpInst::ICMP_NE) {
1055 if ((isa<SCEVSignExtendExpr>(X) &&
1056 isa<SCEVSignExtendExpr>(Y)) ||
1057 (isa<SCEVZeroExtendExpr>(X) &&
1058 isa<SCEVZeroExtendExpr>(Y))) {
1059 const SCEVIntegralCastExpr *CX = cast<SCEVIntegralCastExpr>(X);
1060 const SCEVIntegralCastExpr *CY = cast<SCEVIntegralCastExpr>(Y);
1061 const SCEV *Xop = CX->getOperand();
1062 const SCEV *Yop = CY->getOperand();
1063 if (Xop->getType() == Yop->getType()) {
1064 X = Xop;
1065 Y = Yop;
1069 if (SE->isKnownPredicate(Pred, X, Y))
1070 return true;
1071 // If SE->isKnownPredicate can't prove the condition,
1072 // we try the brute-force approach of subtracting
1073 // and testing the difference.
1074 // By testing with SE->isKnownPredicate first, we avoid
1075 // the possibility of overflow when the arguments are constants.
1076 const SCEV *Delta = SE->getMinusSCEV(X, Y);
1077 switch (Pred) {
1078 case CmpInst::ICMP_EQ:
1079 return Delta->isZero();
1080 case CmpInst::ICMP_NE:
1081 return SE->isKnownNonZero(Delta);
1082 case CmpInst::ICMP_SGE:
1083 return SE->isKnownNonNegative(Delta);
1084 case CmpInst::ICMP_SLE:
1085 return SE->isKnownNonPositive(Delta);
1086 case CmpInst::ICMP_SGT:
1087 return SE->isKnownPositive(Delta);
1088 case CmpInst::ICMP_SLT:
1089 return SE->isKnownNegative(Delta);
1090 default:
1091 llvm_unreachable("unexpected predicate in isKnownPredicate");
1095 /// Compare to see if S is less than Size, using isKnownNegative(S - max(Size, 1))
1096 /// with some extra checking if S is an AddRec and we can prove less-than using
1097 /// the loop bounds.
1098 bool DependenceInfo::isKnownLessThan(const SCEV *S, const SCEV *Size) const {
1099 // First unify to the same type
1100 auto *SType = dyn_cast<IntegerType>(S->getType());
1101 auto *SizeType = dyn_cast<IntegerType>(Size->getType());
1102 if (!SType || !SizeType)
1103 return false;
1104 Type *MaxType =
1105 (SType->getBitWidth() >= SizeType->getBitWidth()) ? SType : SizeType;
1106 S = SE->getTruncateOrZeroExtend(S, MaxType);
1107 Size = SE->getTruncateOrZeroExtend(Size, MaxType);
1109 // Special check for addrecs using BE taken count
1110 const SCEV *Bound = SE->getMinusSCEV(S, Size);
1111 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Bound)) {
1112 if (AddRec->isAffine()) {
1113 const SCEV *BECount = SE->getBackedgeTakenCount(AddRec->getLoop());
1114 if (!isa<SCEVCouldNotCompute>(BECount)) {
1115 const SCEV *Limit = AddRec->evaluateAtIteration(BECount, *SE);
1116 if (SE->isKnownNegative(Limit))
1117 return true;
1122 // Check using normal isKnownNegative
1123 const SCEV *LimitedBound =
1124 SE->getMinusSCEV(S, SE->getSMaxExpr(Size, SE->getOne(Size->getType())));
1125 return SE->isKnownNegative(LimitedBound);
1128 bool DependenceInfo::isKnownNonNegative(const SCEV *S, const Value *Ptr) const {
1129 bool Inbounds = false;
1130 if (auto *SrcGEP = dyn_cast<GetElementPtrInst>(Ptr))
1131 Inbounds = SrcGEP->isInBounds();
1132 if (Inbounds) {
1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
1134 if (AddRec->isAffine()) {
1135 // We know S is for Ptr, the operand on a load/store, so doesn't wrap.
1136 // If both parts are NonNegative, the end result will be NonNegative
1137 if (SE->isKnownNonNegative(AddRec->getStart()) &&
1138 SE->isKnownNonNegative(AddRec->getOperand(1)))
1139 return true;
1144 return SE->isKnownNonNegative(S);
1147 // All subscripts are all the same type.
1148 // Loop bound may be smaller (e.g., a char).
1149 // Should zero extend loop bound, since it's always >= 0.
1150 // This routine collects upper bound and extends or truncates if needed.
1151 // Truncating is safe when subscripts are known not to wrap. Cases without
1152 // nowrap flags should have been rejected earlier.
1153 // Return null if no bound available.
1154 const SCEV *DependenceInfo::collectUpperBound(const Loop *L, Type *T) const {
1155 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
1156 const SCEV *UB = SE->getBackedgeTakenCount(L);
1157 return SE->getTruncateOrZeroExtend(UB, T);
1159 return nullptr;
1163 // Calls collectUpperBound(), then attempts to cast it to SCEVConstant.
1164 // If the cast fails, returns NULL.
1165 const SCEVConstant *DependenceInfo::collectConstantUpperBound(const Loop *L,
1166 Type *T) const {
1167 if (const SCEV *UB = collectUpperBound(L, T))
1168 return dyn_cast<SCEVConstant>(UB);
1169 return nullptr;
1173 // testZIV -
1174 // When we have a pair of subscripts of the form [c1] and [c2],
1175 // where c1 and c2 are both loop invariant, we attack it using
1176 // the ZIV test. Basically, we test by comparing the two values,
1177 // but there are actually three possible results:
1178 // 1) the values are equal, so there's a dependence
1179 // 2) the values are different, so there's no dependence
1180 // 3) the values might be equal, so we have to assume a dependence.
1182 // Return true if dependence disproved.
1183 bool DependenceInfo::testZIV(const SCEV *Src, const SCEV *Dst,
1184 FullDependence &Result) const {
1185 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
1186 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
1187 ++ZIVapplications;
1188 if (isKnownPredicate(CmpInst::ICMP_EQ, Src, Dst)) {
1189 LLVM_DEBUG(dbgs() << " provably dependent\n");
1190 return false; // provably dependent
1192 if (isKnownPredicate(CmpInst::ICMP_NE, Src, Dst)) {
1193 LLVM_DEBUG(dbgs() << " provably independent\n");
1194 ++ZIVindependence;
1195 return true; // provably independent
1197 LLVM_DEBUG(dbgs() << " possibly dependent\n");
1198 Result.Consistent = false;
1199 return false; // possibly dependent
1203 // strongSIVtest -
1204 // From the paper, Practical Dependence Testing, Section 4.2.1
1206 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 + a*i],
1207 // where i is an induction variable, c1 and c2 are loop invariant,
1208 // and a is a constant, we can solve it exactly using the Strong SIV test.
1210 // Can prove independence. Failing that, can compute distance (and direction).
1211 // In the presence of symbolic terms, we can sometimes make progress.
1213 // If there's a dependence,
1215 // c1 + a*i = c2 + a*i'
1217 // The dependence distance is
1219 // d = i' - i = (c1 - c2)/a
1221 // A dependence only exists if d is an integer and abs(d) <= U, where U is the
1222 // loop's upper bound. If a dependence exists, the dependence direction is
1223 // defined as
1225 // { < if d > 0
1226 // direction = { = if d = 0
1227 // { > if d < 0
1229 // Return true if dependence disproved.
1230 bool DependenceInfo::strongSIVtest(const SCEV *Coeff, const SCEV *SrcConst,
1231 const SCEV *DstConst, const Loop *CurLoop,
1232 unsigned Level, FullDependence &Result,
1233 Constraint &NewConstraint) const {
1234 LLVM_DEBUG(dbgs() << "\tStrong SIV test\n");
1235 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff);
1236 LLVM_DEBUG(dbgs() << ", " << *Coeff->getType() << "\n");
1237 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst);
1238 LLVM_DEBUG(dbgs() << ", " << *SrcConst->getType() << "\n");
1239 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst);
1240 LLVM_DEBUG(dbgs() << ", " << *DstConst->getType() << "\n");
1241 ++StrongSIVapplications;
1242 assert(0 < Level && Level <= CommonLevels && "level out of range");
1243 Level--;
1245 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1246 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta);
1247 LLVM_DEBUG(dbgs() << ", " << *Delta->getType() << "\n");
1249 // check that |Delta| < iteration count
1250 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1251 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound);
1252 LLVM_DEBUG(dbgs() << ", " << *UpperBound->getType() << "\n");
1253 const SCEV *AbsDelta =
1254 SE->isKnownNonNegative(Delta) ? Delta : SE->getNegativeSCEV(Delta);
1255 const SCEV *AbsCoeff =
1256 SE->isKnownNonNegative(Coeff) ? Coeff : SE->getNegativeSCEV(Coeff);
1257 const SCEV *Product = SE->getMulExpr(UpperBound, AbsCoeff);
1258 if (isKnownPredicate(CmpInst::ICMP_SGT, AbsDelta, Product)) {
1259 // Distance greater than trip count - no dependence
1260 ++StrongSIVindependence;
1261 ++StrongSIVsuccesses;
1262 return true;
1266 // Can we compute distance?
1267 if (isa<SCEVConstant>(Delta) && isa<SCEVConstant>(Coeff)) {
1268 APInt ConstDelta = cast<SCEVConstant>(Delta)->getAPInt();
1269 APInt ConstCoeff = cast<SCEVConstant>(Coeff)->getAPInt();
1270 APInt Distance = ConstDelta; // these need to be initialized
1271 APInt Remainder = ConstDelta;
1272 APInt::sdivrem(ConstDelta, ConstCoeff, Distance, Remainder);
1273 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1274 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1275 // Make sure Coeff divides Delta exactly
1276 if (Remainder != 0) {
1277 // Coeff doesn't divide Distance, no dependence
1278 ++StrongSIVindependence;
1279 ++StrongSIVsuccesses;
1280 return true;
1282 Result.DV[Level].Distance = SE->getConstant(Distance);
1283 NewConstraint.setDistance(SE->getConstant(Distance), CurLoop);
1284 if (Distance.sgt(0))
1285 Result.DV[Level].Direction &= Dependence::DVEntry::LT;
1286 else if (Distance.slt(0))
1287 Result.DV[Level].Direction &= Dependence::DVEntry::GT;
1288 else
1289 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1290 ++StrongSIVsuccesses;
1292 else if (Delta->isZero()) {
1293 // since 0/X == 0
1294 Result.DV[Level].Distance = Delta;
1295 NewConstraint.setDistance(Delta, CurLoop);
1296 Result.DV[Level].Direction &= Dependence::DVEntry::EQ;
1297 ++StrongSIVsuccesses;
1299 else {
1300 if (Coeff->isOne()) {
1301 LLVM_DEBUG(dbgs() << "\t Distance = " << *Delta << "\n");
1302 Result.DV[Level].Distance = Delta; // since X/1 == X
1303 NewConstraint.setDistance(Delta, CurLoop);
1305 else {
1306 Result.Consistent = false;
1307 NewConstraint.setLine(Coeff,
1308 SE->getNegativeSCEV(Coeff),
1309 SE->getNegativeSCEV(Delta), CurLoop);
1312 // maybe we can get a useful direction
1313 bool DeltaMaybeZero = !SE->isKnownNonZero(Delta);
1314 bool DeltaMaybePositive = !SE->isKnownNonPositive(Delta);
1315 bool DeltaMaybeNegative = !SE->isKnownNonNegative(Delta);
1316 bool CoeffMaybePositive = !SE->isKnownNonPositive(Coeff);
1317 bool CoeffMaybeNegative = !SE->isKnownNonNegative(Coeff);
1318 // The double negatives above are confusing.
1319 // It helps to read !SE->isKnownNonZero(Delta)
1320 // as "Delta might be Zero"
1321 unsigned NewDirection = Dependence::DVEntry::NONE;
1322 if ((DeltaMaybePositive && CoeffMaybePositive) ||
1323 (DeltaMaybeNegative && CoeffMaybeNegative))
1324 NewDirection = Dependence::DVEntry::LT;
1325 if (DeltaMaybeZero)
1326 NewDirection |= Dependence::DVEntry::EQ;
1327 if ((DeltaMaybeNegative && CoeffMaybePositive) ||
1328 (DeltaMaybePositive && CoeffMaybeNegative))
1329 NewDirection |= Dependence::DVEntry::GT;
1330 if (NewDirection < Result.DV[Level].Direction)
1331 ++StrongSIVsuccesses;
1332 Result.DV[Level].Direction &= NewDirection;
1334 return false;
1338 // weakCrossingSIVtest -
1339 // From the paper, Practical Dependence Testing, Section 4.2.2
1341 // When we have a pair of subscripts of the form [c1 + a*i] and [c2 - a*i],
1342 // where i is an induction variable, c1 and c2 are loop invariant,
1343 // and a is a constant, we can solve it exactly using the
1344 // Weak-Crossing SIV test.
1346 // Given c1 + a*i = c2 - a*i', we can look for the intersection of
1347 // the two lines, where i = i', yielding
1349 // c1 + a*i = c2 - a*i
1350 // 2a*i = c2 - c1
1351 // i = (c2 - c1)/2a
1353 // If i < 0, there is no dependence.
1354 // If i > upperbound, there is no dependence.
1355 // If i = 0 (i.e., if c1 = c2), there's a dependence with distance = 0.
1356 // If i = upperbound, there's a dependence with distance = 0.
1357 // If i is integral, there's a dependence (all directions).
1358 // If the non-integer part = 1/2, there's a dependence (<> directions).
1359 // Otherwise, there's no dependence.
1361 // Can prove independence. Failing that,
1362 // can sometimes refine the directions.
1363 // Can determine iteration for splitting.
1365 // Return true if dependence disproved.
1366 bool DependenceInfo::weakCrossingSIVtest(
1367 const SCEV *Coeff, const SCEV *SrcConst, const SCEV *DstConst,
1368 const Loop *CurLoop, unsigned Level, FullDependence &Result,
1369 Constraint &NewConstraint, const SCEV *&SplitIter) const {
1370 LLVM_DEBUG(dbgs() << "\tWeak-Crossing SIV test\n");
1371 LLVM_DEBUG(dbgs() << "\t Coeff = " << *Coeff << "\n");
1372 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1373 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1374 ++WeakCrossingSIVapplications;
1375 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1376 Level--;
1377 Result.Consistent = false;
1378 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1379 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1380 NewConstraint.setLine(Coeff, Coeff, Delta, CurLoop);
1381 if (Delta->isZero()) {
1382 Result.DV[Level].Direction &= ~Dependence::DVEntry::LT;
1383 Result.DV[Level].Direction &= ~Dependence::DVEntry::GT;
1384 ++WeakCrossingSIVsuccesses;
1385 if (!Result.DV[Level].Direction) {
1386 ++WeakCrossingSIVindependence;
1387 return true;
1389 Result.DV[Level].Distance = Delta; // = 0
1390 return false;
1392 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(Coeff);
1393 if (!ConstCoeff)
1394 return false;
1396 Result.DV[Level].Splitable = true;
1397 if (SE->isKnownNegative(ConstCoeff)) {
1398 ConstCoeff = dyn_cast<SCEVConstant>(SE->getNegativeSCEV(ConstCoeff));
1399 assert(ConstCoeff &&
1400 "dynamic cast of negative of ConstCoeff should yield constant");
1401 Delta = SE->getNegativeSCEV(Delta);
1403 assert(SE->isKnownPositive(ConstCoeff) && "ConstCoeff should be positive");
1405 // compute SplitIter for use by DependenceInfo::getSplitIteration()
1406 SplitIter = SE->getUDivExpr(
1407 SE->getSMaxExpr(SE->getZero(Delta->getType()), Delta),
1408 SE->getMulExpr(SE->getConstant(Delta->getType(), 2), ConstCoeff));
1409 LLVM_DEBUG(dbgs() << "\t Split iter = " << *SplitIter << "\n");
1411 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1412 if (!ConstDelta)
1413 return false;
1415 // We're certain that ConstCoeff > 0; therefore,
1416 // if Delta < 0, then no dependence.
1417 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1418 LLVM_DEBUG(dbgs() << "\t ConstCoeff = " << *ConstCoeff << "\n");
1419 if (SE->isKnownNegative(Delta)) {
1420 // No dependence, Delta < 0
1421 ++WeakCrossingSIVindependence;
1422 ++WeakCrossingSIVsuccesses;
1423 return true;
1426 // We're certain that Delta > 0 and ConstCoeff > 0.
