1 //===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements routines for folding instructions into simpler forms
10 // that do not require creating new instructions. This does constant folding
11 // ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
12 // returning a constant ("and i32 %x, 0" -> "0") or an already existing value
13 // ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
14 // simplified: This is usually true and assuming it simplifies the logic (if
15 // they have not been simplified then results are correct but maybe suboptimal).
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/CaptureTracking.h"
27 #include "llvm/Analysis/CmpInstAnalysis.h"
28 #include "llvm/Analysis/ConstantFolding.h"
29 #include "llvm/Analysis/InstSimplifyFolder.h"
30 #include "llvm/Analysis/LoopAnalysisManager.h"
31 #include "llvm/Analysis/MemoryBuiltins.h"
32 #include "llvm/Analysis/OverflowInstAnalysis.h"
33 #include "llvm/Analysis/ValueTracking.h"
34 #include "llvm/Analysis/VectorUtils.h"
35 #include "llvm/IR/ConstantRange.h"
36 #include "llvm/IR/DataLayout.h"
37 #include "llvm/IR/Dominators.h"
38 #include "llvm/IR/InstrTypes.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/PatternMatch.h"
42 #include "llvm/Support/KnownBits.h"
46 using namespace llvm::PatternMatch
;
48 #define DEBUG_TYPE "instsimplify"
50 enum { RecursionLimit
= 3 };
52 STATISTIC(NumExpand
, "Number of expansions");
53 STATISTIC(NumReassoc
, "Number of reassociations");
55 static Value
*simplifyAndInst(Value
*, Value
*, const SimplifyQuery
&,
57 static Value
*simplifyUnOp(unsigned, Value
*, const SimplifyQuery
&, unsigned);
58 static Value
*simplifyFPUnOp(unsigned, Value
*, const FastMathFlags
&,
59 const SimplifyQuery
&, unsigned);
60 static Value
*simplifyBinOp(unsigned, Value
*, Value
*, const SimplifyQuery
&,
62 static Value
*simplifyBinOp(unsigned, Value
*, Value
*, const FastMathFlags
&,
63 const SimplifyQuery
&, unsigned);
64 static Value
*simplifyCmpInst(unsigned, Value
*, Value
*, const SimplifyQuery
&,
66 static Value
*simplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
67 const SimplifyQuery
&Q
, unsigned MaxRecurse
);
68 static Value
*simplifyOrInst(Value
*, Value
*, const SimplifyQuery
&, unsigned);
69 static Value
*simplifyXorInst(Value
*, Value
*, const SimplifyQuery
&,
71 static Value
*simplifyCastInst(unsigned, Value
*, Type
*, const SimplifyQuery
&,
73 static Value
*simplifyGEPInst(Type
*, Value
*, ArrayRef
<Value
*>, bool,
74 const SimplifyQuery
&, unsigned);
75 static Value
*simplifySelectInst(Value
*, Value
*, Value
*,
76 const SimplifyQuery
&, unsigned);
77 static Value
*simplifyInstructionWithOperands(Instruction
*I
,
78 ArrayRef
<Value
*> NewOps
,
79 const SimplifyQuery
&SQ
,
82 static Value
*foldSelectWithBinaryOp(Value
*Cond
, Value
*TrueVal
,
84 BinaryOperator::BinaryOps BinOpCode
;
85 if (auto *BO
= dyn_cast
<BinaryOperator
>(Cond
))
86 BinOpCode
= BO
->getOpcode();
90 CmpInst::Predicate ExpectedPred
, Pred1
, Pred2
;
91 if (BinOpCode
== BinaryOperator::Or
) {
92 ExpectedPred
= ICmpInst::ICMP_NE
;
93 } else if (BinOpCode
== BinaryOperator::And
) {
94 ExpectedPred
= ICmpInst::ICMP_EQ
;
98 // %A = icmp eq %TV, %FV
99 // %B = icmp eq %X, %Y (and one of these is a select operand)
101 // %D = select %C, %TV, %FV
105 // %A = icmp ne %TV, %FV
106 // %B = icmp ne %X, %Y (and one of these is a select operand)
108 // %D = select %C, %TV, %FV
112 if (!match(Cond
, m_c_BinOp(m_c_ICmp(Pred1
, m_Specific(TrueVal
),
113 m_Specific(FalseVal
)),
114 m_ICmp(Pred2
, m_Value(X
), m_Value(Y
)))) ||
115 Pred1
!= Pred2
|| Pred1
!= ExpectedPred
)
118 if (X
== TrueVal
|| X
== FalseVal
|| Y
== TrueVal
|| Y
== FalseVal
)
119 return BinOpCode
== BinaryOperator::Or
? TrueVal
: FalseVal
;
124 /// For a boolean type or a vector of boolean type, return false or a vector
125 /// with every element false.
126 static Constant
*getFalse(Type
*Ty
) { return ConstantInt::getFalse(Ty
); }
128 /// For a boolean type or a vector of boolean type, return true or a vector
129 /// with every element true.
130 static Constant
*getTrue(Type
*Ty
) { return ConstantInt::getTrue(Ty
); }
132 /// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
133 static bool isSameCompare(Value
*V
, CmpInst::Predicate Pred
, Value
*LHS
,
135 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(V
);
138 CmpInst::Predicate CPred
= Cmp
->getPredicate();
139 Value
*CLHS
= Cmp
->getOperand(0), *CRHS
= Cmp
->getOperand(1);
140 if (CPred
== Pred
&& CLHS
== LHS
&& CRHS
== RHS
)
142 return CPred
== CmpInst::getSwappedPredicate(Pred
) && CLHS
== RHS
&&
146 /// Simplify comparison with true or false branch of select:
147 /// %sel = select i1 %cond, i32 %tv, i32 %fv
148 /// %cmp = icmp sle i32 %sel, %rhs
149 /// Compose new comparison by substituting %sel with either %tv or %fv
150 /// and see if it simplifies.
151 static Value
*simplifyCmpSelCase(CmpInst::Predicate Pred
, Value
*LHS
,
152 Value
*RHS
, Value
*Cond
,
153 const SimplifyQuery
&Q
, unsigned MaxRecurse
,
154 Constant
*TrueOrFalse
) {
155 Value
*SimplifiedCmp
= simplifyCmpInst(Pred
, LHS
, RHS
, Q
, MaxRecurse
);
156 if (SimplifiedCmp
== Cond
) {
157 // %cmp simplified to the select condition (%cond).
159 } else if (!SimplifiedCmp
&& isSameCompare(Cond
, Pred
, LHS
, RHS
)) {
160 // It didn't simplify. However, if composed comparison is equivalent
161 // to the select condition (%cond) then we can replace it.
164 return SimplifiedCmp
;
167 /// Simplify comparison with true branch of select
168 static Value
*simplifyCmpSelTrueCase(CmpInst::Predicate Pred
, Value
*LHS
,
169 Value
*RHS
, Value
*Cond
,
170 const SimplifyQuery
&Q
,
171 unsigned MaxRecurse
) {
172 return simplifyCmpSelCase(Pred
, LHS
, RHS
, Cond
, Q
, MaxRecurse
,
173 getTrue(Cond
->getType()));
176 /// Simplify comparison with false branch of select
177 static Value
*simplifyCmpSelFalseCase(CmpInst::Predicate Pred
, Value
*LHS
,
178 Value
*RHS
, Value
*Cond
,
179 const SimplifyQuery
&Q
,
180 unsigned MaxRecurse
) {
181 return simplifyCmpSelCase(Pred
, LHS
, RHS
, Cond
, Q
, MaxRecurse
,
182 getFalse(Cond
->getType()));
185 /// We know comparison with both branches of select can be simplified, but they
186 /// are not equal. This routine handles some logical simplifications.
187 static Value
*handleOtherCmpSelSimplifications(Value
*TCmp
, Value
*FCmp
,
189 const SimplifyQuery
&Q
,
190 unsigned MaxRecurse
) {
191 // If the false value simplified to false, then the result of the compare
192 // is equal to "Cond && TCmp". This also catches the case when the false
193 // value simplified to false and the true value to true, returning "Cond".
194 // Folding select to and/or isn't poison-safe in general; impliesPoison
195 // checks whether folding it does not convert a well-defined value into
197 if (match(FCmp
, m_Zero()) && impliesPoison(TCmp
, Cond
))
198 if (Value
*V
= simplifyAndInst(Cond
, TCmp
, Q
, MaxRecurse
))
200 // If the true value simplified to true, then the result of the compare
201 // is equal to "Cond || FCmp".
202 if (match(TCmp
, m_One()) && impliesPoison(FCmp
, Cond
))
203 if (Value
*V
= simplifyOrInst(Cond
, FCmp
, Q
, MaxRecurse
))
205 // Finally, if the false value simplified to true and the true value to
206 // false, then the result of the compare is equal to "!Cond".
207 if (match(FCmp
, m_One()) && match(TCmp
, m_Zero()))
208 if (Value
*V
= simplifyXorInst(
209 Cond
, Constant::getAllOnesValue(Cond
->getType()), Q
, MaxRecurse
))
214 /// Does the given value dominate the specified phi node?
215 static bool valueDominatesPHI(Value
*V
, PHINode
*P
, const DominatorTree
*DT
) {
216 Instruction
*I
= dyn_cast
<Instruction
>(V
);
218 // Arguments and constants dominate all instructions.
221 // If we have a DominatorTree then do a precise test.
223 return DT
->dominates(I
, P
);
225 // Otherwise, if the instruction is in the entry block and is not an invoke,
226 // then it obviously dominates all phi nodes.
227 if (I
->getParent()->isEntryBlock() && !isa
<InvokeInst
>(I
) &&
234 /// Try to simplify a binary operator of form "V op OtherOp" where V is
235 /// "(B0 opex B1)" by distributing 'op' across 'opex' as
236 /// "(B0 op OtherOp) opex (B1 op OtherOp)".
237 static Value
*expandBinOp(Instruction::BinaryOps Opcode
, Value
*V
,
238 Value
*OtherOp
, Instruction::BinaryOps OpcodeToExpand
,
239 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
240 auto *B
= dyn_cast
<BinaryOperator
>(V
);
241 if (!B
|| B
->getOpcode() != OpcodeToExpand
)
243 Value
*B0
= B
->getOperand(0), *B1
= B
->getOperand(1);
245 simplifyBinOp(Opcode
, B0
, OtherOp
, Q
.getWithoutUndef(), MaxRecurse
);
249 simplifyBinOp(Opcode
, B1
, OtherOp
, Q
.getWithoutUndef(), MaxRecurse
);
253 // Does the expanded pair of binops simplify to the existing binop?
254 if ((L
== B0
&& R
== B1
) ||
255 (Instruction::isCommutative(OpcodeToExpand
) && L
== B1
&& R
== B0
)) {
260 // Otherwise, return "L op' R" if it simplifies.
261 Value
*S
= simplifyBinOp(OpcodeToExpand
, L
, R
, Q
, MaxRecurse
);
269 /// Try to simplify binops of form "A op (B op' C)" or the commuted variant by
270 /// distributing op over op'.
271 static Value
*expandCommutativeBinOp(Instruction::BinaryOps Opcode
, Value
*L
,
273 Instruction::BinaryOps OpcodeToExpand
,
274 const SimplifyQuery
&Q
,
275 unsigned MaxRecurse
) {
276 // Recursion is always used, so bail out at once if we already hit the limit.
280 if (Value
*V
= expandBinOp(Opcode
, L
, R
, OpcodeToExpand
, Q
, MaxRecurse
))
282 if (Value
*V
= expandBinOp(Opcode
, R
, L
, OpcodeToExpand
, Q
, MaxRecurse
))
287 /// Generic simplifications for associative binary operations.
288 /// Returns the simpler value, or null if none was found.
289 static Value
*simplifyAssociativeBinOp(Instruction::BinaryOps Opcode
,
290 Value
*LHS
, Value
*RHS
,
291 const SimplifyQuery
&Q
,
292 unsigned MaxRecurse
) {
293 assert(Instruction::isAssociative(Opcode
) && "Not an associative operation!");
295 // Recursion is always used, so bail out at once if we already hit the limit.
299 BinaryOperator
*Op0
= dyn_cast
<BinaryOperator
>(LHS
);
300 BinaryOperator
*Op1
= dyn_cast
<BinaryOperator
>(RHS
);
302 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
303 if (Op0
&& Op0
->getOpcode() == Opcode
) {
304 Value
*A
= Op0
->getOperand(0);
305 Value
*B
= Op0
->getOperand(1);
308 // Does "B op C" simplify?
309 if (Value
*V
= simplifyBinOp(Opcode
, B
, C
, Q
, MaxRecurse
)) {
310 // It does! Return "A op V" if it simplifies or is already available.
311 // If V equals B then "A op V" is just the LHS.
314 // Otherwise return "A op V" if it simplifies.
315 if (Value
*W
= simplifyBinOp(Opcode
, A
, V
, Q
, MaxRecurse
)) {
322 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
323 if (Op1
&& Op1
->getOpcode() == Opcode
) {
325 Value
*B
= Op1
->getOperand(0);
326 Value
*C
= Op1
->getOperand(1);
328 // Does "A op B" simplify?
329 if (Value
*V
= simplifyBinOp(Opcode
, A
, B
, Q
, MaxRecurse
)) {
330 // It does! Return "V op C" if it simplifies or is already available.
331 // If V equals B then "V op C" is just the RHS.
334 // Otherwise return "V op C" if it simplifies.
335 if (Value
*W
= simplifyBinOp(Opcode
, V
, C
, Q
, MaxRecurse
)) {
342 // The remaining transforms require commutativity as well as associativity.
343 if (!Instruction::isCommutative(Opcode
))
346 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
347 if (Op0
&& Op0
->getOpcode() == Opcode
) {
348 Value
*A
= Op0
->getOperand(0);
349 Value
*B
= Op0
->getOperand(1);
352 // Does "C op A" simplify?
353 if (Value
*V
= simplifyBinOp(Opcode
, C
, A
, Q
, MaxRecurse
)) {
354 // It does! Return "V op B" if it simplifies or is already available.
355 // If V equals A then "V op B" is just the LHS.
358 // Otherwise return "V op B" if it simplifies.
359 if (Value
*W
= simplifyBinOp(Opcode
, V
, B
, Q
, MaxRecurse
)) {
366 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
367 if (Op1
&& Op1
->getOpcode() == Opcode
) {
369 Value
*B
= Op1
->getOperand(0);
370 Value
*C
= Op1
->getOperand(1);
372 // Does "C op A" simplify?
373 if (Value
*V
= simplifyBinOp(Opcode
, C
, A
, Q
, MaxRecurse
)) {
374 // It does! Return "B op V" if it simplifies or is already available.
375 // If V equals C then "B op V" is just the RHS.
378 // Otherwise return "B op V" if it simplifies.
379 if (Value
*W
= simplifyBinOp(Opcode
, B
, V
, Q
, MaxRecurse
)) {
389 /// In the case of a binary operation with a select instruction as an operand,
390 /// try to simplify the binop by seeing whether evaluating it on both branches
391 /// of the select results in the same value. Returns the common value if so,
392 /// otherwise returns null.
393 static Value
*threadBinOpOverSelect(Instruction::BinaryOps Opcode
, Value
*LHS
,
394 Value
*RHS
, const SimplifyQuery
&Q
,
395 unsigned MaxRecurse
) {
396 // Recursion is always used, so bail out at once if we already hit the limit.
401 if (isa
<SelectInst
>(LHS
)) {
402 SI
= cast
<SelectInst
>(LHS
);
404 assert(isa
<SelectInst
>(RHS
) && "No select instruction operand!");
405 SI
= cast
<SelectInst
>(RHS
);
408 // Evaluate the BinOp on the true and false branches of the select.
412 TV
= simplifyBinOp(Opcode
, SI
->getTrueValue(), RHS
, Q
, MaxRecurse
);
413 FV
= simplifyBinOp(Opcode
, SI
->getFalseValue(), RHS
, Q
, MaxRecurse
);
415 TV
= simplifyBinOp(Opcode
, LHS
, SI
->getTrueValue(), Q
, MaxRecurse
);
416 FV
= simplifyBinOp(Opcode
, LHS
, SI
->getFalseValue(), Q
, MaxRecurse
);
419 // If they simplified to the same value, then return the common value.
420 // If they both failed to simplify then return null.
424 // If one branch simplified to undef, return the other one.
425 if (TV
&& Q
.isUndefValue(TV
))
427 if (FV
&& Q
.isUndefValue(FV
))
430 // If applying the operation did not change the true and false select values,
431 // then the result of the binop is the select itself.
432 if (TV
== SI
->getTrueValue() && FV
== SI
->getFalseValue())
435 // If one branch simplified and the other did not, and the simplified
436 // value is equal to the unsimplified one, return the simplified value.
437 // For example, select (cond, X, X & Z) & Z -> X & Z.
438 if ((FV
&& !TV
) || (TV
&& !FV
)) {
439 // Check that the simplified value has the form "X op Y" where "op" is the
440 // same as the original operation.
441 Instruction
*Simplified
= dyn_cast
<Instruction
>(FV
? FV
: TV
);
442 if (Simplified
&& Simplified
->getOpcode() == unsigned(Opcode
)) {
443 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
444 // We already know that "op" is the same as for the simplified value. See
445 // if the operands match too. If so, return the simplified value.
446 Value
*UnsimplifiedBranch
= FV
? SI
->getTrueValue() : SI
->getFalseValue();
447 Value
*UnsimplifiedLHS
= SI
== LHS
? UnsimplifiedBranch
: LHS
;
448 Value
*UnsimplifiedRHS
= SI
== LHS
? RHS
: UnsimplifiedBranch
;
449 if (Simplified
->getOperand(0) == UnsimplifiedLHS
&&
450 Simplified
->getOperand(1) == UnsimplifiedRHS
)
452 if (Simplified
->isCommutative() &&
453 Simplified
->getOperand(1) == UnsimplifiedLHS
&&
454 Simplified
->getOperand(0) == UnsimplifiedRHS
)
462 /// In the case of a comparison with a select instruction, try to simplify the
463 /// comparison by seeing whether both branches of the select result in the same
464 /// value. Returns the common value if so, otherwise returns null.
465 /// For example, if we have:
466 /// %tmp = select i1 %cmp, i32 1, i32 2
467 /// %cmp1 = icmp sle i32 %tmp, 3
468 /// We can simplify %cmp1 to true, because both branches of select are
469 /// less than 3. We compose new comparison by substituting %tmp with both
470 /// branches of select and see if it can be simplified.
471 static Value
*threadCmpOverSelect(CmpInst::Predicate Pred
, Value
*LHS
,
472 Value
*RHS
, const SimplifyQuery
&Q
,
473 unsigned MaxRecurse
) {
474 // Recursion is always used, so bail out at once if we already hit the limit.
478 // Make sure the select is on the LHS.
479 if (!isa
<SelectInst
>(LHS
)) {
481 Pred
= CmpInst::getSwappedPredicate(Pred
);
483 assert(isa
<SelectInst
>(LHS
) && "Not comparing with a select instruction!");
484 SelectInst
*SI
= cast
<SelectInst
>(LHS
);
485 Value
*Cond
= SI
->getCondition();
486 Value
*TV
= SI
->getTrueValue();
487 Value
*FV
= SI
->getFalseValue();
489 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
490 // Does "cmp TV, RHS" simplify?
491 Value
*TCmp
= simplifyCmpSelTrueCase(Pred
, TV
, RHS
, Cond
, Q
, MaxRecurse
);
495 // Does "cmp FV, RHS" simplify?
496 Value
*FCmp
= simplifyCmpSelFalseCase(Pred
, FV
, RHS
, Cond
, Q
, MaxRecurse
);
500 // If both sides simplified to the same value, then use it as the result of
501 // the original comparison.
505 // The remaining cases only make sense if the select condition has the same
506 // type as the result of the comparison, so bail out if this is not so.
507 if (Cond
->getType()->isVectorTy() == RHS
->getType()->isVectorTy())
508 return handleOtherCmpSelSimplifications(TCmp
, FCmp
, Cond
, Q
, MaxRecurse
);
513 /// In the case of a binary operation with an operand that is a PHI instruction,
514 /// try to simplify the binop by seeing whether evaluating it on the incoming
515 /// phi values yields the same result for every value. If so returns the common
516 /// value, otherwise returns null.
517 static Value
*threadBinOpOverPHI(Instruction::BinaryOps Opcode
, Value
*LHS
,
518 Value
*RHS
, const SimplifyQuery
&Q
,
519 unsigned MaxRecurse
) {
520 // Recursion is always used, so bail out at once if we already hit the limit.
525 if (isa
<PHINode
>(LHS
)) {
526 PI
= cast
<PHINode
>(LHS
);
527 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
528 if (!valueDominatesPHI(RHS
, PI
, Q
.DT
))
531 assert(isa
<PHINode
>(RHS
) && "No PHI instruction operand!");
532 PI
= cast
<PHINode
>(RHS
);
533 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
534 if (!valueDominatesPHI(LHS
, PI
, Q
.DT
))
538 // Evaluate the BinOp on the incoming phi values.
539 Value
*CommonValue
= nullptr;
540 for (Use
&Incoming
: PI
->incoming_values()) {
541 // If the incoming value is the phi node itself, it can safely be skipped.
544 Instruction
*InTI
= PI
->getIncomingBlock(Incoming
)->getTerminator();
546 ? simplifyBinOp(Opcode
, Incoming
, RHS
,
547 Q
.getWithInstruction(InTI
), MaxRecurse
)
548 : simplifyBinOp(Opcode
, LHS
, Incoming
,
549 Q
.getWithInstruction(InTI
), MaxRecurse
);
550 // If the operation failed to simplify, or simplified to a different value
551 // to previously, then give up.
552 if (!V
|| (CommonValue
&& V
!= CommonValue
))
560 /// In the case of a comparison with a PHI instruction, try to simplify the
561 /// comparison by seeing whether comparing with all of the incoming phi values
562 /// yields the same result every time. If so returns the common result,
563 /// otherwise returns null.
564 static Value
*threadCmpOverPHI(CmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
,
565 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
566 // Recursion is always used, so bail out at once if we already hit the limit.
570 // Make sure the phi is on the LHS.
571 if (!isa
<PHINode
>(LHS
)) {
573 Pred
= CmpInst::getSwappedPredicate(Pred
);
575 assert(isa
<PHINode
>(LHS
) && "Not comparing with a phi instruction!");
576 PHINode
*PI
= cast
<PHINode
>(LHS
);
578 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
579 if (!valueDominatesPHI(RHS
, PI
, Q
.DT
))
582 // Evaluate the BinOp on the incoming phi values.
583 Value
*CommonValue
= nullptr;
584 for (unsigned u
= 0, e
= PI
->getNumIncomingValues(); u
< e
; ++u
) {
585 Value
*Incoming
= PI
->getIncomingValue(u
);
586 Instruction
*InTI
= PI
->getIncomingBlock(u
)->getTerminator();
587 // If the incoming value is the phi node itself, it can safely be skipped.
590 // Change the context instruction to the "edge" that flows into the phi.
591 // This is important because that is where incoming is actually "evaluated"
592 // even though it is used later somewhere else.
593 Value
*V
= simplifyCmpInst(Pred
, Incoming
, RHS
, Q
.getWithInstruction(InTI
),
595 // If the operation failed to simplify, or simplified to a different value
596 // to previously, then give up.
597 if (!V
|| (CommonValue
&& V
!= CommonValue
))
605 static Constant
*foldOrCommuteConstant(Instruction::BinaryOps Opcode
,
606 Value
*&Op0
, Value
*&Op1
,
607 const SimplifyQuery
&Q
) {
608 if (auto *CLHS
= dyn_cast
<Constant
>(Op0
)) {
609 if (auto *CRHS
= dyn_cast
<Constant
>(Op1
)) {
613 case Instruction::FAdd
:
614 case Instruction::FSub
:
615 case Instruction::FMul
:
616 case Instruction::FDiv
:
617 case Instruction::FRem
:
618 if (Q
.CxtI
!= nullptr)
619 return ConstantFoldFPInstOperands(Opcode
, CLHS
, CRHS
, Q
.DL
, Q
.CxtI
);
621 return ConstantFoldBinaryOpOperands(Opcode
, CLHS
, CRHS
, Q
.DL
);
624 // Canonicalize the constant to the RHS if this is a commutative operation.
625 if (Instruction::isCommutative(Opcode
))
631 /// Given operands for an Add, see if we can fold the result.
632 /// If not, this returns null.
633 static Value
*simplifyAddInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
634 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
635 if (Constant
*C
= foldOrCommuteConstant(Instruction::Add
, Op0
, Op1
, Q
))
638 // X + poison -> poison
639 if (isa
<PoisonValue
>(Op1
))
642 // X + undef -> undef
643 if (Q
.isUndefValue(Op1
))
647 if (match(Op1
, m_Zero()))
650 // If two operands are negative, return 0.
651 if (isKnownNegation(Op0
, Op1
))
652 return Constant::getNullValue(Op0
->getType());
658 if (match(Op1
, m_Sub(m_Value(Y
), m_Specific(Op0
))) ||
659 match(Op0
, m_Sub(m_Value(Y
), m_Specific(Op1
))))
662 // X + ~X -> -1 since ~X = -X-1
663 Type
*Ty
= Op0
->getType();
664 if (match(Op0
, m_Not(m_Specific(Op1
))) || match(Op1
, m_Not(m_Specific(Op0
))))
665 return Constant::getAllOnesValue(Ty
);
667 // add nsw/nuw (xor Y, signmask), signmask --> Y
668 // The no-wrapping add guarantees that the top bit will be set by the add.
669 // Therefore, the xor must be clearing the already set sign bit of Y.
670 if ((IsNSW
|| IsNUW
) && match(Op1
, m_SignMask()) &&
671 match(Op0
, m_Xor(m_Value(Y
), m_SignMask())))
674 // add nuw %x, -1 -> -1, because %x can only be 0.
675 if (IsNUW
&& match(Op1
, m_AllOnes()))
676 return Op1
; // Which is -1.
679 if (MaxRecurse
&& Op0
->getType()->isIntOrIntVectorTy(1))
680 if (Value
*V
= simplifyXorInst(Op0
, Op1
, Q
, MaxRecurse
- 1))
683 // Try some generic simplifications for associative operations.
685 simplifyAssociativeBinOp(Instruction::Add
, Op0
, Op1
, Q
, MaxRecurse
))
688 // Threading Add over selects and phi nodes is pointless, so don't bother.
689 // Threading over the select in "A + select(cond, B, C)" means evaluating
690 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
691 // only if B and C are equal. If B and C are equal then (since we assume
692 // that operands have already been simplified) "select(cond, B, C)" should
693 // have been simplified to the common value of B and C already. Analysing
694 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
695 // for threading over phi nodes.
700 Value
*llvm::simplifyAddInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
701 const SimplifyQuery
&Query
) {
702 return ::simplifyAddInst(Op0
, Op1
, IsNSW
, IsNUW
, Query
, RecursionLimit
);
705 /// Compute the base pointer and cumulative constant offsets for V.
707 /// This strips all constant offsets off of V, leaving it the base pointer, and
708 /// accumulates the total constant offset applied in the returned constant.
709 /// It returns zero if there are no constant offsets applied.
711 /// This is very similar to stripAndAccumulateConstantOffsets(), except it
712 /// normalizes the offset bitwidth to the stripped pointer type, not the
713 /// original pointer type.
714 static APInt
stripAndComputeConstantOffsets(const DataLayout
&DL
, Value
*&V
,
715 bool AllowNonInbounds
= false) {
716 assert(V
->getType()->isPtrOrPtrVectorTy());
718 APInt Offset
= APInt::getZero(DL
.getIndexTypeSizeInBits(V
->getType()));
719 V
= V
->stripAndAccumulateConstantOffsets(DL
, Offset
, AllowNonInbounds
);
720 // As that strip may trace through `addrspacecast`, need to sext or trunc
721 // the offset calculated.
722 return Offset
.sextOrTrunc(DL
.getIndexTypeSizeInBits(V
->getType()));
725 /// Compute the constant difference between two pointer values.
726 /// If the difference is not a constant, returns zero.
727 static Constant
*computePointerDifference(const DataLayout
&DL
, Value
*LHS
,
729 APInt LHSOffset
= stripAndComputeConstantOffsets(DL
, LHS
);
730 APInt RHSOffset
= stripAndComputeConstantOffsets(DL
, RHS
);
732 // If LHS and RHS are not related via constant offsets to the same base
733 // value, there is nothing we can do here.
737 // Otherwise, the difference of LHS - RHS can be computed as:
739 // = (LHSOffset + Base) - (RHSOffset + Base)
740 // = LHSOffset - RHSOffset
741 Constant
*Res
= ConstantInt::get(LHS
->getContext(), LHSOffset
- RHSOffset
);
742 if (auto *VecTy
= dyn_cast
<VectorType
>(LHS
->getType()))
743 Res
= ConstantVector::getSplat(VecTy
->getElementCount(), Res
);
747 /// Test if there is a dominating equivalence condition for the
748 /// two operands. If there is, try to reduce the binary operation
749 /// between the two operands.
750 /// Example: Op0 - Op1 --> 0 when Op0 == Op1
751 static Value
*simplifyByDomEq(unsigned Opcode
, Value
*Op0
, Value
*Op1
,
752 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
753 // Recursive run it can not get any benefit
754 if (MaxRecurse
!= RecursionLimit
)
757 std::optional
<bool> Imp
=
758 isImpliedByDomCondition(CmpInst::ICMP_EQ
, Op0
, Op1
, Q
.CxtI
, Q
.DL
);
760 Type
*Ty
= Op0
->getType();
762 case Instruction::Sub
:
763 case Instruction::Xor
:
764 case Instruction::URem
:
765 case Instruction::SRem
:
766 return Constant::getNullValue(Ty
);
768 case Instruction::SDiv
:
769 case Instruction::UDiv
:
770 return ConstantInt::get(Ty
, 1);
772 case Instruction::And
:
773 case Instruction::Or
:
774 // Could be either one - choose Op1 since that's more likely a constant.
783 /// Given operands for a Sub, see if we can fold the result.
784 /// If not, this returns null.
785 static Value
*simplifySubInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
786 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
787 if (Constant
*C
= foldOrCommuteConstant(Instruction::Sub
, Op0
, Op1
, Q
))
790 // X - poison -> poison
791 // poison - X -> poison
792 if (isa
<PoisonValue
>(Op0
) || isa
<PoisonValue
>(Op1
))
793 return PoisonValue::get(Op0
->getType());
795 // X - undef -> undef
796 // undef - X -> undef
797 if (Q
.isUndefValue(Op0
) || Q
.isUndefValue(Op1
))
798 return UndefValue::get(Op0
->getType());
801 if (match(Op1
, m_Zero()))
806 return Constant::getNullValue(Op0
->getType());
808 // Is this a negation?
809 if (match(Op0
, m_Zero())) {
810 // 0 - X -> 0 if the sub is NUW.
812 return Constant::getNullValue(Op0
->getType());
814 KnownBits Known
= computeKnownBits(Op1
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
815 if (Known
.Zero
.isMaxSignedValue()) {
816 // Op1 is either 0 or the minimum signed value. If the sub is NSW, then
817 // Op1 must be 0 because negating the minimum signed value is undefined.