1427 // Check Delta/(2*ConstCoeff) against upper loop bound
1428 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1429 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1430 const SCEV *ConstantTwo = SE->getConstant(UpperBound->getType(), 2);
1431 const SCEV *ML = SE->getMulExpr(SE->getMulExpr(ConstCoeff, UpperBound),
1432 ConstantTwo);
1433 LLVM_DEBUG(dbgs() << "\t ML = " << *ML << "\n");
1434 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, ML)) {
1435 // Delta too big, no dependence
1436 ++WeakCrossingSIVindependence;
1437 ++WeakCrossingSIVsuccesses;
1438 return true;
1440 if (isKnownPredicate(CmpInst::ICMP_EQ, Delta, ML)) {
1441 // i = i' = UB
1442 Result.DV[Level].Direction &= ~Dependence::DVEntry::LT;
1443 Result.DV[Level].Direction &= ~Dependence::DVEntry::GT;
1444 ++WeakCrossingSIVsuccesses;
1445 if (!Result.DV[Level].Direction) {
1446 ++WeakCrossingSIVindependence;
1447 return true;
1449 Result.DV[Level].Splitable = false;
1450 Result.DV[Level].Distance = SE->getZero(Delta->getType());
1451 return false;
1455 // check that Coeff divides Delta
1456 APInt APDelta = ConstDelta->getAPInt();
1457 APInt APCoeff = ConstCoeff->getAPInt();
1458 APInt Distance = APDelta; // these need to be initialzed
1459 APInt Remainder = APDelta;
1460 APInt::sdivrem(APDelta, APCoeff, Distance, Remainder);
1461 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1462 if (Remainder != 0) {
1463 // Coeff doesn't divide Delta, no dependence
1464 ++WeakCrossingSIVindependence;
1465 ++WeakCrossingSIVsuccesses;
1466 return true;
1468 LLVM_DEBUG(dbgs() << "\t Distance = " << Distance << "\n");
1470 // if 2*Coeff doesn't divide Delta, then the equal direction isn't possible
1471 APInt Two = APInt(Distance.getBitWidth(), 2, true);
1472 Remainder = Distance.srem(Two);
1473 LLVM_DEBUG(dbgs() << "\t Remainder = " << Remainder << "\n");
1474 if (Remainder != 0) {
1475 // Equal direction isn't possible
1476 Result.DV[Level].Direction &= ~Dependence::DVEntry::EQ;
1477 ++WeakCrossingSIVsuccesses;
1479 return false;
1483 // Kirch's algorithm, from
1485 // Optimizing Supercompilers for Supercomputers
1486 // Michael Wolfe
1487 // MIT Press, 1989
1489 // Program 2.1, page 29.
1490 // Computes the GCD of AM and BM.
1491 // Also finds a solution to the equation ax - by = gcd(a, b).
1492 // Returns true if dependence disproved; i.e., gcd does not divide Delta.
1493 static bool findGCD(unsigned Bits, const APInt &AM, const APInt &BM,
1494 const APInt &Delta, APInt &G, APInt &X, APInt &Y) {
1495 APInt A0(Bits, 1, true), A1(Bits, 0, true);
1496 APInt B0(Bits, 0, true), B1(Bits, 1, true);
1497 APInt G0 = AM.abs();
1498 APInt G1 = BM.abs();
1499 APInt Q = G0; // these need to be initialized
1500 APInt R = G0;
1501 APInt::sdivrem(G0, G1, Q, R);
1502 while (R != 0) {
1503 APInt A2 = A0 - Q*A1; A0 = A1; A1 = A2;
1504 APInt B2 = B0 - Q*B1; B0 = B1; B1 = B2;
1505 G0 = G1; G1 = R;
1506 APInt::sdivrem(G0, G1, Q, R);
1508 G = G1;
1509 LLVM_DEBUG(dbgs() << "\t GCD = " << G << "\n");
1510 X = AM.slt(0) ? -A1 : A1;
1511 Y = BM.slt(0) ? B1 : -B1;
1513 // make sure gcd divides Delta
1514 R = Delta.srem(G);
1515 if (R != 0)
1516 return true; // gcd doesn't divide Delta, no dependence
1517 Q = Delta.sdiv(G);
1518 return false;
1521 static APInt floorOfQuotient(const APInt &A, const APInt &B) {
1522 APInt Q = A; // these need to be initialized
1523 APInt R = A;
1524 APInt::sdivrem(A, B, Q, R);
1525 if (R == 0)
1526 return Q;
1527 if ((A.sgt(0) && B.sgt(0)) ||
1528 (A.slt(0) && B.slt(0)))
1529 return Q;
1530 else
1531 return Q - 1;
1534 static APInt ceilingOfQuotient(const APInt &A, const APInt &B) {
1535 APInt Q = A; // these need to be initialized
1536 APInt R = A;
1537 APInt::sdivrem(A, B, Q, R);
1538 if (R == 0)
1539 return Q;
1540 if ((A.sgt(0) && B.sgt(0)) ||
1541 (A.slt(0) && B.slt(0)))
1542 return Q + 1;
1543 else
1544 return Q;
1547 // exactSIVtest -
1548 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*i],
1549 // where i is an induction variable, c1 and c2 are loop invariant, and a1
1550 // and a2 are constant, we can solve it exactly using an algorithm developed
1551 // by Banerjee and Wolfe. See Algorithm 6.2.1 (case 2.5) in:
1553 // Dependence Analysis for Supercomputing
1554 // Utpal Banerjee
1555 // Kluwer Academic Publishers, 1988
1557 // It's slower than the specialized tests (strong SIV, weak-zero SIV, etc),
1558 // so use them if possible. They're also a bit better with symbolics and,
1559 // in the case of the strong SIV test, can compute Distances.
1561 // Return true if dependence disproved.
1563 // This is a modified version of the original Banerjee algorithm. The original
1564 // only tested whether Dst depends on Src. This algorithm extends that and
1565 // returns all the dependencies that exist between Dst and Src.
1566 bool DependenceInfo::exactSIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1567 const SCEV *SrcConst, const SCEV *DstConst,
1568 const Loop *CurLoop, unsigned Level,
1569 FullDependence &Result,
1570 Constraint &NewConstraint) const {
1571 LLVM_DEBUG(dbgs() << "\tExact SIV test\n");
1572 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1573 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1574 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1575 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1576 ++ExactSIVapplications;
1577 assert(0 < Level && Level <= CommonLevels && "Level out of range");
1578 Level--;
1579 Result.Consistent = false;
1580 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1581 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1582 NewConstraint.setLine(SrcCoeff, SE->getNegativeSCEV(DstCoeff), Delta,
1583 CurLoop);
1584 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1585 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1586 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1587 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1588 return false;
1590 // find gcd
1591 APInt G, X, Y;
1592 APInt AM = ConstSrcCoeff->getAPInt();
1593 APInt BM = ConstDstCoeff->getAPInt();
1594 APInt CM = ConstDelta->getAPInt();
1595 unsigned Bits = AM.getBitWidth();
1596 if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1597 // gcd doesn't divide Delta, no dependence
1598 ++ExactSIVindependence;
1599 ++ExactSIVsuccesses;
1600 return true;
1603 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1605 // since SCEV construction normalizes, LM = 0
1606 APInt UM(Bits, 1, true);
1607 bool UMValid = false;
1608 // UM is perhaps unavailable, let's check
1609 if (const SCEVConstant *CUB =
1610 collectConstantUpperBound(CurLoop, Delta->getType())) {
1611 UM = CUB->getAPInt();
1612 LLVM_DEBUG(dbgs() << "\t UM = " << UM << "\n");
1613 UMValid = true;
1616 APInt TU(APInt::getSignedMaxValue(Bits));
1617 APInt TL(APInt::getSignedMinValue(Bits));
1618 APInt TC = CM.sdiv(G);
1619 APInt TX = X * TC;
1620 APInt TY = Y * TC;
1621 LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n");
1622 LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
1623 LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
1625 SmallVector<APInt, 2> TLVec, TUVec;
1626 APInt TB = BM.sdiv(G);
1627 if (TB.sgt(0)) {
1628 TLVec.push_back(ceilingOfQuotient(-TX, TB));
1629 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1630 // New bound check - modification to Banerjee's e3 check
1631 if (UMValid) {
1632 TUVec.push_back(floorOfQuotient(UM - TX, TB));
1633 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1635 } else {
1636 TUVec.push_back(floorOfQuotient(-TX, TB));
1637 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1638 // New bound check - modification to Banerjee's e3 check
1639 if (UMValid) {
1640 TLVec.push_back(ceilingOfQuotient(UM - TX, TB));
1641 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1645 APInt TA = AM.sdiv(G);
1646 if (TA.sgt(0)) {
1647 if (UMValid) {
1648 TUVec.push_back(floorOfQuotient(UM - TY, TA));
1649 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1651 // New bound check - modification to Banerjee's e3 check
1652 TLVec.push_back(ceilingOfQuotient(-TY, TA));
1653 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1654 } else {
1655 if (UMValid) {
1656 TLVec.push_back(ceilingOfQuotient(UM - TY, TA));
1657 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
1659 // New bound check - modification to Banerjee's e3 check
1660 TUVec.push_back(floorOfQuotient(-TY, TA));
1661 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
1664 LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
1665 LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
1667 if (TLVec.empty() || TUVec.empty())
1668 return false;
1669 TL = APIntOps::smax(TLVec.front(), TLVec.back());
1670 TU = APIntOps::smin(TUVec.front(), TUVec.back());
1671 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
1672 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
1674 if (TL.sgt(TU)) {
1675 ++ExactSIVindependence;
1676 ++ExactSIVsuccesses;
1677 return true;
1680 // explore directions
1681 unsigned NewDirection = Dependence::DVEntry::NONE;
1682 APInt LowerDistance, UpperDistance;
1683 if (TA.sgt(TB)) {
1684 LowerDistance = (TY - TX) + (TA - TB) * TL;
1685 UpperDistance = (TY - TX) + (TA - TB) * TU;
1686 } else {
1687 LowerDistance = (TY - TX) + (TA - TB) * TU;
1688 UpperDistance = (TY - TX) + (TA - TB) * TL;
1691 LLVM_DEBUG(dbgs() << "\t LowerDistance = " << LowerDistance << "\n");
1692 LLVM_DEBUG(dbgs() << "\t UpperDistance = " << UpperDistance << "\n");
1694 APInt Zero(Bits, 0, true);
1695 if (LowerDistance.sle(Zero) && UpperDistance.sge(Zero)) {
1696 NewDirection |= Dependence::DVEntry::EQ;
1697 ++ExactSIVsuccesses;
1699 if (LowerDistance.slt(0)) {
1700 NewDirection |= Dependence::DVEntry::GT;
1701 ++ExactSIVsuccesses;
1703 if (UpperDistance.sgt(0)) {
1704 NewDirection |= Dependence::DVEntry::LT;
1705 ++ExactSIVsuccesses;
1708 // finished
1709 Result.DV[Level].Direction &= NewDirection;
1710 if (Result.DV[Level].Direction == Dependence::DVEntry::NONE)
1711 ++ExactSIVindependence;
1712 LLVM_DEBUG(dbgs() << "\t Result = ");
1713 LLVM_DEBUG(Result.dump(dbgs()));
1714 return Result.DV[Level].Direction == Dependence::DVEntry::NONE;
1718 // Return true if the divisor evenly divides the dividend.
1719 static
1720 bool isRemainderZero(const SCEVConstant *Dividend,
1721 const SCEVConstant *Divisor) {
1722 const APInt &ConstDividend = Dividend->getAPInt();
1723 const APInt &ConstDivisor = Divisor->getAPInt();
1724 return ConstDividend.srem(ConstDivisor) == 0;
1728 // weakZeroSrcSIVtest -
1729 // From the paper, Practical Dependence Testing, Section 4.2.2
1731 // When we have a pair of subscripts of the form [c1] and [c2 + a*i],
1732 // where i is an induction variable, c1 and c2 are loop invariant,
1733 // and a is a constant, we can solve it exactly using the
1734 // Weak-Zero SIV test.
1736 // Given
1738 // c1 = c2 + a*i
1740 // we get
1742 // (c1 - c2)/a = i
1744 // If i is not an integer, there's no dependence.
1745 // If i < 0 or > UB, there's no dependence.
1746 // If i = 0, the direction is >= and peeling the
1747 // 1st iteration will break the dependence.
1748 // If i = UB, the direction is <= and peeling the
1749 // last iteration will break the dependence.
1750 // Otherwise, the direction is *.
1752 // Can prove independence. Failing that, we can sometimes refine
1753 // the directions. Can sometimes show that first or last
1754 // iteration carries all the dependences (so worth peeling).
1756 // (see also weakZeroDstSIVtest)
1758 // Return true if dependence disproved.
1759 bool DependenceInfo::weakZeroSrcSIVtest(const SCEV *DstCoeff,
1760 const SCEV *SrcConst,
1761 const SCEV *DstConst,
1762 const Loop *CurLoop, unsigned Level,
1763 FullDependence &Result,
1764 Constraint &NewConstraint) const {
1765 // For the WeakSIV test, it's possible the loop isn't common to
1766 // the Src and Dst loops. If it isn't, then there's no need to
1767 // record a direction.
1768 LLVM_DEBUG(dbgs() << "\tWeak-Zero (src) SIV test\n");
1769 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << "\n");
1770 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1771 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1772 ++WeakZeroSIVapplications;
1773 assert(0 < Level && Level <= MaxLevels && "Level out of range");
1774 Level--;
1775 Result.Consistent = false;
1776 const SCEV *Delta = SE->getMinusSCEV(SrcConst, DstConst);
1777 NewConstraint.setLine(SE->getZero(Delta->getType()), DstCoeff, Delta,
1778 CurLoop);
1779 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1780 if (isKnownPredicate(CmpInst::ICMP_EQ, SrcConst, DstConst)) {
1781 if (Level < CommonLevels) {
1782 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1783 Result.DV[Level].PeelFirst = true;
1784 ++WeakZeroSIVsuccesses;
1786 return false; // dependences caused by first iteration
1788 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1789 if (!ConstCoeff)
1790 return false;
1791 const SCEV *AbsCoeff =
1792 SE->isKnownNegative(ConstCoeff) ?
1793 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1794 const SCEV *NewDelta =
1795 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1797 // check that Delta/SrcCoeff < iteration count
1798 // really check NewDelta < count*AbsCoeff
1799 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1800 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1801 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1802 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1803 ++WeakZeroSIVindependence;
1804 ++WeakZeroSIVsuccesses;
1805 return true;
1807 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1808 // dependences caused by last iteration
1809 if (Level < CommonLevels) {
1810 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1811 Result.DV[Level].PeelLast = true;
1812 ++WeakZeroSIVsuccesses;
1814 return false;
1818 // check that Delta/SrcCoeff >= 0
1819 // really check that NewDelta >= 0
1820 if (SE->isKnownNegative(NewDelta)) {
1821 // No dependence, newDelta < 0
1822 ++WeakZeroSIVindependence;
1823 ++WeakZeroSIVsuccesses;
1824 return true;
1827 // if SrcCoeff doesn't divide Delta, then no dependence
1828 if (isa<SCEVConstant>(Delta) &&
1829 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1830 ++WeakZeroSIVindependence;
1831 ++WeakZeroSIVsuccesses;
1832 return true;
1834 return false;
1838 // weakZeroDstSIVtest -
1839 // From the paper, Practical Dependence Testing, Section 4.2.2
1841 // When we have a pair of subscripts of the form [c1 + a*i] and [c2],
1842 // where i is an induction variable, c1 and c2 are loop invariant,
1843 // and a is a constant, we can solve it exactly using the
1844 // Weak-Zero SIV test.
1846 // Given
1848 // c1 + a*i = c2
1850 // we get
1852 // i = (c2 - c1)/a
1854 // If i is not an integer, there's no dependence.
1855 // If i < 0 or > UB, there's no dependence.
1856 // If i = 0, the direction is <= and peeling the
1857 // 1st iteration will break the dependence.
1858 // If i = UB, the direction is >= and peeling the
1859 // last iteration will break the dependence.
1860 // Otherwise, the direction is *.
1862 // Can prove independence. Failing that, we can sometimes refine
1863 // the directions. Can sometimes show that first or last
1864 // iteration carries all the dependences (so worth peeling).
1866 // (see also weakZeroSrcSIVtest)
1868 // Return true if dependence disproved.
1869 bool DependenceInfo::weakZeroDstSIVtest(const SCEV *SrcCoeff,
1870 const SCEV *SrcConst,
1871 const SCEV *DstConst,
1872 const Loop *CurLoop, unsigned Level,
1873 FullDependence &Result,
1874 Constraint &NewConstraint) const {
1875 // For the WeakSIV test, it's possible the loop isn't common to the
1876 // Src and Dst loops. If it isn't, then there's no need to record a direction.
1877 LLVM_DEBUG(dbgs() << "\tWeak-Zero (dst) SIV test\n");
1878 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << "\n");
1879 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1880 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1881 ++WeakZeroSIVapplications;
1882 assert(0 < Level && Level <= SrcLevels && "Level out of range");
1883 Level--;
1884 Result.Consistent = false;
1885 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1886 NewConstraint.setLine(SrcCoeff, SE->getZero(Delta->getType()), Delta,
1887 CurLoop);
1888 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1889 if (isKnownPredicate(CmpInst::ICMP_EQ, DstConst, SrcConst)) {
1890 if (Level < CommonLevels) {
1891 Result.DV[Level].Direction &= Dependence::DVEntry::LE;
1892 Result.DV[Level].PeelFirst = true;
1893 ++WeakZeroSIVsuccesses;
1895 return false; // dependences caused by first iteration
1897 const SCEVConstant *ConstCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1898 if (!ConstCoeff)
1899 return false;
1900 const SCEV *AbsCoeff =
1901 SE->isKnownNegative(ConstCoeff) ?
1902 SE->getNegativeSCEV(ConstCoeff) : ConstCoeff;
1903 const SCEV *NewDelta =
1904 SE->isKnownNegative(ConstCoeff) ? SE->getNegativeSCEV(Delta) : Delta;
1906 // check that Delta/SrcCoeff < iteration count
1907 // really check NewDelta < count*AbsCoeff
1908 if (const SCEV *UpperBound = collectUpperBound(CurLoop, Delta->getType())) {
1909 LLVM_DEBUG(dbgs() << "\t UpperBound = " << *UpperBound << "\n");
1910 const SCEV *Product = SE->getMulExpr(AbsCoeff, UpperBound);
1911 if (isKnownPredicate(CmpInst::ICMP_SGT, NewDelta, Product)) {
1912 ++WeakZeroSIVindependence;
1913 ++WeakZeroSIVsuccesses;
1914 return true;
1916 if (isKnownPredicate(CmpInst::ICMP_EQ, NewDelta, Product)) {
1917 // dependences caused by last iteration
1918 if (Level < CommonLevels) {
1919 Result.DV[Level].Direction &= Dependence::DVEntry::GE;
1920 Result.DV[Level].PeelLast = true;
1921 ++WeakZeroSIVsuccesses;
1923 return false;
1927 // check that Delta/SrcCoeff >= 0
1928 // really check that NewDelta >= 0
1929 if (SE->isKnownNegative(NewDelta)) {
1930 // No dependence, newDelta < 0
1931 ++WeakZeroSIVindependence;
1932 ++WeakZeroSIVsuccesses;
1933 return true;
1936 // if SrcCoeff doesn't divide Delta, then no dependence
1937 if (isa<SCEVConstant>(Delta) &&
1938 !isRemainderZero(cast<SCEVConstant>(Delta), ConstCoeff)) {
1939 ++WeakZeroSIVindependence;
1940 ++WeakZeroSIVsuccesses;
1941 return true;
1943 return false;
1947 // exactRDIVtest - Tests the RDIV subscript pair for dependence.
1948 // Things of the form [c1 + a*i] and [c2 + b*j],
1949 // where i and j are induction variable, c1 and c2 are loop invariant,
1950 // and a and b are constants.
1951 // Returns true if any possible dependence is disproved.
1952 // Marks the result as inconsistent.
1953 // Works in some cases that symbolicRDIVtest doesn't, and vice versa.
1954 bool DependenceInfo::exactRDIVtest(const SCEV *SrcCoeff, const SCEV *DstCoeff,
1955 const SCEV *SrcConst, const SCEV *DstConst,
1956 const Loop *SrcLoop, const Loop *DstLoop,
1957 FullDependence &Result) const {
1958 LLVM_DEBUG(dbgs() << "\tExact RDIV test\n");
1959 LLVM_DEBUG(dbgs() << "\t SrcCoeff = " << *SrcCoeff << " = AM\n");
1960 LLVM_DEBUG(dbgs() << "\t DstCoeff = " << *DstCoeff << " = BM\n");
1961 LLVM_DEBUG(dbgs() << "\t SrcConst = " << *SrcConst << "\n");
1962 LLVM_DEBUG(dbgs() << "\t DstConst = " << *DstConst << "\n");
1963 ++ExactRDIVapplications;
1964 Result.Consistent = false;
1965 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
1966 LLVM_DEBUG(dbgs() << "\t Delta = " << *Delta << "\n");
1967 const SCEVConstant *ConstDelta = dyn_cast<SCEVConstant>(Delta);
1968 const SCEVConstant *ConstSrcCoeff = dyn_cast<SCEVConstant>(SrcCoeff);
1969 const SCEVConstant *ConstDstCoeff = dyn_cast<SCEVConstant>(DstCoeff);
1970 if (!ConstDelta || !ConstSrcCoeff || !ConstDstCoeff)
1971 return false;
1973 // find gcd
1974 APInt G, X, Y;
1975 APInt AM = ConstSrcCoeff->getAPInt();
1976 APInt BM = ConstDstCoeff->getAPInt();
1977 APInt CM = ConstDelta->getAPInt();
1978 unsigned Bits = AM.getBitWidth();
1979 if (findGCD(Bits, AM, BM, CM, G, X, Y)) {
1980 // gcd doesn't divide Delta, no dependence
1981 ++ExactRDIVindependence;
1982 return true;
1985 LLVM_DEBUG(dbgs() << "\t X = " << X << ", Y = " << Y << "\n");
1987 // since SCEV construction seems to normalize, LM = 0
1988 APInt SrcUM(Bits, 1, true);
1989 bool SrcUMvalid = false;
1990 // SrcUM is perhaps unavailable, let's check
1991 if (const SCEVConstant *UpperBound =
1992 collectConstantUpperBound(SrcLoop, Delta->getType())) {
1993 SrcUM = UpperBound->getAPInt();
1994 LLVM_DEBUG(dbgs() << "\t SrcUM = " << SrcUM << "\n");
1995 SrcUMvalid = true;
1998 APInt DstUM(Bits, 1, true);
1999 bool DstUMvalid = false;
2000 // UM is perhaps unavailable, let's check
2001 if (const SCEVConstant *UpperBound =
2002 collectConstantUpperBound(DstLoop, Delta->getType())) {
2003 DstUM = UpperBound->getAPInt();
2004 LLVM_DEBUG(dbgs() << "\t DstUM = " << DstUM << "\n");
2005 DstUMvalid = true;
2008 APInt TU(APInt::getSignedMaxValue(Bits));
2009 APInt TL(APInt::getSignedMinValue(Bits));
2010 APInt TC = CM.sdiv(G);
2011 APInt TX = X * TC;
2012 APInt TY = Y * TC;
2013 LLVM_DEBUG(dbgs() << "\t TC = " << TC << "\n");
2014 LLVM_DEBUG(dbgs() << "\t TX = " << TX << "\n");
2015 LLVM_DEBUG(dbgs() << "\t TY = " << TY << "\n");
2017 SmallVector<APInt, 2> TLVec, TUVec;
2018 APInt TB = BM.sdiv(G);
2019 if (TB.sgt(0)) {
2020 TLVec.push_back(ceilingOfQuotient(-TX, TB));
2021 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
2022 if (SrcUMvalid) {
2023 TUVec.push_back(floorOfQuotient(SrcUM - TX, TB));
2024 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
2026 } else {
2027 TUVec.push_back(floorOfQuotient(-TX, TB));
2028 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
2029 if (SrcUMvalid) {
2030 TLVec.push_back(ceilingOfQuotient(SrcUM - TX, TB));
2031 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
2035 APInt TA = AM.sdiv(G);
2036 if (TA.sgt(0)) {
2037 TLVec.push_back(ceilingOfQuotient(-TY, TA));
2038 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
2039 if (DstUMvalid) {
2040 TUVec.push_back(floorOfQuotient(DstUM - TY, TA));
2041 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
2043 } else {
2044 TUVec.push_back(floorOfQuotient(-TY, TA));
2045 LLVM_DEBUG(dbgs() << "\t Possible TU = " << TUVec.back() << "\n");
2046 if (DstUMvalid) {
2047 TLVec.push_back(ceilingOfQuotient(DstUM - TY, TA));
2048 LLVM_DEBUG(dbgs() << "\t Possible TL = " << TLVec.back() << "\n");
2052 if (TLVec.empty() || TUVec.empty())
2053 return false;
2055 LLVM_DEBUG(dbgs() << "\t TA = " << TA << "\n");
2056 LLVM_DEBUG(dbgs() << "\t TB = " << TB << "\n");
2058 TL = APIntOps::smax(TLVec.front(), TLVec.back());
2059 TU = APIntOps::smin(TUVec.front(), TUVec.back());
2060 LLVM_DEBUG(dbgs() << "\t TL = " << TL << "\n");
2061 LLVM_DEBUG(dbgs() << "\t TU = " << TU << "\n");
2063 if (TL.sgt(TU))
2064 ++ExactRDIVindependence;
2065 return TL.sgt(TU);
2069 // symbolicRDIVtest -
2070 // In Section 4.5 of the Practical Dependence Testing paper,the authors
2071 // introduce a special case of Banerjee's Inequalities (also called the
2072 // Extreme-Value Test) that can handle some of the SIV and RDIV cases,
2073 // particularly cases with symbolics. Since it's only able to disprove
2074 // dependence (not compute distances or directions), we'll use it as a
2075 // fall back for the other tests.
2077 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2078 // where i and j are induction variables and c1 and c2 are loop invariants,
2079 // we can use the symbolic tests to disprove some dependences, serving as a
2080 // backup for the RDIV test. Note that i and j can be the same variable,
2081 // letting this test serve as a backup for the various SIV tests.
2083 // For a dependence to exist, c1 + a1*i must equal c2 + a2*j for some
2084 // 0 <= i <= N1 and some 0 <= j <= N2, where N1 and N2 are the (normalized)
2085 // loop bounds for the i and j loops, respectively. So, ...
2087 // c1 + a1*i = c2 + a2*j
2088 // a1*i - a2*j = c2 - c1
2090 // To test for a dependence, we compute c2 - c1 and make sure it's in the
2091 // range of the maximum and minimum possible values of a1*i - a2*j.
2092 // Considering the signs of a1 and a2, we have 4 possible cases:
2094 // 1) If a1 >= 0 and a2 >= 0, then
2095 // a1*0 - a2*N2 <= c2 - c1 <= a1*N1 - a2*0
2096 // -a2*N2 <= c2 - c1 <= a1*N1
2098 // 2) If a1 >= 0 and a2 <= 0, then
2099 // a1*0 - a2*0 <= c2 - c1 <= a1*N1 - a2*N2
2100 // 0 <= c2 - c1 <= a1*N1 - a2*N2
2102 // 3) If a1 <= 0 and a2 >= 0, then
2103 // a1*N1 - a2*N2 <= c2 - c1 <= a1*0 - a2*0
2104 // a1*N1 - a2*N2 <= c2 - c1 <= 0
2106 // 4) If a1 <= 0 and a2 <= 0, then
2107 // a1*N1 - a2*0 <= c2 - c1 <= a1*0 - a2*N2
2108 // a1*N1 <= c2 - c1 <= -a2*N2
2110 // return true if dependence disproved
2111 bool DependenceInfo::symbolicRDIVtest(const SCEV *A1, const SCEV *A2,
2112 const SCEV *C1, const SCEV *C2,
2113 const Loop *Loop1,
2114 const Loop *Loop2) const {
2115 ++SymbolicRDIVapplications;
2116 LLVM_DEBUG(dbgs() << "\ttry symbolic RDIV test\n");
2117 LLVM_DEBUG(dbgs() << "\t A1 = " << *A1);
2118 LLVM_DEBUG(dbgs() << ", type = " << *A1->getType() << "\n");
2119 LLVM_DEBUG(dbgs() << "\t A2 = " << *A2 << "\n");
2120 LLVM_DEBUG(dbgs() << "\t C1 = " << *C1 << "\n");
2121 LLVM_DEBUG(dbgs() << "\t C2 = " << *C2 << "\n");
2122 const SCEV *N1 = collectUpperBound(Loop1, A1->getType());
2123 const SCEV *N2 = collectUpperBound(Loop2, A1->getType());
2124 LLVM_DEBUG(if (N1) dbgs() << "\t N1 = " << *N1 << "\n");
2125 LLVM_DEBUG(if (N2) dbgs() << "\t N2 = " << *N2 << "\n");
2126 const SCEV *C2_C1 = SE->getMinusSCEV(C2, C1);
2127 const SCEV *C1_C2 = SE->getMinusSCEV(C1, C2);
2128 LLVM_DEBUG(dbgs() << "\t C2 - C1 = " << *C2_C1 << "\n");
2129 LLVM_DEBUG(dbgs() << "\t C1 - C2 = " << *C1_C2 << "\n");
2130 if (SE->isKnownNonNegative(A1)) {
2131 if (SE->isKnownNonNegative(A2)) {
2132 // A1 >= 0 && A2 >= 0
2133 if (N1) {
2134 // make sure that c2 - c1 <= a1*N1
2135 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2136 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2137 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1)) {
2138 ++SymbolicRDIVindependence;
2139 return true;
2142 if (N2) {
2143 // make sure that -a2*N2 <= c2 - c1, or a2*N2 >= c1 - c2
2144 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2145 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2146 if (isKnownPredicate(CmpInst::ICMP_SLT, A2N2, C1_C2)) {
2147 ++SymbolicRDIVindependence;
2148 return true;
2152 else if (SE->isKnownNonPositive(A2)) {
2153 // a1 >= 0 && a2 <= 0
2154 if (N1 && N2) {
2155 // make sure that c2 - c1 <= a1*N1 - a2*N2
2156 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2157 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2158 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2159 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2160 if (isKnownPredicate(CmpInst::ICMP_SGT, C2_C1, A1N1_A2N2)) {
2161 ++SymbolicRDIVindependence;
2162 return true;
2165 // make sure that 0 <= c2 - c1
2166 if (SE->isKnownNegative(C2_C1)) {
2167 ++SymbolicRDIVindependence;
2168 return true;
2172 else if (SE->isKnownNonPositive(A1)) {
2173 if (SE->isKnownNonNegative(A2)) {
2174 // a1 <= 0 && a2 >= 0
2175 if (N1 && N2) {
2176 // make sure that a1*N1 - a2*N2 <= c2 - c1
2177 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2178 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2179 const SCEV *A1N1_A2N2 = SE->getMinusSCEV(A1N1, A2N2);
2180 LLVM_DEBUG(dbgs() << "\t A1*N1 - A2*N2 = " << *A1N1_A2N2 << "\n");
2181 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1_A2N2, C2_C1)) {
2182 ++SymbolicRDIVindependence;
2183 return true;
2186 // make sure that c2 - c1 <= 0
2187 if (SE->isKnownPositive(C2_C1)) {
2188 ++SymbolicRDIVindependence;
2189 return true;
2192 else if (SE->isKnownNonPositive(A2)) {
2193 // a1 <= 0 && a2 <= 0
2194 if (N1) {
2195 // make sure that a1*N1 <= c2 - c1
2196 const SCEV *A1N1 = SE->getMulExpr(A1, N1);
2197 LLVM_DEBUG(dbgs() << "\t A1*N1 = " << *A1N1 << "\n");
2198 if (isKnownPredicate(CmpInst::ICMP_SGT, A1N1, C2_C1)) {
2199 ++SymbolicRDIVindependence;
2200 return true;
2203 if (N2) {
2204 // make sure that c2 - c1 <= -a2*N2, or c1 - c2 >= a2*N2
2205 const SCEV *A2N2 = SE->getMulExpr(A2, N2);
2206 LLVM_DEBUG(dbgs() << "\t A2*N2 = " << *A2N2 << "\n");
2207 if (isKnownPredicate(CmpInst::ICMP_SLT, C1_C2, A2N2)) {
2208 ++SymbolicRDIVindependence;
2209 return true;
2214 return false;
2218 // testSIV -
2219 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 - a2*i]
2220 // where i is an induction variable, c1 and c2 are loop invariant, and a1 and
2221 // a2 are constant, we attack it with an SIV test. While they can all be
2222 // solved with the Exact SIV test, it's worthwhile to use simpler tests when
2223 // they apply; they're cheaper and sometimes more precise.
2225 // Return true if dependence disproved.
2226 bool DependenceInfo::testSIV(const SCEV *Src, const SCEV *Dst, unsigned &Level,
2227 FullDependence &Result, Constraint &NewConstraint,
2228 const SCEV *&SplitIter) const {
2229 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2230 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2231 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2232 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2233 if (SrcAddRec && DstAddRec) {
2234 const SCEV *SrcConst = SrcAddRec->getStart();
2235 const SCEV *DstConst = DstAddRec->getStart();
2236 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2237 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2238 const Loop *CurLoop = SrcAddRec->getLoop();
2239 assert(CurLoop == DstAddRec->getLoop() &&
2240 "both loops in SIV should be same");
2241 Level = mapSrcLoop(CurLoop);
2242 bool disproven;
2243 if (SrcCoeff == DstCoeff)
2244 disproven = strongSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2245 Level, Result, NewConstraint);
2246 else if (SrcCoeff == SE->getNegativeSCEV(DstCoeff))
2247 disproven = weakCrossingSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2248 Level, Result, NewConstraint, SplitIter);
2249 else
2250 disproven = exactSIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop,
2251 Level, Result, NewConstraint);
2252 return disproven ||
2253 gcdMIVtest(Src, Dst, Result) ||
2254 symbolicRDIVtest(SrcCoeff, DstCoeff, SrcConst, DstConst, CurLoop, CurLoop);
2256 if (SrcAddRec) {
2257 const SCEV *SrcConst = SrcAddRec->getStart();
2258 const SCEV *SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2259 const SCEV *DstConst = Dst;
2260 const Loop *CurLoop = SrcAddRec->getLoop();
2261 Level = mapSrcLoop(CurLoop);
2262 return weakZeroDstSIVtest(SrcCoeff, SrcConst, DstConst, CurLoop,
2263 Level, Result, NewConstraint) ||
2264 gcdMIVtest(Src, Dst, Result);
2266 if (DstAddRec) {
2267 const SCEV *DstConst = DstAddRec->getStart();
2268 const SCEV *DstCoeff = DstAddRec->getStepRecurrence(*SE);
2269 const SCEV *SrcConst = Src;
2270 const Loop *CurLoop = DstAddRec->getLoop();
2271 Level = mapDstLoop(CurLoop);
2272 return weakZeroSrcSIVtest(DstCoeff, SrcConst, DstConst,
2273 CurLoop, Level, Result, NewConstraint) ||
2274 gcdMIVtest(Src, Dst, Result);
2276 llvm_unreachable("SIV test expected at least one AddRec");
2277 return false;
2281 // testRDIV -
2282 // When we have a pair of subscripts of the form [c1 + a1*i] and [c2 + a2*j]
2283 // where i and j are induction variables, c1 and c2 are loop invariant,
2284 // and a1 and a2 are constant, we can solve it exactly with an easy adaptation
2285 // of the Exact SIV test, the Restricted Double Index Variable (RDIV) test.