819 return Constant::getNullValue(Op0
->getType());
821 // 0 - X -> X if X is 0 or the minimum signed value.
826 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
827 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
828 Value
*X
= nullptr, *Y
= nullptr, *Z
= Op1
;
829 if (MaxRecurse
&& match(Op0
, m_Add(m_Value(X
), m_Value(Y
)))) { // (X + Y) - Z
830 // See if "V === Y - Z" simplifies.
831 if (Value
*V
= simplifyBinOp(Instruction::Sub
, Y
, Z
, Q
, MaxRecurse
- 1))
832 // It does! Now see if "X + V" simplifies.
833 if (Value
*W
= simplifyBinOp(Instruction::Add
, X
, V
, Q
, MaxRecurse
- 1)) {
834 // It does, we successfully reassociated!
838 // See if "V === X - Z" simplifies.
839 if (Value
*V
= simplifyBinOp(Instruction::Sub
, X
, Z
, Q
, MaxRecurse
- 1))
840 // It does! Now see if "Y + V" simplifies.
841 if (Value
*W
= simplifyBinOp(Instruction::Add
, Y
, V
, Q
, MaxRecurse
- 1)) {
842 // It does, we successfully reassociated!
848 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
849 // For example, X - (X + 1) -> -1
851 if (MaxRecurse
&& match(Op1
, m_Add(m_Value(Y
), m_Value(Z
)))) { // X - (Y + Z)
852 // See if "V === X - Y" simplifies.
853 if (Value
*V
= simplifyBinOp(Instruction::Sub
, X
, Y
, Q
, MaxRecurse
- 1))
854 // It does! Now see if "V - Z" simplifies.
855 if (Value
*W
= simplifyBinOp(Instruction::Sub
, V
, Z
, Q
, MaxRecurse
- 1)) {
856 // It does, we successfully reassociated!
860 // See if "V === X - Z" simplifies.
861 if (Value
*V
= simplifyBinOp(Instruction::Sub
, X
, Z
, Q
, MaxRecurse
- 1))
862 // It does! Now see if "V - Y" simplifies.
863 if (Value
*W
= simplifyBinOp(Instruction::Sub
, V
, Y
, Q
, MaxRecurse
- 1)) {
864 // It does, we successfully reassociated!
870 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
871 // For example, X - (X - Y) -> Y.
873 if (MaxRecurse
&& match(Op1
, m_Sub(m_Value(X
), m_Value(Y
)))) // Z - (X - Y)
874 // See if "V === Z - X" simplifies.
875 if (Value
*V
= simplifyBinOp(Instruction::Sub
, Z
, X
, Q
, MaxRecurse
- 1))
876 // It does! Now see if "V + Y" simplifies.
877 if (Value
*W
= simplifyBinOp(Instruction::Add
, V
, Y
, Q
, MaxRecurse
- 1)) {
878 // It does, we successfully reassociated!
883 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
884 if (MaxRecurse
&& match(Op0
, m_Trunc(m_Value(X
))) &&
885 match(Op1
, m_Trunc(m_Value(Y
))))
886 if (X
->getType() == Y
->getType())
887 // See if "V === X - Y" simplifies.
888 if (Value
*V
= simplifyBinOp(Instruction::Sub
, X
, Y
, Q
, MaxRecurse
- 1))
889 // It does! Now see if "trunc V" simplifies.
890 if (Value
*W
= simplifyCastInst(Instruction::Trunc
, V
, Op0
->getType(),
892 // It does, return the simplified "trunc V".
895 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
896 if (match(Op0
, m_PtrToInt(m_Value(X
))) && match(Op1
, m_PtrToInt(m_Value(Y
))))
897 if (Constant
*Result
= computePointerDifference(Q
.DL
, X
, Y
))
898 return ConstantFoldIntegerCast(Result
, Op0
->getType(), /*IsSigned*/ true,
902 if (MaxRecurse
&& Op0
->getType()->isIntOrIntVectorTy(1))
903 if (Value
*V
= simplifyXorInst(Op0
, Op1
, Q
, MaxRecurse
- 1))
906 // Threading Sub over selects and phi nodes is pointless, so don't bother.
907 // Threading over the select in "A - select(cond, B, C)" means evaluating
908 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
909 // only if B and C are equal. If B and C are equal then (since we assume
910 // that operands have already been simplified) "select(cond, B, C)" should
911 // have been simplified to the common value of B and C already. Analysing
912 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
913 // for threading over phi nodes.
915 if (Value
*V
= simplifyByDomEq(Instruction::Sub
, Op0
, Op1
, Q
, MaxRecurse
))
921 Value
*llvm::simplifySubInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
922 const SimplifyQuery
&Q
) {
923 return ::simplifySubInst(Op0
, Op1
, IsNSW
, IsNUW
, Q
, RecursionLimit
);
926 /// Given operands for a Mul, see if we can fold the result.
927 /// If not, this returns null.
928 static Value
*simplifyMulInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
929 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
930 if (Constant
*C
= foldOrCommuteConstant(Instruction::Mul
, Op0
, Op1
, Q
))
933 // X * poison -> poison
934 if (isa
<PoisonValue
>(Op1
))
939 if (Q
.isUndefValue(Op1
) || match(Op1
, m_Zero()))
940 return Constant::getNullValue(Op0
->getType());
943 if (match(Op1
, m_One()))
946 // (X / Y) * Y -> X if the division is exact.
948 if (Q
.IIQ
.UseInstrInfo
&&
950 m_Exact(m_IDiv(m_Value(X
), m_Specific(Op1
)))) || // (X / Y) * Y
951 match(Op1
, m_Exact(m_IDiv(m_Value(X
), m_Specific(Op0
)))))) // Y * (X / Y)
954 if (Op0
->getType()->isIntOrIntVectorTy(1)) {
955 // mul i1 nsw is a special-case because -1 * -1 is poison (+1 is not
956 // representable). All other cases reduce to 0, so just return 0.
958 return ConstantInt::getNullValue(Op0
->getType());
960 // Treat "mul i1" as "and i1".
962 if (Value
*V
= simplifyAndInst(Op0
, Op1
, Q
, MaxRecurse
- 1))
966 // Try some generic simplifications for associative operations.
968 simplifyAssociativeBinOp(Instruction::Mul
, Op0
, Op1
, Q
, MaxRecurse
))
971 // Mul distributes over Add. Try some generic simplifications based on this.
972 if (Value
*V
= expandCommutativeBinOp(Instruction::Mul
, Op0
, Op1
,
973 Instruction::Add
, Q
, MaxRecurse
))
976 // If the operation is with the result of a select instruction, check whether
977 // operating on either branch of the select always yields the same value.
978 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
980 threadBinOpOverSelect(Instruction::Mul
, Op0
, Op1
, Q
, MaxRecurse
))
983 // If the operation is with the result of a phi instruction, check whether
984 // operating on all incoming values of the phi always yields the same value.
985 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
987 threadBinOpOverPHI(Instruction::Mul
, Op0
, Op1
, Q
, MaxRecurse
))
993 Value
*llvm::simplifyMulInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
994 const SimplifyQuery
&Q
) {
995 return ::simplifyMulInst(Op0
, Op1
, IsNSW
, IsNUW
, Q
, RecursionLimit
);
998 /// Given a predicate and two operands, return true if the comparison is true.
999 /// This is a helper for div/rem simplification where we return some other value
1000 /// when we can prove a relationship between the operands.
1001 static bool isICmpTrue(ICmpInst::Predicate Pred
, Value
*LHS
, Value
*RHS
,
1002 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1003 Value
*V
= simplifyICmpInst(Pred
, LHS
, RHS
, Q
, MaxRecurse
);
1004 Constant
*C
= dyn_cast_or_null
<Constant
>(V
);
1005 return (C
&& C
->isAllOnesValue());
1008 /// Return true if we can simplify X / Y to 0. Remainder can adapt that answer
1009 /// to simplify X % Y to X.
1010 static bool isDivZero(Value
*X
, Value
*Y
, const SimplifyQuery
&Q
,
1011 unsigned MaxRecurse
, bool IsSigned
) {
1012 // Recursion is always used, so bail out at once if we already hit the limit.
1017 // (X srem Y) sdiv Y --> 0
1018 if (match(X
, m_SRem(m_Value(), m_Specific(Y
))))
1023 // We require that 1 operand is a simple constant. That could be extended to
1024 // 2 variables if we computed the sign bit for each.
1026 // Make sure that a constant is not the minimum signed value because taking
1027 // the abs() of that is undefined.
1028 Type
*Ty
= X
->getType();
1030 if (match(X
, m_APInt(C
)) && !C
->isMinSignedValue()) {
1031 // Is the variable divisor magnitude always greater than the constant
1032 // dividend magnitude?
1033 // |Y| > |C| --> Y < -abs(C) or Y > abs(C)
1034 Constant
*PosDividendC
= ConstantInt::get(Ty
, C
->abs());
1035 Constant
*NegDividendC
= ConstantInt::get(Ty
, -C
->abs());
1036 if (isICmpTrue(CmpInst::ICMP_SLT
, Y
, NegDividendC
, Q
, MaxRecurse
) ||
1037 isICmpTrue(CmpInst::ICMP_SGT
, Y
, PosDividendC
, Q
, MaxRecurse
))
1040 if (match(Y
, m_APInt(C
))) {
1041 // Special-case: we can't take the abs() of a minimum signed value. If
1042 // that's the divisor, then all we have to do is prove that the dividend
1043 // is also not the minimum signed value.
1044 if (C
->isMinSignedValue())
1045 return isICmpTrue(CmpInst::ICMP_NE
, X
, Y
, Q
, MaxRecurse
);
1047 // Is the variable dividend magnitude always less than the constant
1048 // divisor magnitude?
1049 // |X| < |C| --> X > -abs(C) and X < abs(C)
1050 Constant
*PosDivisorC
= ConstantInt::get(Ty
, C
->abs());
1051 Constant
*NegDivisorC
= ConstantInt::get(Ty
, -C
->abs());
1052 if (isICmpTrue(CmpInst::ICMP_SGT
, X
, NegDivisorC
, Q
, MaxRecurse
) &&
1053 isICmpTrue(CmpInst::ICMP_SLT
, X
, PosDivisorC
, Q
, MaxRecurse
))
1059 // IsSigned == false.
1061 // Is the unsigned dividend known to be less than a constant divisor?
1062 // TODO: Convert this (and above) to range analysis
1063 // ("computeConstantRangeIncludingKnownBits")?
1065 if (match(Y
, m_APInt(C
)) &&
1066 computeKnownBits(X
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
).getMaxValue().ult(*C
))
1069 // Try again for any divisor:
1070 // Is the dividend unsigned less than the divisor?
1071 return isICmpTrue(ICmpInst::ICMP_ULT
, X
, Y
, Q
, MaxRecurse
);
1074 /// Check for common or similar folds of integer division or integer remainder.
1075 /// This applies to all 4 opcodes (sdiv/udiv/srem/urem).
1076 static Value
*simplifyDivRem(Instruction::BinaryOps Opcode
, Value
*Op0
,
1077 Value
*Op1
, const SimplifyQuery
&Q
,
1078 unsigned MaxRecurse
) {
1079 bool IsDiv
= (Opcode
== Instruction::SDiv
|| Opcode
== Instruction::UDiv
);
1080 bool IsSigned
= (Opcode
== Instruction::SDiv
|| Opcode
== Instruction::SRem
);
1082 Type
*Ty
= Op0
->getType();
1084 // X / undef -> poison
1085 // X % undef -> poison
1086 if (Q
.isUndefValue(Op1
) || isa
<PoisonValue
>(Op1
))
1087 return PoisonValue::get(Ty
);
1091 // We don't need to preserve faults!
1092 if (match(Op1
, m_Zero()))
1093 return PoisonValue::get(Ty
);
1095 // If any element of a constant divisor fixed width vector is zero or undef
1096 // the behavior is undefined and we can fold the whole op to poison.
1097 auto *Op1C
= dyn_cast
<Constant
>(Op1
);
1098 auto *VTy
= dyn_cast
<FixedVectorType
>(Ty
);
1100 unsigned NumElts
= VTy
->getNumElements();
1101 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1102 Constant
*Elt
= Op1C
->getAggregateElement(i
);
1103 if (Elt
&& (Elt
->isNullValue() || Q
.isUndefValue(Elt
)))
1104 return PoisonValue::get(Ty
);
1108 // poison / X -> poison
1109 // poison % X -> poison
1110 if (isa
<PoisonValue
>(Op0
))
1115 if (Q
.isUndefValue(Op0
))
1116 return Constant::getNullValue(Ty
);
1120 if (match(Op0
, m_Zero()))
1121 return Constant::getNullValue(Op0
->getType());
1126 return IsDiv
? ConstantInt::get(Ty
, 1) : Constant::getNullValue(Ty
);
1129 KnownBits Known
= computeKnownBits(Op1
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1132 // If the divisor is known to be zero, just return poison. This can happen in
1133 // some cases where its provable indirectly the denominator is zero but it's
1134 // not trivially simplifiable (i.e known zero through a phi node).
1136 return PoisonValue::get(Ty
);
1140 // If the divisor can only be zero or one, we can't have division-by-zero
1141 // or remainder-by-zero, so assume the divisor is 1.
1142 // e.g. 1, zext (i8 X), sdiv X (Y and 1)
1143 if (Known
.countMinLeadingZeros() == Known
.getBitWidth() - 1)
1144 return IsDiv
? Op0
: Constant::getNullValue(Ty
);
1146 // If X * Y does not overflow, then:
1150 if (match(Op0
, m_c_Mul(m_Value(X
), m_Specific(Op1
)))) {
1151 auto *Mul
= cast
<OverflowingBinaryOperator
>(Op0
);
1152 // The multiplication can't overflow if it is defined not to, or if
1153 // X == A / Y for some A.
1154 if ((IsSigned
&& Q
.IIQ
.hasNoSignedWrap(Mul
)) ||
1155 (!IsSigned
&& Q
.IIQ
.hasNoUnsignedWrap(Mul
)) ||
1156 (IsSigned
&& match(X
, m_SDiv(m_Value(), m_Specific(Op1
)))) ||
1157 (!IsSigned
&& match(X
, m_UDiv(m_Value(), m_Specific(Op1
))))) {
1158 return IsDiv
? X
: Constant::getNullValue(Op0
->getType());
1162 if (isDivZero(Op0
, Op1
, Q
, MaxRecurse
, IsSigned
))
1163 return IsDiv
? Constant::getNullValue(Op0
->getType()) : Op0
;
1165 if (Value
*V
= simplifyByDomEq(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1168 // If the operation is with the result of a select instruction, check whether
1169 // operating on either branch of the select always yields the same value.
1170 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1171 if (Value
*V
= threadBinOpOverSelect(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1174 // If the operation is with the result of a phi instruction, check whether
1175 // operating on all incoming values of the phi always yields the same value.
1176 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1177 if (Value
*V
= threadBinOpOverPHI(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1183 /// These are simplifications common to SDiv and UDiv.
1184 static Value
*simplifyDiv(Instruction::BinaryOps Opcode
, Value
*Op0
, Value
*Op1
,
1185 bool IsExact
, const SimplifyQuery
&Q
,
1186 unsigned MaxRecurse
) {
1187 if (Constant
*C
= foldOrCommuteConstant(Opcode
, Op0
, Op1
, Q
))
1190 if (Value
*V
= simplifyDivRem(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1193 // If this is an exact divide by a constant, then the dividend (Op0) must have
1194 // at least as many trailing zeros as the divisor to divide evenly. If it has
1195 // less trailing zeros, then the result must be poison.
1197 if (IsExact
&& match(Op1
, m_APInt(DivC
)) && DivC
->countr_zero()) {
1198 KnownBits KnownOp0
= computeKnownBits(Op0
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1199 if (KnownOp0
.countMaxTrailingZeros() < DivC
->countr_zero())
1200 return PoisonValue::get(Op0
->getType());
1206 /// These are simplifications common to SRem and URem.
1207 static Value
*simplifyRem(Instruction::BinaryOps Opcode
, Value
*Op0
, Value
*Op1
,
1208 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1209 if (Constant
*C
= foldOrCommuteConstant(Opcode
, Op0
, Op1
, Q
))
1212 if (Value
*V
= simplifyDivRem(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1215 // (X << Y) % X -> 0
1216 if (Q
.IIQ
.UseInstrInfo
&&
1217 ((Opcode
== Instruction::SRem
&&
1218 match(Op0
, m_NSWShl(m_Specific(Op1
), m_Value()))) ||
1219 (Opcode
== Instruction::URem
&&
1220 match(Op0
, m_NUWShl(m_Specific(Op1
), m_Value())))))
1221 return Constant::getNullValue(Op0
->getType());
1226 /// Given operands for an SDiv, see if we can fold the result.
1227 /// If not, this returns null.
1228 static Value
*simplifySDivInst(Value
*Op0
, Value
*Op1
, bool IsExact
,
1229 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1230 // If two operands are negated and no signed overflow, return -1.
1231 if (isKnownNegation(Op0
, Op1
, /*NeedNSW=*/true))
1232 return Constant::getAllOnesValue(Op0
->getType());
1234 return simplifyDiv(Instruction::SDiv
, Op0
, Op1
, IsExact
, Q
, MaxRecurse
);
1237 Value
*llvm::simplifySDivInst(Value
*Op0
, Value
*Op1
, bool IsExact
,
1238 const SimplifyQuery
&Q
) {
1239 return ::simplifySDivInst(Op0
, Op1
, IsExact
, Q
, RecursionLimit
);
1242 /// Given operands for a UDiv, see if we can fold the result.
1243 /// If not, this returns null.
1244 static Value
*simplifyUDivInst(Value
*Op0
, Value
*Op1
, bool IsExact
,
1245 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1246 return simplifyDiv(Instruction::UDiv
, Op0
, Op1
, IsExact
, Q
, MaxRecurse
);
1249 Value
*llvm::simplifyUDivInst(Value
*Op0
, Value
*Op1
, bool IsExact
,
1250 const SimplifyQuery
&Q
) {
1251 return ::simplifyUDivInst(Op0
, Op1
, IsExact
, Q
, RecursionLimit
);
1254 /// Given operands for an SRem, see if we can fold the result.
1255 /// If not, this returns null.
1256 static Value
*simplifySRemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1257 unsigned MaxRecurse
) {
1258 // If the divisor is 0, the result is undefined, so assume the divisor is -1.
1259 // srem Op0, (sext i1 X) --> srem Op0, -1 --> 0
1261 if (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1))
1262 return ConstantInt::getNullValue(Op0
->getType());
1264 // If the two operands are negated, return 0.
1265 if (isKnownNegation(Op0
, Op1
))
1266 return ConstantInt::getNullValue(Op0
->getType());
1268 return simplifyRem(Instruction::SRem
, Op0
, Op1
, Q
, MaxRecurse
);
1271 Value
*llvm::simplifySRemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1272 return ::simplifySRemInst(Op0
, Op1
, Q
, RecursionLimit
);
1275 /// Given operands for a URem, see if we can fold the result.
1276 /// If not, this returns null.
1277 static Value
*simplifyURemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
1278 unsigned MaxRecurse
) {
1279 return simplifyRem(Instruction::URem
, Op0
, Op1
, Q
, MaxRecurse
);
1282 Value
*llvm::simplifyURemInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
1283 return ::simplifyURemInst(Op0
, Op1
, Q
, RecursionLimit
);
1286 /// Returns true if a shift by \c Amount always yields poison.
1287 static bool isPoisonShift(Value
*Amount
, const SimplifyQuery
&Q
) {
1288 Constant
*C
= dyn_cast
<Constant
>(Amount
);
1292 // X shift by undef -> poison because it may shift by the bitwidth.
1293 if (Q
.isUndefValue(C
))
1296 // Shifting by the bitwidth or more is poison. This covers scalars and
1297 // fixed/scalable vectors with splat constants.
1298 const APInt
*AmountC
;
1299 if (match(C
, m_APInt(AmountC
)) && AmountC
->uge(AmountC
->getBitWidth()))
1302 // Try harder for fixed-length vectors:
1303 // If all lanes of a vector shift are poison, the whole shift is poison.
1304 if (isa
<ConstantVector
>(C
) || isa
<ConstantDataVector
>(C
)) {
1305 for (unsigned I
= 0,
1306 E
= cast
<FixedVectorType
>(C
->getType())->getNumElements();
1308 if (!isPoisonShift(C
->getAggregateElement(I
), Q
))
1316 /// Given operands for an Shl, LShr or AShr, see if we can fold the result.
1317 /// If not, this returns null.
1318 static Value
*simplifyShift(Instruction::BinaryOps Opcode
, Value
*Op0
,
1319 Value
*Op1
, bool IsNSW
, const SimplifyQuery
&Q
,
1320 unsigned MaxRecurse
) {
1321 if (Constant
*C
= foldOrCommuteConstant(Opcode
, Op0
, Op1
, Q
))
1324 // poison shift by X -> poison
1325 if (isa
<PoisonValue
>(Op0
))
1328 // 0 shift by X -> 0
1329 if (match(Op0
, m_Zero()))
1330 return Constant::getNullValue(Op0
->getType());
1332 // X shift by 0 -> X
1333 // Shift-by-sign-extended bool must be shift-by-0 because shift-by-all-ones
1336 if (match(Op1
, m_Zero()) ||
1337 (match(Op1
, m_SExt(m_Value(X
))) && X
->getType()->isIntOrIntVectorTy(1)))
1340 // Fold undefined shifts.
1341 if (isPoisonShift(Op1
, Q
))
1342 return PoisonValue::get(Op0
->getType());
1344 // If the operation is with the result of a select instruction, check whether
1345 // operating on either branch of the select always yields the same value.
1346 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
))
1347 if (Value
*V
= threadBinOpOverSelect(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1350 // If the operation is with the result of a phi instruction, check whether
1351 // operating on all incoming values of the phi always yields the same value.
1352 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
1353 if (Value
*V
= threadBinOpOverPHI(Opcode
, Op0
, Op1
, Q
, MaxRecurse
))
1356 // If any bits in the shift amount make that value greater than or equal to
1357 // the number of bits in the type, the shift is undefined.
1358 KnownBits KnownAmt
= computeKnownBits(Op1
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1359 if (KnownAmt
.getMinValue().uge(KnownAmt
.getBitWidth()))
1360 return PoisonValue::get(Op0
->getType());
1362 // If all valid bits in the shift amount are known zero, the first operand is
1364 unsigned NumValidShiftBits
= Log2_32_Ceil(KnownAmt
.getBitWidth());
1365 if (KnownAmt
.countMinTrailingZeros() >= NumValidShiftBits
)
1368 // Check for nsw shl leading to a poison value.
1370 assert(Opcode
== Instruction::Shl
&& "Expected shl for nsw instruction");
1371 KnownBits KnownVal
= computeKnownBits(Op0
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1372 KnownBits KnownShl
= KnownBits::shl(KnownVal
, KnownAmt
);
1374 if (KnownVal
.Zero
.isSignBitSet())
1375 KnownShl
.Zero
.setSignBit();
1376 if (KnownVal
.One
.isSignBitSet())
1377 KnownShl
.One
.setSignBit();
1379 if (KnownShl
.hasConflict())
1380 return PoisonValue::get(Op0
->getType());
1386 /// Given operands for an LShr or AShr, see if we can fold the result. If not,
1387 /// this returns null.
1388 static Value
*simplifyRightShift(Instruction::BinaryOps Opcode
, Value
*Op0
,
1389 Value
*Op1
, bool IsExact
,
1390 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1392 simplifyShift(Opcode
, Op0
, Op1
, /*IsNSW*/ false, Q
, MaxRecurse
))
1397 return Constant::getNullValue(Op0
->getType());
1400 // undef >> X -> undef (if it's exact)
1401 if (Q
.isUndefValue(Op0
))
1402 return IsExact
? Op0
: Constant::getNullValue(Op0
->getType());
1404 // The low bit cannot be shifted out of an exact shift if it is set.
1405 // TODO: Generalize by counting trailing zeros (see fold for exact division).
1407 KnownBits Op0Known
=
1408 computeKnownBits(Op0
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1409 if (Op0Known
.One
[0])
1416 /// Given operands for an Shl, see if we can fold the result.
1417 /// If not, this returns null.
1418 static Value
*simplifyShlInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
1419 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1421 simplifyShift(Instruction::Shl
, Op0
, Op1
, IsNSW
, Q
, MaxRecurse
))
1424 Type
*Ty
= Op0
->getType();
1426 // undef << X -> undef if (if it's NSW/NUW)
1427 if (Q
.isUndefValue(Op0
))
1428 return IsNSW
|| IsNUW
? Op0
: Constant::getNullValue(Ty
);
1430 // (X >> A) << A -> X
1432 if (Q
.IIQ
.UseInstrInfo
&&
1433 match(Op0
, m_Exact(m_Shr(m_Value(X
), m_Specific(Op1
)))))
1436 // shl nuw i8 C, %x -> C iff C has sign bit set.
1437 if (IsNUW
&& match(Op0
, m_Negative()))
1439 // NOTE: could use computeKnownBits() / LazyValueInfo,
1440 // but the cost-benefit analysis suggests it isn't worth it.
1442 // "nuw" guarantees that only zeros are shifted out, and "nsw" guarantees
1443 // that the sign-bit does not change, so the only input that does not
1444 // produce poison is 0, and "0 << (bitwidth-1) --> 0".
1445 if (IsNSW
&& IsNUW
&&
1446 match(Op1
, m_SpecificInt(Ty
->getScalarSizeInBits() - 1)))
1447 return Constant::getNullValue(Ty
);
1452 Value
*llvm::simplifyShlInst(Value
*Op0
, Value
*Op1
, bool IsNSW
, bool IsNUW
,
1453 const SimplifyQuery
&Q
) {
1454 return ::simplifyShlInst(Op0
, Op1
, IsNSW
, IsNUW
, Q
, RecursionLimit
);
1457 /// Given operands for an LShr, see if we can fold the result.
1458 /// If not, this returns null.
1459 static Value
*simplifyLShrInst(Value
*Op0
, Value
*Op1
, bool IsExact
,
1460 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1461 if (Value
*V
= simplifyRightShift(Instruction::LShr
, Op0
, Op1
, IsExact
, Q
,
1465 // (X << A) >> A -> X
1467 if (Q
.IIQ
.UseInstrInfo
&& match(Op0
, m_NUWShl(m_Value(X
), m_Specific(Op1
))))
1470 // ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
1471 // We can return X as we do in the above case since OR alters no bits in X.
1472 // SimplifyDemandedBits in InstCombine can do more general optimization for
1473 // bit manipulation. This pattern aims to provide opportunities for other
1474 // optimizers by supporting a simple but common case in InstSimplify.
1476 const APInt
*ShRAmt
, *ShLAmt
;
1477 if (Q
.IIQ
.UseInstrInfo
&& match(Op1
, m_APInt(ShRAmt
)) &&
1478 match(Op0
, m_c_Or(m_NUWShl(m_Value(X
), m_APInt(ShLAmt
)), m_Value(Y
))) &&
1479 *ShRAmt
== *ShLAmt
) {
1480 const KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1481 const unsigned EffWidthY
= YKnown
.countMaxActiveBits();
1482 if (ShRAmt
->uge(EffWidthY
))
1489 Value
*llvm::simplifyLShrInst(Value
*Op0
, Value
*Op1
, bool IsExact
,
1490 const SimplifyQuery
&Q
) {
1491 return ::simplifyLShrInst(Op0
, Op1
, IsExact
, Q
, RecursionLimit
);
1494 /// Given operands for an AShr, see if we can fold the result.
1495 /// If not, this returns null.
1496 static Value
*simplifyAShrInst(Value
*Op0
, Value
*Op1
, bool IsExact
,
1497 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
1498 if (Value
*V
= simplifyRightShift(Instruction::AShr
, Op0
, Op1
, IsExact
, Q
,
1503 // (-1 << X) a>> X --> -1
1504 // Do not return Op0 because it may contain undef elements if it's a vector.
1505 if (match(Op0
, m_AllOnes()) ||
1506 match(Op0
, m_Shl(m_AllOnes(), m_Specific(Op1
))))
1507 return Constant::getAllOnesValue(Op0
->getType());
1509 // (X << A) >> A -> X
1511 if (Q
.IIQ
.UseInstrInfo
&& match(Op0
, m_NSWShl(m_Value(X
), m_Specific(Op1
))))
1514 // Arithmetic shifting an all-sign-bit value is a no-op.
1515 unsigned NumSignBits
= ComputeNumSignBits(Op0
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
1516 if (NumSignBits
== Op0
->getType()->getScalarSizeInBits())
1522 Value
*llvm::simplifyAShrInst(Value
*Op0
, Value
*Op1
, bool IsExact
,
1523 const SimplifyQuery
&Q
) {
1524 return ::simplifyAShrInst(Op0
, Op1
, IsExact
, Q
, RecursionLimit
);
1527 /// Commuted variants are assumed to be handled by calling this function again
1528 /// with the parameters swapped.
1529 static Value
*simplifyUnsignedRangeCheck(ICmpInst
*ZeroICmp
,
1530 ICmpInst
*UnsignedICmp
, bool IsAnd
,
1531 const SimplifyQuery
&Q
) {
1534 ICmpInst::Predicate EqPred
;
1535 if (!match(ZeroICmp
, m_ICmp(EqPred
, m_Value(Y
), m_Zero())) ||
1536 !ICmpInst::isEquality(EqPred
))
1539 ICmpInst::Predicate UnsignedPred
;
1543 if (match(Y
, m_Sub(m_Value(A
), m_Value(B
)))) {
1544 if (match(UnsignedICmp
,
1545 m_c_ICmp(UnsignedPred
, m_Specific(A
), m_Specific(B
))) &&
1546 ICmpInst::isUnsigned(UnsignedPred
)) {
1547 // A >=/<= B || (A - B) != 0 <--> true
1548 if ((UnsignedPred
== ICmpInst::ICMP_UGE
||
1549 UnsignedPred
== ICmpInst::ICMP_ULE
) &&
1550 EqPred
== ICmpInst::ICMP_NE
&& !IsAnd
)
1551 return ConstantInt::getTrue(UnsignedICmp
->getType());
1552 // A </> B && (A - B) == 0 <--> false
1553 if ((UnsignedPred
== ICmpInst::ICMP_ULT
||
1554 UnsignedPred
== ICmpInst::ICMP_UGT
) &&
1555 EqPred
== ICmpInst::ICMP_EQ
&& IsAnd
)
1556 return ConstantInt::getFalse(UnsignedICmp
->getType());
1558 // A </> B && (A - B) != 0 <--> A </> B
1559 // A </> B || (A - B) != 0 <--> (A - B) != 0
1560 if (EqPred
== ICmpInst::ICMP_NE
&& (UnsignedPred
== ICmpInst::ICMP_ULT
||
1561 UnsignedPred
== ICmpInst::ICMP_UGT
))
1562 return IsAnd
? UnsignedICmp
: ZeroICmp
;
1564 // A <=/>= B && (A - B) == 0 <--> (A - B) == 0
1565 // A <=/>= B || (A - B) == 0 <--> A <=/>= B
1566 if (EqPred
== ICmpInst::ICMP_EQ
&& (UnsignedPred
== ICmpInst::ICMP_ULE
||
1567 UnsignedPred
== ICmpInst::ICMP_UGE
))
1568 return IsAnd
? ZeroICmp
: UnsignedICmp
;
1571 // Given Y = (A - B)
1572 // Y >= A && Y != 0 --> Y >= A iff B != 0
1573 // Y < A || Y == 0 --> Y < A iff B != 0
1574 if (match(UnsignedICmp
,
1575 m_c_ICmp(UnsignedPred
, m_Specific(Y
), m_Specific(A
)))) {
1576 if (UnsignedPred
== ICmpInst::ICMP_UGE
&& IsAnd
&&
1577 EqPred
== ICmpInst::ICMP_NE
&&
1578 isKnownNonZero(B
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
1579 return UnsignedICmp
;
1580 if (UnsignedPred
== ICmpInst::ICMP_ULT
&& !IsAnd
&&
1581 EqPred
== ICmpInst::ICMP_EQ
&&
1582 isKnownNonZero(B
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
1583 return UnsignedICmp
;
1587 if (match(UnsignedICmp
, m_ICmp(UnsignedPred
, m_Value(X
), m_Specific(Y
))) &&
1588 ICmpInst::isUnsigned(UnsignedPred
))
1590 else if (match(UnsignedICmp
,
1591 m_ICmp(UnsignedPred
, m_Specific(Y
), m_Value(X
))) &&
1592 ICmpInst::isUnsigned(UnsignedPred
))
1593 UnsignedPred
= ICmpInst::getSwappedPredicate(UnsignedPred
);
1597 // X > Y && Y == 0 --> Y == 0 iff X != 0
1598 // X > Y || Y == 0 --> X > Y iff X != 0
1599 if (UnsignedPred
== ICmpInst::ICMP_UGT
&& EqPred
== ICmpInst::ICMP_EQ
&&
1600 isKnownNonZero(X
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
1601 return IsAnd
? ZeroICmp
: UnsignedICmp
;
1603 // X <= Y && Y != 0 --> X <= Y iff X != 0
1604 // X <= Y || Y != 0 --> Y != 0 iff X != 0
1605 if (UnsignedPred
== ICmpInst::ICMP_ULE
&& EqPred
== ICmpInst::ICMP_NE
&&
1606 isKnownNonZero(X
, Q
.DL
, /*Depth=*/0, Q
.AC
, Q
.CxtI
, Q
.DT
))
1607 return IsAnd
? UnsignedICmp
: ZeroICmp
;
1609 // The transforms below here are expected to be handled more generally with
1610 // simplifyAndOrOfICmpsWithLimitConst() or in InstCombine's
1611 // foldAndOrOfICmpsWithConstEq(). If we are looking to trim optimizer overlap,
1612 // these are candidates for removal.
1614 // X < Y && Y != 0 --> X < Y
1615 // X < Y || Y != 0 --> Y != 0
1616 if (UnsignedPred
== ICmpInst::ICMP_ULT
&& EqPred
== ICmpInst::ICMP_NE
)
1617 return IsAnd
? UnsignedICmp
: ZeroICmp
;
1619 // X >= Y && Y == 0 --> Y == 0
1620 // X >= Y || Y == 0 --> X >= Y
1621 if (UnsignedPred
== ICmpInst::ICMP_UGE
&& EqPred
== ICmpInst::ICMP_EQ
)
1622 return IsAnd
? ZeroICmp
: UnsignedICmp
;
1624 // X < Y && Y == 0 --> false
1625 if (UnsignedPred
== ICmpInst::ICMP_ULT
&& EqPred
== ICmpInst::ICMP_EQ
&&
1627 return getFalse(UnsignedICmp
->getType());
1629 // X >= Y || Y != 0 --> true
1630 if (UnsignedPred
== ICmpInst::ICMP_UGE
&& EqPred
== ICmpInst::ICMP_NE
&&
1632 return getTrue(UnsignedICmp
->getType());
1637 /// Test if a pair of compares with a shared operand and 2 constants has an
1638 /// empty set intersection, full set union, or if one compare is a superset of
1640 static Value
*simplifyAndOrOfICmpsWithConstants(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
,
1642 // Look for this pattern: {and/or} (icmp X, C0), (icmp X, C1)).
1643 if (Cmp0
->getOperand(0) != Cmp1
->getOperand(0))
1646 const APInt
*C0
, *C1
;
1647 if (!match(Cmp0
->getOperand(1), m_APInt(C0
)) ||
1648 !match(Cmp1
->getOperand(1), m_APInt(C1
)))
1651 auto Range0
= ConstantRange::makeExactICmpRegion(Cmp0
->getPredicate(), *C0
);
1652 auto Range1
= ConstantRange::makeExactICmpRegion(Cmp1
->getPredicate(), *C1
);
1654 // For and-of-compares, check if the intersection is empty:
1655 // (icmp X, C0) && (icmp X, C1) --> empty set --> false
1656 if (IsAnd
&& Range0
.intersectWith(Range1
).isEmptySet())
1657 return getFalse(Cmp0
->getType());
1659 // For or-of-compares, check if the union is full:
1660 // (icmp X, C0) || (icmp X, C1) --> full set --> true
1661 if (!IsAnd
&& Range0
.unionWith(Range1
).isFullSet())
1662 return getTrue(Cmp0
->getType());
1664 // Is one range a superset of the other?
1665 // If this is and-of-compares, take the smaller set:
1666 // (icmp sgt X, 4) && (icmp sgt X, 42) --> icmp sgt X, 42
1667 // If this is or-of-compares, take the larger set:
1668 // (icmp sgt X, 4) || (icmp sgt X, 42) --> icmp sgt X, 4
1669 if (Range0
.contains(Range1
))
1670 return IsAnd
? Cmp1
: Cmp0
;
1671 if (Range1
.contains(Range0
))
1672 return IsAnd
? Cmp0
: Cmp1
;
1677 static Value
*simplifyAndOrOfICmpsWithZero(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
,
1679 ICmpInst::Predicate P0
= Cmp0
->getPredicate(), P1
= Cmp1
->getPredicate();
1680 if (!match(Cmp0
->getOperand(1), m_Zero()) ||
1681 !match(Cmp1
->getOperand(1), m_Zero()) || P0
!= P1
)
1684 if ((IsAnd
&& P0
!= ICmpInst::ICMP_NE
) || (!IsAnd
&& P1
!= ICmpInst::ICMP_EQ
))
1687 // We have either "(X == 0 || Y == 0)" or "(X != 0 && Y != 0)".
1688 Value
*X
= Cmp0
->getOperand(0);
1689 Value
*Y
= Cmp1
->getOperand(0);
1691 // If one of the compares is a masked version of a (not) null check, then
1692 // that compare implies the other, so we eliminate the other. Optionally, look
1693 // through a pointer-to-int cast to match a null check of a pointer type.
1695 // (X == 0) || (([ptrtoint] X & ?) == 0) --> ([ptrtoint] X & ?) == 0
1696 // (X == 0) || ((? & [ptrtoint] X) == 0) --> (? & [ptrtoint] X) == 0
1697 // (X != 0) && (([ptrtoint] X & ?) != 0) --> ([ptrtoint] X & ?) != 0
1698 // (X != 0) && ((? & [ptrtoint] X) != 0) --> (? & [ptrtoint] X) != 0
1699 if (match(Y
, m_c_And(m_Specific(X
), m_Value())) ||
1700 match(Y
, m_c_And(m_PtrToInt(m_Specific(X
)), m_Value())))
1703 // (([ptrtoint] Y & ?) == 0) || (Y == 0) --> ([ptrtoint] Y & ?) == 0
1704 // ((? & [ptrtoint] Y) == 0) || (Y == 0) --> (? & [ptrtoint] Y) == 0
1705 // (([ptrtoint] Y & ?) != 0) && (Y != 0) --> ([ptrtoint] Y & ?) != 0
1706 // ((? & [ptrtoint] Y) != 0) && (Y != 0) --> (? & [ptrtoint] Y) != 0
1707 if (match(X
, m_c_And(m_Specific(Y
), m_Value())) ||
1708 match(X
, m_c_And(m_PtrToInt(m_Specific(Y
)), m_Value())))
1714 static Value
*simplifyAndOfICmpsWithAdd(ICmpInst
*Op0
, ICmpInst
*Op1
,
1715 const InstrInfoQuery
&IIQ
) {
1716 // (icmp (add V, C0), C1) & (icmp V, C0)
1717 ICmpInst::Predicate Pred0
, Pred1
;
1718 const APInt
*C0
, *C1
;
1720 if (!match(Op0
, m_ICmp(Pred0
, m_Add(m_Value(V
), m_APInt(C0
)), m_APInt(C1
))))
1723 if (!match(Op1
, m_ICmp(Pred1
, m_Specific(V
), m_Value())))
1726 auto *AddInst
= cast
<OverflowingBinaryOperator
>(Op0
->getOperand(0));
1727 if (AddInst
->getOperand(1) != Op1
->getOperand(1))
1730 Type
*ITy
= Op0
->getType();
1731 bool IsNSW
= IIQ
.hasNoSignedWrap(AddInst
);
1732 bool IsNUW
= IIQ
.hasNoUnsignedWrap(AddInst
);
1734 const APInt Delta
= *C1
- *C0
;
1735 if (C0
->isStrictlyPositive()) {
1737 if (Pred0
== ICmpInst::ICMP_ULT
&& Pred1
== ICmpInst::ICMP_SGT
)
1738 return getFalse(ITy
);
1739 if (Pred0
== ICmpInst::ICMP_SLT
&& Pred1
== ICmpInst::ICMP_SGT
&& IsNSW
)
1740 return getFalse(ITy
);
1743 if (Pred0
== ICmpInst::ICMP_ULE
&& Pred1
== ICmpInst::ICMP_SGT
)
1744 return getFalse(ITy
);
1745 if (Pred0
== ICmpInst::ICMP_SLE
&& Pred1
== ICmpInst::ICMP_SGT
&& IsNSW
)
1746 return getFalse(ITy
);
1749 if (C0
->getBoolValue() && IsNUW
) {
1751 if (Pred0
== ICmpInst::ICMP_ULT
&& Pred1
== ICmpInst::ICMP_UGT
)
1752 return getFalse(ITy
);
1754 if (Pred0
== ICmpInst::ICMP_ULE
&& Pred1
== ICmpInst::ICMP_UGT
)
1755 return getFalse(ITy
);
1761 /// Try to eliminate compares with signed or unsigned min/max constants.
1762 static Value
*simplifyAndOrOfICmpsWithLimitConst(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
,
1764 // Canonicalize an equality compare as Cmp0.
1765 if (Cmp1
->isEquality())
1766 std::swap(Cmp0
, Cmp1
);
1767 if (!Cmp0
->isEquality())
1770 // The non-equality compare must include a common operand (X). Canonicalize
1771 // the common operand as operand 0 (the predicate is swapped if the common
1772 // operand was operand 1).
1773 ICmpInst::Predicate Pred0
= Cmp0
->getPredicate();
1774 Value
*X
= Cmp0
->getOperand(0);
1775 ICmpInst::Predicate Pred1
;
1776 bool HasNotOp
= match(Cmp1
, m_c_ICmp(Pred1
, m_Not(m_Specific(X
)), m_Value()));
1777 if (!HasNotOp
&& !match(Cmp1
, m_c_ICmp(Pred1
, m_Specific(X
), m_Value())))
1779 if (ICmpInst::isEquality(Pred1
))
1782 // The equality compare must be against a constant. Flip bits if we matched
1783 // a bitwise not. Convert a null pointer constant to an integer zero value.
1786 if (match(Cmp0
->getOperand(1), m_APInt(C
)))
1787 MinMaxC
= HasNotOp
? ~*C
: *C
;
1788 else if (isa
<ConstantPointerNull
>(Cmp0
->getOperand(1)))
1789 MinMaxC
= APInt::getZero(8);
1793 // DeMorganize if this is 'or': P0 || P1 --> !P0 && !P1.
1795 Pred0
= ICmpInst::getInversePredicate(Pred0
);
1796 Pred1
= ICmpInst::getInversePredicate(Pred1
);
1799 // Normalize to unsigned compare and unsigned min/max value.
1800 // Example for 8-bit: -128 + 128 -> 0; 127 + 128 -> 255
1801 if (ICmpInst::isSigned(Pred1
)) {
1802 Pred1
= ICmpInst::getUnsignedPredicate(Pred1
);
1803 MinMaxC
+= APInt::getSignedMinValue(MinMaxC
.getBitWidth());
1806 // (X != MAX) && (X < Y) --> X < Y
1807 // (X == MAX) || (X >= Y) --> X >= Y
1808 if (MinMaxC
.isMaxValue())
1809 if (Pred0
== ICmpInst::ICMP_NE
&& Pred1
== ICmpInst::ICMP_ULT
)
1812 // (X != MIN) && (X > Y) --> X > Y
1813 // (X == MIN) || (X <= Y) --> X <= Y
1814 if (MinMaxC
.isMinValue())
1815 if (Pred0
== ICmpInst::ICMP_NE
&& Pred1
== ICmpInst::ICMP_UGT
)
1821 /// Try to simplify and/or of icmp with ctpop intrinsic.
1822 static Value
*simplifyAndOrOfICmpsWithCtpop(ICmpInst
*Cmp0
, ICmpInst
*Cmp1
,
1824 ICmpInst::Predicate Pred0
, Pred1
;
1827 if (!match(Cmp0
, m_ICmp(Pred0
, m_Intrinsic
<Intrinsic::ctpop
>(m_Value(X
)),
1829 !match(Cmp1
, m_ICmp(Pred1
, m_Specific(X
), m_ZeroInt())) || C
->isZero())
1832 // (ctpop(X) == C) || (X != 0) --> X != 0 where C > 0
1833 if (!IsAnd
&& Pred0
== ICmpInst::ICMP_EQ
&& Pred1
== ICmpInst::ICMP_NE
)
1835 // (ctpop(X) != C) && (X == 0) --> X == 0 where C > 0
1836 if (IsAnd
&& Pred0
== ICmpInst::ICMP_NE
&& Pred1
== ICmpInst::ICMP_EQ
)
1842 static Value
*simplifyAndOfICmps(ICmpInst
*Op0
, ICmpInst
*Op1
,
1843 const SimplifyQuery
&Q
) {
1844 if (Value
*X
= simplifyUnsignedRangeCheck(Op0
, Op1
, /*IsAnd=*/true, Q
))
1846 if (Value
*X
= simplifyUnsignedRangeCheck(Op1
, Op0
, /*IsAnd=*/true, Q
))
1849 if (Value
*X
= simplifyAndOrOfICmpsWithConstants(Op0
, Op1
, true))
1852 if (Value
*X
= simplifyAndOrOfICmpsWithLimitConst(Op0
, Op1
, true))
1855 if (Value
*X
= simplifyAndOrOfICmpsWithZero(Op0
, Op1
, true))
1858 if (Value
*X
= simplifyAndOrOfICmpsWithCtpop(Op0
, Op1
, true))
1860 if (Value
*X
= simplifyAndOrOfICmpsWithCtpop(Op1
, Op0
, true))
1863 if (Value
*X
= simplifyAndOfICmpsWithAdd(Op0
, Op1
, Q
.IIQ
))
1865 if (Value
*X
= simplifyAndOfICmpsWithAdd(Op1
, Op0
, Q
.IIQ
))
1871 static Value
*simplifyOrOfICmpsWithAdd(ICmpInst
*Op0
, ICmpInst
*Op1
,
1872 const InstrInfoQuery
&IIQ
) {
1873 // (icmp (add V, C0), C1) | (icmp V, C0)
1874 ICmpInst::Predicate Pred0
, Pred1
;
1875 const APInt
*C0
, *C1
;
1877 if (!match(Op0
, m_ICmp(Pred0
, m_Add(m_Value(V
), m_APInt(C0
)), m_APInt(C1
))))
1880 if (!match(Op1
, m_ICmp(Pred1
, m_Specific(V
), m_Value())))
1883 auto *AddInst
= cast
<BinaryOperator
>(Op0
->getOperand(0));
1884 if (AddInst
->getOperand(1) != Op1
->getOperand(1))
1887 Type
*ITy
= Op0
->getType();
1888 bool IsNSW
= IIQ
.hasNoSignedWrap(AddInst
);
1889 bool IsNUW
= IIQ
.hasNoUnsignedWrap(AddInst
);
1891 const APInt Delta
= *C1
- *C0
;
1892 if (C0
->isStrictlyPositive()) {
1894 if (Pred0
== ICmpInst::ICMP_UGE
&& Pred1
== ICmpInst::ICMP_SLE
)
1895 return getTrue(ITy
);
1896 if (Pred0
== ICmpInst::ICMP_SGE
&& Pred1
== ICmpInst::ICMP_SLE
&& IsNSW
)
1897 return getTrue(ITy
);
1900 if (Pred0
== ICmpInst::ICMP_UGT
&& Pred1
== ICmpInst::ICMP_SLE
)
1901 return getTrue(ITy
);
1902 if (Pred0
== ICmpInst::ICMP_SGT
&& Pred1
== ICmpInst::ICMP_SLE
&& IsNSW
)
1903 return getTrue(ITy
);
1906 if (C0
->getBoolValue() && IsNUW
) {
1908 if (Pred0
== ICmpInst::ICMP_UGE
&& Pred1
== ICmpInst::ICMP_ULE
)
1909 return getTrue(ITy
);
1911 if (Pred0
== ICmpInst::ICMP_UGT
&& Pred1
== ICmpInst::ICMP_ULE
)
1912 return getTrue(ITy
);
1918 static Value
*simplifyOrOfICmps(ICmpInst
*Op0
, ICmpInst
*Op1
,
1919 const SimplifyQuery
&Q
) {
1920 if (Value
*X
= simplifyUnsignedRangeCheck(Op0
, Op1
, /*IsAnd=*/false, Q
))
1922 if (Value
*X
= simplifyUnsignedRangeCheck(Op1
, Op0
, /*IsAnd=*/false, Q
))
1925 if (Value
*X
= simplifyAndOrOfICmpsWithConstants(Op0
, Op1
, false))
1928 if (Value
*X
= simplifyAndOrOfICmpsWithLimitConst(Op0
, Op1
, false))
1931 if (Value
*X
= simplifyAndOrOfICmpsWithZero(Op0
, Op1
, false))
1934 if (Value
*X
= simplifyAndOrOfICmpsWithCtpop(Op0
, Op1
, false))
1936 if (Value
*X
= simplifyAndOrOfICmpsWithCtpop(Op1
, Op0
, false))
1939 if (Value
*X
= simplifyOrOfICmpsWithAdd(Op0
, Op1
, Q
.IIQ
))
1941 if (Value
*X
= simplifyOrOfICmpsWithAdd(Op1
, Op0
, Q
.IIQ
))
1947 static Value
*simplifyAndOrOfFCmps(const SimplifyQuery
&Q
, FCmpInst
*LHS
,
1948 FCmpInst
*RHS
, bool IsAnd
) {
1949 Value
*LHS0
= LHS
->getOperand(0), *LHS1
= LHS
->getOperand(1);
1950 Value
*RHS0
= RHS
->getOperand(0), *RHS1
= RHS
->getOperand(1);
1951 if (LHS0
->getType() != RHS0
->getType())
1954 const DataLayout
&DL
= Q
.DL
;
1955 const TargetLibraryInfo
*TLI
= Q
.TLI
;
1957 FCmpInst::Predicate PredL
= LHS
->getPredicate(), PredR
= RHS
->getPredicate();
1958 if ((PredL
== FCmpInst::FCMP_ORD
&& PredR
== FCmpInst::FCMP_ORD
&& IsAnd
) ||
1959 (PredL
== FCmpInst::FCMP_UNO
&& PredR
== FCmpInst::FCMP_UNO
&& !IsAnd
)) {
1960 // (fcmp ord NNAN, X) & (fcmp ord X, Y) --> fcmp ord X, Y
1961 // (fcmp ord NNAN, X) & (fcmp ord Y, X) --> fcmp ord Y, X
1962 // (fcmp ord X, NNAN) & (fcmp ord X, Y) --> fcmp ord X, Y
1963 // (fcmp ord X, NNAN) & (fcmp ord Y, X) --> fcmp ord Y, X
1964 // (fcmp uno NNAN, X) | (fcmp uno X, Y) --> fcmp uno X, Y
1965 // (fcmp uno NNAN, X) | (fcmp uno Y, X) --> fcmp uno Y, X
1966 // (fcmp uno X, NNAN) | (fcmp uno X, Y) --> fcmp uno X, Y
1967 // (fcmp uno X, NNAN) | (fcmp uno Y, X) --> fcmp uno Y, X
1968 if (((LHS1
== RHS0
|| LHS1
== RHS1
) &&
1969 isKnownNeverNaN(LHS0
, DL
, TLI
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
)) ||
1970 ((LHS0
== RHS0
|| LHS0
== RHS1
) &&
1971 isKnownNeverNaN(LHS1
, DL
, TLI
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
)))
1974 // (fcmp ord X, Y) & (fcmp ord NNAN, X) --> fcmp ord X, Y
1975 // (fcmp ord Y, X) & (fcmp ord NNAN, X) --> fcmp ord Y, X
1976 // (fcmp ord X, Y) & (fcmp ord X, NNAN) --> fcmp ord X, Y
1977 // (fcmp ord Y, X) & (fcmp ord X, NNAN) --> fcmp ord Y, X
1978 // (fcmp uno X, Y) | (fcmp uno NNAN, X) --> fcmp uno X, Y
1979 // (fcmp uno Y, X) | (fcmp uno NNAN, X) --> fcmp uno Y, X
1980 // (fcmp uno X, Y) | (fcmp uno X, NNAN) --> fcmp uno X, Y
1981 // (fcmp uno Y, X) | (fcmp uno X, NNAN) --> fcmp uno Y, X
1982 if (((RHS1
== LHS0
|| RHS1
== LHS1
) &&
1983 isKnownNeverNaN(RHS0
, DL
, TLI
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
)) ||
1984 ((RHS0
== LHS0
|| RHS0
== LHS1
) &&
1985 isKnownNeverNaN(RHS1
, DL
, TLI
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
)))
1992 static Value
*simplifyAndOrOfCmps(const SimplifyQuery
&Q
, Value
*Op0
,
1993 Value
*Op1
, bool IsAnd
) {
1994 // Look through casts of the 'and' operands to find compares.
1995 auto *Cast0
= dyn_cast
<CastInst
>(Op0
);
1996 auto *Cast1
= dyn_cast
<CastInst
>(Op1
);
1997 if (Cast0
&& Cast1
&& Cast0
->getOpcode() == Cast1
->getOpcode() &&
1998 Cast0
->getSrcTy() == Cast1
->getSrcTy()) {
1999 Op0
= Cast0
->getOperand(0);
2000 Op1
= Cast1
->getOperand(0);
2004 auto *ICmp0
= dyn_cast
<ICmpInst
>(Op0
);
2005 auto *ICmp1
= dyn_cast
<ICmpInst
>(Op1
);
2007 V
= IsAnd
? simplifyAndOfICmps(ICmp0
, ICmp1
, Q
)
2008 : simplifyOrOfICmps(ICmp0
, ICmp1
, Q
);
2010 auto *FCmp0
= dyn_cast
<FCmpInst
>(Op0
);
2011 auto *FCmp1
= dyn_cast
<FCmpInst
>(Op1
);
2013 V
= simplifyAndOrOfFCmps(Q
, FCmp0
, FCmp1
, IsAnd
);
2020 // If we looked through casts, we can only handle a constant simplification
2021 // because we are not allowed to create a cast instruction here.
2022 if (auto *C
= dyn_cast
<Constant
>(V
))
2023 return ConstantFoldCastOperand(Cast0
->getOpcode(), C
, Cast0
->getType(),
2029 /// Given a bitwise logic op, check if the operands are add/sub with a common
2030 /// source value and inverted constant (identity: C - X -> ~(X + ~C)).
2031 static Value
*simplifyLogicOfAddSub(Value
*Op0
, Value
*Op1
,
2032 Instruction::BinaryOps Opcode
) {
2033 assert(Op0
->getType() == Op1
->getType() && "Mismatched binop types");
2034 assert(BinaryOperator::isBitwiseLogicOp(Opcode
) && "Expected logic op");
2037 if ((match(Op0
, m_Add(m_Value(X
), m_Constant(C1
))) &&
2038 match(Op1
, m_Sub(m_Constant(C2
), m_Specific(X
)))) ||
2039 (match(Op1
, m_Add(m_Value(X
), m_Constant(C1
))) &&
2040 match(Op0
, m_Sub(m_Constant(C2
), m_Specific(X
))))) {
2041 if (ConstantExpr::getNot(C1
) == C2
) {
2042 // (X + C) & (~C - X) --> (X + C) & ~(X + C) --> 0
2043 // (X + C) | (~C - X) --> (X + C) | ~(X + C) --> -1
2044 // (X + C) ^ (~C - X) --> (X + C) ^ ~(X + C) --> -1
2045 Type
*Ty
= Op0
->getType();
2046 return Opcode
== Instruction::And
? ConstantInt::getNullValue(Ty
)
2047 : ConstantInt::getAllOnesValue(Ty
);
2053 /// Given operands for an And, see if we can fold the result.
2054 /// If not, this returns null.
2055 static Value
*simplifyAndInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
2056 unsigned MaxRecurse
) {
2057 if (Constant
*C
= foldOrCommuteConstant(Instruction::And
, Op0
, Op1
, Q
))
2060 // X & poison -> poison
2061 if (isa
<PoisonValue
>(Op1
))
2065 if (Q
.isUndefValue(Op1
))
2066 return Constant::getNullValue(Op0
->getType());
2073 if (match(Op1
, m_Zero()))
2074 return Constant::getNullValue(Op0
->getType());
2077 if (match(Op1
, m_AllOnes()))
2080 // A & ~A = ~A & A = 0
2081 if (match(Op0
, m_Not(m_Specific(Op1
))) || match(Op1
, m_Not(m_Specific(Op0
))))
2082 return Constant::getNullValue(Op0
->getType());
2085 if (match(Op0
, m_c_Or(m_Specific(Op1
), m_Value())))
2089 if (match(Op1
, m_c_Or(m_Specific(Op0
), m_Value())))
2092 // (X | Y) & (X | ~Y) --> X (commuted 8 ways)
2094 if (match(Op0
, m_c_Or(m_Value(X
), m_Not(m_Value(Y
)))) &&
2095 match(Op1
, m_c_Or(m_Deferred(X
), m_Deferred(Y
))))
2097 if (match(Op1
, m_c_Or(m_Value(X
), m_Not(m_Value(Y
)))) &&
2098 match(Op0
, m_c_Or(m_Deferred(X
), m_Deferred(Y
))))
2101 if (Value
*V
= simplifyLogicOfAddSub(Op0
, Op1
, Instruction::And
))
2104 // A mask that only clears known zeros of a shifted value is a no-op.
2107 if (match(Op1
, m_APInt(Mask
))) {
2108 // If all bits in the inverted and shifted mask are clear:
2109 // and (shl X, ShAmt), Mask --> shl X, ShAmt
2110 if (match(Op0
, m_Shl(m_Value(X
), m_APInt(ShAmt
))) &&
2111 (~(*Mask
)).lshr(*ShAmt
).isZero())
2114 // If all bits in the inverted and shifted mask are clear:
2115 // and (lshr X, ShAmt), Mask --> lshr X, ShAmt
2116 if (match(Op0
, m_LShr(m_Value(X
), m_APInt(ShAmt
))) &&
2117 (~(*Mask
)).shl(*ShAmt
).isZero())
2121 // and 2^x-1, 2^C --> 0 where x <= C.
2122 const APInt
*PowerC
;
2124 if (match(Op1
, m_Power2(PowerC
)) &&
2125 match(Op0
, m_Add(m_Value(Shift
), m_AllOnes())) &&
2126 isKnownToBeAPowerOfTwo(Shift
, Q
.DL
, /*OrZero*/ false, 0, Q
.AC
, Q
.CxtI
,
2128 KnownBits Known
= computeKnownBits(Shift
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2129 // Use getActiveBits() to make use of the additional power of two knowledge
2130 if (PowerC
->getActiveBits() >= Known
.getMaxValue().getActiveBits())
2131 return ConstantInt::getNullValue(Op1
->getType());
2134 // If we have a multiplication overflow check that is being 'and'ed with a
2135 // check that one of the multipliers is not zero, we can omit the 'and', and
2136 // only keep the overflow check.
2137 if (isCheckForZeroAndMulWithOverflow(Op0
, Op1
, true))
2139 if (isCheckForZeroAndMulWithOverflow(Op1
, Op0
, true))
2142 // A & (-A) = A if A is a power of two or zero.
2143 if (match(Op0
, m_Neg(m_Specific(Op1
))) ||
2144 match(Op1
, m_Neg(m_Specific(Op0
)))) {
2145 if (isKnownToBeAPowerOfTwo(Op0
, Q
.DL
, /*OrZero*/ true, 0, Q
.AC
, Q
.CxtI
,
2148 if (isKnownToBeAPowerOfTwo(Op1
, Q
.DL
, /*OrZero*/ true, 0, Q
.AC
, Q
.CxtI
,
2153 // This is a similar pattern used for checking if a value is a power-of-2:
2154 // (A - 1) & A --> 0 (if A is a power-of-2 or 0)
2155 // A & (A - 1) --> 0 (if A is a power-of-2 or 0)
2156 if (match(Op0
, m_Add(m_Specific(Op1
), m_AllOnes())) &&
2157 isKnownToBeAPowerOfTwo(Op1
, Q
.DL
, /*OrZero*/ true, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2158 return Constant::getNullValue(Op1
->getType());
2159 if (match(Op1
, m_Add(m_Specific(Op0
), m_AllOnes())) &&
2160 isKnownToBeAPowerOfTwo(Op0
, Q
.DL
, /*OrZero*/ true, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2161 return Constant::getNullValue(Op0
->getType());
2163 if (Value
*V
= simplifyAndOrOfCmps(Q
, Op0
, Op1
, true))
2166 // Try some generic simplifications for associative operations.
2168 simplifyAssociativeBinOp(Instruction::And
, Op0
, Op1
, Q
, MaxRecurse
))
2171 // And distributes over Or. Try some generic simplifications based on this.
2172 if (Value
*V
= expandCommutativeBinOp(Instruction::And
, Op0
, Op1
,
2173 Instruction::Or
, Q
, MaxRecurse
))
2176 // And distributes over Xor. Try some generic simplifications based on this.
2177 if (Value
*V
= expandCommutativeBinOp(Instruction::And
, Op0
, Op1
,
2178 Instruction::Xor
, Q
, MaxRecurse
))
2181 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
)) {
2182 if (Op0
->getType()->isIntOrIntVectorTy(1)) {
2183 // A & (A && B) -> A && B
2184 if (match(Op1
, m_Select(m_Specific(Op0
), m_Value(), m_Zero())))
2186 else if (match(Op0
, m_Select(m_Specific(Op1
), m_Value(), m_Zero())))
2189 // If the operation is with the result of a select instruction, check
2190 // whether operating on either branch of the select always yields the same
2193 threadBinOpOverSelect(Instruction::And
, Op0
, Op1
, Q
, MaxRecurse
))
2197 // If the operation is with the result of a phi instruction, check whether
2198 // operating on all incoming values of the phi always yields the same value.