2286 // It doesn't make sense to talk about distance or direction in this case,
2287 // so there's no point in making special versions of the Strong SIV test or
2288 // the Weak-crossing SIV test.
2290 // With minor algebra, this test can also be used for things like
2291 // [c1 + a1*i + a2*j][c2].
2293 // Return true if dependence disproved.
2294 bool DependenceInfo::testRDIV(const SCEV *Src, const SCEV *Dst,
2295 FullDependence &Result) const {
2296 // we have 3 possible situations here:
2297 // 1) [a*i + b] and [c*j + d]
2298 // 2) [a*i + c*j + b] and [d]
2299 // 3) [b] and [a*i + c*j + d]
2300 // We need to find what we've got and get organized
2302 const SCEV *SrcConst, *DstConst;
2303 const SCEV *SrcCoeff, *DstCoeff;
2304 const Loop *SrcLoop, *DstLoop;
2306 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2307 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2308 const SCEVAddRecExpr *SrcAddRec = dyn_cast<SCEVAddRecExpr>(Src);
2309 const SCEVAddRecExpr *DstAddRec = dyn_cast<SCEVAddRecExpr>(Dst);
2310 if (SrcAddRec && DstAddRec) {
2311 SrcConst = SrcAddRec->getStart();
2312 SrcCoeff = SrcAddRec->getStepRecurrence(*SE);
2313 SrcLoop = SrcAddRec->getLoop();
2314 DstConst = DstAddRec->getStart();
2315 DstCoeff = DstAddRec->getStepRecurrence(*SE);
2316 DstLoop = DstAddRec->getLoop();
2318 else if (SrcAddRec) {
2319 if (const SCEVAddRecExpr *tmpAddRec =
2320 dyn_cast<SCEVAddRecExpr>(SrcAddRec->getStart())) {
2321 SrcConst = tmpAddRec->getStart();
2322 SrcCoeff = tmpAddRec->getStepRecurrence(*SE);
2323 SrcLoop = tmpAddRec->getLoop();
2324 DstConst = Dst;
2325 DstCoeff = SE->getNegativeSCEV(SrcAddRec->getStepRecurrence(*SE));
2326 DstLoop = SrcAddRec->getLoop();
2328 else
2329 llvm_unreachable("RDIV reached by surprising SCEVs");
2331 else if (DstAddRec) {
2332 if (const SCEVAddRecExpr *tmpAddRec =
2333 dyn_cast<SCEVAddRecExpr>(DstAddRec->getStart())) {
2334 DstConst = tmpAddRec->getStart();
2335 DstCoeff = tmpAddRec->getStepRecurrence(*SE);
2336 DstLoop = tmpAddRec->getLoop();
2337 SrcConst = Src;
2338 SrcCoeff = SE->getNegativeSCEV(DstAddRec->getStepRecurrence(*SE));
2339 SrcLoop = DstAddRec->getLoop();
2341 else
2342 llvm_unreachable("RDIV reached by surprising SCEVs");
2344 else
2345 llvm_unreachable("RDIV expected at least one AddRec");
2346 return exactRDIVtest(SrcCoeff, DstCoeff,
2347 SrcConst, DstConst,
2348 SrcLoop, DstLoop,
2349 Result) ||
2350 gcdMIVtest(Src, Dst, Result) ||
2351 symbolicRDIVtest(SrcCoeff, DstCoeff,
2352 SrcConst, DstConst,
2353 SrcLoop, DstLoop);
2357 // Tests the single-subscript MIV pair (Src and Dst) for dependence.
2358 // Return true if dependence disproved.
2359 // Can sometimes refine direction vectors.
2360 bool DependenceInfo::testMIV(const SCEV *Src, const SCEV *Dst,
2361 const SmallBitVector &Loops,
2362 FullDependence &Result) const {
2363 LLVM_DEBUG(dbgs() << " src = " << *Src << "\n");
2364 LLVM_DEBUG(dbgs() << " dst = " << *Dst << "\n");
2365 Result.Consistent = false;
2366 return gcdMIVtest(Src, Dst, Result) ||
2367 banerjeeMIVtest(Src, Dst, Loops, Result);
2371 // Given a product, e.g., 10*X*Y, returns the first constant operand,
2372 // in this case 10. If there is no constant part, returns NULL.
2373 static
2374 const SCEVConstant *getConstantPart(const SCEV *Expr) {
2375 if (const auto *Constant = dyn_cast<SCEVConstant>(Expr))
2376 return Constant;
2377 else if (const auto *Product = dyn_cast<SCEVMulExpr>(Expr))
2378 if (const auto *Constant = dyn_cast<SCEVConstant>(Product->getOperand(0)))
2379 return Constant;
2380 return nullptr;
2384 //===----------------------------------------------------------------------===//
2385 // gcdMIVtest -
2386 // Tests an MIV subscript pair for dependence.
2387 // Returns true if any possible dependence is disproved.
2388 // Marks the result as inconsistent.
2389 // Can sometimes disprove the equal direction for 1 or more loops,
2390 // as discussed in Michael Wolfe's book,
2391 // High Performance Compilers for Parallel Computing, page 235.
2393 // We spend some effort (code!) to handle cases like
2394 // [10*i + 5*N*j + 15*M + 6], where i and j are induction variables,
2395 // but M and N are just loop-invariant variables.
2396 // This should help us handle linearized subscripts;
2397 // also makes this test a useful backup to the various SIV tests.
2399 // It occurs to me that the presence of loop-invariant variables
2400 // changes the nature of the test from "greatest common divisor"
2401 // to "a common divisor".
2402 bool DependenceInfo::gcdMIVtest(const SCEV *Src, const SCEV *Dst,
2403 FullDependence &Result) const {
2404 LLVM_DEBUG(dbgs() << "starting gcd\n");
2405 ++GCDapplications;
2406 unsigned BitWidth = SE->getTypeSizeInBits(Src->getType());
2407 APInt RunningGCD = APInt::getZero(BitWidth);
2409 // Examine Src coefficients.
2410 // Compute running GCD and record source constant.
2411 // Because we're looking for the constant at the end of the chain,
2412 // we can't quit the loop just because the GCD == 1.
2413 const SCEV *Coefficients = Src;
2414 while (const SCEVAddRecExpr *AddRec =
2415 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2416 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2417 // If the coefficient is the product of a constant and other stuff,
2418 // we can use the constant in the GCD computation.
2419 const auto *Constant = getConstantPart(Coeff);
2420 if (!Constant)
2421 return false;
2422 APInt ConstCoeff = Constant->getAPInt();
2423 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2424 Coefficients = AddRec->getStart();
2426 const SCEV *SrcConst = Coefficients;
2428 // Examine Dst coefficients.
2429 // Compute running GCD and record destination constant.
2430 // Because we're looking for the constant at the end of the chain,
2431 // we can't quit the loop just because the GCD == 1.
2432 Coefficients = Dst;
2433 while (const SCEVAddRecExpr *AddRec =
2434 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2435 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2436 // If the coefficient is the product of a constant and other stuff,
2437 // we can use the constant in the GCD computation.
2438 const auto *Constant = getConstantPart(Coeff);
2439 if (!Constant)
2440 return false;
2441 APInt ConstCoeff = Constant->getAPInt();
2442 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2443 Coefficients = AddRec->getStart();
2445 const SCEV *DstConst = Coefficients;
2447 APInt ExtraGCD = APInt::getZero(BitWidth);
2448 const SCEV *Delta = SE->getMinusSCEV(DstConst, SrcConst);
2449 LLVM_DEBUG(dbgs() << " Delta = " << *Delta << "\n");
2450 const SCEVConstant *Constant = dyn_cast<SCEVConstant>(Delta);
2451 if (const SCEVAddExpr *Sum = dyn_cast<SCEVAddExpr>(Delta)) {
2452 // If Delta is a sum of products, we may be able to make further progress.
2453 for (unsigned Op = 0, Ops = Sum->getNumOperands(); Op < Ops; Op++) {
2454 const SCEV *Operand = Sum->getOperand(Op);
2455 if (isa<SCEVConstant>(Operand)) {
2456 assert(!Constant && "Surprised to find multiple constants");
2457 Constant = cast<SCEVConstant>(Operand);
2459 else if (const SCEVMulExpr *Product = dyn_cast<SCEVMulExpr>(Operand)) {
2460 // Search for constant operand to participate in GCD;
2461 // If none found; return false.
2462 const SCEVConstant *ConstOp = getConstantPart(Product);
2463 if (!ConstOp)
2464 return false;
2465 APInt ConstOpValue = ConstOp->getAPInt();
2466 ExtraGCD = APIntOps::GreatestCommonDivisor(ExtraGCD,
2467 ConstOpValue.abs());
2469 else
2470 return false;
2473 if (!Constant)
2474 return false;
2475 APInt ConstDelta = cast<SCEVConstant>(Constant)->getAPInt();
2476 LLVM_DEBUG(dbgs() << " ConstDelta = " << ConstDelta << "\n");
2477 if (ConstDelta == 0)
2478 return false;
2479 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ExtraGCD);
2480 LLVM_DEBUG(dbgs() << " RunningGCD = " << RunningGCD << "\n");
2481 APInt Remainder = ConstDelta.srem(RunningGCD);
2482 if (Remainder != 0) {
2483 ++GCDindependence;
2484 return true;
2487 // Try to disprove equal directions.
2488 // For example, given a subscript pair [3*i + 2*j] and [i' + 2*j' - 1],
2489 // the code above can't disprove the dependence because the GCD = 1.
2490 // So we consider what happen if i = i' and what happens if j = j'.
2491 // If i = i', we can simplify the subscript to [2*i + 2*j] and [2*j' - 1],
2492 // which is infeasible, so we can disallow the = direction for the i level.
2493 // Setting j = j' doesn't help matters, so we end up with a direction vector
2494 // of [<>, *]
2496 // Given A[5*i + 10*j*M + 9*M*N] and A[15*i + 20*j*M - 21*N*M + 5],
2497 // we need to remember that the constant part is 5 and the RunningGCD should
2498 // be initialized to ExtraGCD = 30.
2499 LLVM_DEBUG(dbgs() << " ExtraGCD = " << ExtraGCD << '\n');
2501 bool Improved = false;
2502 Coefficients = Src;
2503 while (const SCEVAddRecExpr *AddRec =
2504 dyn_cast<SCEVAddRecExpr>(Coefficients)) {
2505 Coefficients = AddRec->getStart();
2506 const Loop *CurLoop = AddRec->getLoop();
2507 RunningGCD = ExtraGCD;
2508 const SCEV *SrcCoeff = AddRec->getStepRecurrence(*SE);
2509 const SCEV *DstCoeff = SE->getMinusSCEV(SrcCoeff, SrcCoeff);
2510 const SCEV *Inner = Src;
2511 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2512 AddRec = cast<SCEVAddRecExpr>(Inner);
2513 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2514 if (CurLoop == AddRec->getLoop())
2515 ; // SrcCoeff == Coeff
2516 else {
2517 // If the coefficient is the product of a constant and other stuff,
2518 // we can use the constant in the GCD computation.
2519 Constant = getConstantPart(Coeff);
2520 if (!Constant)
2521 return false;
2522 APInt ConstCoeff = Constant->getAPInt();
2523 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2525 Inner = AddRec->getStart();
2527 Inner = Dst;
2528 while (RunningGCD != 1 && isa<SCEVAddRecExpr>(Inner)) {
2529 AddRec = cast<SCEVAddRecExpr>(Inner);
2530 const SCEV *Coeff = AddRec->getStepRecurrence(*SE);
2531 if (CurLoop == AddRec->getLoop())
2532 DstCoeff = Coeff;
2533 else {
2534 // If the coefficient is the product of a constant and other stuff,
2535 // we can use the constant in the GCD computation.
2536 Constant = getConstantPart(Coeff);
2537 if (!Constant)
2538 return false;
2539 APInt ConstCoeff = Constant->getAPInt();
2540 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2542 Inner = AddRec->getStart();
2544 Delta = SE->getMinusSCEV(SrcCoeff, DstCoeff);
2545 // If the coefficient is the product of a constant and other stuff,
2546 // we can use the constant in the GCD computation.
2547 Constant = getConstantPart(Delta);
2548 if (!Constant)
2549 // The difference of the two coefficients might not be a product
2550 // or constant, in which case we give up on this direction.
2551 continue;
2552 APInt ConstCoeff = Constant->getAPInt();
2553 RunningGCD = APIntOps::GreatestCommonDivisor(RunningGCD, ConstCoeff.abs());
2554 LLVM_DEBUG(dbgs() << "\tRunningGCD = " << RunningGCD << "\n");
2555 if (RunningGCD != 0) {
2556 Remainder = ConstDelta.srem(RunningGCD);
2557 LLVM_DEBUG(dbgs() << "\tRemainder = " << Remainder << "\n");
2558 if (Remainder != 0) {
2559 unsigned Level = mapSrcLoop(CurLoop);
2560 Result.DV[Level - 1].Direction &= ~Dependence::DVEntry::EQ;
2561 Improved = true;
2565 if (Improved)
2566 ++GCDsuccesses;
2567 LLVM_DEBUG(dbgs() << "all done\n");
2568 return false;
2572 //===----------------------------------------------------------------------===//
2573 // banerjeeMIVtest -
2574 // Use Banerjee's Inequalities to test an MIV subscript pair.
2575 // (Wolfe, in the race-car book, calls this the Extreme Value Test.)
2576 // Generally follows the discussion in Section 2.5.2 of
2578 // Optimizing Supercompilers for Supercomputers
2579 // Michael Wolfe
2581 // The inequalities given on page 25 are simplified in that loops are
2582 // normalized so that the lower bound is always 0 and the stride is always 1.
2583 // For example, Wolfe gives
2585 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2587 // where A_k is the coefficient of the kth index in the source subscript,
2588 // B_k is the coefficient of the kth index in the destination subscript,
2589 // U_k is the upper bound of the kth index, L_k is the lower bound of the Kth
2590 // index, and N_k is the stride of the kth index. Since all loops are normalized
2591 // by the SCEV package, N_k = 1 and L_k = 0, allowing us to simplify the
2592 // equation to
2594 // LB^<_k = (A^-_k - B_k)^- (U_k - 0 - 1) + (A_k - B_k)0 - B_k 1
2595 // = (A^-_k - B_k)^- (U_k - 1) - B_k
2597 // Similar simplifications are possible for the other equations.
2599 // When we can't determine the number of iterations for a loop,
2600 // we use NULL as an indicator for the worst case, infinity.
2601 // When computing the upper bound, NULL denotes +inf;
2602 // for the lower bound, NULL denotes -inf.
2604 // Return true if dependence disproved.
2605 bool DependenceInfo::banerjeeMIVtest(const SCEV *Src, const SCEV *Dst,
2606 const SmallBitVector &Loops,
2607 FullDependence &Result) const {
2608 LLVM_DEBUG(dbgs() << "starting Banerjee\n");
2609 ++BanerjeeApplications;
2610 LLVM_DEBUG(dbgs() << " Src = " << *Src << '\n');
2611 const SCEV *A0;
2612 CoefficientInfo *A = collectCoeffInfo(Src, true, A0);
2613 LLVM_DEBUG(dbgs() << " Dst = " << *Dst << '\n');
2614 const SCEV *B0;
2615 CoefficientInfo *B = collectCoeffInfo(Dst, false, B0);
2616 BoundInfo *Bound = new BoundInfo[MaxLevels + 1];
2617 const SCEV *Delta = SE->getMinusSCEV(B0, A0);
2618 LLVM_DEBUG(dbgs() << "\tDelta = " << *Delta << '\n');
2620 // Compute bounds for all the * directions.
2621 LLVM_DEBUG(dbgs() << "\tBounds[*]\n");
2622 for (unsigned K = 1; K <= MaxLevels; ++K) {
2623 Bound[K].Iterations = A[K].Iterations ? A[K].Iterations : B[K].Iterations;
2624 Bound[K].Direction = Dependence::DVEntry::ALL;
2625 Bound[K].DirSet = Dependence::DVEntry::NONE;
2626 findBoundsALL(A, B, Bound, K);
2627 #ifndef NDEBUG
2628 LLVM_DEBUG(dbgs() << "\t " << K << '\t');
2629 if (Bound[K].Lower[Dependence::DVEntry::ALL])
2630 LLVM_DEBUG(dbgs() << *Bound[K].Lower[Dependence::DVEntry::ALL] << '\t');
2631 else
2632 LLVM_DEBUG(dbgs() << "-inf\t");
2633 if (Bound[K].Upper[Dependence::DVEntry::ALL])
2634 LLVM_DEBUG(dbgs() << *Bound[K].Upper[Dependence::DVEntry::ALL] << '\n');
2635 else
2636 LLVM_DEBUG(dbgs() << "+inf\n");
2637 #endif
2640 // Test the *, *, *, ... case.
2641 bool Disproved = false;
2642 if (testBounds(Dependence::DVEntry::ALL, 0, Bound, Delta)) {
2643 // Explore the direction vector hierarchy.