2199 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
2201 threadBinOpOverPHI(Instruction::And
, Op0
, Op1
, Q
, MaxRecurse
))
2204 // Assuming the effective width of Y is not larger than A, i.e. all bits
2205 // from X and Y are disjoint in (X << A) | Y,
2206 // if the mask of this AND op covers all bits of X or Y, while it covers
2207 // no bits from the other, we can bypass this AND op. E.g.,
2208 // ((X << A) | Y) & Mask -> Y,
2209 // if Mask = ((1 << effective_width_of(Y)) - 1)
2210 // ((X << A) | Y) & Mask -> X << A,
2211 // if Mask = ((1 << effective_width_of(X)) - 1) << A
2212 // SimplifyDemandedBits in InstCombine can optimize the general case.
2213 // This pattern aims to help other passes for a common case.
2215 if (Q
.IIQ
.UseInstrInfo
&& match(Op1
, m_APInt(Mask
)) &&
2216 match(Op0
, m_c_Or(m_CombineAnd(m_NUWShl(m_Value(X
), m_APInt(ShAmt
)),
2219 const unsigned Width
= Op0
->getType()->getScalarSizeInBits();
2220 const unsigned ShftCnt
= ShAmt
->getLimitedValue(Width
);
2221 const KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2222 const unsigned EffWidthY
= YKnown
.countMaxActiveBits();
2223 if (EffWidthY
<= ShftCnt
) {
2224 const KnownBits XKnown
= computeKnownBits(X
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
2225 const unsigned EffWidthX
= XKnown
.countMaxActiveBits();
2226 const APInt EffBitsY
= APInt::getLowBitsSet(Width
, EffWidthY
);
2227 const APInt EffBitsX
= APInt::getLowBitsSet(Width
, EffWidthX
) << ShftCnt
;
2228 // If the mask is extracting all bits from X or Y as is, we can skip
2230 if (EffBitsY
.isSubsetOf(*Mask
) && !EffBitsX
.intersects(*Mask
))
2232 if (EffBitsX
.isSubsetOf(*Mask
) && !EffBitsY
.intersects(*Mask
))
2237 // ((X | Y) ^ X ) & ((X | Y) ^ Y) --> 0
2238 // ((X | Y) ^ Y ) & ((X | Y) ^ X) --> 0
2240 if (match(Op0
, m_c_Xor(m_Value(X
),
2241 m_CombineAnd(m_BinOp(Or
),
2242 m_c_Or(m_Deferred(X
), m_Value(Y
))))) &&
2243 match(Op1
, m_c_Xor(m_Specific(Or
), m_Specific(Y
))))
2244 return Constant::getNullValue(Op0
->getType());
2246 if (Op0
->getType()->isIntOrIntVectorTy(1)) {
2247 if (std::optional
<bool> Implied
= isImpliedCondition(Op0
, Op1
, Q
.DL
)) {
2248 // If Op0 is true implies Op1 is true, then Op0 is a subset of Op1.
2249 if (*Implied
== true)
2251 // If Op0 is true implies Op1 is false, then they are not true together.
2252 if (*Implied
== false)
2253 return ConstantInt::getFalse(Op0
->getType());
2255 if (std::optional
<bool> Implied
= isImpliedCondition(Op1
, Op0
, Q
.DL
)) {
2256 // If Op1 is true implies Op0 is true, then Op1 is a subset of Op0.
2259 // If Op1 is true implies Op0 is false, then they are not true together.
2261 return ConstantInt::getFalse(Op1
->getType());
2265 if (Value
*V
= simplifyByDomEq(Instruction::And
, Op0
, Op1
, Q
, MaxRecurse
))
2271 Value
*llvm::simplifyAndInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
2272 return ::simplifyAndInst(Op0
, Op1
, Q
, RecursionLimit
);
2275 // TODO: Many of these folds could use LogicalAnd/LogicalOr.
2276 static Value
*simplifyOrLogic(Value
*X
, Value
*Y
) {
2277 assert(X
->getType() == Y
->getType() && "Expected same type for 'or' ops");
2278 Type
*Ty
= X
->getType();
2281 if (match(Y
, m_Not(m_Specific(X
))))
2282 return ConstantInt::getAllOnesValue(Ty
);
2284 // X | ~(X & ?) = -1
2285 if (match(Y
, m_Not(m_c_And(m_Specific(X
), m_Value()))))
2286 return ConstantInt::getAllOnesValue(Ty
);
2288 // X | (X & ?) --> X
2289 if (match(Y
, m_c_And(m_Specific(X
), m_Value())))
2294 // (A ^ B) | (A | B) --> A | B
2295 // (A ^ B) | (B | A) --> B | A
2296 if (match(X
, m_Xor(m_Value(A
), m_Value(B
))) &&
2297 match(Y
, m_c_Or(m_Specific(A
), m_Specific(B
))))
2300 // ~(A ^ B) | (A | B) --> -1
2301 // ~(A ^ B) | (B | A) --> -1
2302 if (match(X
, m_Not(m_Xor(m_Value(A
), m_Value(B
)))) &&
2303 match(Y
, m_c_Or(m_Specific(A
), m_Specific(B
))))
2304 return ConstantInt::getAllOnesValue(Ty
);
2306 // (A & ~B) | (A ^ B) --> A ^ B
2307 // (~B & A) | (A ^ B) --> A ^ B
2308 // (A & ~B) | (B ^ A) --> B ^ A
2309 // (~B & A) | (B ^ A) --> B ^ A
2310 if (match(X
, m_c_And(m_Value(A
), m_Not(m_Value(B
)))) &&
2311 match(Y
, m_c_Xor(m_Specific(A
), m_Specific(B
))))
2314 // (~A ^ B) | (A & B) --> ~A ^ B
2315 // (B ^ ~A) | (A & B) --> B ^ ~A
2316 // (~A ^ B) | (B & A) --> ~A ^ B
2317 // (B ^ ~A) | (B & A) --> B ^ ~A
2318 if (match(X
, m_c_Xor(m_NotForbidUndef(m_Value(A
)), m_Value(B
))) &&
2319 match(Y
, m_c_And(m_Specific(A
), m_Specific(B
))))
2322 // (~A | B) | (A ^ B) --> -1
2323 // (~A | B) | (B ^ A) --> -1
2324 // (B | ~A) | (A ^ B) --> -1
2325 // (B | ~A) | (B ^ A) --> -1
2326 if (match(X
, m_c_Or(m_Not(m_Value(A
)), m_Value(B
))) &&
2327 match(Y
, m_c_Xor(m_Specific(A
), m_Specific(B
))))
2328 return ConstantInt::getAllOnesValue(Ty
);
2330 // (~A & B) | ~(A | B) --> ~A
2331 // (~A & B) | ~(B | A) --> ~A
2332 // (B & ~A) | ~(A | B) --> ~A
2333 // (B & ~A) | ~(B | A) --> ~A
2336 m_c_And(m_CombineAnd(m_Value(NotA
), m_NotForbidUndef(m_Value(A
))),
2338 match(Y
, m_Not(m_c_Or(m_Specific(A
), m_Specific(B
)))))
2340 // The same is true of Logical And
2341 // TODO: This could share the logic of the version above if there was a
2342 // version of LogicalAnd that allowed more than just i1 types.
2343 if (match(X
, m_c_LogicalAnd(
2344 m_CombineAnd(m_Value(NotA
), m_NotForbidUndef(m_Value(A
))),
2346 match(Y
, m_Not(m_c_LogicalOr(m_Specific(A
), m_Specific(B
)))))
2349 // ~(A ^ B) | (A & B) --> ~(A ^ B)
2350 // ~(A ^ B) | (B & A) --> ~(A ^ B)
2352 if (match(X
, m_CombineAnd(m_NotForbidUndef(m_Xor(m_Value(A
), m_Value(B
))),
2354 match(Y
, m_c_And(m_Specific(A
), m_Specific(B
))))
2357 // ~(A & B) | (A ^ B) --> ~(A & B)
2358 // ~(A & B) | (B ^ A) --> ~(A & B)
2359 if (match(X
, m_CombineAnd(m_NotForbidUndef(m_And(m_Value(A
), m_Value(B
))),
2361 match(Y
, m_c_Xor(m_Specific(A
), m_Specific(B
))))
2367 /// Given operands for an Or, see if we can fold the result.
2368 /// If not, this returns null.
2369 static Value
*simplifyOrInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
2370 unsigned MaxRecurse
) {
2371 if (Constant
*C
= foldOrCommuteConstant(Instruction::Or
, Op0
, Op1
, Q
))
2374 // X | poison -> poison
2375 if (isa
<PoisonValue
>(Op1
))
2380 // Do not return Op1 because it may contain undef elements if it's a vector.
2381 if (Q
.isUndefValue(Op1
) || match(Op1
, m_AllOnes()))
2382 return Constant::getAllOnesValue(Op0
->getType());
2386 if (Op0
== Op1
|| match(Op1
, m_Zero()))
2389 if (Value
*R
= simplifyOrLogic(Op0
, Op1
))
2391 if (Value
*R
= simplifyOrLogic(Op1
, Op0
))
2394 if (Value
*V
= simplifyLogicOfAddSub(Op0
, Op1
, Instruction::Or
))
2397 // Rotated -1 is still -1:
2398 // (-1 << X) | (-1 >> (C - X)) --> -1
2399 // (-1 >> X) | (-1 << (C - X)) --> -1
2400 // ...with C <= bitwidth (and commuted variants).
2402 if ((match(Op0
, m_Shl(m_AllOnes(), m_Value(X
))) &&
2403 match(Op1
, m_LShr(m_AllOnes(), m_Value(Y
)))) ||
2404 (match(Op1
, m_Shl(m_AllOnes(), m_Value(X
))) &&
2405 match(Op0
, m_LShr(m_AllOnes(), m_Value(Y
))))) {
2407 if ((match(X
, m_Sub(m_APInt(C
), m_Specific(Y
))) ||
2408 match(Y
, m_Sub(m_APInt(C
), m_Specific(X
)))) &&
2409 C
->ule(X
->getType()->getScalarSizeInBits())) {
2410 return ConstantInt::getAllOnesValue(X
->getType());
2414 // A funnel shift (rotate) can be decomposed into simpler shifts. See if we
2415 // are mixing in another shift that is redundant with the funnel shift.
2417 // (fshl X, ?, Y) | (shl X, Y) --> fshl X, ?, Y
2418 // (shl X, Y) | (fshl X, ?, Y) --> fshl X, ?, Y
2420 m_Intrinsic
<Intrinsic::fshl
>(m_Value(X
), m_Value(), m_Value(Y
))) &&
2421 match(Op1
, m_Shl(m_Specific(X
), m_Specific(Y
))))
2424 m_Intrinsic
<Intrinsic::fshl
>(m_Value(X
), m_Value(), m_Value(Y
))) &&
2425 match(Op0
, m_Shl(m_Specific(X
), m_Specific(Y
))))
2428 // (fshr ?, X, Y) | (lshr X, Y) --> fshr ?, X, Y
2429 // (lshr X, Y) | (fshr ?, X, Y) --> fshr ?, X, Y
2431 m_Intrinsic
<Intrinsic::fshr
>(m_Value(), m_Value(X
), m_Value(Y
))) &&
2432 match(Op1
, m_LShr(m_Specific(X
), m_Specific(Y
))))
2435 m_Intrinsic
<Intrinsic::fshr
>(m_Value(), m_Value(X
), m_Value(Y
))) &&
2436 match(Op0
, m_LShr(m_Specific(X
), m_Specific(Y
))))
2439 if (Value
*V
= simplifyAndOrOfCmps(Q
, Op0
, Op1
, false))
2442 // If we have a multiplication overflow check that is being 'and'ed with a
2443 // check that one of the multipliers is not zero, we can omit the 'and', and
2444 // only keep the overflow check.
2445 if (isCheckForZeroAndMulWithOverflow(Op0
, Op1
, false))
2447 if (isCheckForZeroAndMulWithOverflow(Op1
, Op0
, false))
2450 // Try some generic simplifications for associative operations.
2452 simplifyAssociativeBinOp(Instruction::Or
, Op0
, Op1
, Q
, MaxRecurse
))
2455 // Or distributes over And. Try some generic simplifications based on this.
2456 if (Value
*V
= expandCommutativeBinOp(Instruction::Or
, Op0
, Op1
,
2457 Instruction::And
, Q
, MaxRecurse
))
2460 if (isa
<SelectInst
>(Op0
) || isa
<SelectInst
>(Op1
)) {
2461 if (Op0
->getType()->isIntOrIntVectorTy(1)) {
2462 // A | (A || B) -> A || B
2463 if (match(Op1
, m_Select(m_Specific(Op0
), m_One(), m_Value())))
2465 else if (match(Op0
, m_Select(m_Specific(Op1
), m_One(), m_Value())))
2468 // If the operation is with the result of a select instruction, check
2469 // whether operating on either branch of the select always yields the same
2472 threadBinOpOverSelect(Instruction::Or
, Op0
, Op1
, Q
, MaxRecurse
))
2476 // (A & C1)|(B & C2)
2478 const APInt
*C1
, *C2
;
2479 if (match(Op0
, m_And(m_Value(A
), m_APInt(C1
))) &&
2480 match(Op1
, m_And(m_Value(B
), m_APInt(C2
)))) {
2482 // (A & C1)|(B & C2)
2483 // If we have: ((V + N) & C1) | (V & C2)
2484 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
2485 // replace with V+N.
2487 if (C2
->isMask() && // C2 == 0+1+
2488 match(A
, m_c_Add(m_Specific(B
), m_Value(N
)))) {
2489 // Add commutes, try both ways.
2490 if (MaskedValueIsZero(N
, *C2
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2493 // Or commutes, try both ways.
2494 if (C1
->isMask() && match(B
, m_c_Add(m_Specific(A
), m_Value(N
)))) {
2495 // Add commutes, try both ways.
2496 if (MaskedValueIsZero(N
, *C1
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
2502 // If the operation is with the result of a phi instruction, check whether
2503 // operating on all incoming values of the phi always yields the same value.
2504 if (isa
<PHINode
>(Op0
) || isa
<PHINode
>(Op1
))
2505 if (Value
*V
= threadBinOpOverPHI(Instruction::Or
, Op0
, Op1
, Q
, MaxRecurse
))
2508 if (Op0
->getType()->isIntOrIntVectorTy(1)) {
2509 if (std::optional
<bool> Implied
=
2510 isImpliedCondition(Op0
, Op1
, Q
.DL
, false)) {
2511 // If Op0 is false implies Op1 is false, then Op1 is a subset of Op0.
2512 if (*Implied
== false)
2514 // If Op0 is false implies Op1 is true, then at least one is always true.
2515 if (*Implied
== true)
2516 return ConstantInt::getTrue(Op0
->getType());
2518 if (std::optional
<bool> Implied
=
2519 isImpliedCondition(Op1
, Op0
, Q
.DL
, false)) {
2520 // If Op1 is false implies Op0 is false, then Op0 is a subset of Op1.
2521 if (*Implied
== false)
2523 // If Op1 is false implies Op0 is true, then at least one is always true.
2524 if (*Implied
== true)
2525 return ConstantInt::getTrue(Op1
->getType());
2529 if (Value
*V
= simplifyByDomEq(Instruction::Or
, Op0
, Op1
, Q
, MaxRecurse
))
2535 Value
*llvm::simplifyOrInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
2536 return ::simplifyOrInst(Op0
, Op1
, Q
, RecursionLimit
);
2539 /// Given operands for a Xor, see if we can fold the result.
2540 /// If not, this returns null.
2541 static Value
*simplifyXorInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
2542 unsigned MaxRecurse
) {
2543 if (Constant
*C
= foldOrCommuteConstant(Instruction::Xor
, Op0
, Op1
, Q
))
2546 // X ^ poison -> poison
2547 if (isa
<PoisonValue
>(Op1
))
2550 // A ^ undef -> undef
2551 if (Q
.isUndefValue(Op1
))
2555 if (match(Op1
, m_Zero()))
2560 return Constant::getNullValue(Op0
->getType());
2562 // A ^ ~A = ~A ^ A = -1
2563 if (match(Op0
, m_Not(m_Specific(Op1
))) || match(Op1
, m_Not(m_Specific(Op0
))))
2564 return Constant::getAllOnesValue(Op0
->getType());
2566 auto foldAndOrNot
= [](Value
*X
, Value
*Y
) -> Value
* {
2568 // (~A & B) ^ (A | B) --> A -- There are 8 commuted variants.
2569 if (match(X
, m_c_And(m_Not(m_Value(A
)), m_Value(B
))) &&
2570 match(Y
, m_c_Or(m_Specific(A
), m_Specific(B
))))
2573 // (~A | B) ^ (A & B) --> ~A -- There are 8 commuted variants.
2574 // The 'not' op must contain a complete -1 operand (no undef elements for
2575 // vector) for the transform to be safe.
2578 m_c_Or(m_CombineAnd(m_NotForbidUndef(m_Value(A
)), m_Value(NotA
)),
2580 match(Y
, m_c_And(m_Specific(A
), m_Specific(B
))))
2585 if (Value
*R
= foldAndOrNot(Op0
, Op1
))
2587 if (Value
*R
= foldAndOrNot(Op1
, Op0
))
2590 if (Value
*V
= simplifyLogicOfAddSub(Op0
, Op1
, Instruction::Xor
))
2593 // Try some generic simplifications for associative operations.
2595 simplifyAssociativeBinOp(Instruction::Xor
, Op0
, Op1
, Q
, MaxRecurse
))
2598 // Threading Xor over selects and phi nodes is pointless, so don't bother.
2599 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
2600 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
2601 // only if B and C are equal. If B and C are equal then (since we assume
2602 // that operands have already been simplified) "select(cond, B, C)" should
2603 // have been simplified to the common value of B and C already. Analysing
2604 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
2605 // for threading over phi nodes.
2607 if (Value
*V
= simplifyByDomEq(Instruction::Xor
, Op0
, Op1
, Q
, MaxRecurse
))
2613 Value
*llvm::simplifyXorInst(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
) {
2614 return ::simplifyXorInst(Op0
, Op1
, Q
, RecursionLimit
);
2617 static Type
*getCompareTy(Value
*Op
) {
2618 return CmpInst::makeCmpResultType(Op
->getType());
2621 /// Rummage around inside V looking for something equivalent to the comparison
2622 /// "LHS Pred RHS". Return such a value if found, otherwise return null.
2623 /// Helper function for analyzing max/min idioms.
2624 static Value
*extractEquivalentCondition(Value
*V
, CmpInst::Predicate Pred
,
2625 Value
*LHS
, Value
*RHS
) {
2626 SelectInst
*SI
= dyn_cast
<SelectInst
>(V
);
2629 CmpInst
*Cmp
= dyn_cast
<CmpInst
>(SI
->getCondition());
2632 Value
*CmpLHS
= Cmp
->getOperand(0), *CmpRHS
= Cmp
->getOperand(1);
2633 if (Pred
== Cmp
->getPredicate() && LHS
== CmpLHS
&& RHS
== CmpRHS
)
2635 if (Pred
== CmpInst::getSwappedPredicate(Cmp
->getPredicate()) &&
2636 LHS
== CmpRHS
&& RHS
== CmpLHS
)
2641 /// Return true if the underlying object (storage) must be disjoint from
2642 /// storage returned by any noalias return call.
2643 static bool isAllocDisjoint(const Value
*V
) {
2644 // For allocas, we consider only static ones (dynamic
2645 // allocas might be transformed into calls to malloc not simultaneously
2646 // live with the compared-to allocation). For globals, we exclude symbols
2647 // that might be resolve lazily to symbols in another dynamically-loaded
2648 // library (and, thus, could be malloc'ed by the implementation).
2649 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
))
2650 return AI
->isStaticAlloca();
2651 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(V
))
2652 return (GV
->hasLocalLinkage() || GV
->hasHiddenVisibility() ||
2653 GV
->hasProtectedVisibility() || GV
->hasGlobalUnnamedAddr()) &&
2654 !GV
->isThreadLocal();
2655 if (const Argument
*A
= dyn_cast
<Argument
>(V
))
2656 return A
->hasByValAttr();
2660 /// Return true if V1 and V2 are each the base of some distict storage region
2661 /// [V, object_size(V)] which do not overlap. Note that zero sized regions
2662 /// *are* possible, and that zero sized regions do not overlap with any other.
2663 static bool haveNonOverlappingStorage(const Value
*V1
, const Value
*V2
) {
2664 // Global variables always exist, so they always exist during the lifetime
2665 // of each other and all allocas. Global variables themselves usually have
2666 // non-overlapping storage, but since their addresses are constants, the
2667 // case involving two globals does not reach here and is instead handled in
2668 // constant folding.
2670 // Two different allocas usually have different addresses...
2672 // However, if there's an @llvm.stackrestore dynamically in between two
2673 // allocas, they may have the same address. It's tempting to reduce the
2674 // scope of the problem by only looking at *static* allocas here. That would
2675 // cover the majority of allocas while significantly reducing the likelihood
2676 // of having an @llvm.stackrestore pop up in the middle. However, it's not
2677 // actually impossible for an @llvm.stackrestore to pop up in the middle of
2678 // an entry block. Also, if we have a block that's not attached to a
2679 // function, we can't tell if it's "static" under the current definition.
2680 // Theoretically, this problem could be fixed by creating a new kind of
2681 // instruction kind specifically for static allocas. Such a new instruction
2682 // could be required to be at the top of the entry block, thus preventing it
2683 // from being subject to a @llvm.stackrestore. Instcombine could even
2684 // convert regular allocas into these special allocas. It'd be nifty.
2685 // However, until then, this problem remains open.
2687 // So, we'll assume that two non-empty allocas have different addresses
2689 auto isByValArg
= [](const Value
*V
) {
2690 const Argument
*A
= dyn_cast
<Argument
>(V
);
2691 return A
&& A
->hasByValAttr();
2694 // Byval args are backed by store which does not overlap with each other,
2695 // allocas, or globals.
2697 return isa
<AllocaInst
>(V2
) || isa
<GlobalVariable
>(V2
) || isByValArg(V2
);
2699 return isa
<AllocaInst
>(V1
) || isa
<GlobalVariable
>(V1
) || isByValArg(V1
);
2701 return isa
<AllocaInst
>(V1
) &&
2702 (isa
<AllocaInst
>(V2
) || isa
<GlobalVariable
>(V2
));
2705 // A significant optimization not implemented here is assuming that alloca
2706 // addresses are not equal to incoming argument values. They don't *alias*,
2707 // as we say, but that doesn't mean they aren't equal, so we take a
2708 // conservative approach.
2710 // This is inspired in part by C++11 5.10p1:
2711 // "Two pointers of the same type compare equal if and only if they are both
2712 // null, both point to the same function, or both represent the same
2715 // This is pretty permissive.
2717 // It's also partly due to C11 6.5.9p6:
2718 // "Two pointers compare equal if and only if both are null pointers, both are
2719 // pointers to the same object (including a pointer to an object and a
2720 // subobject at its beginning) or function, both are pointers to one past the
2721 // last element of the same array object, or one is a pointer to one past the
2722 // end of one array object and the other is a pointer to the start of a
2723 // different array object that happens to immediately follow the first array
2724 // object in the address space.)
2726 // C11's version is more restrictive, however there's no reason why an argument
2727 // couldn't be a one-past-the-end value for a stack object in the caller and be
2728 // equal to the beginning of a stack object in the callee.
2730 // If the C and C++ standards are ever made sufficiently restrictive in this
2731 // area, it may be possible to update LLVM's semantics accordingly and reinstate
2732 // this optimization.
2733 static Constant
*computePointerICmp(CmpInst::Predicate Pred
, Value
*LHS
,
2734 Value
*RHS
, const SimplifyQuery
&Q
) {
2735 assert(LHS
->getType() == RHS
->getType() && "Must have same types");
2736 const DataLayout
&DL
= Q
.DL
;
2737 const TargetLibraryInfo
*TLI
= Q
.TLI
;
2738 const DominatorTree
*DT
= Q
.DT
;
2739 const Instruction
*CxtI
= Q
.CxtI
;
2741 // We can only fold certain predicates on pointer comparisons.
2746 // Equality comparisons are easy to fold.
2747 case CmpInst::ICMP_EQ
:
2748 case CmpInst::ICMP_NE
:
2751 // We can only handle unsigned relational comparisons because 'inbounds' on
2752 // a GEP only protects against unsigned wrapping.
2753 case CmpInst::ICMP_UGT
:
2754 case CmpInst::ICMP_UGE
:
2755 case CmpInst::ICMP_ULT
:
2756 case CmpInst::ICMP_ULE
:
2757 // However, we have to switch them to their signed variants to handle
2758 // negative indices from the base pointer.
2759 Pred
= ICmpInst::getSignedPredicate(Pred
);
2763 // Strip off any constant offsets so that we can reason about them.
2764 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
2765 // here and compare base addresses like AliasAnalysis does, however there are
2766 // numerous hazards. AliasAnalysis and its utilities rely on special rules
2767 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
2768 // doesn't need to guarantee pointer inequality when it says NoAlias.
2770 // Even if an non-inbounds GEP occurs along the path we can still optimize
2771 // equality comparisons concerning the result.
2772 bool AllowNonInbounds
= ICmpInst::isEquality(Pred
);
2773 unsigned IndexSize
= DL
.getIndexTypeSizeInBits(LHS
->getType());
2774 APInt
LHSOffset(IndexSize
, 0), RHSOffset(IndexSize
, 0);
2775 LHS
= LHS
->stripAndAccumulateConstantOffsets(DL
, LHSOffset
, AllowNonInbounds
);
2776 RHS
= RHS
->stripAndAccumulateConstantOffsets(DL
, RHSOffset
, AllowNonInbounds
);
2778 // If LHS and RHS are related via constant offsets to the same base
2779 // value, we can replace it with an icmp which just compares the offsets.
2781 return ConstantInt::get(getCompareTy(LHS
),
2782 ICmpInst::compare(LHSOffset
, RHSOffset
, Pred
));
2784 // Various optimizations for (in)equality comparisons.
2785 if (Pred
== CmpInst::ICMP_EQ
|| Pred
== CmpInst::ICMP_NE
) {
2786 // Different non-empty allocations that exist at the same time have
2787 // different addresses (if the program can tell). If the offsets are
2788 // within the bounds of their allocations (and not one-past-the-end!
2789 // so we can't use inbounds!), and their allocations aren't the same,
2790 // the pointers are not equal.
2791 if (haveNonOverlappingStorage(LHS
, RHS
)) {
2792 uint64_t LHSSize
, RHSSize
;
2793 ObjectSizeOpts Opts
;
2794 Opts
.EvalMode
= ObjectSizeOpts::Mode::Min
;
2795 auto *F
= [](Value
*V
) -> Function
* {
2796 if (auto *I
= dyn_cast
<Instruction
>(V
))
2797 return I
->getFunction();
2798 if (auto *A
= dyn_cast
<Argument
>(V
))
2799 return A
->getParent();
2802 Opts
.NullIsUnknownSize
= F
? NullPointerIsDefined(F
) : true;
2803 if (getObjectSize(LHS
, LHSSize
, DL
, TLI
, Opts
) &&
2804 getObjectSize(RHS
, RHSSize
, DL
, TLI
, Opts
)) {
2805 APInt Dist
= LHSOffset
- RHSOffset
;
2806 if (Dist
.isNonNegative() ? Dist
.ult(LHSSize
) : (-Dist
).ult(RHSSize
))
2807 return ConstantInt::get(getCompareTy(LHS
),
2808 !CmpInst::isTrueWhenEqual(Pred
));
2812 // If one side of the equality comparison must come from a noalias call
2813 // (meaning a system memory allocation function), and the other side must
2814 // come from a pointer that cannot overlap with dynamically-allocated
2815 // memory within the lifetime of the current function (allocas, byval
2816 // arguments, globals), then determine the comparison result here.
2817 SmallVector
<const Value
*, 8> LHSUObjs
, RHSUObjs
;
2818 getUnderlyingObjects(LHS
, LHSUObjs
);
2819 getUnderlyingObjects(RHS
, RHSUObjs
);
2821 // Is the set of underlying objects all noalias calls?
2822 auto IsNAC
= [](ArrayRef
<const Value
*> Objects
) {
2823 return all_of(Objects
, isNoAliasCall
);
2826 // Is the set of underlying objects all things which must be disjoint from
2827 // noalias calls. We assume that indexing from such disjoint storage
2828 // into the heap is undefined, and thus offsets can be safely ignored.
2829 auto IsAllocDisjoint
= [](ArrayRef
<const Value
*> Objects
) {
2830 return all_of(Objects
, ::isAllocDisjoint
);
2833 if ((IsNAC(LHSUObjs
) && IsAllocDisjoint(RHSUObjs
)) ||
2834 (IsNAC(RHSUObjs
) && IsAllocDisjoint(LHSUObjs
)))
2835 return ConstantInt::get(getCompareTy(LHS
),
2836 !CmpInst::isTrueWhenEqual(Pred
));
2838 // Fold comparisons for non-escaping pointer even if the allocation call
2839 // cannot be elided. We cannot fold malloc comparison to null. Also, the
2840 // dynamic allocation call could be either of the operands. Note that
2841 // the other operand can not be based on the alloc - if it were, then
2842 // the cmp itself would be a capture.
2843 Value
*MI
= nullptr;
2844 if (isAllocLikeFn(LHS
, TLI
) &&
2845 llvm::isKnownNonZero(RHS
, DL
, 0, nullptr, CxtI
, DT
))
2847 else if (isAllocLikeFn(RHS
, TLI
) &&
2848 llvm::isKnownNonZero(LHS
, DL
, 0, nullptr, CxtI
, DT
))
2851 // FIXME: This is incorrect, see PR54002. While we can assume that the
2852 // allocation is at an address that makes the comparison false, this
2853 // requires that *all* comparisons to that address be false, which
2854 // InstSimplify cannot guarantee.
2855 struct CustomCaptureTracker
: public CaptureTracker
{
2856 bool Captured
= false;
2857 void tooManyUses() override
{ Captured
= true; }
2858 bool captured(const Use
*U
) override
{
2859 if (auto *ICmp
= dyn_cast
<ICmpInst
>(U
->getUser())) {
2860 // Comparison against value stored in global variable. Given the
2861 // pointer does not escape, its value cannot be guessed and stored
2862 // separately in a global variable.
2863 unsigned OtherIdx
= 1 - U
->getOperandNo();
2864 auto *LI
= dyn_cast
<LoadInst
>(ICmp
->getOperand(OtherIdx
));
2865 if (LI
&& isa
<GlobalVariable
>(LI
->getPointerOperand()))
2873 CustomCaptureTracker Tracker
;
2874 PointerMayBeCaptured(MI
, &Tracker
);
2875 if (!Tracker
.Captured
)
2876 return ConstantInt::get(getCompareTy(LHS
),
2877 CmpInst::isFalseWhenEqual(Pred
));
2885 /// Fold an icmp when its operands have i1 scalar type.
2886 static Value
*simplifyICmpOfBools(CmpInst::Predicate Pred
, Value
*LHS
,
2887 Value
*RHS
, const SimplifyQuery
&Q
) {
2888 Type
*ITy
= getCompareTy(LHS
); // The return type.
2889 Type
*OpTy
= LHS
->getType(); // The operand type.
2890 if (!OpTy
->isIntOrIntVectorTy(1))
2893 // A boolean compared to true/false can be reduced in 14 out of the 20
2894 // (10 predicates * 2 constants) possible combinations. The other
2895 // 6 cases require a 'not' of the LHS.
2897 auto ExtractNotLHS
= [](Value
*V
) -> Value
* {
2899 if (match(V
, m_Not(m_Value(X
))))
2904 if (match(RHS
, m_Zero())) {
2906 case CmpInst::ICMP_NE
: // X != 0 -> X
2907 case CmpInst::ICMP_UGT
: // X >u 0 -> X
2908 case CmpInst::ICMP_SLT
: // X <s 0 -> X
2911 case CmpInst::ICMP_EQ
: // not(X) == 0 -> X != 0 -> X
2912 case CmpInst::ICMP_ULE
: // not(X) <=u 0 -> X >u 0 -> X
2913 case CmpInst::ICMP_SGE
: // not(X) >=s 0 -> X <s 0 -> X
2914 if (Value
*X
= ExtractNotLHS(LHS
))
2918 case CmpInst::ICMP_ULT
: // X <u 0 -> false
2919 case CmpInst::ICMP_SGT
: // X >s 0 -> false
2920 return getFalse(ITy
);
2922 case CmpInst::ICMP_UGE
: // X >=u 0 -> true
2923 case CmpInst::ICMP_SLE
: // X <=s 0 -> true
2924 return getTrue(ITy
);
2929 } else if (match(RHS
, m_One())) {
2931 case CmpInst::ICMP_EQ
: // X == 1 -> X
2932 case CmpInst::ICMP_UGE
: // X >=u 1 -> X
2933 case CmpInst::ICMP_SLE
: // X <=s -1 -> X
2936 case CmpInst::ICMP_NE
: // not(X) != 1 -> X == 1 -> X
2937 case CmpInst::ICMP_ULT
: // not(X) <=u 1 -> X >=u 1 -> X
2938 case CmpInst::ICMP_SGT
: // not(X) >s 1 -> X <=s -1 -> X
2939 if (Value
*X
= ExtractNotLHS(LHS
))
2943 case CmpInst::ICMP_UGT
: // X >u 1 -> false
2944 case CmpInst::ICMP_SLT
: // X <s -1 -> false
2945 return getFalse(ITy
);
2947 case CmpInst::ICMP_ULE
: // X <=u 1 -> true
2948 case CmpInst::ICMP_SGE
: // X >=s -1 -> true
2949 return getTrue(ITy
);
2959 case ICmpInst::ICMP_UGE
:
2960 if (isImpliedCondition(RHS
, LHS
, Q
.DL
).value_or(false))
2961 return getTrue(ITy
);
2963 case ICmpInst::ICMP_SGE
:
2964 /// For signed comparison, the values for an i1 are 0 and -1
2965 /// respectively. This maps into a truth table of:
2966 /// LHS | RHS | LHS >=s RHS | LHS implies RHS
2967 /// 0 | 0 | 1 (0 >= 0) | 1
2968 /// 0 | 1 | 1 (0 >= -1) | 1
2969 /// 1 | 0 | 0 (-1 >= 0) | 0
2970 /// 1 | 1 | 1 (-1 >= -1) | 1
2971 if (isImpliedCondition(LHS
, RHS
, Q
.DL
).value_or(false))
2972 return getTrue(ITy
);
2974 case ICmpInst::ICMP_ULE
:
2975 if (isImpliedCondition(LHS
, RHS
, Q
.DL
).value_or(false))
2976 return getTrue(ITy
);
2978 case ICmpInst::ICMP_SLE
:
2979 /// SLE follows the same logic as SGE with the LHS and RHS swapped.
2980 if (isImpliedCondition(RHS
, LHS
, Q
.DL
).value_or(false))
2981 return getTrue(ITy
);
2988 /// Try hard to fold icmp with zero RHS because this is a common case.
2989 static Value
*simplifyICmpWithZero(CmpInst::Predicate Pred
, Value
*LHS
,
2990 Value
*RHS
, const SimplifyQuery
&Q
) {
2991 if (!match(RHS
, m_Zero()))
2994 Type
*ITy
= getCompareTy(LHS
); // The return type.
2997 llvm_unreachable("Unknown ICmp predicate!");
2998 case ICmpInst::ICMP_ULT
:
2999 return getFalse(ITy
);
3000 case ICmpInst::ICMP_UGE
:
3001 return getTrue(ITy
);
3002 case ICmpInst::ICMP_EQ
:
3003 case ICmpInst::ICMP_ULE
:
3004 if (isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
, Q
.IIQ
.UseInstrInfo
))
3005 return getFalse(ITy
);
3007 case ICmpInst::ICMP_NE
:
3008 case ICmpInst::ICMP_UGT
:
3009 if (isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
, Q
.IIQ
.UseInstrInfo
))
3010 return getTrue(ITy
);
3012 case ICmpInst::ICMP_SLT
: {
3013 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
3014 if (LHSKnown
.isNegative())
3015 return getTrue(ITy
);
3016 if (LHSKnown
.isNonNegative())
3017 return getFalse(ITy
);
3020 case ICmpInst::ICMP_SLE
: {
3021 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
3022 if (LHSKnown
.isNegative())
3023 return getTrue(ITy
);
3024 if (LHSKnown
.isNonNegative() &&
3025 isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
3026 return getFalse(ITy
);
3029 case ICmpInst::ICMP_SGE
: {
3030 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
3031 if (LHSKnown
.isNegative())
3032 return getFalse(ITy
);
3033 if (LHSKnown
.isNonNegative())
3034 return getTrue(ITy
);
3037 case ICmpInst::ICMP_SGT
: {
3038 KnownBits LHSKnown
= computeKnownBits(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
3039 if (LHSKnown
.isNegative())
3040 return getFalse(ITy
);
3041 if (LHSKnown
.isNonNegative() &&
3042 isKnownNonZero(LHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
3043 return getTrue(ITy
);
3051 static Value
*simplifyICmpWithConstant(CmpInst::Predicate Pred
, Value
*LHS
,
3052 Value
*RHS
, const InstrInfoQuery
&IIQ
) {
3053 Type
*ITy
= getCompareTy(RHS
); // The return type.
3056 // Sign-bit checks can be optimized to true/false after unsigned
3057 // floating-point casts:
3058 // icmp slt (bitcast (uitofp X)), 0 --> false
3059 // icmp sgt (bitcast (uitofp X)), -1 --> true
3060 if (match(LHS
, m_BitCast(m_UIToFP(m_Value(X
))))) {
3061 if (Pred
== ICmpInst::ICMP_SLT
&& match(RHS
, m_Zero()))
3062 return ConstantInt::getFalse(ITy
);
3063 if (Pred
== ICmpInst::ICMP_SGT
&& match(RHS
, m_AllOnes()))
3064 return ConstantInt::getTrue(ITy
);
3068 if (!match(RHS
, m_APIntAllowUndef(C
)))
3071 // Rule out tautological comparisons (eg., ult 0 or uge 0).
3072 ConstantRange RHS_CR
= ConstantRange::makeExactICmpRegion(Pred
, *C
);
3073 if (RHS_CR
.isEmptySet())
3074 return ConstantInt::getFalse(ITy
);
3075 if (RHS_CR
.isFullSet())
3076 return ConstantInt::getTrue(ITy
);
3078 ConstantRange LHS_CR
=
3079 computeConstantRange(LHS
, CmpInst::isSigned(Pred
), IIQ
.UseInstrInfo
);
3080 if (!LHS_CR
.isFullSet()) {
3081 if (RHS_CR
.contains(LHS_CR
))
3082 return ConstantInt::getTrue(ITy
);
3083 if (RHS_CR
.inverse().contains(LHS_CR
))
3084 return ConstantInt::getFalse(ITy
);
3087 // (mul nuw/nsw X, MulC) != C --> true (if C is not a multiple of MulC)
3088 // (mul nuw/nsw X, MulC) == C --> false (if C is not a multiple of MulC)
3090 if (IIQ
.UseInstrInfo
&& ICmpInst::isEquality(Pred
) &&
3091 ((match(LHS
, m_NUWMul(m_Value(), m_APIntAllowUndef(MulC
))) &&
3092 *MulC
!= 0 && C
->urem(*MulC
) != 0) ||
3093 (match(LHS
, m_NSWMul(m_Value(), m_APIntAllowUndef(MulC
))) &&
3094 *MulC
!= 0 && C
->srem(*MulC
) != 0)))
3095 return ConstantInt::get(ITy
, Pred
== ICmpInst::ICMP_NE
);
3100 static Value
*simplifyICmpWithBinOpOnLHS(CmpInst::Predicate Pred
,
3101 BinaryOperator
*LBO
, Value
*RHS
,
3102 const SimplifyQuery
&Q
,
3103 unsigned MaxRecurse
) {
3104 Type
*ITy
= getCompareTy(RHS
); // The return type.
3107 // icmp pred (or X, Y), X
3108 if (match(LBO
, m_c_Or(m_Value(Y
), m_Specific(RHS
)))) {
3109 if (Pred
== ICmpInst::ICMP_ULT
)
3110 return getFalse(ITy
);
3111 if (Pred
== ICmpInst::ICMP_UGE
)
3112 return getTrue(ITy
);
3114 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SGE
) {
3115 KnownBits RHSKnown
= computeKnownBits(RHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
3116 KnownBits YKnown
= computeKnownBits(Y
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
3117 if (RHSKnown
.isNonNegative() && YKnown
.isNegative())
3118 return Pred
== ICmpInst::ICMP_SLT
? getTrue(ITy
) : getFalse(ITy
);
3119 if (RHSKnown
.isNegative() || YKnown
.isNonNegative())
3120 return Pred
== ICmpInst::ICMP_SLT
? getFalse(ITy
) : getTrue(ITy
);
3124 // icmp pred (and X, Y), X
3125 if (match(LBO
, m_c_And(m_Value(), m_Specific(RHS
)))) {
3126 if (Pred
== ICmpInst::ICMP_UGT
)
3127 return getFalse(ITy
);
3128 if (Pred
== ICmpInst::ICMP_ULE
)
3129 return getTrue(ITy
);
3132 // icmp pred (urem X, Y), Y
3133 if (match(LBO
, m_URem(m_Value(), m_Specific(RHS
)))) {
3137 case ICmpInst::ICMP_SGT
:
3138 case ICmpInst::ICMP_SGE
: {
3139 KnownBits Known
= computeKnownBits(RHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
3140 if (!Known
.isNonNegative())
3144 case ICmpInst::ICMP_EQ
:
3145 case ICmpInst::ICMP_UGT
:
3146 case ICmpInst::ICMP_UGE
:
3147 return getFalse(ITy
);
3148 case ICmpInst::ICMP_SLT
:
3149 case ICmpInst::ICMP_SLE
: {
3150 KnownBits Known
= computeKnownBits(RHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
);
3151 if (!Known
.isNonNegative())
3155 case ICmpInst::ICMP_NE
:
3156 case ICmpInst::ICMP_ULT
:
3157 case ICmpInst::ICMP_ULE
:
3158 return getTrue(ITy
);
3162 // icmp pred (urem X, Y), X
3163 if (match(LBO
, m_URem(m_Specific(RHS
), m_Value()))) {
3164 if (Pred
== ICmpInst::ICMP_ULE
)
3165 return getTrue(ITy
);
3166 if (Pred
== ICmpInst::ICMP_UGT
)
3167 return getFalse(ITy
);
3170 // x >>u y <=u x --> true.
3171 // x >>u y >u x --> false.
3172 // x udiv y <=u x --> true.
3173 // x udiv y >u x --> false.
3174 if (match(LBO
, m_LShr(m_Specific(RHS
), m_Value())) ||
3175 match(LBO
, m_UDiv(m_Specific(RHS
), m_Value()))) {
3176 // icmp pred (X op Y), X
3177 if (Pred
== ICmpInst::ICMP_UGT
)
3178 return getFalse(ITy
);
3179 if (Pred
== ICmpInst::ICMP_ULE
)
3180 return getTrue(ITy
);
3184 // x >>u C <u x --> true for C != 0.
3185 // x >>u C != x --> true for C != 0.
3186 // x >>u C >=u x --> false for C != 0.
3187 // x >>u C == x --> false for C != 0.
3188 // x udiv C <u x --> true for C != 1.
3189 // x udiv C != x --> true for C != 1.
3190 // x udiv C >=u x --> false for C != 1.
3191 // x udiv C == x --> false for C != 1.
3192 // TODO: allow non-constant shift amount/divisor
3194 if ((match(LBO
, m_LShr(m_Specific(RHS
), m_APInt(C
))) && *C
!= 0) ||
3195 (match(LBO
, m_UDiv(m_Specific(RHS
), m_APInt(C
))) && *C
!= 1)) {
3196 if (isKnownNonZero(RHS
, Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
)) {
3200 case ICmpInst::ICMP_EQ
:
3201 case ICmpInst::ICMP_UGE
:
3202 return getFalse(ITy
);
3203 case ICmpInst::ICMP_NE
:
3204 case ICmpInst::ICMP_ULT
:
3205 return getTrue(ITy
);
3206 case ICmpInst::ICMP_UGT
:
3207 case ICmpInst::ICMP_ULE
:
3208 // UGT/ULE are handled by the more general case just above
3209 llvm_unreachable("Unexpected UGT/ULE, should have been handled");
3214 // (x*C1)/C2 <= x for C1 <= C2.
3215 // This holds even if the multiplication overflows: Assume that x != 0 and
3216 // arithmetic is modulo M. For overflow to occur we must have C1 >= M/x and
3217 // thus C2 >= M/x. It follows that (x*C1)/C2 <= (M-1)/C2 <= ((M-1)*x)/M < x.
3219 // Additionally, either the multiplication and division might be represented
3221 // (x*C1)>>C2 <= x for C1 < 2**C2.
3222 // (x<<C1)/C2 <= x for 2**C1 < C2.
3223 const APInt
*C1
, *C2
;
3224 if ((match(LBO
, m_UDiv(m_Mul(m_Specific(RHS
), m_APInt(C1
)), m_APInt(C2
))) &&
3226 (match(LBO
, m_LShr(m_Mul(m_Specific(RHS
), m_APInt(C1
)), m_APInt(C2
))) &&
3227 C1
->ule(APInt(C2
->getBitWidth(), 1) << *C2
)) ||
3228 (match(LBO
, m_UDiv(m_Shl(m_Specific(RHS
), m_APInt(C1
)), m_APInt(C2
))) &&
3229 (APInt(C1
->getBitWidth(), 1) << *C1
).ule(*C2
))) {
3230 if (Pred
== ICmpInst::ICMP_UGT
)
3231 return getFalse(ITy
);
3232 if (Pred
== ICmpInst::ICMP_ULE
)
3233 return getTrue(ITy
);
3236 // (sub C, X) == X, C is odd --> false
3237 // (sub C, X) != X, C is odd --> true
3238 if (match(LBO
, m_Sub(m_APIntAllowUndef(C
), m_Specific(RHS
))) &&
3239 (*C
& 1) == 1 && ICmpInst::isEquality(Pred
))
3240 return (Pred
== ICmpInst::ICMP_EQ
) ? getFalse(ITy
) : getTrue(ITy
);
3245 // If only one of the icmp's operands has NSW flags, try to prove that:
3247 // icmp slt (x + C1), (x +nsw C2)
3249 // is equivalent to:
3253 // which is true if x + C2 has the NSW flags set and:
3254 // *) C1 < C2 && C1 >= 0, or
3255 // *) C2 < C1 && C1 <= 0.
3257 static bool trySimplifyICmpWithAdds(CmpInst::Predicate Pred
, Value
*LHS
,
3258 Value
*RHS
, const InstrInfoQuery
&IIQ
) {
3259 // TODO: only support icmp slt for now.
3260 if (Pred
!= CmpInst::ICMP_SLT
|| !IIQ
.UseInstrInfo
)
3263 // Canonicalize nsw add as RHS.
3264 if (!match(RHS
, m_NSWAdd(m_Value(), m_Value())))
3265 std::swap(LHS
, RHS
);
3266 if (!match(RHS
, m_NSWAdd(m_Value(), m_Value())))
3270 const APInt
*C1
, *C2
;
3271 if (!match(LHS
, m_c_Add(m_Value(X
), m_APInt(C1
))) ||
3272 !match(RHS
, m_c_Add(m_Specific(X
), m_APInt(C2
))))
3275 return (C1
->slt(*C2
) && C1
->isNonNegative()) ||
3276 (C2
->slt(*C1
) && C1
->isNonPositive());
3279 /// TODO: A large part of this logic is duplicated in InstCombine's
3280 /// foldICmpBinOp(). We should be able to share that and avoid the code
3282 static Value
*simplifyICmpWithBinOp(CmpInst::Predicate Pred
, Value
*LHS
,
3283 Value
*RHS
, const SimplifyQuery
&Q
,
3284 unsigned MaxRecurse
) {
3285 BinaryOperator
*LBO
= dyn_cast
<BinaryOperator
>(LHS
);
3286 BinaryOperator
*RBO
= dyn_cast
<BinaryOperator
>(RHS
);
3287 if (MaxRecurse
&& (LBO
|| RBO
)) {
3288 // Analyze the case when either LHS or RHS is an add instruction.
3289 Value
*A
= nullptr, *B
= nullptr, *C
= nullptr, *D
= nullptr;
3290 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
3291 bool NoLHSWrapProblem
= false, NoRHSWrapProblem
= false;
3292 if (LBO
&& LBO
->getOpcode() == Instruction::Add
) {
3293 A
= LBO
->getOperand(0);
3294 B
= LBO
->getOperand(1);
3296 ICmpInst::isEquality(Pred
) ||
3297 (CmpInst::isUnsigned(Pred
) &&
3298 Q
.IIQ
.hasNoUnsignedWrap(cast
<OverflowingBinaryOperator
>(LBO
))) ||
3299 (CmpInst::isSigned(Pred
) &&
3300 Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(LBO
)));
3302 if (RBO
&& RBO
->getOpcode() == Instruction::Add
) {
3303 C
= RBO
->getOperand(0);
3304 D
= RBO
->getOperand(1);
3306 ICmpInst::isEquality(Pred
) ||
3307 (CmpInst::isUnsigned(Pred
) &&
3308 Q
.IIQ
.hasNoUnsignedWrap(cast
<OverflowingBinaryOperator
>(RBO
))) ||
3309 (CmpInst::isSigned(Pred
) &&
3310 Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(RBO
)));
3313 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
3314 if ((A
== RHS
|| B
== RHS
) && NoLHSWrapProblem
)
3315 if (Value
*V
= simplifyICmpInst(Pred
, A
== RHS
? B
: A
,
3316 Constant::getNullValue(RHS
->getType()), Q
,
3320 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
3321 if ((C
== LHS
|| D
== LHS
) && NoRHSWrapProblem
)
3323 simplifyICmpInst(Pred
, Constant::getNullValue(LHS
->getType()),
3324 C
== LHS
? D
: C
, Q
, MaxRecurse
- 1))
3327 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
3328 bool CanSimplify
= (NoLHSWrapProblem
&& NoRHSWrapProblem
) ||
3329 trySimplifyICmpWithAdds(Pred
, LHS
, RHS
, Q
.IIQ
);
3330 if (A
&& C
&& (A
== C
|| A
== D
|| B
== C
|| B
== D
) && CanSimplify
) {
3331 // Determine Y and Z in the form icmp (X+Y), (X+Z).
3334 // C + B == C + D -> B == D
3337 } else if (A
== D
) {
3338 // D + B == C + D -> B == C
3341 } else if (B
== C
) {
3342 // A + C == C + D -> A == D
3347 // A + D == C + D -> A == C
3351 if (Value
*V
= simplifyICmpInst(Pred
, Y
, Z
, Q
, MaxRecurse
- 1))
3357 if (Value
*V
= simplifyICmpWithBinOpOnLHS(Pred
, LBO
, RHS
, Q
, MaxRecurse
))
3361 if (Value
*V
= simplifyICmpWithBinOpOnLHS(
3362 ICmpInst::getSwappedPredicate(Pred
), RBO
, LHS
, Q
, MaxRecurse
))
3365 // 0 - (zext X) pred C
3366 if (!CmpInst::isUnsigned(Pred
) && match(LHS
, m_Neg(m_ZExt(m_Value())))) {
3368 if (match(RHS
, m_APInt(C
))) {
3369 if (C
->isStrictlyPositive()) {
3370 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_NE
)
3371 return ConstantInt::getTrue(getCompareTy(RHS
));
3372 if (Pred
== ICmpInst::ICMP_SGE
|| Pred
== ICmpInst::ICMP_EQ
)
3373 return ConstantInt::getFalse(getCompareTy(RHS
));
3375 if (C
->isNonNegative()) {
3376 if (Pred
== ICmpInst::ICMP_SLE
)
3377 return ConstantInt::getTrue(getCompareTy(RHS
));
3378 if (Pred
== ICmpInst::ICMP_SGT
)
3379 return ConstantInt::getFalse(getCompareTy(RHS
));
3384 // If C2 is a power-of-2 and C is not:
3385 // (C2 << X) == C --> false
3386 // (C2 << X) != C --> true
3388 if (match(LHS
, m_Shl(m_Power2(), m_Value())) &&
3389 match(RHS
, m_APIntAllowUndef(C
)) && !C
->isPowerOf2()) {
3390 // C2 << X can equal zero in some circumstances.
3391 // This simplification might be unsafe if C is zero.
3393 // We know it is safe if:
3394 // - The shift is nsw. We can't shift out the one bit.
3395 // - The shift is nuw. We can't shift out the one bit.
3398 if (Q
.IIQ
.hasNoSignedWrap(cast
<OverflowingBinaryOperator
>(LBO
)) ||
3399 Q
.IIQ
.hasNoUnsignedWrap(cast
<OverflowingBinaryOperator
>(LBO
)) ||
3400 match(LHS
, m_Shl(m_One(), m_Value())) || !C
->isZero()) {
3401 if (Pred
== ICmpInst::ICMP_EQ
)
3402 return ConstantInt::getFalse(getCompareTy(RHS
));
3403 if (Pred
== ICmpInst::ICMP_NE
)
3404 return ConstantInt::getTrue(getCompareTy(RHS
));
3408 // If C is a power-of-2:
3409 // (C << X) >u 0x8000 --> false
3410 // (C << X) <=u 0x8000 --> true
3411 if (match(LHS
, m_Shl(m_Power2(), m_Value())) && match(RHS
, m_SignMask())) {
3412 if (Pred
== ICmpInst::ICMP_UGT
)
3413 return ConstantInt::getFalse(getCompareTy(RHS
));
3414 if (Pred
== ICmpInst::ICMP_ULE
)
3415 return ConstantInt::getTrue(getCompareTy(RHS
));
3418 if (!MaxRecurse
|| !LBO
|| !RBO
|| LBO
->getOpcode() != RBO
->getOpcode())
3421 if (LBO
->getOperand(0) == RBO
->getOperand(0)) {
3422 switch (LBO
->getOpcode()) {
3425 case Instruction::Shl
: {
3426 bool NUW
= Q
.IIQ
.hasNoUnsignedWrap(LBO
) && Q
.IIQ
.hasNoUnsignedWrap(RBO
);
3427 bool NSW
= Q
.IIQ
.hasNoSignedWrap(LBO
) && Q
.IIQ
.hasNoSignedWrap(RBO
);
3428 if (!NUW
|| (ICmpInst::isSigned(Pred
) && !NSW
) ||
3429 !isKnownNonZero(LBO
->getOperand(0), Q
.DL
))
3431 if (Value
*V
= simplifyICmpInst(Pred
, LBO
->getOperand(1),
3432 RBO
->getOperand(1), Q
, MaxRecurse
- 1))
3436 // If C1 & C2 == C1, A = X and/or C1, B = X and/or C2:
3437 // icmp ule A, B -> true
3438 // icmp ugt A, B -> false
3439 // icmp sle A, B -> true (C1 and C2 are the same sign)
3440 // icmp sgt A, B -> false (C1 and C2 are the same sign)
3441 case Instruction::And
:
3442 case Instruction::Or
: {
3443 const APInt
*C1
, *C2
;
3444 if (ICmpInst::isRelational(Pred
) &&
3445 match(LBO
->getOperand(1), m_APInt(C1
)) &&
3446 match(RBO
->getOperand(1), m_APInt(C2
))) {
3447 if (!C1
->isSubsetOf(*C2
)) {
3449 Pred
= ICmpInst::getSwappedPredicate(Pred
);
3451 if (C1
->isSubsetOf(*C2
)) {
3452 if (Pred
== ICmpInst::ICMP_ULE
)
3453 return ConstantInt::getTrue(getCompareTy(LHS
));
3454 if (Pred
== ICmpInst::ICMP_UGT
)
3455 return ConstantInt::getFalse(getCompareTy(LHS
));
3456 if (C1
->isNonNegative() == C2
->isNonNegative()) {
3457 if (Pred
== ICmpInst::ICMP_SLE
)
3458 return ConstantInt::getTrue(getCompareTy(LHS
));
3459 if (Pred
== ICmpInst::ICMP_SGT
)
3460 return ConstantInt::getFalse(getCompareTy(LHS
));
3469 if (LBO
->getOperand(1) == RBO
->getOperand(1)) {
3470 switch (LBO
->getOpcode()) {
3473 case Instruction::UDiv
:
3474 case Instruction::LShr
:
3475 if (ICmpInst::isSigned(Pred
) || !Q
.IIQ
.isExact(LBO
) ||
3476 !Q
.IIQ
.isExact(RBO
))
3478 if (Value
*V
= simplifyICmpInst(Pred
, LBO
->getOperand(0),
3479 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
3482 case Instruction::SDiv
:
3483 if (!ICmpInst::isEquality(Pred
) || !Q
.IIQ
.isExact(LBO
) ||
3484 !Q
.IIQ
.isExact(RBO
))
3486 if (Value
*V
= simplifyICmpInst(Pred
, LBO
->getOperand(0),
3487 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
3490 case Instruction::AShr
:
3491 if (!Q
.IIQ
.isExact(LBO
) || !Q
.IIQ
.isExact(RBO
))
3493 if (Value
*V
= simplifyICmpInst(Pred
, LBO
->getOperand(0),
3494 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
3497 case Instruction::Shl
: {
3498 bool NUW
= Q
.IIQ
.hasNoUnsignedWrap(LBO
) && Q
.IIQ
.hasNoUnsignedWrap(RBO
);
3499 bool NSW
= Q
.IIQ
.hasNoSignedWrap(LBO
) && Q
.IIQ
.hasNoSignedWrap(RBO
);
3502 if (!NSW
&& ICmpInst::isSigned(Pred
))
3504 if (Value
*V
= simplifyICmpInst(Pred
, LBO
->getOperand(0),
3505 RBO
->getOperand(0), Q
, MaxRecurse
- 1))
3514 /// simplify integer comparisons where at least one operand of the compare
3515 /// matches an integer min/max idiom.
3516 static Value
*simplifyICmpWithMinMax(CmpInst::Predicate Pred
, Value
*LHS
,
3517 Value
*RHS
, const SimplifyQuery
&Q
,
3518 unsigned MaxRecurse
) {
3519 Type
*ITy
= getCompareTy(LHS
); // The return type.
3521 CmpInst::Predicate P
= CmpInst::BAD_ICMP_PREDICATE
;
3522 CmpInst::Predicate EqP
; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
3524 // Signed variants on "max(a,b)>=a -> true".
3525 if (match(LHS
, m_SMax(m_Value(A
), m_Value(B
))) && (A
== RHS
|| B
== RHS
)) {
3527 std::swap(A
, B
); // smax(A, B) pred A.
3528 EqP
= CmpInst::ICMP_SGE
; // "A == smax(A, B)" iff "A sge B".
3529 // We analyze this as smax(A, B) pred A.
3531 } else if (match(RHS
, m_SMax(m_Value(A
), m_Value(B
))) &&
3532 (A
== LHS
|| B
== LHS
)) {
3534 std::swap(A
, B
); // A pred smax(A, B).
3535 EqP
= CmpInst::ICMP_SGE
; // "A == smax(A, B)" iff "A sge B".
3536 // We analyze this as smax(A, B) swapped-pred A.
3537 P
= CmpInst::getSwappedPredicate(Pred
);
3538 } else if (match(LHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
3539 (A
== RHS
|| B
== RHS
)) {
3541 std::swap(A
, B
); // smin(A, B) pred A.
3542 EqP
= CmpInst::ICMP_SLE
; // "A == smin(A, B)" iff "A sle B".
3543 // We analyze this as smax(-A, -B) swapped-pred -A.
3544 // Note that we do not need to actually form -A or -B thanks to EqP.
3545 P
= CmpInst::getSwappedPredicate(Pred
);
3546 } else if (match(RHS
, m_SMin(m_Value(A
), m_Value(B
))) &&
3547 (A
== LHS
|| B
== LHS
)) {
3549 std::swap(A
, B
); // A pred smin(A, B).
3550 EqP
= CmpInst::ICMP_SLE
; // "A == smin(A, B)" iff "A sle B".
3551 // We analyze this as smax(-A, -B) pred -A.
3552 // Note that we do not need to actually form -A or -B thanks to EqP.
3555 if (P
!= CmpInst::BAD_ICMP_PREDICATE
) {
3556 // Cases correspond to "max(A, B) p A".
3560 case CmpInst::ICMP_EQ
:
3561 case CmpInst::ICMP_SLE
:
3562 // Equivalent to "A EqP B". This may be the same as the condition tested
3563 // in the max/min; if so, we can just return that.
3564 if (Value
*V
= extractEquivalentCondition(LHS
, EqP
, A
, B
))
3566 if (Value
*V
= extractEquivalentCondition(RHS
, EqP
, A
, B
))
3568 // Otherwise, see if "A EqP B" simplifies.
3570 if (Value
*V
= simplifyICmpInst(EqP
, A
, B
, Q
, MaxRecurse
- 1))
3573 case CmpInst::ICMP_NE
:
3574 case CmpInst::ICMP_SGT
: {
3575 CmpInst::Predicate InvEqP
= CmpInst::getInversePredicate(EqP
);
3576 // Equivalent to "A InvEqP B". This may be the same as the condition
3577 // tested in the max/min; if so, we can just return that.
3578 if (Value
*V
= extractEquivalentCondition(LHS
, InvEqP
, A
, B
))
3580 if (Value
*V
= extractEquivalentCondition(RHS
, InvEqP
, A
, B
))
3582 // Otherwise, see if "A InvEqP B" simplifies.
3584 if (Value
*V
= simplifyICmpInst(InvEqP
, A
, B
, Q
, MaxRecurse
- 1))
3588 case CmpInst::ICMP_SGE
:
3590 return getTrue(ITy
);
3591 case CmpInst::ICMP_SLT
:
3593 return getFalse(ITy
);
3597 // Unsigned variants on "max(a,b)>=a -> true".
3598 P
= CmpInst::BAD_ICMP_PREDICATE
;
3599 if (match(LHS
, m_UMax(m_Value(A
), m_Value(B
))) && (A
== RHS
|| B
== RHS
)) {
3601 std::swap(A
, B
); // umax(A, B) pred A.