2644 unsigned DepthExpanded = 0;
2645 unsigned NewDeps = exploreDirections(1, A, B, Bound,
2646 Loops, DepthExpanded, Delta);
2647 if (NewDeps > 0) {
2648 bool Improved = false;
2649 for (unsigned K = 1; K <= CommonLevels; ++K) {
2650 if (Loops[K]) {
2651 unsigned Old = Result.DV[K - 1].Direction;
2652 Result.DV[K - 1].Direction = Old & Bound[K].DirSet;
2653 Improved |= Old != Result.DV[K - 1].Direction;
2654 if (!Result.DV[K - 1].Direction) {
2655 Improved = false;
2656 Disproved = true;
2657 break;
2661 if (Improved)
2662 ++BanerjeeSuccesses;
2664 else {
2665 ++BanerjeeIndependence;
2666 Disproved = true;
2669 else {
2670 ++BanerjeeIndependence;
2671 Disproved = true;
2673 delete [] Bound;
2674 delete [] A;
2675 delete [] B;
2676 return Disproved;
2680 // Hierarchically expands the direction vector
2681 // search space, combining the directions of discovered dependences
2682 // in the DirSet field of Bound. Returns the number of distinct
2683 // dependences discovered. If the dependence is disproved,
2684 // it will return 0.
2685 unsigned DependenceInfo::exploreDirections(unsigned Level, CoefficientInfo *A,
2686 CoefficientInfo *B, BoundInfo *Bound,
2687 const SmallBitVector &Loops,
2688 unsigned &DepthExpanded,
2689 const SCEV *Delta) const {
2690 // This algorithm has worst case complexity of O(3^n), where 'n' is the number
2691 // of common loop levels. To avoid excessive compile-time, pessimize all the
2692 // results and immediately return when the number of common levels is beyond
2693 // the given threshold.
2694 if (CommonLevels > MIVMaxLevelThreshold) {
2695 LLVM_DEBUG(dbgs() << "Number of common levels exceeded the threshold. MIV "
2696 "direction exploration is terminated.\n");
2697 for (unsigned K = 1; K <= CommonLevels; ++K)
2698 if (Loops[K])
2699 Bound[K].DirSet = Dependence::DVEntry::ALL;
2700 return 1;
2703 if (Level > CommonLevels) {
2704 // record result
2705 LLVM_DEBUG(dbgs() << "\t[");
2706 for (unsigned K = 1; K <= CommonLevels; ++K) {
2707 if (Loops[K]) {
2708 Bound[K].DirSet |= Bound[K].Direction;
2709 #ifndef NDEBUG
2710 switch (Bound[K].Direction) {
2711 case Dependence::DVEntry::LT:
2712 LLVM_DEBUG(dbgs() << " <");
2713 break;
2714 case Dependence::DVEntry::EQ:
2715 LLVM_DEBUG(dbgs() << " =");
2716 break;
2717 case Dependence::DVEntry::GT:
2718 LLVM_DEBUG(dbgs() << " >");
2719 break;
2720 case Dependence::DVEntry::ALL:
2721 LLVM_DEBUG(dbgs() << " *");
2722 break;
2723 default:
2724 llvm_unreachable("unexpected Bound[K].Direction");
2726 #endif
2729 LLVM_DEBUG(dbgs() << " ]\n");
2730 return 1;
2732 if (Loops[Level]) {
2733 if (Level > DepthExpanded) {
2734 DepthExpanded = Level;
2735 // compute bounds for <, =, > at current level
2736 findBoundsLT(A, B, Bound, Level);
2737 findBoundsGT(A, B, Bound, Level);
2738 findBoundsEQ(A, B, Bound, Level);
2739 #ifndef NDEBUG
2740 LLVM_DEBUG(dbgs() << "\tBound for level = " << Level << '\n');
2741 LLVM_DEBUG(dbgs() << "\t <\t");
2742 if (Bound[Level].Lower[Dependence::DVEntry::LT])
2743 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::LT]
2744 << '\t');
2745 else
2746 LLVM_DEBUG(dbgs() << "-inf\t");
2747 if (Bound[Level].Upper[Dependence::DVEntry::LT])
2748 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::LT]
2749 << '\n');
2750 else
2751 LLVM_DEBUG(dbgs() << "+inf\n");
2752 LLVM_DEBUG(dbgs() << "\t =\t");
2753 if (Bound[Level].Lower[Dependence::DVEntry::EQ])
2754 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::EQ]
2755 << '\t');
2756 else
2757 LLVM_DEBUG(dbgs() << "-inf\t");
2758 if (Bound[Level].Upper[Dependence::DVEntry::EQ])
2759 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::EQ]
2760 << '\n');
2761 else
2762 LLVM_DEBUG(dbgs() << "+inf\n");
2763 LLVM_DEBUG(dbgs() << "\t >\t");
2764 if (Bound[Level].Lower[Dependence::DVEntry::GT])
2765 LLVM_DEBUG(dbgs() << *Bound[Level].Lower[Dependence::DVEntry::GT]
2766 << '\t');
2767 else
2768 LLVM_DEBUG(dbgs() << "-inf\t");
2769 if (Bound[Level].Upper[Dependence::DVEntry::GT])
2770 LLVM_DEBUG(dbgs() << *Bound[Level].Upper[Dependence::DVEntry::GT]
2771 << '\n');
2772 else
2773 LLVM_DEBUG(dbgs() << "+inf\n");
2774 #endif
2777 unsigned NewDeps = 0;
2779 // test bounds for <, *, *, ...
2780 if (testBounds(Dependence::DVEntry::LT, Level, Bound, Delta))
2781 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2782 Loops, DepthExpanded, Delta);
2784 // Test bounds for =, *, *, ...
2785 if (testBounds(Dependence::DVEntry::EQ, Level, Bound, Delta))
2786 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2787 Loops, DepthExpanded, Delta);
2789 // test bounds for >, *, *, ...
2790 if (testBounds(Dependence::DVEntry::GT, Level, Bound, Delta))
2791 NewDeps += exploreDirections(Level + 1, A, B, Bound,
2792 Loops, DepthExpanded, Delta);
2794 Bound[Level].Direction = Dependence::DVEntry::ALL;
2795 return NewDeps;
2797 else
2798 return exploreDirections(Level + 1, A, B, Bound, Loops, DepthExpanded, Delta);
2802 // Returns true iff the current bounds are plausible.
2803 bool DependenceInfo::testBounds(unsigned char DirKind, unsigned Level,
2804 BoundInfo *Bound, const SCEV *Delta) const {
2805 Bound[Level].Direction = DirKind;
2806 if (const SCEV *LowerBound = getLowerBound(Bound))
2807 if (isKnownPredicate(CmpInst::ICMP_SGT, LowerBound, Delta))
2808 return false;
2809 if (const SCEV *UpperBound = getUpperBound(Bound))
2810 if (isKnownPredicate(CmpInst::ICMP_SGT, Delta, UpperBound))
2811 return false;
2812 return true;
2816 // Computes the upper and lower bounds for level K
2817 // using the * direction. Records them in Bound.
2818 // Wolfe gives the equations
2820 // LB^*_k = (A^-_k - B^+_k)(U_k - L_k) + (A_k - B_k)L_k
2821 // UB^*_k = (A^+_k - B^-_k)(U_k - L_k) + (A_k - B_k)L_k
2823 // Since we normalize loops, we can simplify these equations to
2825 // LB^*_k = (A^-_k - B^+_k)U_k
2826 // UB^*_k = (A^+_k - B^-_k)U_k
2828 // We must be careful to handle the case where the upper bound is unknown.
2829 // Note that the lower bound is always <= 0
2830 // and the upper bound is always >= 0.
2831 void DependenceInfo::findBoundsALL(CoefficientInfo *A, CoefficientInfo *B,
2832 BoundInfo *Bound, unsigned K) const {
2833 Bound[K].Lower[Dependence::DVEntry::ALL] = nullptr; // Default value = -infinity.
2834 Bound[K].Upper[Dependence::DVEntry::ALL] = nullptr; // Default value = +infinity.
2835 if (Bound[K].Iterations) {
2836 Bound[K].Lower[Dependence::DVEntry::ALL] =
2837 SE->getMulExpr(SE->getMinusSCEV(A[K].NegPart, B[K].PosPart),
2838 Bound[K].Iterations);
2839 Bound[K].Upper[Dependence::DVEntry::ALL] =
2840 SE->getMulExpr(SE->getMinusSCEV(A[K].PosPart, B[K].NegPart),
2841 Bound[K].Iterations);
2843 else {
2844 // If the difference is 0, we won't need to know the number of iterations.
2845 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].NegPart, B[K].PosPart))
2846 Bound[K].Lower[Dependence::DVEntry::ALL] =
2847 SE->getZero(A[K].Coeff->getType());
2848 if (isKnownPredicate(CmpInst::ICMP_EQ, A[K].PosPart, B[K].NegPart))
2849 Bound[K].Upper[Dependence::DVEntry::ALL] =
2850 SE->getZero(A[K].Coeff->getType());
2855 // Computes the upper and lower bounds for level K
2856 // using the = direction. Records them in Bound.
2857 // Wolfe gives the equations
2859 // LB^=_k = (A_k - B_k)^- (U_k - L_k) + (A_k - B_k)L_k
2860 // UB^=_k = (A_k - B_k)^+ (U_k - L_k) + (A_k - B_k)L_k
2862 // Since we normalize loops, we can simplify these equations to
2864 // LB^=_k = (A_k - B_k)^- U_k
2865 // UB^=_k = (A_k - B_k)^+ U_k
2867 // We must be careful to handle the case where the upper bound is unknown.
2868 // Note that the lower bound is always <= 0
2869 // and the upper bound is always >= 0.
2870 void DependenceInfo::findBoundsEQ(CoefficientInfo *A, CoefficientInfo *B,
2871 BoundInfo *Bound, unsigned K) const {
2872 Bound[K].Lower[Dependence::DVEntry::EQ] = nullptr; // Default value = -infinity.
2873 Bound[K].Upper[Dependence::DVEntry::EQ] = nullptr; // Default value = +infinity.
2874 if (Bound[K].Iterations) {
2875 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2876 const SCEV *NegativePart = getNegativePart(Delta);
2877 Bound[K].Lower[Dependence::DVEntry::EQ] =
2878 SE->getMulExpr(NegativePart, Bound[K].Iterations);
2879 const SCEV *PositivePart = getPositivePart(Delta);
2880 Bound[K].Upper[Dependence::DVEntry::EQ] =
2881 SE->getMulExpr(PositivePart, Bound[K].Iterations);
2883 else {
2884 // If the positive/negative part of the difference is 0,
2885 // we won't need to know the number of iterations.
2886 const SCEV *Delta = SE->getMinusSCEV(A[K].Coeff, B[K].Coeff);
2887 const SCEV *NegativePart = getNegativePart(Delta);
2888 if (NegativePart->isZero())
2889 Bound[K].Lower[Dependence::DVEntry::EQ] = NegativePart; // Zero
2890 const SCEV *PositivePart = getPositivePart(Delta);
2891 if (PositivePart->isZero())
2892 Bound[K].Upper[Dependence::DVEntry::EQ] = PositivePart; // Zero
2897 // Computes the upper and lower bounds for level K
2898 // using the < direction. Records them in Bound.
2899 // Wolfe gives the equations
2901 // LB^<_k = (A^-_k - B_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2902 // UB^<_k = (A^+_k - B_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k - B_k N_k
2904 // Since we normalize loops, we can simplify these equations to
2906 // LB^<_k = (A^-_k - B_k)^- (U_k - 1) - B_k
2907 // UB^<_k = (A^+_k - B_k)^+ (U_k - 1) - B_k
2909 // We must be careful to handle the case where the upper bound is unknown.
2910 void DependenceInfo::findBoundsLT(CoefficientInfo *A, CoefficientInfo *B,
2911 BoundInfo *Bound, unsigned K) const {
2912 Bound[K].Lower[Dependence::DVEntry::LT] = nullptr; // Default value = -infinity.
2913 Bound[K].Upper[Dependence::DVEntry::LT] = nullptr; // Default value = +infinity.
2914 if (Bound[K].Iterations) {
2915 const SCEV *Iter_1 = SE->getMinusSCEV(
2916 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2917 const SCEV *NegPart =
2918 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2919 Bound[K].Lower[Dependence::DVEntry::LT] =
2920 SE->getMinusSCEV(SE->getMulExpr(NegPart, Iter_1), B[K].Coeff);
2921 const SCEV *PosPart =
2922 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2923 Bound[K].Upper[Dependence::DVEntry::LT] =
2924 SE->getMinusSCEV(SE->getMulExpr(PosPart, Iter_1), B[K].Coeff);
2926 else {
2927 // If the positive/negative part of the difference is 0,
2928 // we won't need to know the number of iterations.
2929 const SCEV *NegPart =
2930 getNegativePart(SE->getMinusSCEV(A[K].NegPart, B[K].Coeff));
2931 if (NegPart->isZero())
2932 Bound[K].Lower[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2933 const SCEV *PosPart =
2934 getPositivePart(SE->getMinusSCEV(A[K].PosPart, B[K].Coeff));
2935 if (PosPart->isZero())
2936 Bound[K].Upper[Dependence::DVEntry::LT] = SE->getNegativeSCEV(B[K].Coeff);
2941 // Computes the upper and lower bounds for level K
2942 // using the > direction. Records them in Bound.
2943 // Wolfe gives the equations
2945 // LB^>_k = (A_k - B^+_k)^- (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2946 // UB^>_k = (A_k - B^-_k)^+ (U_k - L_k - N_k) + (A_k - B_k)L_k + A_k N_k
2948 // Since we normalize loops, we can simplify these equations to
2950 // LB^>_k = (A_k - B^+_k)^- (U_k - 1) + A_k
2951 // UB^>_k = (A_k - B^-_k)^+ (U_k - 1) + A_k
2953 // We must be careful to handle the case where the upper bound is unknown.
2954 void DependenceInfo::findBoundsGT(CoefficientInfo *A, CoefficientInfo *B,
2955 BoundInfo *Bound, unsigned K) const {
2956 Bound[K].Lower[Dependence::DVEntry::GT] = nullptr; // Default value = -infinity.
2957 Bound[K].Upper[Dependence::DVEntry::GT] = nullptr; // Default value = +infinity.
2958 if (Bound[K].Iterations) {
2959 const SCEV *Iter_1 = SE->getMinusSCEV(
2960 Bound[K].Iterations, SE->getOne(Bound[K].Iterations->getType()));
2961 const SCEV *NegPart =
2962 getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2963 Bound[K].Lower[Dependence::DVEntry::GT] =
2964 SE->getAddExpr(SE->getMulExpr(NegPart, Iter_1), A[K].Coeff);
2965 const SCEV *PosPart =
2966 getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2967 Bound[K].Upper[Dependence::DVEntry::GT] =
2968 SE->getAddExpr(SE->getMulExpr(PosPart, Iter_1), A[K].Coeff);
2970 else {
2971 // If the positive/negative part of the difference is 0,
2972 // we won't need to know the number of iterations.
2973 const SCEV *NegPart = getNegativePart(SE->getMinusSCEV(A[K].Coeff, B[K].PosPart));
2974 if (NegPart->isZero())
2975 Bound[K].Lower[Dependence::DVEntry::GT] = A[K].Coeff;
2976 const SCEV *PosPart = getPositivePart(SE->getMinusSCEV(A[K].Coeff, B[K].NegPart));
2977 if (PosPart->isZero())
2978 Bound[K].Upper[Dependence::DVEntry::GT] = A[K].Coeff;
2983 // X^+ = max(X, 0)
2984 const SCEV *DependenceInfo::getPositivePart(const SCEV *X) const {
2985 return SE->getSMaxExpr(X, SE->getZero(X->getType()));
2989 // X^- = min(X, 0)
2990 const SCEV *DependenceInfo::getNegativePart(const SCEV *X) const {
2991 return SE->getSMinExpr(X, SE->getZero(X->getType()));
2995 // Walks through the subscript,
2996 // collecting each coefficient, the associated loop bounds,
2997 // and recording its positive and negative parts for later use.
2998 DependenceInfo::CoefficientInfo *
2999 DependenceInfo::collectCoeffInfo(const SCEV *Subscript, bool SrcFlag,
3000 const SCEV *&Constant) const {
3001 const SCEV *Zero = SE->getZero(Subscript->getType());
3002 CoefficientInfo *CI = new CoefficientInfo[MaxLevels + 1];
3003 for (unsigned K = 1; K <= MaxLevels; ++K) {
3004 CI[K].Coeff = Zero;
3005 CI[K].PosPart = Zero;
3006 CI[K].NegPart = Zero;
3007 CI[K].Iterations = nullptr;
3009 while (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Subscript)) {
3010 const Loop *L = AddRec->getLoop();
3011 unsigned K = SrcFlag ? mapSrcLoop(L) : mapDstLoop(L);
3012 CI[K].Coeff = AddRec->getStepRecurrence(*SE);
3013 CI[K].PosPart = getPositivePart(CI[K].Coeff);
3014 CI[K].NegPart = getNegativePart(CI[K].Coeff);
3015 CI[K].Iterations = collectUpperBound(L, Subscript->getType());
3016 Subscript = AddRec->getStart();
3018 Constant = Subscript;
3019 #ifndef NDEBUG
3020 LLVM_DEBUG(dbgs() << "\tCoefficient Info\n");
3021 for (unsigned K = 1; K <= MaxLevels; ++K) {
3022 LLVM_DEBUG(dbgs() << "\t " << K << "\t" << *CI[K].Coeff);
3023 LLVM_DEBUG(dbgs() << "\tPos Part = ");
3024 LLVM_DEBUG(dbgs() << *CI[K].PosPart);
3025 LLVM_DEBUG(dbgs() << "\tNeg Part = ");
3026 LLVM_DEBUG(dbgs() << *CI[K].NegPart);
3027 LLVM_DEBUG(dbgs() << "\tUpper Bound = ");
3028 if (CI[K].Iterations)
3029 LLVM_DEBUG(dbgs() << *CI[K].Iterations);
3030 else
3031 LLVM_DEBUG(dbgs() << "+inf");
3032 LLVM_DEBUG(dbgs() << '\n');
3034 LLVM_DEBUG(dbgs() << "\t Constant = " << *Subscript << '\n');
3035 #endif
3036 return CI;
3040 // Looks through all the bounds info and
3041 // computes the lower bound given the current direction settings
3042 // at each level. If the lower bound for any level is -inf,
3043 // the result is -inf.