3602 EqP
= CmpInst::ICMP_UGE
; // "A == umax(A, B)" iff "A uge B".
3603 // We analyze this as umax(A, B) pred A.
3605 } else if (match(RHS
, m_UMax(m_Value(A
), m_Value(B
))) &&
3606 (A
== LHS
|| B
== LHS
)) {
3608 std::swap(A
, B
); // A pred umax(A, B).
3609 EqP
= CmpInst::ICMP_UGE
; // "A == umax(A, B)" iff "A uge B".
3610 // We analyze this as umax(A, B) swapped-pred A.
3611 P
= CmpInst::getSwappedPredicate(Pred
);
3612 } else if (match(LHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
3613 (A
== RHS
|| B
== RHS
)) {
3615 std::swap(A
, B
); // umin(A, B) pred A.
3616 EqP
= CmpInst::ICMP_ULE
; // "A == umin(A, B)" iff "A ule B".
3617 // We analyze this as umax(-A, -B) swapped-pred -A.
3618 // Note that we do not need to actually form -A or -B thanks to EqP.
3619 P
= CmpInst::getSwappedPredicate(Pred
);
3620 } else if (match(RHS
, m_UMin(m_Value(A
), m_Value(B
))) &&
3621 (A
== LHS
|| B
== LHS
)) {
3623 std::swap(A
, B
); // A pred umin(A, B).
3624 EqP
= CmpInst::ICMP_ULE
; // "A == umin(A, B)" iff "A ule B".
3625 // We analyze this as umax(-A, -B) pred -A.
3626 // Note that we do not need to actually form -A or -B thanks to EqP.
3629 if (P
!= CmpInst::BAD_ICMP_PREDICATE
) {
3630 // Cases correspond to "max(A, B) p A".
3634 case CmpInst::ICMP_EQ
:
3635 case CmpInst::ICMP_ULE
:
3636 // Equivalent to "A EqP B". This may be the same as the condition tested
3637 // in the max/min; if so, we can just return that.
3638 if (Value
*V
= extractEquivalentCondition(LHS
, EqP
, A
, B
))
3640 if (Value
*V
= extractEquivalentCondition(RHS
, EqP
, A
, B
))
3642 // Otherwise, see if "A EqP B" simplifies.
3644 if (Value
*V
= simplifyICmpInst(EqP
, A
, B
, Q
, MaxRecurse
- 1))
3647 case CmpInst::ICMP_NE
:
3648 case CmpInst::ICMP_UGT
: {
3649 CmpInst::Predicate InvEqP
= CmpInst::getInversePredicate(EqP
);
3650 // Equivalent to "A InvEqP B". This may be the same as the condition
3651 // tested in the max/min; if so, we can just return that.
3652 if (Value
*V
= extractEquivalentCondition(LHS
, InvEqP
, A
, B
))
3654 if (Value
*V
= extractEquivalentCondition(RHS
, InvEqP
, A
, B
))
3656 // Otherwise, see if "A InvEqP B" simplifies.
3658 if (Value
*V
= simplifyICmpInst(InvEqP
, A
, B
, Q
, MaxRecurse
- 1))
3662 case CmpInst::ICMP_UGE
:
3663 return getTrue(ITy
);
3664 case CmpInst::ICMP_ULT
:
3665 return getFalse(ITy
);
3669 // Comparing 1 each of min/max with a common operand?
3670 // Canonicalize min operand to RHS.
3671 if (match(LHS
, m_UMin(m_Value(), m_Value())) ||
3672 match(LHS
, m_SMin(m_Value(), m_Value()))) {
3673 std::swap(LHS
, RHS
);
3674 Pred
= ICmpInst::getSwappedPredicate(Pred
);
3678 if (match(LHS
, m_SMax(m_Value(A
), m_Value(B
))) &&
3679 match(RHS
, m_SMin(m_Value(C
), m_Value(D
))) &&
3680 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
3681 // smax(A, B) >=s smin(A, D) --> true
3682 if (Pred
== CmpInst::ICMP_SGE
)
3683 return getTrue(ITy
);
3684 // smax(A, B) <s smin(A, D) --> false
3685 if (Pred
== CmpInst::ICMP_SLT
)
3686 return getFalse(ITy
);
3687 } else if (match(LHS
, m_UMax(m_Value(A
), m_Value(B
))) &&
3688 match(RHS
, m_UMin(m_Value(C
), m_Value(D
))) &&
3689 (A
== C
|| A
== D
|| B
== C
|| B
== D
)) {
3690 // umax(A, B) >=u umin(A, D) --> true
3691 if (Pred
== CmpInst::ICMP_UGE
)
3692 return getTrue(ITy
);
3693 // umax(A, B) <u umin(A, D) --> false
3694 if (Pred
== CmpInst::ICMP_ULT
)
3695 return getFalse(ITy
);
3701 static Value
*simplifyICmpWithDominatingAssume(CmpInst::Predicate Predicate
,
3702 Value
*LHS
, Value
*RHS
,
3703 const SimplifyQuery
&Q
) {
3704 // Gracefully handle instructions that have not been inserted yet.
3705 if (!Q
.AC
|| !Q
.CxtI
)
3708 for (Value
*AssumeBaseOp
: {LHS
, RHS
}) {
3709 for (auto &AssumeVH
: Q
.AC
->assumptionsFor(AssumeBaseOp
)) {
3713 CallInst
*Assume
= cast
<CallInst
>(AssumeVH
);
3714 if (std::optional
<bool> Imp
= isImpliedCondition(
3715 Assume
->getArgOperand(0), Predicate
, LHS
, RHS
, Q
.DL
))
3716 if (isValidAssumeForContext(Assume
, Q
.CxtI
, Q
.DT
))
3717 return ConstantInt::get(getCompareTy(LHS
), *Imp
);
3724 static Value
*simplifyICmpWithIntrinsicOnLHS(CmpInst::Predicate Pred
,
3725 Value
*LHS
, Value
*RHS
) {
3726 auto *II
= dyn_cast
<IntrinsicInst
>(LHS
);
3730 switch (II
->getIntrinsicID()) {
3731 case Intrinsic::uadd_sat
:
3732 // uadd.sat(X, Y) uge X, uadd.sat(X, Y) uge Y
3733 if (II
->getArgOperand(0) == RHS
|| II
->getArgOperand(1) == RHS
) {
3734 if (Pred
== ICmpInst::ICMP_UGE
)
3735 return ConstantInt::getTrue(getCompareTy(II
));
3736 if (Pred
== ICmpInst::ICMP_ULT
)
3737 return ConstantInt::getFalse(getCompareTy(II
));
3740 case Intrinsic::usub_sat
:
3741 // usub.sat(X, Y) ule X
3742 if (II
->getArgOperand(0) == RHS
) {
3743 if (Pred
== ICmpInst::ICMP_ULE
)
3744 return ConstantInt::getTrue(getCompareTy(II
));
3745 if (Pred
== ICmpInst::ICMP_UGT
)
3746 return ConstantInt::getFalse(getCompareTy(II
));
3754 /// Given operands for an ICmpInst, see if we can fold the result.
3755 /// If not, this returns null.
3756 static Value
*simplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
3757 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
3758 CmpInst::Predicate Pred
= (CmpInst::Predicate
)Predicate
;
3759 assert(CmpInst::isIntPredicate(Pred
) && "Not an integer compare!");
3761 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
)) {
3762 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
3763 return ConstantFoldCompareInstOperands(Pred
, CLHS
, CRHS
, Q
.DL
, Q
.TLI
);
3765 // If we have a constant, make sure it is on the RHS.
3766 std::swap(LHS
, RHS
);
3767 Pred
= CmpInst::getSwappedPredicate(Pred
);
3769 assert(!isa
<UndefValue
>(LHS
) && "Unexpected icmp undef,%X");
3771 Type
*ITy
= getCompareTy(LHS
); // The return type.
3773 // icmp poison, X -> poison
3774 if (isa
<PoisonValue
>(RHS
))
3775 return PoisonValue::get(ITy
);
3777 // For EQ and NE, we can always pick a value for the undef to make the
3778 // predicate pass or fail, so we can return undef.
3779 // Matches behavior in llvm::ConstantFoldCompareInstruction.
3780 if (Q
.isUndefValue(RHS
) && ICmpInst::isEquality(Pred
))
3781 return UndefValue::get(ITy
);
3783 // icmp X, X -> true/false
3784 // icmp X, undef -> true/false because undef could be X.
3785 if (LHS
== RHS
|| Q
.isUndefValue(RHS
))
3786 return ConstantInt::get(ITy
, CmpInst::isTrueWhenEqual(Pred
));
3788 if (Value
*V
= simplifyICmpOfBools(Pred
, LHS
, RHS
, Q
))
3791 // TODO: Sink/common this with other potentially expensive calls that use
3792 // ValueTracking? See comment below for isKnownNonEqual().
3793 if (Value
*V
= simplifyICmpWithZero(Pred
, LHS
, RHS
, Q
))
3796 if (Value
*V
= simplifyICmpWithConstant(Pred
, LHS
, RHS
, Q
.IIQ
))
3799 // If both operands have range metadata, use the metadata
3800 // to simplify the comparison.
3801 if (isa
<Instruction
>(RHS
) && isa
<Instruction
>(LHS
)) {
3802 auto RHS_Instr
= cast
<Instruction
>(RHS
);
3803 auto LHS_Instr
= cast
<Instruction
>(LHS
);
3805 if (Q
.IIQ
.getMetadata(RHS_Instr
, LLVMContext::MD_range
) &&
3806 Q
.IIQ
.getMetadata(LHS_Instr
, LLVMContext::MD_range
)) {
3807 auto RHS_CR
= getConstantRangeFromMetadata(
3808 *RHS_Instr
->getMetadata(LLVMContext::MD_range
));
3809 auto LHS_CR
= getConstantRangeFromMetadata(
3810 *LHS_Instr
->getMetadata(LLVMContext::MD_range
));
3812 if (LHS_CR
.icmp(Pred
, RHS_CR
))
3813 return ConstantInt::getTrue(RHS
->getContext());
3815 if (LHS_CR
.icmp(CmpInst::getInversePredicate(Pred
), RHS_CR
))
3816 return ConstantInt::getFalse(RHS
->getContext());
3820 // Compare of cast, for example (zext X) != 0 -> X != 0
3821 if (isa
<CastInst
>(LHS
) && (isa
<Constant
>(RHS
) || isa
<CastInst
>(RHS
))) {
3822 Instruction
*LI
= cast
<CastInst
>(LHS
);
3823 Value
*SrcOp
= LI
->getOperand(0);
3824 Type
*SrcTy
= SrcOp
->getType();
3825 Type
*DstTy
= LI
->getType();
3827 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
3828 // if the integer type is the same size as the pointer type.
3829 if (MaxRecurse
&& isa
<PtrToIntInst
>(LI
) &&
3830 Q
.DL
.getTypeSizeInBits(SrcTy
) == DstTy
->getPrimitiveSizeInBits()) {
3831 if (Constant
*RHSC
= dyn_cast
<Constant
>(RHS
)) {
3832 // Transfer the cast to the constant.
3833 if (Value
*V
= simplifyICmpInst(Pred
, SrcOp
,
3834 ConstantExpr::getIntToPtr(RHSC
, SrcTy
),
3837 } else if (PtrToIntInst
*RI
= dyn_cast
<PtrToIntInst
>(RHS
)) {
3838 if (RI
->getOperand(0)->getType() == SrcTy
)
3839 // Compare without the cast.
3840 if (Value
*V
= simplifyICmpInst(Pred
, SrcOp
, RI
->getOperand(0), Q
,
3846 if (isa
<ZExtInst
>(LHS
)) {
3847 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
3849 if (ZExtInst
*RI
= dyn_cast
<ZExtInst
>(RHS
)) {
3850 if (MaxRecurse
&& SrcTy
== RI
->getOperand(0)->getType())
3851 // Compare X and Y. Note that signed predicates become unsigned.
3853 simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred
), SrcOp
,
3854 RI
->getOperand(0), Q
, MaxRecurse
- 1))
3857 // Fold (zext X) ule (sext X), (zext X) sge (sext X) to true.
3858 else if (SExtInst
*RI
= dyn_cast
<SExtInst
>(RHS
)) {
3859 if (SrcOp
== RI
->getOperand(0)) {
3860 if (Pred
== ICmpInst::ICMP_ULE
|| Pred
== ICmpInst::ICMP_SGE
)
3861 return ConstantInt::getTrue(ITy
);
3862 if (Pred
== ICmpInst::ICMP_UGT
|| Pred
== ICmpInst::ICMP_SLT
)
3863 return ConstantInt::getFalse(ITy
);
3866 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
3867 // too. If not, then try to deduce the result of the comparison.
3868 else if (match(RHS
, m_ImmConstant())) {
3869 Constant
*C
= dyn_cast
<Constant
>(RHS
);
3870 assert(C
!= nullptr);
3872 // Compute the constant that would happen if we truncated to SrcTy then
3873 // reextended to DstTy.
3875 ConstantFoldCastOperand(Instruction::Trunc
, C
, SrcTy
, Q
.DL
);
3876 assert(Trunc
&& "Constant-fold of ImmConstant should not fail");
3878 ConstantFoldCastOperand(CastInst::ZExt
, Trunc
, DstTy
, Q
.DL
);
3879 assert(RExt
&& "Constant-fold of ImmConstant should not fail");
3881 ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ
, RExt
, C
, Q
.DL
);
3882 assert(AnyEq
&& "Constant-fold of ImmConstant should not fail");
3884 // If the re-extended constant didn't change any of the elements then
3885 // this is effectively also a case of comparing two zero-extended
3887 if (AnyEq
->isAllOnesValue() && MaxRecurse
)
3888 if (Value
*V
= simplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred
),
3889 SrcOp
, Trunc
, Q
, MaxRecurse
- 1))
3892 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
3893 // there. Use this to work out the result of the comparison.
3894 if (AnyEq
->isNullValue()) {
3897 llvm_unreachable("Unknown ICmp predicate!");
3899 case ICmpInst::ICMP_EQ
:
3900 case ICmpInst::ICMP_UGT
:
3901 case ICmpInst::ICMP_UGE
:
3902 return Constant::getNullValue(ITy
);
3904 case ICmpInst::ICMP_NE
:
3905 case ICmpInst::ICMP_ULT
:
3906 case ICmpInst::ICMP_ULE
:
3907 return Constant::getAllOnesValue(ITy
);
3909 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
3910 // is non-negative then LHS <s RHS.
3911 case ICmpInst::ICMP_SGT
:
3912 case ICmpInst::ICMP_SGE
:
3913 return ConstantFoldCompareInstOperands(
3914 ICmpInst::ICMP_SLT
, C
, Constant::getNullValue(C
->getType()),
3916 case ICmpInst::ICMP_SLT
:
3917 case ICmpInst::ICMP_SLE
:
3918 return ConstantFoldCompareInstOperands(
3919 ICmpInst::ICMP_SGE
, C
, Constant::getNullValue(C
->getType()),
3926 if (isa
<SExtInst
>(LHS
)) {
3927 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
3929 if (SExtInst
*RI
= dyn_cast
<SExtInst
>(RHS
)) {
3930 if (MaxRecurse
&& SrcTy
== RI
->getOperand(0)->getType())
3931 // Compare X and Y. Note that the predicate does not change.
3932 if (Value
*V
= simplifyICmpInst(Pred
, SrcOp
, RI
->getOperand(0), Q
,
3936 // Fold (sext X) uge (zext X), (sext X) sle (zext X) to true.
3937 else if (ZExtInst
*RI
= dyn_cast
<ZExtInst
>(RHS
)) {
3938 if (SrcOp
== RI
->getOperand(0)) {
3939 if (Pred
== ICmpInst::ICMP_UGE
|| Pred
== ICmpInst::ICMP_SLE
)
3940 return ConstantInt::getTrue(ITy
);
3941 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_SGT
)
3942 return ConstantInt::getFalse(ITy
);
3945 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
3946 // too. If not, then try to deduce the result of the comparison.
3947 else if (match(RHS
, m_ImmConstant())) {
3948 Constant
*C
= cast
<Constant
>(RHS
);
3950 // Compute the constant that would happen if we truncated to SrcTy then
3951 // reextended to DstTy.
3953 ConstantFoldCastOperand(Instruction::Trunc
, C
, SrcTy
, Q
.DL
);
3954 assert(Trunc
&& "Constant-fold of ImmConstant should not fail");
3956 ConstantFoldCastOperand(CastInst::SExt
, Trunc
, DstTy
, Q
.DL
);
3957 assert(RExt
&& "Constant-fold of ImmConstant should not fail");
3959 ConstantFoldCompareInstOperands(ICmpInst::ICMP_EQ
, RExt
, C
, Q
.DL
);
3960 assert(AnyEq
&& "Constant-fold of ImmConstant should not fail");
3962 // If the re-extended constant didn't change then this is effectively
3963 // also a case of comparing two sign-extended values.
3964 if (AnyEq
->isAllOnesValue() && MaxRecurse
)
3966 simplifyICmpInst(Pred
, SrcOp
, Trunc
, Q
, MaxRecurse
- 1))
3969 // Otherwise the upper bits of LHS are all equal, while RHS has varying
3970 // bits there. Use this to work out the result of the comparison.
3971 if (AnyEq
->isNullValue()) {
3974 llvm_unreachable("Unknown ICmp predicate!");
3975 case ICmpInst::ICMP_EQ
:
3976 return Constant::getNullValue(ITy
);
3977 case ICmpInst::ICMP_NE
:
3978 return Constant::getAllOnesValue(ITy
);
3980 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
3982 case ICmpInst::ICMP_SGT
:
3983 case ICmpInst::ICMP_SGE
:
3984 return ConstantExpr::getICmp(ICmpInst::ICMP_SLT
, C
,
3985 Constant::getNullValue(C
->getType()));
3986 case ICmpInst::ICMP_SLT
:
3987 case ICmpInst::ICMP_SLE
:
3988 return ConstantExpr::getICmp(ICmpInst::ICMP_SGE
, C
,
3989 Constant::getNullValue(C
->getType()));
3991 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
3993 case ICmpInst::ICMP_UGT
:
3994 case ICmpInst::ICMP_UGE
:
3995 // Comparison is true iff the LHS <s 0.
3997 if (Value
*V
= simplifyICmpInst(ICmpInst::ICMP_SLT
, SrcOp
,
3998 Constant::getNullValue(SrcTy
), Q
,
4002 case ICmpInst::ICMP_ULT
:
4003 case ICmpInst::ICMP_ULE
:
4004 // Comparison is true iff the LHS >=s 0.
4006 if (Value
*V
= simplifyICmpInst(ICmpInst::ICMP_SGE
, SrcOp
,
4007 Constant::getNullValue(SrcTy
), Q
,
4017 // icmp eq|ne X, Y -> false|true if X != Y
4018 // This is potentially expensive, and we have already computedKnownBits for
4019 // compares with 0 above here, so only try this for a non-zero compare.
4020 if (ICmpInst::isEquality(Pred
) && !match(RHS
, m_Zero()) &&
4021 isKnownNonEqual(LHS
, RHS
, Q
.DL
, Q
.AC
, Q
.CxtI
, Q
.DT
, Q
.IIQ
.UseInstrInfo
)) {
4022 return Pred
== ICmpInst::ICMP_NE
? getTrue(ITy
) : getFalse(ITy
);
4025 if (Value
*V
= simplifyICmpWithBinOp(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
4028 if (Value
*V
= simplifyICmpWithMinMax(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
4031 if (Value
*V
= simplifyICmpWithIntrinsicOnLHS(Pred
, LHS
, RHS
))
4033 if (Value
*V
= simplifyICmpWithIntrinsicOnLHS(
4034 ICmpInst::getSwappedPredicate(Pred
), RHS
, LHS
))
4037 if (Value
*V
= simplifyICmpWithDominatingAssume(Pred
, LHS
, RHS
, Q
))
4040 if (std::optional
<bool> Res
=
4041 isImpliedByDomCondition(Pred
, LHS
, RHS
, Q
.CxtI
, Q
.DL
))
4042 return ConstantInt::getBool(ITy
, *Res
);
4044 // Simplify comparisons of related pointers using a powerful, recursive
4045 // GEP-walk when we have target data available..
4046 if (LHS
->getType()->isPointerTy())
4047 if (auto *C
= computePointerICmp(Pred
, LHS
, RHS
, Q
))
4049 if (auto *CLHS
= dyn_cast
<PtrToIntOperator
>(LHS
))
4050 if (auto *CRHS
= dyn_cast
<PtrToIntOperator
>(RHS
))
4051 if (CLHS
->getPointerOperandType() == CRHS
->getPointerOperandType() &&
4052 Q
.DL
.getTypeSizeInBits(CLHS
->getPointerOperandType()) ==
4053 Q
.DL
.getTypeSizeInBits(CLHS
->getType()))
4054 if (auto *C
= computePointerICmp(Pred
, CLHS
->getPointerOperand(),
4055 CRHS
->getPointerOperand(), Q
))
4058 // If the comparison is with the result of a select instruction, check whether
4059 // comparing with either branch of the select always yields the same value.
4060 if (isa
<SelectInst
>(LHS
) || isa
<SelectInst
>(RHS
))
4061 if (Value
*V
= threadCmpOverSelect(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
4064 // If the comparison is with the result of a phi instruction, check whether
4065 // doing the compare with each incoming phi value yields a common result.
4066 if (isa
<PHINode
>(LHS
) || isa
<PHINode
>(RHS
))
4067 if (Value
*V
= threadCmpOverPHI(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
4073 Value
*llvm::simplifyICmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
4074 const SimplifyQuery
&Q
) {
4075 return ::simplifyICmpInst(Predicate
, LHS
, RHS
, Q
, RecursionLimit
);
4078 /// Given operands for an FCmpInst, see if we can fold the result.
4079 /// If not, this returns null.
4080 static Value
*simplifyFCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
4081 FastMathFlags FMF
, const SimplifyQuery
&Q
,
4082 unsigned MaxRecurse
) {
4083 CmpInst::Predicate Pred
= (CmpInst::Predicate
)Predicate
;
4084 assert(CmpInst::isFPPredicate(Pred
) && "Not an FP compare!");
4086 if (Constant
*CLHS
= dyn_cast
<Constant
>(LHS
)) {
4087 if (Constant
*CRHS
= dyn_cast
<Constant
>(RHS
))
4088 return ConstantFoldCompareInstOperands(Pred
, CLHS
, CRHS
, Q
.DL
, Q
.TLI
,
4091 // If we have a constant, make sure it is on the RHS.
4092 std::swap(LHS
, RHS
);
4093 Pred
= CmpInst::getSwappedPredicate(Pred
);
4096 // Fold trivial predicates.
4097 Type
*RetTy
= getCompareTy(LHS
);
4098 if (Pred
== FCmpInst::FCMP_FALSE
)
4099 return getFalse(RetTy
);
4100 if (Pred
== FCmpInst::FCMP_TRUE
)
4101 return getTrue(RetTy
);
4103 // fcmp pred x, poison and fcmp pred poison, x
4105 if (isa
<PoisonValue
>(LHS
) || isa
<PoisonValue
>(RHS
))
4106 return PoisonValue::get(RetTy
);
4108 // fcmp pred x, undef and fcmp pred undef, x
4109 // fold to true if unordered, false if ordered
4110 if (Q
.isUndefValue(LHS
) || Q
.isUndefValue(RHS
)) {
4111 // Choosing NaN for the undef will always make unordered comparison succeed
4112 // and ordered comparison fail.
4113 return ConstantInt::get(RetTy
, CmpInst::isUnordered(Pred
));
4116 // fcmp x,x -> true/false. Not all compares are foldable.
4118 if (CmpInst::isTrueWhenEqual(Pred
))
4119 return getTrue(RetTy
);
4120 if (CmpInst::isFalseWhenEqual(Pred
))
4121 return getFalse(RetTy
);
4124 // Fold (un)ordered comparison if we can determine there are no NaNs.
4126 // This catches the 2 variable input case, constants are handled below as a
4127 // class-like compare.
4128 if (Pred
== FCmpInst::FCMP_ORD
|| Pred
== FCmpInst::FCMP_UNO
) {
4130 (isKnownNeverNaN(RHS
, Q
.DL
, Q
.TLI
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
) &&
4131 isKnownNeverNaN(LHS
, Q
.DL
, Q
.TLI
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
)))
4132 return ConstantInt::get(RetTy
, Pred
== FCmpInst::FCMP_ORD
);
4135 const APFloat
*C
= nullptr;
4136 match(RHS
, m_APFloatAllowUndef(C
));
4137 std::optional
<KnownFPClass
> FullKnownClassLHS
;
4139 // Lazily compute the possible classes for LHS. Avoid computing it twice if
4141 auto computeLHSClass
= [=, &FullKnownClassLHS
](FPClassTest InterestedFlags
=
4143 if (FullKnownClassLHS
)
4144 return *FullKnownClassLHS
;
4145 return computeKnownFPClass(LHS
, FMF
, Q
.DL
, InterestedFlags
, 0, Q
.TLI
, Q
.AC
,
4146 Q
.CxtI
, Q
.DT
, Q
.IIQ
.UseInstrInfo
);
4150 // Fold out compares that express a class test.
4152 // FIXME: Should be able to perform folds without context
4153 // instruction. Always pass in the context function?
4155 const Function
*ParentF
= Q
.CxtI
->getFunction();
4156 auto [ClassVal
, ClassTest
] = fcmpToClassTest(Pred
, *ParentF
, LHS
, C
);
4158 FullKnownClassLHS
= computeLHSClass();
4159 if ((FullKnownClassLHS
->KnownFPClasses
& ClassTest
) == fcNone
)
4160 return getFalse(RetTy
);
4161 if ((FullKnownClassLHS
->KnownFPClasses
& ~ClassTest
) == fcNone
)
4162 return getTrue(RetTy
);
4166 // Handle fcmp with constant RHS.
4168 // TODO: If we always required a context function, we wouldn't need to
4169 // special case nans.
4171 return ConstantInt::get(RetTy
, CmpInst::isUnordered(Pred
));
4173 // TODO: Need version fcmpToClassTest which returns implied class when the
4174 // compare isn't a complete class test. e.g. > 1.0 implies fcPositive, but
4175 // isn't implementable as a class call.
4176 if (C
->isNegative() && !C
->isNegZero()) {
4177 FPClassTest Interested
= KnownFPClass::OrderedLessThanZeroMask
;
4179 // TODO: We can catch more cases by using a range check rather than
4180 // relying on CannotBeOrderedLessThanZero.
4182 case FCmpInst::FCMP_UGE
:
4183 case FCmpInst::FCMP_UGT
:
4184 case FCmpInst::FCMP_UNE
: {
4185 KnownFPClass KnownClass
= computeLHSClass(Interested
);
4187 // (X >= 0) implies (X > C) when (C < 0)
4188 if (KnownClass
.cannotBeOrderedLessThanZero())
4189 return getTrue(RetTy
);
4192 case FCmpInst::FCMP_OEQ
:
4193 case FCmpInst::FCMP_OLE
:
4194 case FCmpInst::FCMP_OLT
: {
4195 KnownFPClass KnownClass
= computeLHSClass(Interested
);
4197 // (X >= 0) implies !(X < C) when (C < 0)
4198 if (KnownClass
.cannotBeOrderedLessThanZero())
4199 return getFalse(RetTy
);
4206 // Check comparison of [minnum/maxnum with constant] with other constant.
4208 if ((match(LHS
, m_Intrinsic
<Intrinsic::minnum
>(m_Value(), m_APFloat(C2
))) &&
4210 (match(LHS
, m_Intrinsic
<Intrinsic::maxnum
>(m_Value(), m_APFloat(C2
))) &&
4213 cast
<IntrinsicInst
>(LHS
)->getIntrinsicID() == Intrinsic::maxnum
;
4214 // The ordered relationship and minnum/maxnum guarantee that we do not
4215 // have NaN constants, so ordered/unordered preds are handled the same.
4217 case FCmpInst::FCMP_OEQ
:
4218 case FCmpInst::FCMP_UEQ
:
4219 // minnum(X, LesserC) == C --> false
4220 // maxnum(X, GreaterC) == C --> false
4221 return getFalse(RetTy
);
4222 case FCmpInst::FCMP_ONE
:
4223 case FCmpInst::FCMP_UNE
:
4224 // minnum(X, LesserC) != C --> true
4225 // maxnum(X, GreaterC) != C --> true
4226 return getTrue(RetTy
);
4227 case FCmpInst::FCMP_OGE
:
4228 case FCmpInst::FCMP_UGE
:
4229 case FCmpInst::FCMP_OGT
:
4230 case FCmpInst::FCMP_UGT
:
4231 // minnum(X, LesserC) >= C --> false
4232 // minnum(X, LesserC) > C --> false
4233 // maxnum(X, GreaterC) >= C --> true
4234 // maxnum(X, GreaterC) > C --> true
4235 return ConstantInt::get(RetTy
, IsMaxNum
);
4236 case FCmpInst::FCMP_OLE
:
4237 case FCmpInst::FCMP_ULE
:
4238 case FCmpInst::FCMP_OLT
:
4239 case FCmpInst::FCMP_ULT
:
4240 // minnum(X, LesserC) <= C --> true
4241 // minnum(X, LesserC) < C --> true
4242 // maxnum(X, GreaterC) <= C --> false
4243 // maxnum(X, GreaterC) < C --> false
4244 return ConstantInt::get(RetTy
, !IsMaxNum
);
4246 // TRUE/FALSE/ORD/UNO should be handled before this.
4247 llvm_unreachable("Unexpected fcmp predicate");
4252 // TODO: Could fold this with above if there were a matcher which returned all
4253 // classes in a non-splat vector.
4254 if (match(RHS
, m_AnyZeroFP())) {
4256 case FCmpInst::FCMP_OGE
:
4257 case FCmpInst::FCMP_ULT
: {
4258 FPClassTest Interested
= KnownFPClass::OrderedLessThanZeroMask
;
4260 Interested
|= fcNan
;
4262 KnownFPClass Known
= computeLHSClass(Interested
);
4264 // Positive or zero X >= 0.0 --> true
4265 // Positive or zero X < 0.0 --> false
4266 if ((FMF
.noNaNs() || Known
.isKnownNeverNaN()) &&
4267 Known
.cannotBeOrderedLessThanZero())
4268 return Pred
== FCmpInst::FCMP_OGE
? getTrue(RetTy
) : getFalse(RetTy
);
4271 case FCmpInst::FCMP_UGE
:
4272 case FCmpInst::FCMP_OLT
: {
4273 FPClassTest Interested
= KnownFPClass::OrderedLessThanZeroMask
;
4274 KnownFPClass Known
= computeLHSClass(Interested
);
4276 // Positive or zero or nan X >= 0.0 --> true
4277 // Positive or zero or nan X < 0.0 --> false
4278 if (Known
.cannotBeOrderedLessThanZero())
4279 return Pred
== FCmpInst::FCMP_UGE
? getTrue(RetTy
) : getFalse(RetTy
);
4287 // If the comparison is with the result of a select instruction, check whether
4288 // comparing with either branch of the select always yields the same value.
4289 if (isa
<SelectInst
>(LHS
) || isa
<SelectInst
>(RHS
))
4290 if (Value
*V
= threadCmpOverSelect(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
4293 // If the comparison is with the result of a phi instruction, check whether
4294 // doing the compare with each incoming phi value yields a common result.
4295 if (isa
<PHINode
>(LHS
) || isa
<PHINode
>(RHS
))
4296 if (Value
*V
= threadCmpOverPHI(Pred
, LHS
, RHS
, Q
, MaxRecurse
))
4302 Value
*llvm::simplifyFCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
4303 FastMathFlags FMF
, const SimplifyQuery
&Q
) {
4304 return ::simplifyFCmpInst(Predicate
, LHS
, RHS
, FMF
, Q
, RecursionLimit
);
4307 static Value
*simplifyWithOpReplaced(Value
*V
, Value
*Op
, Value
*RepOp
,
4308 const SimplifyQuery
&Q
,
4309 bool AllowRefinement
,
4310 SmallVectorImpl
<Instruction
*> *DropFlags
,
4311 unsigned MaxRecurse
) {
4312 // Trivial replacement.
4319 // We cannot replace a constant, and shouldn't even try.
4320 if (isa
<Constant
>(Op
))
4323 auto *I
= dyn_cast
<Instruction
>(V
);
4327 // The arguments of a phi node might refer to a value from a previous
4329 if (isa
<PHINode
>(I
))
4332 if (Op
->getType()->isVectorTy()) {
4333 // For vector types, the simplification must hold per-lane, so forbid
4334 // potentially cross-lane operations like shufflevector.
4335 if (!I
->getType()->isVectorTy() || isa
<ShuffleVectorInst
>(I
) ||
4340 // Replace Op with RepOp in instruction operands.
4341 SmallVector
<Value
*, 8> NewOps
;
4342 bool AnyReplaced
= false;
4343 for (Value
*InstOp
: I
->operands()) {
4344 if (Value
*NewInstOp
= simplifyWithOpReplaced(
4345 InstOp
, Op
, RepOp
, Q
, AllowRefinement
, DropFlags
, MaxRecurse
)) {
4346 NewOps
.push_back(NewInstOp
);
4347 AnyReplaced
= InstOp
!= NewInstOp
;
4349 NewOps
.push_back(InstOp
);
4356 if (!AllowRefinement
) {
4357 // General InstSimplify functions may refine the result, e.g. by returning
4358 // a constant for a potentially poison value. To avoid this, implement only
4359 // a few non-refining but profitable transforms here.
4361 if (auto *BO
= dyn_cast
<BinaryOperator
>(I
)) {
4362 unsigned Opcode
= BO
->getOpcode();
4363 // id op x -> x, x op id -> x
4364 if (NewOps
[0] == ConstantExpr::getBinOpIdentity(Opcode
, I
->getType()))
4366 if (NewOps
[1] == ConstantExpr::getBinOpIdentity(Opcode
, I
->getType(),
4370 // x & x -> x, x | x -> x
4371 if ((Opcode
== Instruction::And
|| Opcode
== Instruction::Or
) &&
4372 NewOps
[0] == NewOps
[1])
4375 // x - x -> 0, x ^ x -> 0. This is non-refining, because x is non-poison
4376 // by assumption and this case never wraps, so nowrap flags can be
4378 if ((Opcode
== Instruction::Sub
|| Opcode
== Instruction::Xor
) &&
4379 NewOps
[0] == RepOp
&& NewOps
[1] == RepOp
)
4380 return Constant::getNullValue(I
->getType());
4382 // If we are substituting an absorber constant into a binop and extra
4383 // poison can't leak if we remove the select -- because both operands of
4384 // the binop are based on the same value -- then it may be safe to replace
4385 // the value with the absorber constant. Examples:
4386 // (Op == 0) ? 0 : (Op & -Op) --> Op & -Op
4387 // (Op == 0) ? 0 : (Op * (binop Op, C)) --> Op * (binop Op, C)
4388 // (Op == -1) ? -1 : (Op | (binop C, Op) --> Op | (binop C, Op)
4389 Constant
*Absorber
=
4390 ConstantExpr::getBinOpAbsorber(Opcode
, I
->getType());
4391 if ((NewOps
[0] == Absorber
|| NewOps
[1] == Absorber
) &&
4392 impliesPoison(BO
, Op
))
4396 if (isa
<GetElementPtrInst
>(I
)) {
4397 // getelementptr x, 0 -> x.
4398 // This never returns poison, even if inbounds is set.
4399 if (NewOps
.size() == 2 && match(NewOps
[1], m_Zero()))
4403 // The simplification queries below may return the original value. Consider:
4404 // %div = udiv i32 %arg, %arg2
4405 // %mul = mul nsw i32 %div, %arg2
4406 // %cmp = icmp eq i32 %mul, %arg
4407 // %sel = select i1 %cmp, i32 %div, i32 undef
4408 // Replacing %arg by %mul, %div becomes "udiv i32 %mul, %arg2", which
4409 // simplifies back to %arg. This can only happen because %mul does not
4410 // dominate %div. To ensure a consistent return value contract, we make sure
4411 // that this case returns nullptr as well.
4412 auto PreventSelfSimplify
= [V
](Value
*Simplified
) {
4413 return Simplified
!= V
? Simplified
: nullptr;
4416 return PreventSelfSimplify(
4417 ::simplifyInstructionWithOperands(I
, NewOps
, Q
, MaxRecurse
));
4420 // If all operands are constant after substituting Op for RepOp then we can
4421 // constant fold the instruction.
4422 SmallVector
<Constant
*, 8> ConstOps
;
4423 for (Value
*NewOp
: NewOps
) {
4424 if (Constant
*ConstOp
= dyn_cast
<Constant
>(NewOp
))
4425 ConstOps
.push_back(ConstOp
);
4431 // %cmp = icmp eq i32 %x, 2147483647
4432 // %add = add nsw i32 %x, 1
4433 // %sel = select i1 %cmp, i32 -2147483648, i32 %add
4435 // We can't replace %sel with %add unless we strip away the flags (which
4436 // will be done in InstCombine).
4437 // TODO: This may be unsound, because it only catches some forms of
4439 if (!AllowRefinement
) {
4440 if (canCreatePoison(cast
<Operator
>(I
), !DropFlags
)) {
4441 // abs cannot create poison if the value is known to never be int_min.
4442 if (auto *II
= dyn_cast
<IntrinsicInst
>(I
);
4443 II
&& II
->getIntrinsicID() == Intrinsic::abs
) {
4444 if (!ConstOps
[0]->isNotMinSignedValue())
4449 Constant
*Res
= ConstantFoldInstOperands(I
, ConstOps
, Q
.DL
, Q
.TLI
);
4450 if (DropFlags
&& Res
&& I
->hasPoisonGeneratingFlagsOrMetadata())
4451 DropFlags
->push_back(I
);
4455 return ConstantFoldInstOperands(I
, ConstOps
, Q
.DL
, Q
.TLI
);
4458 Value
*llvm::simplifyWithOpReplaced(Value
*V
, Value
*Op
, Value
*RepOp
,
4459 const SimplifyQuery
&Q
,
4460 bool AllowRefinement
,
4461 SmallVectorImpl
<Instruction
*> *DropFlags
) {
4462 return ::simplifyWithOpReplaced(V
, Op
, RepOp
, Q
, AllowRefinement
, DropFlags
,
4466 /// Try to simplify a select instruction when its condition operand is an
4467 /// integer comparison where one operand of the compare is a constant.
4468 static Value
*simplifySelectBitTest(Value
*TrueVal
, Value
*FalseVal
, Value
*X
,
4469 const APInt
*Y
, bool TrueWhenUnset
) {
4472 // (X & Y) == 0 ? X & ~Y : X --> X
4473 // (X & Y) != 0 ? X & ~Y : X --> X & ~Y
4474 if (FalseVal
== X
&& match(TrueVal
, m_And(m_Specific(X
), m_APInt(C
))) &&
4476 return TrueWhenUnset
? FalseVal
: TrueVal
;
4478 // (X & Y) == 0 ? X : X & ~Y --> X & ~Y
4479 // (X & Y) != 0 ? X : X & ~Y --> X
4480 if (TrueVal
== X
&& match(FalseVal
, m_And(m_Specific(X
), m_APInt(C
))) &&
4482 return TrueWhenUnset
? FalseVal
: TrueVal
;
4484 if (Y
->isPowerOf2()) {
4485 // (X & Y) == 0 ? X | Y : X --> X | Y
4486 // (X & Y) != 0 ? X | Y : X --> X
4487 if (FalseVal
== X
&& match(TrueVal
, m_Or(m_Specific(X
), m_APInt(C
))) &&
4489 return TrueWhenUnset
? TrueVal
: FalseVal
;
4491 // (X & Y) == 0 ? X : X | Y --> X
4492 // (X & Y) != 0 ? X : X | Y --> X | Y
4493 if (TrueVal
== X
&& match(FalseVal
, m_Or(m_Specific(X
), m_APInt(C
))) &&
4495 return TrueWhenUnset
? TrueVal
: FalseVal
;
4501 static Value
*simplifyCmpSelOfMaxMin(Value
*CmpLHS
, Value
*CmpRHS
,
4502 ICmpInst::Predicate Pred
, Value
*TVal
,
4504 // Canonicalize common cmp+sel operand as CmpLHS.
4505 if (CmpRHS
== TVal
|| CmpRHS
== FVal
) {
4506 std::swap(CmpLHS
, CmpRHS
);
4507 Pred
= ICmpInst::getSwappedPredicate(Pred
);
4510 // Canonicalize common cmp+sel operand as TVal.
4511 if (CmpLHS
== FVal
) {
4512 std::swap(TVal
, FVal
);
4513 Pred
= ICmpInst::getInversePredicate(Pred
);
4516 // A vector select may be shuffling together elements that are equivalent
4517 // based on the max/min/select relationship.
4518 Value
*X
= CmpLHS
, *Y
= CmpRHS
;
4519 bool PeekedThroughSelectShuffle
= false;
4520 auto *Shuf
= dyn_cast
<ShuffleVectorInst
>(FVal
);
4521 if (Shuf
&& Shuf
->isSelect()) {
4522 if (Shuf
->getOperand(0) == Y
)
4523 FVal
= Shuf
->getOperand(1);
4524 else if (Shuf
->getOperand(1) == Y
)
4525 FVal
= Shuf
->getOperand(0);
4528 PeekedThroughSelectShuffle
= true;
4531 // (X pred Y) ? X : max/min(X, Y)
4532 auto *MMI
= dyn_cast
<MinMaxIntrinsic
>(FVal
);
4533 if (!MMI
|| TVal
!= X
||
4534 !match(FVal
, m_c_MaxOrMin(m_Specific(X
), m_Specific(Y
))))
4537 // (X > Y) ? X : max(X, Y) --> max(X, Y)
4538 // (X >= Y) ? X : max(X, Y) --> max(X, Y)
4539 // (X < Y) ? X : min(X, Y) --> min(X, Y)
4540 // (X <= Y) ? X : min(X, Y) --> min(X, Y)
4542 // The equivalence allows a vector select (shuffle) of max/min and Y. Ex:
4543 // (X > Y) ? X : (Z ? max(X, Y) : Y)
4544 // If Z is true, this reduces as above, and if Z is false:
4545 // (X > Y) ? X : Y --> max(X, Y)
4546 ICmpInst::Predicate MMPred
= MMI
->getPredicate();
4547 if (MMPred
== CmpInst::getStrictPredicate(Pred
))
4550 // Other transforms are not valid with a shuffle.
4551 if (PeekedThroughSelectShuffle
)
4554 // (X == Y) ? X : max/min(X, Y) --> max/min(X, Y)
4555 if (Pred
== CmpInst::ICMP_EQ
)
4558 // (X != Y) ? X : max/min(X, Y) --> X
4559 if (Pred
== CmpInst::ICMP_NE
)
4562 // (X < Y) ? X : max(X, Y) --> X
4563 // (X <= Y) ? X : max(X, Y) --> X
4564 // (X > Y) ? X : min(X, Y) --> X
4565 // (X >= Y) ? X : min(X, Y) --> X
4566 ICmpInst::Predicate InvPred
= CmpInst::getInversePredicate(Pred
);
4567 if (MMPred
== CmpInst::getStrictPredicate(InvPred
))
4573 /// An alternative way to test if a bit is set or not uses sgt/slt instead of
4575 static Value
*simplifySelectWithFakeICmpEq(Value
*CmpLHS
, Value
*CmpRHS
,
4576 ICmpInst::Predicate Pred
,
4577 Value
*TrueVal
, Value
*FalseVal
) {
4580 if (!decomposeBitTestICmp(CmpLHS
, CmpRHS
, Pred
, X
, Mask
))
4583 return simplifySelectBitTest(TrueVal
, FalseVal
, X
, &Mask
,
4584 Pred
== ICmpInst::ICMP_EQ
);
4587 /// Try to simplify a select instruction when its condition operand is an
4588 /// integer equality comparison.
4589 static Value
*simplifySelectWithICmpEq(Value
*CmpLHS
, Value
*CmpRHS
,
4590 Value
*TrueVal
, Value
*FalseVal
,
4591 const SimplifyQuery
&Q
,
4592 unsigned MaxRecurse
) {
4593 if (simplifyWithOpReplaced(FalseVal
, CmpLHS
, CmpRHS
, Q
,
4594 /* AllowRefinement */ false,
4595 /* DropFlags */ nullptr, MaxRecurse
) == TrueVal
)
4597 if (simplifyWithOpReplaced(TrueVal
, CmpLHS
, CmpRHS
, Q
,
4598 /* AllowRefinement */ true,
4599 /* DropFlags */ nullptr, MaxRecurse
) == FalseVal
)
4605 /// Try to simplify a select instruction when its condition operand is an
4606 /// integer comparison.
4607 static Value
*simplifySelectWithICmpCond(Value
*CondVal
, Value
*TrueVal
,
4609 const SimplifyQuery
&Q
,
4610 unsigned MaxRecurse
) {
4611 ICmpInst::Predicate Pred
;
4612 Value
*CmpLHS
, *CmpRHS
;
4613 if (!match(CondVal
, m_ICmp(Pred
, m_Value(CmpLHS
), m_Value(CmpRHS
))))
4616 if (Value
*V
= simplifyCmpSelOfMaxMin(CmpLHS
, CmpRHS
, Pred
, TrueVal
, FalseVal
))
4619 // Canonicalize ne to eq predicate.
4620 if (Pred
== ICmpInst::ICMP_NE
) {
4621 Pred
= ICmpInst::ICMP_EQ
;
4622 std::swap(TrueVal
, FalseVal
);
4625 // Check for integer min/max with a limit constant:
4626 // X > MIN_INT ? X : MIN_INT --> X
4627 // X < MAX_INT ? X : MAX_INT --> X
4628 if (TrueVal
->getType()->isIntOrIntVectorTy()) {
4630 SelectPatternFlavor SPF
=
4631 matchDecomposedSelectPattern(cast
<ICmpInst
>(CondVal
), TrueVal
, FalseVal
,
4634 if (SelectPatternResult::isMinOrMax(SPF
) && Pred
== getMinMaxPred(SPF
)) {
4635 APInt LimitC
= getMinMaxLimit(getInverseMinMaxFlavor(SPF
),
4636 X
->getType()->getScalarSizeInBits());
4637 if (match(Y
, m_SpecificInt(LimitC
)))
4642 if (Pred
== ICmpInst::ICMP_EQ
&& match(CmpRHS
, m_Zero())) {
4645 if (match(CmpLHS
, m_And(m_Value(X
), m_APInt(Y
))))
4646 if (Value
*V
= simplifySelectBitTest(TrueVal
, FalseVal
, X
, Y
,
4647 /*TrueWhenUnset=*/true))
4650 // Test for a bogus zero-shift-guard-op around funnel-shift or rotate.
4652 auto isFsh
= m_CombineOr(m_FShl(m_Value(X
), m_Value(), m_Value(ShAmt
)),
4653 m_FShr(m_Value(), m_Value(X
), m_Value(ShAmt
)));
4654 // (ShAmt == 0) ? fshl(X, *, ShAmt) : X --> X
4655 // (ShAmt == 0) ? fshr(*, X, ShAmt) : X --> X
4656 if (match(TrueVal
, isFsh
) && FalseVal
== X
&& CmpLHS
== ShAmt
)
4659 // Test for a zero-shift-guard-op around rotates. These are used to
4660 // avoid UB from oversized shifts in raw IR rotate patterns, but the
4661 // intrinsics do not have that problem.
4662 // We do not allow this transform for the general funnel shift case because
4663 // that would not preserve the poison safety of the original code.
4665 m_CombineOr(m_FShl(m_Value(X
), m_Deferred(X
), m_Value(ShAmt
)),
4666 m_FShr(m_Value(X
), m_Deferred(X
), m_Value(ShAmt
)));
4667 // (ShAmt == 0) ? X : fshl(X, X, ShAmt) --> fshl(X, X, ShAmt)
4668 // (ShAmt == 0) ? X : fshr(X, X, ShAmt) --> fshr(X, X, ShAmt)
4669 if (match(FalseVal
, isRotate
) && TrueVal
== X
&& CmpLHS
== ShAmt
&&
4670 Pred
== ICmpInst::ICMP_EQ
)
4673 // X == 0 ? abs(X) : -abs(X) --> -abs(X)
4674 // X == 0 ? -abs(X) : abs(X) --> abs(X)
4675 if (match(TrueVal
, m_Intrinsic
<Intrinsic::abs
>(m_Specific(CmpLHS
))) &&
4676 match(FalseVal
, m_Neg(m_Intrinsic
<Intrinsic::abs
>(m_Specific(CmpLHS
)))))
4679 m_Neg(m_Intrinsic
<Intrinsic::abs
>(m_Specific(CmpLHS
)))) &&
4680 match(FalseVal
, m_Intrinsic
<Intrinsic::abs
>(m_Specific(CmpLHS
))))
4684 // Check for other compares that behave like bit test.
4686 simplifySelectWithFakeICmpEq(CmpLHS
, CmpRHS
, Pred
, TrueVal
, FalseVal
))
4689 // If we have a scalar equality comparison, then we know the value in one of
4690 // the arms of the select. See if substituting this value into the arm and
4691 // simplifying the result yields the same value as the other arm.
4692 if (Pred
== ICmpInst::ICMP_EQ
) {
4693 if (Value
*V
= simplifySelectWithICmpEq(CmpLHS
, CmpRHS
, TrueVal
, FalseVal
,
4696 if (Value
*V
= simplifySelectWithICmpEq(CmpRHS
, CmpLHS
, TrueVal
, FalseVal
,
4702 // select((X | Y) == 0 ? X : 0) --> 0 (commuted 2 ways)
4703 if (match(CmpLHS
, m_Or(m_Value(X
), m_Value(Y
))) &&
4704 match(CmpRHS
, m_Zero())) {
4705 // (X | Y) == 0 implies X == 0 and Y == 0.
4706 if (Value
*V
= simplifySelectWithICmpEq(X
, CmpRHS
, TrueVal
, FalseVal
, Q
,
4709 if (Value
*V
= simplifySelectWithICmpEq(Y
, CmpRHS
, TrueVal
, FalseVal
, Q
,
4714 // select((X & Y) == -1 ? X : -1) --> -1 (commuted 2 ways)
4715 if (match(CmpLHS
, m_And(m_Value(X
), m_Value(Y
))) &&
4716 match(CmpRHS
, m_AllOnes())) {
4717 // (X & Y) == -1 implies X == -1 and Y == -1.
4718 if (Value
*V
= simplifySelectWithICmpEq(X
, CmpRHS
, TrueVal
, FalseVal
, Q
,
4721 if (Value
*V
= simplifySelectWithICmpEq(Y
, CmpRHS
, TrueVal
, FalseVal
, Q
,
4730 /// Try to simplify a select instruction when its condition operand is a
4731 /// floating-point comparison.
4732 static Value
*simplifySelectWithFCmp(Value
*Cond
, Value
*T
, Value
*F
,
4733 const SimplifyQuery
&Q
) {
4734 FCmpInst::Predicate Pred
;
4735 if (!match(Cond
, m_FCmp(Pred
, m_Specific(T
), m_Specific(F
))) &&
4736 !match(Cond
, m_FCmp(Pred
, m_Specific(F
), m_Specific(T
))))
4739 // This transform is safe if we do not have (do not care about) -0.0 or if
4740 // at least one operand is known to not be -0.0. Otherwise, the select can
4741 // change the sign of a zero operand.
4742 bool HasNoSignedZeros
=
4743 Q
.CxtI
&& isa
<FPMathOperator
>(Q
.CxtI
) && Q
.CxtI
->hasNoSignedZeros();
4745 if (HasNoSignedZeros
|| (match(T
, m_APFloat(C
)) && C
->isNonZero()) ||
4746 (match(F
, m_APFloat(C
)) && C
->isNonZero())) {
4747 // (T == F) ? T : F --> F
4748 // (F == T) ? T : F --> F
4749 if (Pred
== FCmpInst::FCMP_OEQ
)
4752 // (T != F) ? T : F --> T
4753 // (F != T) ? T : F --> T
4754 if (Pred
== FCmpInst::FCMP_UNE
)
4761 /// Given operands for a SelectInst, see if we can fold the result.
4762 /// If not, this returns null.
4763 static Value
*simplifySelectInst(Value
*Cond
, Value
*TrueVal
, Value
*FalseVal
,
4764 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
4765 if (auto *CondC
= dyn_cast
<Constant
>(Cond
)) {
4766 if (auto *TrueC
= dyn_cast
<Constant
>(TrueVal
))
4767 if (auto *FalseC
= dyn_cast
<Constant
>(FalseVal
))
4768 if (Constant
*C
= ConstantFoldSelectInstruction(CondC
, TrueC
, FalseC
))
4771 // select poison, X, Y -> poison
4772 if (isa
<PoisonValue
>(CondC
))
4773 return PoisonValue::get(TrueVal
->getType());
4775 // select undef, X, Y -> X or Y
4776 if (Q
.isUndefValue(CondC
))
4777 return isa
<Constant
>(FalseVal
) ? FalseVal
: TrueVal
;
4779 // select true, X, Y --> X
4780 // select false, X, Y --> Y
4781 // For vectors, allow undef/poison elements in the condition to match the
4782 // defined elements, so we can eliminate the select.
4783 if (match(CondC
, m_One()))
4785 if (match(CondC
, m_Zero()))
4789 assert(Cond
->getType()->isIntOrIntVectorTy(1) &&
4790 "Select must have bool or bool vector condition");
4791 assert(TrueVal
->getType() == FalseVal
->getType() &&
4792 "Select must have same types for true/false ops");
4794 if (Cond
->getType() == TrueVal
->getType()) {
4795 // select i1 Cond, i1 true, i1 false --> i1 Cond
4796 if (match(TrueVal
, m_One()) && match(FalseVal
, m_ZeroInt()))
4799 // (X && Y) ? X : Y --> Y (commuted 2 ways)
4800 if (match(Cond
, m_c_LogicalAnd(m_Specific(TrueVal
), m_Specific(FalseVal
))))
4803 // (X || Y) ? X : Y --> X (commuted 2 ways)
4804 if (match(Cond
, m_c_LogicalOr(m_Specific(TrueVal
), m_Specific(FalseVal
))))
4807 // (X || Y) ? false : X --> false (commuted 2 ways)
4808 if (match(Cond
, m_c_LogicalOr(m_Specific(FalseVal
), m_Value())) &&
4809 match(TrueVal
, m_ZeroInt()))
4810 return ConstantInt::getFalse(Cond
->getType());
4812 // Match patterns that end in logical-and.
4813 if (match(FalseVal
, m_ZeroInt())) {
4814 // !(X || Y) && X --> false (commuted 2 ways)
4815 if (match(Cond
, m_Not(m_c_LogicalOr(m_Specific(TrueVal
), m_Value()))))
4816 return ConstantInt::getFalse(Cond
->getType());
4817 // X && !(X || Y) --> false (commuted 2 ways)
4818 if (match(TrueVal
, m_Not(m_c_LogicalOr(m_Specific(Cond
), m_Value()))))
4819 return ConstantInt::getFalse(Cond
->getType());
4821 // (X || Y) && Y --> Y (commuted 2 ways)
4822 if (match(Cond
, m_c_LogicalOr(m_Specific(TrueVal
), m_Value())))
4824 // Y && (X || Y) --> Y (commuted 2 ways)
4825 if (match(TrueVal
, m_c_LogicalOr(m_Specific(Cond
), m_Value())))
4828 // (X || Y) && (X || !Y) --> X (commuted 8 ways)
4830 if (match(Cond
, m_c_LogicalOr(m_Value(X
), m_Not(m_Value(Y
)))) &&
4831 match(TrueVal
, m_c_LogicalOr(m_Specific(X
), m_Specific(Y
))))
4833 if (match(TrueVal
, m_c_LogicalOr(m_Value(X
), m_Not(m_Value(Y
)))) &&
4834 match(Cond
, m_c_LogicalOr(m_Specific(X
), m_Specific(Y
))))
4838 // Match patterns that end in logical-or.
4839 if (match(TrueVal
, m_One())) {
4840 // !(X && Y) || X --> true (commuted 2 ways)
4841 if (match(Cond
, m_Not(m_c_LogicalAnd(m_Specific(FalseVal
), m_Value()))))
4842 return ConstantInt::getTrue(Cond
->getType());
4843 // X || !(X && Y) --> true (commuted 2 ways)
4844 if (match(FalseVal
, m_Not(m_c_LogicalAnd(m_Specific(Cond
), m_Value()))))
4845 return ConstantInt::getTrue(Cond
->getType());
4847 // (X && Y) || Y --> Y (commuted 2 ways)
4848 if (match(Cond
, m_c_LogicalAnd(m_Specific(FalseVal
), m_Value())))
4850 // Y || (X && Y) --> Y (commuted 2 ways)
4851 if (match(FalseVal
, m_c_LogicalAnd(m_Specific(Cond
), m_Value())))
4856 // select ?, X, X -> X
4857 if (TrueVal
== FalseVal
)
4860 if (Cond
== TrueVal
) {
4861 // select i1 X, i1 X, i1 false --> X (logical-and)
4862 if (match(FalseVal
, m_ZeroInt()))
4864 // select i1 X, i1 X, i1 true --> true
4865 if (match(FalseVal
, m_One()))
4866 return ConstantInt::getTrue(Cond
->getType());
4868 if (Cond
== FalseVal
) {
4869 // select i1 X, i1 true, i1 X --> X (logical-or)
4870 if (match(TrueVal
, m_One()))
4872 // select i1 X, i1 false, i1 X --> false
4873 if (match(TrueVal
, m_ZeroInt()))
4874 return ConstantInt::getFalse(Cond
->getType());
4877 // If the true or false value is poison, we can fold to the other value.
4878 // If the true or false value is undef, we can fold to the other value as
4879 // long as the other value isn't poison.
4880 // select ?, poison, X -> X
4881 // select ?, undef, X -> X
4882 if (isa
<PoisonValue
>(TrueVal
) ||
4883 (Q
.isUndefValue(TrueVal
) &&
4884 isGuaranteedNotToBePoison(FalseVal
, Q
.AC
, Q
.CxtI
, Q
.DT
)))
4886 // select ?, X, poison -> X
4887 // select ?, X, undef -> X
4888 if (isa
<PoisonValue
>(FalseVal
) ||
4889 (Q
.isUndefValue(FalseVal
) &&
4890 isGuaranteedNotToBePoison(TrueVal
, Q
.AC
, Q
.CxtI
, Q
.DT
)))
4893 // Deal with partial undef vector constants: select ?, VecC, VecC' --> VecC''
4894 Constant
*TrueC
, *FalseC
;
4895 if (isa
<FixedVectorType
>(TrueVal
->getType()) &&
4896 match(TrueVal
, m_Constant(TrueC
)) &&
4897 match(FalseVal
, m_Constant(FalseC
))) {
4899 cast
<FixedVectorType
>(TrueC
->getType())->getNumElements();
4900 SmallVector
<Constant
*, 16> NewC
;
4901 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
4902 // Bail out on incomplete vector constants.
4903 Constant
*TEltC
= TrueC
->getAggregateElement(i
);
4904 Constant
*FEltC
= FalseC
->getAggregateElement(i
);
4905 if (!TEltC
|| !FEltC
)
4908 // If the elements match (undef or not), that value is the result. If only
4909 // one element is undef, choose the defined element as the safe result.
4911 NewC
.push_back(TEltC
);
4912 else if (isa
<PoisonValue
>(TEltC
) ||
4913 (Q
.isUndefValue(TEltC
) && isGuaranteedNotToBePoison(FEltC
)))
4914 NewC
.push_back(FEltC
);
4915 else if (isa
<PoisonValue
>(FEltC
) ||
4916 (Q
.isUndefValue(FEltC
) && isGuaranteedNotToBePoison(TEltC
)))
4917 NewC
.push_back(TEltC
);
4921 if (NewC
.size() == NumElts
)
4922 return ConstantVector::get(NewC
);
4926 simplifySelectWithICmpCond(Cond
, TrueVal
, FalseVal
, Q
, MaxRecurse
))
4929 if (Value
*V
= simplifySelectWithFCmp(Cond
, TrueVal
, FalseVal
, Q
))
4932 if (Value
*V
= foldSelectWithBinaryOp(Cond
, TrueVal
, FalseVal
))
4935 std::optional
<bool> Imp
= isImpliedByDomCondition(Cond
, Q
.CxtI
, Q
.DL
);
4937 return *Imp
? TrueVal
: FalseVal
;
4942 Value
*llvm::simplifySelectInst(Value
*Cond
, Value
*TrueVal
, Value
*FalseVal
,
4943 const SimplifyQuery
&Q
) {
4944 return ::simplifySelectInst(Cond
, TrueVal
, FalseVal
, Q
, RecursionLimit
);
4947 /// Given operands for an GetElementPtrInst, see if we can fold the result.
4948 /// If not, this returns null.
4949 static Value
*simplifyGEPInst(Type
*SrcTy
, Value
*Ptr
,
4950 ArrayRef
<Value
*> Indices
, bool InBounds
,
4951 const SimplifyQuery
&Q
, unsigned) {
4952 // The type of the GEP pointer operand.
4954 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getAddressSpace();
4956 // getelementptr P -> P.
4957 if (Indices
.empty())
4960 // Compute the (pointer) type returned by the GEP instruction.
4961 Type
*LastType
= GetElementPtrInst::getIndexedType(SrcTy
, Indices
);
4962 Type
*GEPTy
= PointerType::get(LastType
, AS
);
4963 if (VectorType
*VT
= dyn_cast
<VectorType
>(Ptr
->getType()))
4964 GEPTy
= VectorType::get(GEPTy
, VT
->getElementCount());
4966 for (Value
*Op
: Indices
) {
4967 // If one of the operands is a vector, the result type is a vector of
4968 // pointers. All vector operands must have the same number of elements.
4969 if (VectorType
*VT
= dyn_cast
<VectorType
>(Op
->getType())) {
4970 GEPTy
= VectorType::get(GEPTy
, VT
->getElementCount());
4976 // All-zero GEP is a no-op, unless it performs a vector splat.