3044 const SCEV *DependenceInfo::getLowerBound(BoundInfo *Bound) const {
3045 const SCEV *Sum = Bound[1].Lower[Bound[1].Direction];
3046 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
3047 if (Bound[K].Lower[Bound[K].Direction])
3048 Sum = SE->getAddExpr(Sum, Bound[K].Lower[Bound[K].Direction]);
3049 else
3050 Sum = nullptr;
3052 return Sum;
3056 // Looks through all the bounds info and
3057 // computes the upper bound given the current direction settings
3058 // at each level. If the upper bound at any level is +inf,
3059 // the result is +inf.
3060 const SCEV *DependenceInfo::getUpperBound(BoundInfo *Bound) const {
3061 const SCEV *Sum = Bound[1].Upper[Bound[1].Direction];
3062 for (unsigned K = 2; Sum && K <= MaxLevels; ++K) {
3063 if (Bound[K].Upper[Bound[K].Direction])
3064 Sum = SE->getAddExpr(Sum, Bound[K].Upper[Bound[K].Direction]);
3065 else
3066 Sum = nullptr;
3068 return Sum;
3072 //===----------------------------------------------------------------------===//
3073 // Constraint manipulation for Delta test.
3075 // Given a linear SCEV,
3076 // return the coefficient (the step)
3077 // corresponding to the specified loop.
3078 // If there isn't one, return 0.
3079 // For example, given a*i + b*j + c*k, finding the coefficient
3080 // corresponding to the j loop would yield b.
3081 const SCEV *DependenceInfo::findCoefficient(const SCEV *Expr,
3082 const Loop *TargetLoop) const {
3083 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3084 if (!AddRec)
3085 return SE->getZero(Expr->getType());
3086 if (AddRec->getLoop() == TargetLoop)
3087 return AddRec->getStepRecurrence(*SE);
3088 return findCoefficient(AddRec->getStart(), TargetLoop);
3092 // Given a linear SCEV,
3093 // return the SCEV given by zeroing out the coefficient
3094 // corresponding to the specified loop.
3095 // For example, given a*i + b*j + c*k, zeroing the coefficient
3096 // corresponding to the j loop would yield a*i + c*k.
3097 const SCEV *DependenceInfo::zeroCoefficient(const SCEV *Expr,
3098 const Loop *TargetLoop) const {
3099 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3100 if (!AddRec)
3101 return Expr; // ignore
3102 if (AddRec->getLoop() == TargetLoop)
3103 return AddRec->getStart();
3104 return SE->getAddRecExpr(zeroCoefficient(AddRec->getStart(), TargetLoop),
3105 AddRec->getStepRecurrence(*SE),
3106 AddRec->getLoop(),
3107 AddRec->getNoWrapFlags());
3111 // Given a linear SCEV Expr,
3112 // return the SCEV given by adding some Value to the
3113 // coefficient corresponding to the specified TargetLoop.
3114 // For example, given a*i + b*j + c*k, adding 1 to the coefficient
3115 // corresponding to the j loop would yield a*i + (b+1)*j + c*k.
3116 const SCEV *DependenceInfo::addToCoefficient(const SCEV *Expr,
3117 const Loop *TargetLoop,
3118 const SCEV *Value) const {
3119 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Expr);
3120 if (!AddRec) // create a new addRec
3121 return SE->getAddRecExpr(Expr,
3122 Value,
3123 TargetLoop,
3124 SCEV::FlagAnyWrap); // Worst case, with no info.
3125 if (AddRec->getLoop() == TargetLoop) {
3126 const SCEV *Sum = SE->getAddExpr(AddRec->getStepRecurrence(*SE), Value);
3127 if (Sum->isZero())
3128 return AddRec->getStart();
3129 return SE->getAddRecExpr(AddRec->getStart(),
3130 Sum,
3131 AddRec->getLoop(),
3132 AddRec->getNoWrapFlags());
3134 if (SE->isLoopInvariant(AddRec, TargetLoop))
3135 return SE->getAddRecExpr(AddRec, Value, TargetLoop, SCEV::FlagAnyWrap);
3136 return SE->getAddRecExpr(
3137 addToCoefficient(AddRec->getStart(), TargetLoop, Value),
3138 AddRec->getStepRecurrence(*SE), AddRec->getLoop(),
3139 AddRec->getNoWrapFlags());
3143 // Review the constraints, looking for opportunities
3144 // to simplify a subscript pair (Src and Dst).
3145 // Return true if some simplification occurs.
3146 // If the simplification isn't exact (that is, if it is conservative
3147 // in terms of dependence), set consistent to false.
3148 // Corresponds to Figure 5 from the paper
3150 // Practical Dependence Testing
3151 // Goff, Kennedy, Tseng
3152 // PLDI 1991
3153 bool DependenceInfo::propagate(const SCEV *&Src, const SCEV *&Dst,
3154 SmallBitVector &Loops,
3155 SmallVectorImpl<Constraint> &Constraints,
3156 bool &Consistent) {
3157 bool Result = false;
3158 for (unsigned LI : Loops.set_bits()) {
3159 LLVM_DEBUG(dbgs() << "\t Constraint[" << LI << "] is");
3160 LLVM_DEBUG(Constraints[LI].dump(dbgs()));
3161 if (Constraints[LI].isDistance())
3162 Result |= propagateDistance(Src, Dst, Constraints[LI], Consistent);
3163 else if (Constraints[LI].isLine())
3164 Result |= propagateLine(Src, Dst, Constraints[LI], Consistent);
3165 else if (Constraints[LI].isPoint())
3166 Result |= propagatePoint(Src, Dst, Constraints[LI]);
3168 return Result;
3172 // Attempt to propagate a distance
3173 // constraint into a subscript pair (Src and Dst).
3174 // Return true if some simplification occurs.
3175 // If the simplification isn't exact (that is, if it is conservative
3176 // in terms of dependence), set consistent to false.
3177 bool DependenceInfo::propagateDistance(const SCEV *&Src, const SCEV *&Dst,
3178 Constraint &CurConstraint,
3179 bool &Consistent) {
3180 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3181 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3182 const SCEV *A_K = findCoefficient(Src, CurLoop);
3183 if (A_K->isZero())
3184 return false;
3185 const SCEV *DA_K = SE->getMulExpr(A_K, CurConstraint.getD());
3186 Src = SE->getMinusSCEV(Src, DA_K);
3187 Src = zeroCoefficient(Src, CurLoop);
3188 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3189 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3190 Dst = addToCoefficient(Dst, CurLoop, SE->getNegativeSCEV(A_K));
3191 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3192 if (!findCoefficient(Dst, CurLoop)->isZero())
3193 Consistent = false;
3194 return true;
3198 // Attempt to propagate a line
3199 // constraint into a subscript pair (Src and Dst).
3200 // Return true if some simplification occurs.
3201 // If the simplification isn't exact (that is, if it is conservative
3202 // in terms of dependence), set consistent to false.
3203 bool DependenceInfo::propagateLine(const SCEV *&Src, const SCEV *&Dst,
3204 Constraint &CurConstraint,
3205 bool &Consistent) {
3206 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3207 const SCEV *A = CurConstraint.getA();
3208 const SCEV *B = CurConstraint.getB();
3209 const SCEV *C = CurConstraint.getC();
3210 LLVM_DEBUG(dbgs() << "\t\tA = " << *A << ", B = " << *B << ", C = " << *C
3211 << "\n");
3212 LLVM_DEBUG(dbgs() << "\t\tSrc = " << *Src << "\n");
3213 LLVM_DEBUG(dbgs() << "\t\tDst = " << *Dst << "\n");
3214 if (A->isZero()) {
3215 const SCEVConstant *Bconst = dyn_cast<SCEVConstant>(B);
3216 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3217 if (!Bconst || !Cconst) return false;
3218 APInt Beta = Bconst->getAPInt();
3219 APInt Charlie = Cconst->getAPInt();
3220 APInt CdivB = Charlie.sdiv(Beta);
3221 assert(Charlie.srem(Beta) == 0 && "C should be evenly divisible by B");
3222 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3223 // Src = SE->getAddExpr(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3224 Src = SE->getMinusSCEV(Src, SE->getMulExpr(AP_K, SE->getConstant(CdivB)));
3225 Dst = zeroCoefficient(Dst, CurLoop);
3226 if (!findCoefficient(Src, CurLoop)->isZero())
3227 Consistent = false;
3229 else if (B->isZero()) {
3230 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3231 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3232 if (!Aconst || !Cconst) return false;
3233 APInt Alpha = Aconst->getAPInt();
3234 APInt Charlie = Cconst->getAPInt();
3235 APInt CdivA = Charlie.sdiv(Alpha);
3236 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3237 const SCEV *A_K = findCoefficient(Src, CurLoop);
3238 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3239 Src = zeroCoefficient(Src, CurLoop);
3240 if (!findCoefficient(Dst, CurLoop)->isZero())
3241 Consistent = false;
3243 else if (isKnownPredicate(CmpInst::ICMP_EQ, A, B)) {
3244 const SCEVConstant *Aconst = dyn_cast<SCEVConstant>(A);
3245 const SCEVConstant *Cconst = dyn_cast<SCEVConstant>(C);
3246 if (!Aconst || !Cconst) return false;
3247 APInt Alpha = Aconst->getAPInt();
3248 APInt Charlie = Cconst->getAPInt();
3249 APInt CdivA = Charlie.sdiv(Alpha);
3250 assert(Charlie.srem(Alpha) == 0 && "C should be evenly divisible by A");
3251 const SCEV *A_K = findCoefficient(Src, CurLoop);
3252 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, SE->getConstant(CdivA)));
3253 Src = zeroCoefficient(Src, CurLoop);
3254 Dst = addToCoefficient(Dst, CurLoop, A_K);
3255 if (!findCoefficient(Dst, CurLoop)->isZero())
3256 Consistent = false;
3258 else {
3259 // paper is incorrect here, or perhaps just misleading
3260 const SCEV *A_K = findCoefficient(Src, CurLoop);
3261 Src = SE->getMulExpr(Src, A);
3262 Dst = SE->getMulExpr(Dst, A);
3263 Src = SE->getAddExpr(Src, SE->getMulExpr(A_K, C));
3264 Src = zeroCoefficient(Src, CurLoop);
3265 Dst = addToCoefficient(Dst, CurLoop, SE->getMulExpr(A_K, B));
3266 if (!findCoefficient(Dst, CurLoop)->isZero())
3267 Consistent = false;
3269 LLVM_DEBUG(dbgs() << "\t\tnew Src = " << *Src << "\n");
3270 LLVM_DEBUG(dbgs() << "\t\tnew Dst = " << *Dst << "\n");
3271 return true;
3275 // Attempt to propagate a point
3276 // constraint into a subscript pair (Src and Dst).
3277 // Return true if some simplification occurs.
3278 bool DependenceInfo::propagatePoint(const SCEV *&Src, const SCEV *&Dst,
3279 Constraint &CurConstraint) {
3280 const Loop *CurLoop = CurConstraint.getAssociatedLoop();
3281 const SCEV *A_K = findCoefficient(Src, CurLoop);
3282 const SCEV *AP_K = findCoefficient(Dst, CurLoop);
3283 const SCEV *XA_K = SE->getMulExpr(A_K, CurConstraint.getX());
3284 const SCEV *YAP_K = SE->getMulExpr(AP_K, CurConstraint.getY());
3285 LLVM_DEBUG(dbgs() << "\t\tSrc is " << *Src << "\n");
3286 Src = SE->getAddExpr(Src, SE->getMinusSCEV(XA_K, YAP_K));
3287 Src = zeroCoefficient(Src, CurLoop);
3288 LLVM_DEBUG(dbgs() << "\t\tnew Src is " << *Src << "\n");
3289 LLVM_DEBUG(dbgs() << "\t\tDst is " << *Dst << "\n");
3290 Dst = zeroCoefficient(Dst, CurLoop);
3291 LLVM_DEBUG(dbgs() << "\t\tnew Dst is " << *Dst << "\n");
3292 return true;
3296 // Update direction vector entry based on the current constraint.
3297 void DependenceInfo::updateDirection(Dependence::DVEntry &Level,
3298 const Constraint &CurConstraint) const {
3299 LLVM_DEBUG(dbgs() << "\tUpdate direction, constraint =");
3300 LLVM_DEBUG(CurConstraint.dump(dbgs()));
3301 if (CurConstraint.isAny())
3302 ; // use defaults
3303 else if (CurConstraint.isDistance()) {
3304 // this one is consistent, the others aren't
3305 Level.Scalar = false;
3306 Level.Distance = CurConstraint.getD();
3307 unsigned NewDirection = Dependence::DVEntry::NONE;
3308 if (!SE->isKnownNonZero(Level.Distance)) // if may be zero
3309 NewDirection = Dependence::DVEntry::EQ;
3310 if (!SE->isKnownNonPositive(Level.Distance)) // if may be positive
3311 NewDirection |= Dependence::DVEntry::LT;
3312 if (!SE->isKnownNonNegative(Level.Distance)) // if may be negative
3313 NewDirection |= Dependence::DVEntry::GT;
3314 Level.Direction &= NewDirection;
3316 else if (CurConstraint.isLine()) {
3317 Level.Scalar = false;
3318 Level.Distance = nullptr;
3319 // direction should be accurate
3321 else if (CurConstraint.isPoint()) {
3322 Level.Scalar = false;
3323 Level.Distance = nullptr;
3324 unsigned NewDirection = Dependence::DVEntry::NONE;
3325 if (!isKnownPredicate(CmpInst::ICMP_NE,
3326 CurConstraint.getY(),
3327 CurConstraint.getX()))
3328 // if X may be = Y
3329 NewDirection |= Dependence::DVEntry::EQ;
3330 if (!isKnownPredicate(CmpInst::ICMP_SLE,
3331 CurConstraint.getY(),
3332 CurConstraint.getX()))
3333 // if Y may be > X
3334 NewDirection |= Dependence::DVEntry::LT;
3335 if (!isKnownPredicate(CmpInst::ICMP_SGE,
3336 CurConstraint.getY(),
3337 CurConstraint.getX()))
3338 // if Y may be < X
3339 NewDirection |= Dependence::DVEntry::GT;
3340 Level.Direction &= NewDirection;
3342 else
3343 llvm_unreachable("constraint has unexpected kind");
3346 /// Check if we can delinearize the subscripts. If the SCEVs representing the
3347 /// source and destination array references are recurrences on a nested loop,
3348 /// this function flattens the nested recurrences into separate recurrences
3349 /// for each loop level.
3350 bool DependenceInfo::tryDelinearize(Instruction *Src, Instruction *Dst,
3351 SmallVectorImpl<Subscript> &Pair) {
3352 assert(isLoadOrStore(Src) && "instruction is not load or store");
3353 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3354 Value *SrcPtr = getLoadStorePointerOperand(Src);
3355 Value *DstPtr = getLoadStorePointerOperand(Dst);
3356 Loop *SrcLoop = LI->getLoopFor(Src->getParent());
3357 Loop *DstLoop = LI->getLoopFor(Dst->getParent());
3358 const SCEV *SrcAccessFn = SE->getSCEVAtScope(SrcPtr, SrcLoop);
3359 const SCEV *DstAccessFn = SE->getSCEVAtScope(DstPtr, DstLoop);
3360 const SCEVUnknown *SrcBase =
3361 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3362 const SCEVUnknown *DstBase =
3363 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3365 if (!SrcBase || !DstBase || SrcBase != DstBase)
3366 return false;
3368 SmallVector<const SCEV *, 4> SrcSubscripts, DstSubscripts;
3370 if (!tryDelinearizeFixedSize(Src, Dst, SrcAccessFn, DstAccessFn,
3371 SrcSubscripts, DstSubscripts) &&
3372 !tryDelinearizeParametricSize(Src, Dst, SrcAccessFn, DstAccessFn,
3373 SrcSubscripts, DstSubscripts))
3374 return false;
3376 int Size = SrcSubscripts.size();
3377 LLVM_DEBUG({
3378 dbgs() << "\nSrcSubscripts: ";
3379 for (int I = 0; I < Size; I++)
3380 dbgs() << *SrcSubscripts[I];
3381 dbgs() << "\nDstSubscripts: ";
3382 for (int I = 0; I < Size; I++)
3383 dbgs() << *DstSubscripts[I];
3386 // The delinearization transforms a single-subscript MIV dependence test into
3387 // a multi-subscript SIV dependence test that is easier to compute. So we
3388 // resize Pair to contain as many pairs of subscripts as the delinearization
3389 // has found, and then initialize the pairs following the delinearization.
3390 Pair.resize(Size);
3391 for (int I = 0; I < Size; ++I) {
3392 Pair[I].Src = SrcSubscripts[I];
3393 Pair[I].Dst = DstSubscripts[I];
3394 unifySubscriptType(&Pair[I]);
3397 return true;
3400 /// Try to delinearize \p SrcAccessFn and \p DstAccessFn if the underlying
3401 /// arrays accessed are fixed-size arrays. Return true if delinearization was
3402 /// successful.
3403 bool DependenceInfo::tryDelinearizeFixedSize(
3404 Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3405 const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3406 SmallVectorImpl<const SCEV *> &DstSubscripts) {
3407 LLVM_DEBUG({
3408 const SCEVUnknown *SrcBase =
3409 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3410 const SCEVUnknown *DstBase =
3411 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3412 assert(SrcBase && DstBase && SrcBase == DstBase &&
3413 "expected src and dst scev unknowns to be equal");
3416 SmallVector<int, 4> SrcSizes;
3417 SmallVector<int, 4> DstSizes;
3418 if (!tryDelinearizeFixedSizeImpl(SE, Src, SrcAccessFn, SrcSubscripts,
3419 SrcSizes) ||
3420 !tryDelinearizeFixedSizeImpl(SE, Dst, DstAccessFn, DstSubscripts,
3421 DstSizes))
3422 return false;
3424 // Check that the two size arrays are non-empty and equal in length and
3425 // value.
3426 if (SrcSizes.size() != DstSizes.size() ||
3427 !std::equal(SrcSizes.begin(), SrcSizes.end(), DstSizes.begin())) {
3428 SrcSubscripts.clear();
3429 DstSubscripts.clear();
3430 return false;
3433 assert(SrcSubscripts.size() == DstSubscripts.size() &&
3434 "Expected equal number of entries in the list of SrcSubscripts and "
3435 "DstSubscripts.");
3437 Value *SrcPtr = getLoadStorePointerOperand(Src);
3438 Value *DstPtr = getLoadStorePointerOperand(Dst);
3440 // In general we cannot safely assume that the subscripts recovered from GEPs
3441 // are in the range of values defined for their corresponding array
3442 // dimensions. For example some C language usage/interpretation make it
3443 // impossible to verify this at compile-time. As such we can only delinearize
3444 // iff the subscripts are positive and are less than the range of the
3445 // dimension.
3446 if (!DisableDelinearizationChecks) {
3447 auto AllIndiciesInRange = [&](SmallVector<int, 4> &DimensionSizes,
3448 SmallVectorImpl<const SCEV *> &Subscripts,
3449 Value *Ptr) {
3450 size_t SSize = Subscripts.size();
3451 for (size_t I = 1; I < SSize; ++I) {
3452 const SCEV *S = Subscripts[I];
3453 if (!isKnownNonNegative(S, Ptr))
3454 return false;
3455 if (auto *SType = dyn_cast<IntegerType>(S->getType())) {
3456 const SCEV *Range = SE->getConstant(
3457 ConstantInt::get(SType, DimensionSizes[I - 1], false));
3458 if (!isKnownLessThan(S, Range))
3459 return false;
3462 return true;
3465 if (!AllIndiciesInRange(SrcSizes, SrcSubscripts, SrcPtr) ||
3466 !AllIndiciesInRange(DstSizes, DstSubscripts, DstPtr)) {
3467 SrcSubscripts.clear();
3468 DstSubscripts.clear();
3469 return false;
3472 LLVM_DEBUG({
3473 dbgs() << "Delinearized subscripts of fixed-size array\n"
3474 << "SrcGEP:" << *SrcPtr << "\n"
3475 << "DstGEP:" << *DstPtr << "\n";
3477 return true;
3480 bool DependenceInfo::tryDelinearizeParametricSize(
3481 Instruction *Src, Instruction *Dst, const SCEV *SrcAccessFn,
3482 const SCEV *DstAccessFn, SmallVectorImpl<const SCEV *> &SrcSubscripts,
3483 SmallVectorImpl<const SCEV *> &DstSubscripts) {
3485 Value *SrcPtr = getLoadStorePointerOperand(Src);
3486 Value *DstPtr = getLoadStorePointerOperand(Dst);
3487 const SCEVUnknown *SrcBase =
3488 dyn_cast<SCEVUnknown>(SE->getPointerBase(SrcAccessFn));
3489 const SCEVUnknown *DstBase =
3490 dyn_cast<SCEVUnknown>(SE->getPointerBase(DstAccessFn));
3491 assert(SrcBase && DstBase && SrcBase == DstBase &&
3492 "expected src and dst scev unknowns to be equal");
3494 const SCEV *ElementSize = SE->getElementSize(Src);
3495 if (ElementSize != SE->getElementSize(Dst))
3496 return false;
3498 const SCEV *SrcSCEV = SE->getMinusSCEV(SrcAccessFn, SrcBase);
3499 const SCEV *DstSCEV = SE->getMinusSCEV(DstAccessFn, DstBase);
3501 const SCEVAddRecExpr *SrcAR = dyn_cast<SCEVAddRecExpr>(SrcSCEV);
3502 const SCEVAddRecExpr *DstAR = dyn_cast<SCEVAddRecExpr>(DstSCEV);
3503 if (!SrcAR || !DstAR || !SrcAR->isAffine() || !DstAR->isAffine())
3504 return false;
3506 // First step: collect parametric terms in both array references.
3507 SmallVector<const SCEV *, 4> Terms;
3508 collectParametricTerms(*SE, SrcAR, Terms);
3509 collectParametricTerms(*SE, DstAR, Terms);
3511 // Second step: find subscript sizes.
3512 SmallVector<const SCEV *, 4> Sizes;
3513 findArrayDimensions(*SE, Terms, Sizes, ElementSize);
3515 // Third step: compute the access functions for each subscript.
3516 computeAccessFunctions(*SE, SrcAR, SrcSubscripts, Sizes);
3517 computeAccessFunctions(*SE, DstAR, DstSubscripts, Sizes);
3519 // Fail when there is only a subscript: that's a linearized access function.
3520 if (SrcSubscripts.size() < 2 || DstSubscripts.size() < 2 ||
3521 SrcSubscripts.size() != DstSubscripts.size())
3522 return false;
3524 size_t Size = SrcSubscripts.size();
3526 // Statically check that the array bounds are in-range. The first subscript we
3527 // don't have a size for and it cannot overflow into another subscript, so is
3528 // always safe. The others need to be 0 <= subscript[i] < bound, for both src
3529 // and dst.
3530 // FIXME: It may be better to record these sizes and add them as constraints
3531 // to the dependency checks.
3532 if (!DisableDelinearizationChecks)
3533 for (size_t I = 1; I < Size; ++I) {
3534 if (!isKnownNonNegative(SrcSubscripts[I], SrcPtr))
3535 return false;
3537 if (!isKnownLessThan(SrcSubscripts[I], Sizes[I - 1]))
3538 return false;
3540 if (!isKnownNonNegative(DstSubscripts[I], DstPtr))
3541 return false;
3543 if (!isKnownLessThan(DstSubscripts[I], Sizes[I - 1]))
3544 return false;
3547 return true;
3550 //===----------------------------------------------------------------------===//
3552 #ifndef NDEBUG
3553 // For debugging purposes, dump a small bit vector to dbgs().
3554 static void dumpSmallBitVector(SmallBitVector &BV) {
3555 dbgs() << "{";
3556 for (unsigned VI : BV.set_bits()) {
3557 dbgs() << VI;
3558 if (BV.find_next(VI) >= 0)
3559 dbgs() << ' ';
3561 dbgs() << "}\n";
3563 #endif
3565 bool DependenceInfo::invalidate(Function &F, const PreservedAnalyses &PA,
3566 FunctionAnalysisManager::Invalidator &Inv) {
3567 // Check if the analysis itself has been invalidated.
3568 auto PAC = PA.getChecker<DependenceAnalysis>();
3569 if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
3570 return true;
3572 // Check transitive dependencies.
3573 return Inv.invalidate<AAManager>(F, PA) ||
3574 Inv.invalidate<ScalarEvolutionAnalysis>(F, PA) ||
3575 Inv.invalidate<LoopAnalysis>(F, PA);
3578 // depends -
3579 // Returns NULL if there is no dependence.
3580 // Otherwise, return a Dependence with as many details as possible.
3581 // Corresponds to Section 3.1 in the paper
3583 // Practical Dependence Testing
3584 // Goff, Kennedy, Tseng
3585 // PLDI 1991
3587 // Care is required to keep the routine below, getSplitIteration(),
3588 // up to date with respect to this routine.
3589 std::unique_ptr<Dependence>
3590 DependenceInfo::depends(Instruction *Src, Instruction *Dst,
3591 bool PossiblyLoopIndependent) {
3592 if (Src == Dst)
3593 PossiblyLoopIndependent = false;
3595 if (!(Src->mayReadOrWriteMemory() && Dst->mayReadOrWriteMemory()))
3596 // if both instructions don't reference memory, there's no dependence
3597 return nullptr;
3599 if (!isLoadOrStore(Src) || !isLoadOrStore(Dst)) {
3600 // can only analyze simple loads and stores, i.e., no calls, invokes, etc.
3601 LLVM_DEBUG(dbgs() << "can only handle simple loads and stores\n");
3602 return std::make_unique<Dependence>(Src, Dst);
3605 assert(isLoadOrStore(Src) && "instruction is not load or store");
3606 assert(isLoadOrStore(Dst) && "instruction is not load or store");
3607 Value *SrcPtr = getLoadStorePointerOperand(Src);
3608 Value *DstPtr = getLoadStorePointerOperand(Dst);
3610 switch (underlyingObjectsAlias(AA, F->getParent()->getDataLayout(),
3611 MemoryLocation::get(Dst),
3612 MemoryLocation::get(Src))) {
3613 case AliasResult::MayAlias:
3614 case AliasResult::PartialAlias:
3615 // cannot analyse objects if we don't understand their aliasing.
3616 LLVM_DEBUG(dbgs() << "can't analyze may or partial alias\n");
3617 return std::make_unique<Dependence>(Src, Dst);
3618 case AliasResult::NoAlias:
3619 // If the objects noalias, they are distinct, accesses are independent.
3620 LLVM_DEBUG(dbgs() << "no alias\n");
3621 return nullptr;
3622 case AliasResult::MustAlias:
3623 break; // The underlying objects alias; test accesses for dependence.
3626 // establish loop nesting levels
3627 establishNestingLevels(Src, Dst);
3628 LLVM_DEBUG(dbgs() << " common nesting levels = " << CommonLevels << "\n");
3629 LLVM_DEBUG(dbgs() << " maximum nesting levels = " << MaxLevels << "\n");
3631 FullDependence Result(Src, Dst, PossiblyLoopIndependent, CommonLevels);
3632 ++TotalArrayPairs;
3634 unsigned Pairs = 1;
3635 SmallVector<Subscript, 2> Pair(Pairs);
3636 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
3637 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
3638 LLVM_DEBUG(dbgs() << " SrcSCEV = " << *SrcSCEV << "\n");
3639 LLVM_DEBUG(dbgs() << " DstSCEV = " << *DstSCEV << "\n");
3640 if (SE->getPointerBase(SrcSCEV) != SE->getPointerBase(DstSCEV)) {
3641 // If two pointers have different bases, trying to analyze indexes won't
3642 // work; we can't compare them to each other. This can happen, for example,
3643 // if one is produced by an LCSSA PHI node.
3645 // We check this upfront so we don't crash in cases where getMinusSCEV()
3646 // returns a SCEVCouldNotCompute.
3647 LLVM_DEBUG(dbgs() << "can't analyze SCEV with different pointer base\n");
3648 return std::make_unique<Dependence>(Src, Dst);
3650 Pair[0].Src = SrcSCEV;
3651 Pair[0].Dst = DstSCEV;
3653 if (Delinearize) {
3654 if (tryDelinearize(Src, Dst, Pair)) {
3655 LLVM_DEBUG(dbgs() << " delinearized\n");
3656 Pairs = Pair.size();
3660 for (unsigned P = 0; P < Pairs; ++P) {
3661 Pair[P].Loops.resize(MaxLevels + 1);
3662 Pair[P].GroupLoops.resize(MaxLevels + 1);
3663 Pair[P].Group.resize(Pairs);
3664 removeMatchingExtensions(&Pair[P]);
3665 Pair[P].Classification =
3666 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
3667 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
3668 Pair[P].Loops);
3669 Pair[P].GroupLoops = Pair[P].Loops;
3670 Pair[P].Group.set(P);
3671 LLVM_DEBUG(dbgs() << " subscript " << P << "\n");
3672 LLVM_DEBUG(dbgs() << "\tsrc = " << *Pair[P].Src << "\n");
3673 LLVM_DEBUG(dbgs() << "\tdst = " << *Pair[P].Dst << "\n");
3674 LLVM_DEBUG(dbgs() << "\tclass = " << Pair[P].Classification << "\n");
3675 LLVM_DEBUG(dbgs() << "\tloops = ");
3676 LLVM_DEBUG(dumpSmallBitVector(Pair[P].Loops));
3679 SmallBitVector Separable(Pairs);
3680 SmallBitVector Coupled(Pairs);
3682 // Partition subscripts into separable and minimally-coupled groups
3683 // Algorithm in paper is algorithmically better;
3684 // this may be faster in practice. Check someday.
3686 // Here's an example of how it works. Consider this code:
3688 // for (i = ...) {
3689 // for (j = ...) {
3690 // for (k = ...) {
3691 // for (l = ...) {
3692 // for (m = ...) {
3693 // A[i][j][k][m] = ...;
3694 // ... = A[0][j][l][i + j];
3695 // }
3696 // }
3697 // }
3698 // }
3699 // }
3701 // There are 4 subscripts here:
3702 // 0 [i] and [0]
3703 // 1 [j] and [j]
3704 // 2 [k] and [l]
3705 // 3 [m] and [i + j]
3707 // We've already classified each subscript pair as ZIV, SIV, etc.,
3708 // and collected all the loops mentioned by pair P in Pair[P].Loops.
3709 // In addition, we've initialized Pair[P].GroupLoops to Pair[P].Loops
3710 // and set Pair[P].Group = {P}.
3712 // Src Dst Classification Loops GroupLoops Group
3713 // 0 [i] [0] SIV {1} {1} {0}
3714 // 1 [j] [j] SIV {2} {2} {1}
3715 // 2 [k] [l] RDIV {3,4} {3,4} {2}
3716 // 3 [m] [i + j] MIV {1,2,5} {1,2,5} {3}
3718 // For each subscript SI 0 .. 3, we consider each remaining subscript, SJ.
3719 // So, 0 is compared against 1, 2, and 3; 1 is compared against 2 and 3, etc.
3721 // We begin by comparing 0 and 1. The intersection of the GroupLoops is empty.
3722 // Next, 0 and 2. Again, the intersection of their GroupLoops is empty.
3723 // Next 0 and 3. The intersection of their GroupLoop = {1}, not empty,
3724 // so Pair[3].Group = {0,3} and Done = false (that is, 0 will not be added
3725 // to either Separable or Coupled).
3727 // Next, we consider 1 and 2. The intersection of the GroupLoops is empty.
3728 // Next, 1 and 3. The intersection of their GroupLoops = {2}, not empty,
3729 // so Pair[3].Group = {0, 1, 3} and Done = false.
3731 // Next, we compare 2 against 3. The intersection of the GroupLoops is empty.
3732 // Since Done remains true, we add 2 to the set of Separable pairs.
3734 // Finally, we consider 3. There's nothing to compare it with,
3735 // so Done remains true and we add it to the Coupled set.
3736 // Pair[3].Group = {0, 1, 3} and GroupLoops = {1, 2, 5}.
3738 // In the end, we've got 1 separable subscript and 1 coupled group.
3739 for (unsigned SI = 0; SI < Pairs; ++SI) {
3740 if (Pair[SI].Classification == Subscript::NonLinear) {
3741 // ignore these, but collect loops for later
3742 ++NonlinearSubscriptPairs;
3743 collectCommonLoops(Pair[SI].Src,
3744 LI->getLoopFor(Src->getParent()),
3745 Pair[SI].Loops);
3746 collectCommonLoops(Pair[SI].Dst,
3747 LI->getLoopFor(Dst->getParent()),
3748 Pair[SI].Loops);
3749 Result.Consistent = false;
3750 } else if (Pair[SI].Classification == Subscript::ZIV) {
3751 // always separable
3752 Separable.set(SI);
3754 else {
3755 // SIV, RDIV, or MIV, so check for coupled group
3756 bool Done = true;
3757 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
3758 SmallBitVector Intersection = Pair[SI].GroupLoops;
3759 Intersection &= Pair[SJ].GroupLoops;
3760 if (Intersection.any()) {
3761 // accumulate set of all the loops in group
3762 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
3763 // accumulate set of all subscripts in group
3764 Pair[SJ].Group |= Pair[SI].Group;
3765 Done = false;
3768 if (Done) {
3769 if (Pair[SI].Group.count() == 1) {
3770 Separable.set(SI);
3771 ++SeparableSubscriptPairs;
3773 else {
3774 Coupled.set(SI);
3775 ++CoupledSubscriptPairs;
3781 LLVM_DEBUG(dbgs() << " Separable = ");
3782 LLVM_DEBUG(dumpSmallBitVector(Separable));
3783 LLVM_DEBUG(dbgs() << " Coupled = ");
3784 LLVM_DEBUG(dumpSmallBitVector(Coupled));
3786 Constraint NewConstraint;
3787 NewConstraint.setAny(SE);
3789 // test separable subscripts
3790 for (unsigned SI : Separable.set_bits()) {
3791 LLVM_DEBUG(dbgs() << "testing subscript " << SI);
3792 switch (Pair[SI].Classification) {
3793 case Subscript::ZIV:
3794 LLVM_DEBUG(dbgs() << ", ZIV\n");
3795 if (testZIV(Pair[SI].Src, Pair[SI].Dst, Result))
3796 return nullptr;
3797 break;
3798 case Subscript::SIV: {
3799 LLVM_DEBUG(dbgs() << ", SIV\n");
3800 unsigned Level;
3801 const SCEV *SplitIter = nullptr;
3802 if (testSIV(Pair[SI].Src, Pair[SI].Dst, Level, Result, NewConstraint,
3803 SplitIter))
3804 return nullptr;
3805 break;
3807 case Subscript::RDIV:
3808 LLVM_DEBUG(dbgs() << ", RDIV\n");
3809 if (testRDIV(Pair[SI].Src, Pair[SI].Dst, Result))
3810 return nullptr;
3811 break;
3812 case Subscript::MIV:
3813 LLVM_DEBUG(dbgs() << ", MIV\n");
3814 if (testMIV(Pair[SI].Src, Pair[SI].Dst, Pair[SI].Loops, Result))
3815 return nullptr;
3816 break;
3817 default:
3818 llvm_unreachable("subscript has unexpected classification");
3822 if (Coupled.count()) {
3823 // test coupled subscript groups
3824 LLVM_DEBUG(dbgs() << "starting on coupled subscripts\n");
3825 LLVM_DEBUG(dbgs() << "MaxLevels + 1 = " << MaxLevels + 1 << "\n");
3826 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
3827 for (unsigned II = 0; II <= MaxLevels; ++II)
3828 Constraints[II].setAny(SE);
3829 for (unsigned SI : Coupled.set_bits()) {
3830 LLVM_DEBUG(dbgs() << "testing subscript group " << SI << " { ");
3831 SmallBitVector Group(Pair[SI].Group);
3832 SmallBitVector Sivs(Pairs);
3833 SmallBitVector Mivs(Pairs);
3834 SmallBitVector ConstrainedLevels(MaxLevels + 1);
3835 SmallVector<Subscript *, 4> PairsInGroup;
3836 for (unsigned SJ : Group.set_bits()) {
3837 LLVM_DEBUG(dbgs() << SJ << " ");
3838 if (Pair[SJ].Classification == Subscript::SIV)
3839 Sivs.set(SJ);
3840 else
3841 Mivs.set(SJ);
3842 PairsInGroup.push_back(&Pair[SJ]);
3844 unifySubscriptType(PairsInGroup);
3845 LLVM_DEBUG(dbgs() << "}\n");
3846 while (Sivs.any()) {
3847 bool Changed = false;
3848 for (unsigned SJ : Sivs.set_bits()) {
3849 LLVM_DEBUG(dbgs() << "testing subscript " << SJ << ", SIV\n");
3850 // SJ is an SIV subscript that's part of the current coupled group
3851 unsigned Level;
3852 const SCEV *SplitIter = nullptr;
3853 LLVM_DEBUG(dbgs() << "SIV\n");
3854 if (testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level, Result, NewConstraint,
3855 SplitIter))
3856 return nullptr;
3857 ConstrainedLevels.set(Level);
3858 if (intersectConstraints(&Constraints[Level], &NewConstraint)) {
3859 if (Constraints[Level].isEmpty()) {
3860 ++DeltaIndependence;
3861 return nullptr;
3863 Changed = true;
3865 Sivs.reset(SJ);
3867 if (Changed) {
3868 // propagate, possibly creating new SIVs and ZIVs
3869 LLVM_DEBUG(dbgs() << " propagating\n");
3870 LLVM_DEBUG(dbgs() << "\tMivs = ");
3871 LLVM_DEBUG(dumpSmallBitVector(Mivs));
3872 for (unsigned SJ : Mivs.set_bits()) {
3873 // SJ is an MIV subscript that's part of the current coupled group
3874 LLVM_DEBUG(dbgs() << "\tSJ = " << SJ << "\n");
3875 if (propagate(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops,
3876 Constraints, Result.Consistent)) {
3877 LLVM_DEBUG(dbgs() << "\t Changed\n");
3878 ++DeltaPropagations;
3879 Pair[SJ].Classification =
3880 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
3881 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
3882 Pair[SJ].Loops);
3883 switch (Pair[SJ].Classification) {
3884 case Subscript::ZIV:
3885 LLVM_DEBUG(dbgs() << "ZIV\n");
3886 if (testZIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3887 return nullptr;
3888 Mivs.reset(SJ);
3889 break;
3890 case Subscript::SIV:
3891 Sivs.set(SJ);
3892 Mivs.reset(SJ);
3893 break;
3894 case Subscript::RDIV:
3895 case Subscript::MIV:
3896 break;
3897 default:
3898 llvm_unreachable("bad subscript classification");
3905 // test & propagate remaining RDIVs
3906 for (unsigned SJ : Mivs.set_bits()) {
3907 if (Pair[SJ].Classification == Subscript::RDIV) {
3908 LLVM_DEBUG(dbgs() << "RDIV test\n");
3909 if (testRDIV(Pair[SJ].Src, Pair[SJ].Dst, Result))
3910 return nullptr;
3911 // I don't yet understand how to propagate RDIV results
3912 Mivs.reset(SJ);
3916 // test remaining MIVs
3917 // This code is temporary.
3918 // Better to somehow test all remaining subscripts simultaneously.
3919 for (unsigned SJ : Mivs.set_bits()) {
3920 if (Pair[SJ].Classification == Subscript::MIV) {
3921 LLVM_DEBUG(dbgs() << "MIV test\n");
3922 if (testMIV(Pair[SJ].Src, Pair[SJ].Dst, Pair[SJ].Loops, Result))
3923 return nullptr;
3925 else
3926 llvm_unreachable("expected only MIV subscripts at this point");
3929 // update Result.DV from constraint vector
3930 LLVM_DEBUG(dbgs() << " updating\n");
3931 for (unsigned SJ : ConstrainedLevels.set_bits()) {
3932 if (SJ > CommonLevels)
3933 break;
3934 updateDirection(Result.DV[SJ - 1], Constraints[SJ]);
3935 if (Result.DV[SJ - 1].Direction == Dependence::DVEntry::NONE)
3936 return nullptr;
3941 // Make sure the Scalar flags are set correctly.
3942 SmallBitVector CompleteLoops(MaxLevels + 1);
3943 for (unsigned SI = 0; SI < Pairs; ++SI)
3944 CompleteLoops |= Pair[SI].Loops;
3945 for (unsigned II = 1; II <= CommonLevels; ++II)
3946 if (CompleteLoops[II])
3947 Result.DV[II - 1].Scalar = false;
3949 if (PossiblyLoopIndependent) {
3950 // Make sure the LoopIndependent flag is set correctly.
3951 // All directions must include equal, otherwise no
3952 // loop-independent dependence is possible.
3953 for (unsigned II = 1; II <= CommonLevels; ++II) {
3954 if (!(Result.getDirection(II) & Dependence::DVEntry::EQ)) {
3955 Result.LoopIndependent = false;
3956 break;
3960 else {
3961 // On the other hand, if all directions are equal and there's no
3962 // loop-independent dependence possible, then no dependence exists.
3963 bool AllEqual = true;
3964 for (unsigned II = 1; II <= CommonLevels; ++II) {
3965 if (Result.getDirection(II) != Dependence::DVEntry::EQ) {
3966 AllEqual = false;
3967 break;
3970 if (AllEqual)
3971 return nullptr;
3974 return std::make_unique<FullDependence>(std::move(Result));
3977 //===----------------------------------------------------------------------===//
3978 // getSplitIteration -
3979 // Rather than spend rarely-used space recording the splitting iteration
3980 // during the Weak-Crossing SIV test, we re-compute it on demand.
3981 // The re-computation is basically a repeat of the entire dependence test,
3982 // though simplified since we know that the dependence exists.
3983 // It's tedious, since we must go through all propagations, etc.
3985 // Care is required to keep this code up to date with respect to the routine
3986 // above, depends().
3988 // Generally, the dependence analyzer will be used to build
3989 // a dependence graph for a function (basically a map from instructions
3990 // to dependences). Looking for cycles in the graph shows us loops
3991 // that cannot be trivially vectorized/parallelized.
3993 // We can try to improve the situation by examining all the dependences
3994 // that make up the cycle, looking for ones we can break.
3995 // Sometimes, peeling the first or last iteration of a loop will break
3996 // dependences, and we've got flags for those possibilities.
3997 // Sometimes, splitting a loop at some other iteration will do the trick,
3998 // and we've got a flag for that case. Rather than waste the space to
3999 // record the exact iteration (since we rarely know), we provide
4000 // a method that calculates the iteration. It's a drag that it must work
4001 // from scratch, but wonderful in that it's possible.
4003 // Here's an example:
4005 // for (i = 0; i < 10; i++)
4006 // A[i] = ...
4007 // ... = A[11 - i]
4009 // There's a loop-carried flow dependence from the store to the load,
4010 // found by the weak-crossing SIV test. The dependence will have a flag,
4011 // indicating that the dependence can be broken by splitting the loop.
4012 // Calling getSplitIteration will return 5.
4013 // Splitting the loop breaks the dependence, like so:
4015 // for (i = 0; i <= 5; i++)
4016 // A[i] = ...
4017 // ... = A[11 - i]
4018 // for (i = 6; i < 10; i++)
4019 // A[i] = ...
4020 // ... = A[11 - i]
4022 // breaks the dependence and allows us to vectorize/parallelize
4023 // both loops.
4024 const SCEV *DependenceInfo::getSplitIteration(const Dependence &Dep,
4025 unsigned SplitLevel) {
4026 assert(Dep.isSplitable(SplitLevel) &&
4027 "Dep should be splitable at SplitLevel");
4028 Instruction *Src = Dep.getSrc();
4029 Instruction *Dst = Dep.getDst();
4030 assert(Src->mayReadFromMemory() || Src->mayWriteToMemory());
4031 assert(Dst->mayReadFromMemory() || Dst->mayWriteToMemory());
4032 assert(isLoadOrStore(Src));
4033 assert(isLoadOrStore(Dst));
4034 Value *SrcPtr = getLoadStorePointerOperand(Src);
4035 Value *DstPtr = getLoadStorePointerOperand(Dst);
4036 assert(underlyingObjectsAlias(
4037 AA, F->getParent()->getDataLayout(), MemoryLocation::get(Dst),
4038 MemoryLocation::get(Src)) == AliasResult::MustAlias);
4040 // establish loop nesting levels
4041 establishNestingLevels(Src, Dst);
4043 FullDependence Result(Src, Dst, false, CommonLevels);
4045 unsigned Pairs = 1;
4046 SmallVector<Subscript, 2> Pair(Pairs);
4047 const SCEV *SrcSCEV = SE->getSCEV(SrcPtr);
4048 const SCEV *DstSCEV = SE->getSCEV(DstPtr);
4049 Pair[0].Src = SrcSCEV;
4050 Pair[0].Dst = DstSCEV;
4052 if (Delinearize) {
4053 if (tryDelinearize(Src, Dst, Pair)) {
4054 LLVM_DEBUG(dbgs() << " delinearized\n");
4055 Pairs = Pair.size();
4059 for (unsigned P = 0; P < Pairs; ++P) {
4060 Pair[P].Loops.resize(MaxLevels + 1);
4061 Pair[P].GroupLoops.resize(MaxLevels + 1);
4062 Pair[P].Group.resize(Pairs);
4063 removeMatchingExtensions(&Pair[P]);
4064 Pair[P].Classification =
4065 classifyPair(Pair[P].Src, LI->getLoopFor(Src->getParent()),
4066 Pair[P].Dst, LI->getLoopFor(Dst->getParent()),
4067 Pair[P].Loops);
4068 Pair[P].GroupLoops = Pair[P].Loops;
4069 Pair[P].Group.set(P);
4072 SmallBitVector Separable(Pairs);
4073 SmallBitVector Coupled(Pairs);
4075 // partition subscripts into separable and minimally-coupled groups
4076 for (unsigned SI = 0; SI < Pairs; ++SI) {
4077 if (Pair[SI].Classification == Subscript::NonLinear) {
4078 // ignore these, but collect loops for later
4079 collectCommonLoops(Pair[SI].Src,
4080 LI->getLoopFor(Src->getParent()),
4081 Pair[SI].Loops);
4082 collectCommonLoops(Pair[SI].Dst,
4083 LI->getLoopFor(Dst->getParent()),
4084 Pair[SI].Loops);
4085 Result.Consistent = false;
4087 else if (Pair[SI].Classification == Subscript::ZIV)
4088 Separable.set(SI);
4089 else {
4090 // SIV, RDIV, or MIV, so check for coupled group
4091 bool Done = true;
4092 for (unsigned SJ = SI + 1; SJ < Pairs; ++SJ) {
4093 SmallBitVector Intersection = Pair[SI].GroupLoops;
4094 Intersection &= Pair[SJ].GroupLoops;
4095 if (Intersection.any()) {
4096 // accumulate set of all the loops in group
4097 Pair[SJ].GroupLoops |= Pair[SI].GroupLoops;
4098 // accumulate set of all subscripts in group
4099 Pair[SJ].Group |= Pair[SI].Group;
4100 Done = false;
4103 if (Done) {
4104 if (Pair[SI].Group.count() == 1)
4105 Separable.set(SI);
4106 else
4107 Coupled.set(SI);
4112 Constraint NewConstraint;
4113 NewConstraint.setAny(SE);
4115 // test separable subscripts
4116 for (unsigned SI : Separable.set_bits()) {
4117 switch (Pair[SI].Classification) {
4118 case Subscript::SIV: {
4119 unsigned Level;
4120 const SCEV *SplitIter = nullptr;
4121 (void) testSIV(Pair[SI].Src, Pair[SI].Dst, Level,
4122 Result, NewConstraint, SplitIter);
4123 if (Level == SplitLevel) {
4124 assert(SplitIter != nullptr);
4125 return SplitIter;
4127 break;
4129 case Subscript::ZIV:
4130 case Subscript::RDIV:
4131 case Subscript::MIV:
4132 break;
4133 default:
4134 llvm_unreachable("subscript has unexpected classification");
4138 if (Coupled.count()) {
4139 // test coupled subscript groups
4140 SmallVector<Constraint, 4> Constraints(MaxLevels + 1);
4141 for (unsigned II = 0; II <= MaxLevels; ++II)
4142 Constraints[II].setAny(SE);
4143 for (unsigned SI : Coupled.set_bits()) {
4144 SmallBitVector Group(Pair[SI].Group);
4145 SmallBitVector Sivs(Pairs);
4146 SmallBitVector Mivs(Pairs);
4147 SmallBitVector ConstrainedLevels(MaxLevels + 1);
4148 for (unsigned SJ : Group.set_bits()) {
4149 if (Pair[SJ].Classification == Subscript::SIV)
4150 Sivs.set(SJ);
4151 else
4152 Mivs.set(SJ);
4154 while (Sivs.any()) {
4155 bool Changed = false;
4156 for (unsigned SJ : Sivs.set_bits()) {
4157 // SJ is an SIV subscript that's part of the current coupled group
4158 unsigned Level;
4159 const SCEV *SplitIter = nullptr;
4160 (void) testSIV(Pair[SJ].Src, Pair[SJ].Dst, Level,
4161 Result, NewConstraint, SplitIter);
4162 if (Level == SplitLevel && SplitIter)
4163 return SplitIter;
4164 ConstrainedLevels.set(Level);
4165 if (intersectConstraints(&Constraints[Level], &NewConstraint))
4166 Changed = true;
4167 Sivs.reset(SJ);
4169 if (Changed) {
4170 // propagate, possibly creating new SIVs and ZIVs
4171 for (unsigned SJ : Mivs.set_bits()) {
4172 // SJ is an MIV subscript that's part of the current coupled group
4173 if (propagate(Pair[SJ].Src, Pair[SJ].Dst,
4174 Pair[SJ].Loops, Constraints, Result.Consistent)) {
4175 Pair[SJ].Classification =
4176 classifyPair(Pair[SJ].Src, LI->getLoopFor(Src->getParent()),
4177 Pair[SJ].Dst, LI->getLoopFor(Dst->getParent()),
4178 Pair[SJ].Loops);
4179 switch (Pair[SJ].Classification) {
4180 case Subscript::ZIV:
4181 Mivs.reset(SJ);
4182 break;
4183 case Subscript::SIV:
4184 Sivs.set(SJ);
4185 Mivs.reset(SJ);
4186 break;
4187 case Subscript::RDIV:
4188 case Subscript::MIV:
4189 break;
4190 default:
4191 llvm_unreachable("bad subscript classification");
4199 llvm_unreachable("somehow reached end of routine");
4200 return nullptr;