4977 if (Ptr
->getType() == GEPTy
&&
4978 all_of(Indices
, [](const auto *V
) { return match(V
, m_Zero()); }))
4981 // getelementptr poison, idx -> poison
4982 // getelementptr baseptr, poison -> poison
4983 if (isa
<PoisonValue
>(Ptr
) ||
4984 any_of(Indices
, [](const auto *V
) { return isa
<PoisonValue
>(V
); }))
4985 return PoisonValue::get(GEPTy
);
4987 // getelementptr undef, idx -> undef
4988 if (Q
.isUndefValue(Ptr
))
4989 return UndefValue::get(GEPTy
);
4991 bool IsScalableVec
=
4992 SrcTy
->isScalableTy() || any_of(Indices
, [](const Value
*V
) {
4993 return isa
<ScalableVectorType
>(V
->getType());
4996 if (Indices
.size() == 1) {
4997 // getelementptr P, 0 -> P.
4998 if (match(Indices
[0], m_Zero()) && Ptr
->getType() == GEPTy
)
5002 if (!IsScalableVec
&& Ty
->isSized()) {
5005 uint64_t TyAllocSize
= Q
.DL
.getTypeAllocSize(Ty
);
5006 // getelementptr P, N -> P if P points to a type of zero size.
5007 if (TyAllocSize
== 0 && Ptr
->getType() == GEPTy
)
5010 // The following transforms are only safe if the ptrtoint cast
5011 // doesn't truncate the pointers.
5012 if (Indices
[0]->getType()->getScalarSizeInBits() ==
5013 Q
.DL
.getPointerSizeInBits(AS
)) {
5014 auto CanSimplify
= [GEPTy
, &P
, Ptr
]() -> bool {
5015 return P
->getType() == GEPTy
&&
5016 getUnderlyingObject(P
) == getUnderlyingObject(Ptr
);
5018 // getelementptr V, (sub P, V) -> P if P points to a type of size 1.
5019 if (TyAllocSize
== 1 &&
5021 m_Sub(m_PtrToInt(m_Value(P
)), m_PtrToInt(m_Specific(Ptr
)))) &&
5025 // getelementptr V, (ashr (sub P, V), C) -> P if P points to a type of
5027 if (match(Indices
[0], m_AShr(m_Sub(m_PtrToInt(m_Value(P
)),
5028 m_PtrToInt(m_Specific(Ptr
))),
5029 m_ConstantInt(C
))) &&
5030 TyAllocSize
== 1ULL << C
&& CanSimplify())
5033 // getelementptr V, (sdiv (sub P, V), C) -> P if P points to a type of
5035 if (match(Indices
[0], m_SDiv(m_Sub(m_PtrToInt(m_Value(P
)),
5036 m_PtrToInt(m_Specific(Ptr
))),
5037 m_SpecificInt(TyAllocSize
))) &&
5044 if (!IsScalableVec
&& Q
.DL
.getTypeAllocSize(LastType
) == 1 &&
5045 all_of(Indices
.drop_back(1),
5046 [](Value
*Idx
) { return match(Idx
, m_Zero()); })) {
5048 Q
.DL
.getIndexSizeInBits(Ptr
->getType()->getPointerAddressSpace());
5049 if (Q
.DL
.getTypeSizeInBits(Indices
.back()->getType()) == IdxWidth
) {
5050 APInt
BasePtrOffset(IdxWidth
, 0);
5051 Value
*StrippedBasePtr
=
5052 Ptr
->stripAndAccumulateInBoundsConstantOffsets(Q
.DL
, BasePtrOffset
);
5054 // Avoid creating inttoptr of zero here: While LLVMs treatment of
5055 // inttoptr is generally conservative, this particular case is folded to
5056 // a null pointer, which will have incorrect provenance.
5058 // gep (gep V, C), (sub 0, V) -> C
5059 if (match(Indices
.back(),
5060 m_Sub(m_Zero(), m_PtrToInt(m_Specific(StrippedBasePtr
)))) &&
5061 !BasePtrOffset
.isZero()) {
5062 auto *CI
= ConstantInt::get(GEPTy
->getContext(), BasePtrOffset
);
5063 return ConstantExpr::getIntToPtr(CI
, GEPTy
);
5065 // gep (gep V, C), (xor V, -1) -> C-1
5066 if (match(Indices
.back(),
5067 m_Xor(m_PtrToInt(m_Specific(StrippedBasePtr
)), m_AllOnes())) &&
5068 !BasePtrOffset
.isOne()) {
5069 auto *CI
= ConstantInt::get(GEPTy
->getContext(), BasePtrOffset
- 1);
5070 return ConstantExpr::getIntToPtr(CI
, GEPTy
);
5075 // Check to see if this is constant foldable.
5076 if (!isa
<Constant
>(Ptr
) ||
5077 !all_of(Indices
, [](Value
*V
) { return isa
<Constant
>(V
); }))
5080 if (!ConstantExpr::isSupportedGetElementPtr(SrcTy
))
5081 return ConstantFoldGetElementPtr(SrcTy
, cast
<Constant
>(Ptr
), InBounds
,
5082 std::nullopt
, Indices
);
5084 auto *CE
= ConstantExpr::getGetElementPtr(SrcTy
, cast
<Constant
>(Ptr
), Indices
,
5086 return ConstantFoldConstant(CE
, Q
.DL
);
5089 Value
*llvm::simplifyGEPInst(Type
*SrcTy
, Value
*Ptr
, ArrayRef
<Value
*> Indices
,
5090 bool InBounds
, const SimplifyQuery
&Q
) {
5091 return ::simplifyGEPInst(SrcTy
, Ptr
, Indices
, InBounds
, Q
, RecursionLimit
);
5094 /// Given operands for an InsertValueInst, see if we can fold the result.
5095 /// If not, this returns null.
5096 static Value
*simplifyInsertValueInst(Value
*Agg
, Value
*Val
,
5097 ArrayRef
<unsigned> Idxs
,
5098 const SimplifyQuery
&Q
, unsigned) {
5099 if (Constant
*CAgg
= dyn_cast
<Constant
>(Agg
))
5100 if (Constant
*CVal
= dyn_cast
<Constant
>(Val
))
5101 return ConstantFoldInsertValueInstruction(CAgg
, CVal
, Idxs
);
5103 // insertvalue x, poison, n -> x
5104 // insertvalue x, undef, n -> x if x cannot be poison
5105 if (isa
<PoisonValue
>(Val
) ||
5106 (Q
.isUndefValue(Val
) && isGuaranteedNotToBePoison(Agg
)))
5109 // insertvalue x, (extractvalue y, n), n
5110 if (ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(Val
))
5111 if (EV
->getAggregateOperand()->getType() == Agg
->getType() &&
5112 EV
->getIndices() == Idxs
) {
5113 // insertvalue poison, (extractvalue y, n), n -> y
5114 // insertvalue undef, (extractvalue y, n), n -> y if y cannot be poison
5115 if (isa
<PoisonValue
>(Agg
) ||
5116 (Q
.isUndefValue(Agg
) &&
5117 isGuaranteedNotToBePoison(EV
->getAggregateOperand())))
5118 return EV
->getAggregateOperand();
5120 // insertvalue y, (extractvalue y, n), n -> y
5121 if (Agg
== EV
->getAggregateOperand())
5128 Value
*llvm::simplifyInsertValueInst(Value
*Agg
, Value
*Val
,
5129 ArrayRef
<unsigned> Idxs
,
5130 const SimplifyQuery
&Q
) {
5131 return ::simplifyInsertValueInst(Agg
, Val
, Idxs
, Q
, RecursionLimit
);
5134 Value
*llvm::simplifyInsertElementInst(Value
*Vec
, Value
*Val
, Value
*Idx
,
5135 const SimplifyQuery
&Q
) {
5136 // Try to constant fold.
5137 auto *VecC
= dyn_cast
<Constant
>(Vec
);
5138 auto *ValC
= dyn_cast
<Constant
>(Val
);
5139 auto *IdxC
= dyn_cast
<Constant
>(Idx
);
5140 if (VecC
&& ValC
&& IdxC
)
5141 return ConstantExpr::getInsertElement(VecC
, ValC
, IdxC
);
5143 // For fixed-length vector, fold into poison if index is out of bounds.
5144 if (auto *CI
= dyn_cast
<ConstantInt
>(Idx
)) {
5145 if (isa
<FixedVectorType
>(Vec
->getType()) &&
5146 CI
->uge(cast
<FixedVectorType
>(Vec
->getType())->getNumElements()))
5147 return PoisonValue::get(Vec
->getType());
5150 // If index is undef, it might be out of bounds (see above case)
5151 if (Q
.isUndefValue(Idx
))
5152 return PoisonValue::get(Vec
->getType());
5154 // If the scalar is poison, or it is undef and there is no risk of
5155 // propagating poison from the vector value, simplify to the vector value.
5156 if (isa
<PoisonValue
>(Val
) ||
5157 (Q
.isUndefValue(Val
) && isGuaranteedNotToBePoison(Vec
)))
5160 // If we are extracting a value from a vector, then inserting it into the same
5161 // place, that's the input vector:
5162 // insertelt Vec, (extractelt Vec, Idx), Idx --> Vec
5163 if (match(Val
, m_ExtractElt(m_Specific(Vec
), m_Specific(Idx
))))
5169 /// Given operands for an ExtractValueInst, see if we can fold the result.
5170 /// If not, this returns null.
5171 static Value
*simplifyExtractValueInst(Value
*Agg
, ArrayRef
<unsigned> Idxs
,
5172 const SimplifyQuery
&, unsigned) {
5173 if (auto *CAgg
= dyn_cast
<Constant
>(Agg
))
5174 return ConstantFoldExtractValueInstruction(CAgg
, Idxs
);
5176 // extractvalue x, (insertvalue y, elt, n), n -> elt
5177 unsigned NumIdxs
= Idxs
.size();
5178 for (auto *IVI
= dyn_cast
<InsertValueInst
>(Agg
); IVI
!= nullptr;
5179 IVI
= dyn_cast
<InsertValueInst
>(IVI
->getAggregateOperand())) {
5180 ArrayRef
<unsigned> InsertValueIdxs
= IVI
->getIndices();
5181 unsigned NumInsertValueIdxs
= InsertValueIdxs
.size();
5182 unsigned NumCommonIdxs
= std::min(NumInsertValueIdxs
, NumIdxs
);
5183 if (InsertValueIdxs
.slice(0, NumCommonIdxs
) ==
5184 Idxs
.slice(0, NumCommonIdxs
)) {
5185 if (NumIdxs
== NumInsertValueIdxs
)
5186 return IVI
->getInsertedValueOperand();
5194 Value
*llvm::simplifyExtractValueInst(Value
*Agg
, ArrayRef
<unsigned> Idxs
,
5195 const SimplifyQuery
&Q
) {
5196 return ::simplifyExtractValueInst(Agg
, Idxs
, Q
, RecursionLimit
);
5199 /// Given operands for an ExtractElementInst, see if we can fold the result.
5200 /// If not, this returns null.
5201 static Value
*simplifyExtractElementInst(Value
*Vec
, Value
*Idx
,
5202 const SimplifyQuery
&Q
, unsigned) {
5203 auto *VecVTy
= cast
<VectorType
>(Vec
->getType());
5204 if (auto *CVec
= dyn_cast
<Constant
>(Vec
)) {
5205 if (auto *CIdx
= dyn_cast
<Constant
>(Idx
))
5206 return ConstantExpr::getExtractElement(CVec
, CIdx
);
5208 if (Q
.isUndefValue(Vec
))
5209 return UndefValue::get(VecVTy
->getElementType());
5212 // An undef extract index can be arbitrarily chosen to be an out-of-range
5213 // index value, which would result in the instruction being poison.
5214 if (Q
.isUndefValue(Idx
))
5215 return PoisonValue::get(VecVTy
->getElementType());
5217 // If extracting a specified index from the vector, see if we can recursively
5218 // find a previously computed scalar that was inserted into the vector.
5219 if (auto *IdxC
= dyn_cast
<ConstantInt
>(Idx
)) {
5220 // For fixed-length vector, fold into undef if index is out of bounds.
5221 unsigned MinNumElts
= VecVTy
->getElementCount().getKnownMinValue();
5222 if (isa
<FixedVectorType
>(VecVTy
) && IdxC
->getValue().uge(MinNumElts
))
5223 return PoisonValue::get(VecVTy
->getElementType());
5224 // Handle case where an element is extracted from a splat.
5225 if (IdxC
->getValue().ult(MinNumElts
))
5226 if (auto *Splat
= getSplatValue(Vec
))
5228 if (Value
*Elt
= findScalarElement(Vec
, IdxC
->getZExtValue()))
5231 // extractelt x, (insertelt y, elt, n), n -> elt
5232 // If the possibly-variable indices are trivially known to be equal
5233 // (because they are the same operand) then use the value that was
5234 // inserted directly.
5235 auto *IE
= dyn_cast
<InsertElementInst
>(Vec
);
5236 if (IE
&& IE
->getOperand(2) == Idx
)
5237 return IE
->getOperand(1);
5239 // The index is not relevant if our vector is a splat.
5240 if (Value
*Splat
= getSplatValue(Vec
))
5246 Value
*llvm::simplifyExtractElementInst(Value
*Vec
, Value
*Idx
,
5247 const SimplifyQuery
&Q
) {
5248 return ::simplifyExtractElementInst(Vec
, Idx
, Q
, RecursionLimit
);
5251 /// See if we can fold the given phi. If not, returns null.
5252 static Value
*simplifyPHINode(PHINode
*PN
, ArrayRef
<Value
*> IncomingValues
,
5253 const SimplifyQuery
&Q
) {
5254 // WARNING: no matter how worthwhile it may seem, we can not perform PHI CSE
5255 // here, because the PHI we may succeed simplifying to was not
5256 // def-reachable from the original PHI!
5258 // If all of the PHI's incoming values are the same then replace the PHI node
5259 // with the common value.
5260 Value
*CommonValue
= nullptr;
5261 bool HasUndefInput
= false;
5262 for (Value
*Incoming
: IncomingValues
) {
5263 // If the incoming value is the phi node itself, it can safely be skipped.
5266 if (Q
.isUndefValue(Incoming
)) {
5267 // Remember that we saw an undef value, but otherwise ignore them.
5268 HasUndefInput
= true;
5271 if (CommonValue
&& Incoming
!= CommonValue
)
5272 return nullptr; // Not the same, bail out.
5273 CommonValue
= Incoming
;
5276 // If CommonValue is null then all of the incoming values were either undef or
5277 // equal to the phi node itself.
5279 return UndefValue::get(PN
->getType());
5281 if (HasUndefInput
) {
5282 // If we have a PHI node like phi(X, undef, X), where X is defined by some
5283 // instruction, we cannot return X as the result of the PHI node unless it
5284 // dominates the PHI block.
5285 return valueDominatesPHI(CommonValue
, PN
, Q
.DT
) ? CommonValue
: nullptr;
5291 static Value
*simplifyCastInst(unsigned CastOpc
, Value
*Op
, Type
*Ty
,
5292 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
5293 if (auto *C
= dyn_cast
<Constant
>(Op
))
5294 return ConstantFoldCastOperand(CastOpc
, C
, Ty
, Q
.DL
);
5296 if (auto *CI
= dyn_cast
<CastInst
>(Op
)) {
5297 auto *Src
= CI
->getOperand(0);
5298 Type
*SrcTy
= Src
->getType();
5299 Type
*MidTy
= CI
->getType();
5301 if (Src
->getType() == Ty
) {
5302 auto FirstOp
= static_cast<Instruction::CastOps
>(CI
->getOpcode());
5303 auto SecondOp
= static_cast<Instruction::CastOps
>(CastOpc
);
5305 SrcTy
->isPtrOrPtrVectorTy() ? Q
.DL
.getIntPtrType(SrcTy
) : nullptr;
5307 MidTy
->isPtrOrPtrVectorTy() ? Q
.DL
.getIntPtrType(MidTy
) : nullptr;
5309 DstTy
->isPtrOrPtrVectorTy() ? Q
.DL
.getIntPtrType(DstTy
) : nullptr;
5310 if (CastInst::isEliminableCastPair(FirstOp
, SecondOp
, SrcTy
, MidTy
, DstTy
,
5311 SrcIntPtrTy
, MidIntPtrTy
,
5312 DstIntPtrTy
) == Instruction::BitCast
)
5318 if (CastOpc
== Instruction::BitCast
)
5319 if (Op
->getType() == Ty
)
5325 Value
*llvm::simplifyCastInst(unsigned CastOpc
, Value
*Op
, Type
*Ty
,
5326 const SimplifyQuery
&Q
) {
5327 return ::simplifyCastInst(CastOpc
, Op
, Ty
, Q
, RecursionLimit
);
5330 /// For the given destination element of a shuffle, peek through shuffles to
5331 /// match a root vector source operand that contains that element in the same
5332 /// vector lane (ie, the same mask index), so we can eliminate the shuffle(s).
5333 static Value
*foldIdentityShuffles(int DestElt
, Value
*Op0
, Value
*Op1
,
5334 int MaskVal
, Value
*RootVec
,
5335 unsigned MaxRecurse
) {
5339 // Bail out if any mask value is undefined. That kind of shuffle may be
5340 // simplified further based on demanded bits or other folds.
5344 // The mask value chooses which source operand we need to look at next.
5345 int InVecNumElts
= cast
<FixedVectorType
>(Op0
->getType())->getNumElements();
5346 int RootElt
= MaskVal
;
5347 Value
*SourceOp
= Op0
;
5348 if (MaskVal
>= InVecNumElts
) {
5349 RootElt
= MaskVal
- InVecNumElts
;
5353 // If the source operand is a shuffle itself, look through it to find the
5354 // matching root vector.
5355 if (auto *SourceShuf
= dyn_cast
<ShuffleVectorInst
>(SourceOp
)) {
5356 return foldIdentityShuffles(
5357 DestElt
, SourceShuf
->getOperand(0), SourceShuf
->getOperand(1),
5358 SourceShuf
->getMaskValue(RootElt
), RootVec
, MaxRecurse
);
5361 // TODO: Look through bitcasts? What if the bitcast changes the vector element
5364 // The source operand is not a shuffle. Initialize the root vector value for
5365 // this shuffle if that has not been done yet.
5369 // Give up as soon as a source operand does not match the existing root value.
5370 if (RootVec
!= SourceOp
)
5373 // The element must be coming from the same lane in the source vector
5374 // (although it may have crossed lanes in intermediate shuffles).
5375 if (RootElt
!= DestElt
)
5381 static Value
*simplifyShuffleVectorInst(Value
*Op0
, Value
*Op1
,
5382 ArrayRef
<int> Mask
, Type
*RetTy
,
5383 const SimplifyQuery
&Q
,
5384 unsigned MaxRecurse
) {
5385 if (all_of(Mask
, [](int Elem
) { return Elem
== PoisonMaskElem
; }))
5386 return PoisonValue::get(RetTy
);
5388 auto *InVecTy
= cast
<VectorType
>(Op0
->getType());
5389 unsigned MaskNumElts
= Mask
.size();
5390 ElementCount InVecEltCount
= InVecTy
->getElementCount();
5392 bool Scalable
= InVecEltCount
.isScalable();
5394 SmallVector
<int, 32> Indices
;
5395 Indices
.assign(Mask
.begin(), Mask
.end());
5397 // Canonicalization: If mask does not select elements from an input vector,
5398 // replace that input vector with poison.
5400 bool MaskSelects0
= false, MaskSelects1
= false;
5401 unsigned InVecNumElts
= InVecEltCount
.getKnownMinValue();
5402 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
5403 if (Indices
[i
] == -1)
5405 if ((unsigned)Indices
[i
] < InVecNumElts
)
5406 MaskSelects0
= true;
5408 MaskSelects1
= true;
5411 Op0
= PoisonValue::get(InVecTy
);
5413 Op1
= PoisonValue::get(InVecTy
);
5416 auto *Op0Const
= dyn_cast
<Constant
>(Op0
);
5417 auto *Op1Const
= dyn_cast
<Constant
>(Op1
);
5419 // If all operands are constant, constant fold the shuffle. This
5420 // transformation depends on the value of the mask which is not known at
5421 // compile time for scalable vectors
5422 if (Op0Const
&& Op1Const
)
5423 return ConstantExpr::getShuffleVector(Op0Const
, Op1Const
, Mask
);
5425 // Canonicalization: if only one input vector is constant, it shall be the
5426 // second one. This transformation depends on the value of the mask which
5427 // is not known at compile time for scalable vectors
5428 if (!Scalable
&& Op0Const
&& !Op1Const
) {
5429 std::swap(Op0
, Op1
);
5430 ShuffleVectorInst::commuteShuffleMask(Indices
,
5431 InVecEltCount
.getKnownMinValue());
5434 // A splat of an inserted scalar constant becomes a vector constant:
5435 // shuf (inselt ?, C, IndexC), undef, <IndexC, IndexC...> --> <C, C...>
5436 // NOTE: We may have commuted above, so analyze the updated Indices, not the
5437 // original mask constant.
5438 // NOTE: This transformation depends on the value of the mask which is not
5439 // known at compile time for scalable vectors
5441 ConstantInt
*IndexC
;
5442 if (!Scalable
&& match(Op0
, m_InsertElt(m_Value(), m_Constant(C
),
5443 m_ConstantInt(IndexC
)))) {
5444 // Match a splat shuffle mask of the insert index allowing undef elements.
5445 int InsertIndex
= IndexC
->getZExtValue();
5446 if (all_of(Indices
, [InsertIndex
](int MaskElt
) {
5447 return MaskElt
== InsertIndex
|| MaskElt
== -1;
5449 assert(isa
<UndefValue
>(Op1
) && "Expected undef operand 1 for splat");
5451 // Shuffle mask poisons become poison constant result elements.
5452 SmallVector
<Constant
*, 16> VecC(MaskNumElts
, C
);
5453 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
)
5454 if (Indices
[i
] == -1)
5455 VecC
[i
] = PoisonValue::get(C
->getType());
5456 return ConstantVector::get(VecC
);
5460 // A shuffle of a splat is always the splat itself. Legal if the shuffle's
5461 // value type is same as the input vectors' type.
5462 if (auto *OpShuf
= dyn_cast
<ShuffleVectorInst
>(Op0
))
5463 if (Q
.isUndefValue(Op1
) && RetTy
== InVecTy
&&
5464 all_equal(OpShuf
->getShuffleMask()))
5467 // All remaining transformation depend on the value of the mask, which is
5468 // not known at compile time for scalable vectors.
5472 // Don't fold a shuffle with undef mask elements. This may get folded in a
5473 // better way using demanded bits or other analysis.
5474 // TODO: Should we allow this?
5475 if (is_contained(Indices
, -1))
5478 // Check if every element of this shuffle can be mapped back to the
5479 // corresponding element of a single root vector. If so, we don't need this
5480 // shuffle. This handles simple identity shuffles as well as chains of
5481 // shuffles that may widen/narrow and/or move elements across lanes and back.
5482 Value
*RootVec
= nullptr;
5483 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
5484 // Note that recursion is limited for each vector element, so if any element
5485 // exceeds the limit, this will fail to simplify.
5487 foldIdentityShuffles(i
, Op0
, Op1
, Indices
[i
], RootVec
, MaxRecurse
);
5489 // We can't replace a widening/narrowing shuffle with one of its operands.
5490 if (!RootVec
|| RootVec
->getType() != RetTy
)
5496 /// Given operands for a ShuffleVectorInst, fold the result or return null.
5497 Value
*llvm::simplifyShuffleVectorInst(Value
*Op0
, Value
*Op1
,
5498 ArrayRef
<int> Mask
, Type
*RetTy
,
5499 const SimplifyQuery
&Q
) {
5500 return ::simplifyShuffleVectorInst(Op0
, Op1
, Mask
, RetTy
, Q
, RecursionLimit
);
5503 static Constant
*foldConstant(Instruction::UnaryOps Opcode
, Value
*&Op
,
5504 const SimplifyQuery
&Q
) {
5505 if (auto *C
= dyn_cast
<Constant
>(Op
))
5506 return ConstantFoldUnaryOpOperand(Opcode
, C
, Q
.DL
);
5510 /// Given the operand for an FNeg, see if we can fold the result. If not, this
5512 static Value
*simplifyFNegInst(Value
*Op
, FastMathFlags FMF
,
5513 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
5514 if (Constant
*C
= foldConstant(Instruction::FNeg
, Op
, Q
))
5518 // fneg (fneg X) ==> X
5519 if (match(Op
, m_FNeg(m_Value(X
))))
5525 Value
*llvm::simplifyFNegInst(Value
*Op
, FastMathFlags FMF
,
5526 const SimplifyQuery
&Q
) {
5527 return ::simplifyFNegInst(Op
, FMF
, Q
, RecursionLimit
);
5530 /// Try to propagate existing NaN values when possible. If not, replace the
5531 /// constant or elements in the constant with a canonical NaN.
5532 static Constant
*propagateNaN(Constant
*In
) {
5533 Type
*Ty
= In
->getType();
5534 if (auto *VecTy
= dyn_cast
<FixedVectorType
>(Ty
)) {
5535 unsigned NumElts
= VecTy
->getNumElements();
5536 SmallVector
<Constant
*, 32> NewC(NumElts
);
5537 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
5538 Constant
*EltC
= In
->getAggregateElement(i
);
5539 // Poison elements propagate. NaN propagates except signaling is quieted.
5540 // Replace unknown or undef elements with canonical NaN.
5541 if (EltC
&& isa
<PoisonValue
>(EltC
))
5543 else if (EltC
&& EltC
->isNaN())
5544 NewC
[i
] = ConstantFP::get(
5545 EltC
->getType(), cast
<ConstantFP
>(EltC
)->getValue().makeQuiet());
5547 NewC
[i
] = ConstantFP::getNaN(VecTy
->getElementType());
5549 return ConstantVector::get(NewC
);
5552 // If it is not a fixed vector, but not a simple NaN either, return a
5555 return ConstantFP::getNaN(Ty
);
5557 // If we known this is a NaN, and it's scalable vector, we must have a splat
5558 // on our hands. Grab that before splatting a QNaN constant.
5559 if (isa
<ScalableVectorType
>(Ty
)) {
5560 auto *Splat
= In
->getSplatValue();
5561 assert(Splat
&& Splat
->isNaN() &&
5562 "Found a scalable-vector NaN but not a splat");
5566 // Propagate an existing QNaN constant. If it is an SNaN, make it quiet, but
5567 // preserve the sign/payload.
5568 return ConstantFP::get(Ty
, cast
<ConstantFP
>(In
)->getValue().makeQuiet());
5571 /// Perform folds that are common to any floating-point operation. This implies
5572 /// transforms based on poison/undef/NaN because the operation itself makes no
5573 /// difference to the result.
5574 static Constant
*simplifyFPOp(ArrayRef
<Value
*> Ops
, FastMathFlags FMF
,
5575 const SimplifyQuery
&Q
,
5576 fp::ExceptionBehavior ExBehavior
,
5577 RoundingMode Rounding
) {
5578 // Poison is independent of anything else. It always propagates from an
5579 // operand to a math result.
5580 if (any_of(Ops
, [](Value
*V
) { return match(V
, m_Poison()); }))
5581 return PoisonValue::get(Ops
[0]->getType());
5583 for (Value
*V
: Ops
) {
5584 bool IsNan
= match(V
, m_NaN());
5585 bool IsInf
= match(V
, m_Inf());
5586 bool IsUndef
= Q
.isUndefValue(V
);
5588 // If this operation has 'nnan' or 'ninf' and at least 1 disallowed operand
5589 // (an undef operand can be chosen to be Nan/Inf), then the result of
5590 // this operation is poison.
5591 if (FMF
.noNaNs() && (IsNan
|| IsUndef
))
5592 return PoisonValue::get(V
->getType());
5593 if (FMF
.noInfs() && (IsInf
|| IsUndef
))
5594 return PoisonValue::get(V
->getType());
5596 if (isDefaultFPEnvironment(ExBehavior
, Rounding
)) {
5597 // Undef does not propagate because undef means that all bits can take on
5598 // any value. If this is undef * NaN for example, then the result values
5599 // (at least the exponent bits) are limited. Assume the undef is a
5600 // canonical NaN and propagate that.
5602 return ConstantFP::getNaN(V
->getType());
5604 return propagateNaN(cast
<Constant
>(V
));
5605 } else if (ExBehavior
!= fp::ebStrict
) {
5607 return propagateNaN(cast
<Constant
>(V
));
5613 /// Given operands for an FAdd, see if we can fold the result. If not, this
5616 simplifyFAddInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5617 const SimplifyQuery
&Q
, unsigned MaxRecurse
,
5618 fp::ExceptionBehavior ExBehavior
= fp::ebIgnore
,
5619 RoundingMode Rounding
= RoundingMode::NearestTiesToEven
) {
5620 if (isDefaultFPEnvironment(ExBehavior
, Rounding
))
5621 if (Constant
*C
= foldOrCommuteConstant(Instruction::FAdd
, Op0
, Op1
, Q
))
5624 if (Constant
*C
= simplifyFPOp({Op0
, Op1
}, FMF
, Q
, ExBehavior
, Rounding
))
5628 // With strict/constrained FP, we have these possible edge cases that do
5629 // not simplify to Op0:
5630 // fadd SNaN, -0.0 --> QNaN
5631 // fadd +0.0, -0.0 --> -0.0 (but only with round toward negative)
5632 if (canIgnoreSNaN(ExBehavior
, FMF
) &&
5633 (!canRoundingModeBe(Rounding
, RoundingMode::TowardNegative
) ||
5634 FMF
.noSignedZeros()))
5635 if (match(Op1
, m_NegZeroFP()))
5638 // fadd X, 0 ==> X, when we know X is not -0
5639 if (canIgnoreSNaN(ExBehavior
, FMF
))
5640 if (match(Op1
, m_PosZeroFP()) &&
5641 (FMF
.noSignedZeros() || cannotBeNegativeZero(Op0
, Q
.DL
, Q
.TLI
)))
5644 if (!isDefaultFPEnvironment(ExBehavior
, Rounding
))
5648 // With nnan: X + {+/-}Inf --> {+/-}Inf
5649 if (match(Op1
, m_Inf()))
5652 // With nnan: -X + X --> 0.0 (and commuted variant)
5653 // We don't have to explicitly exclude infinities (ninf): INF + -INF == NaN.
5654 // Negative zeros are allowed because we always end up with positive zero:
5655 // X = -0.0: (-0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5656 // X = -0.0: ( 0.0 - (-0.0)) + (-0.0) == ( 0.0) + (-0.0) == 0.0
5657 // X = 0.0: (-0.0 - ( 0.0)) + ( 0.0) == (-0.0) + ( 0.0) == 0.0
5658 // X = 0.0: ( 0.0 - ( 0.0)) + ( 0.0) == ( 0.0) + ( 0.0) == 0.0
5659 if (match(Op0
, m_FSub(m_AnyZeroFP(), m_Specific(Op1
))) ||
5660 match(Op1
, m_FSub(m_AnyZeroFP(), m_Specific(Op0
))))
5661 return ConstantFP::getZero(Op0
->getType());
5663 if (match(Op0
, m_FNeg(m_Specific(Op1
))) ||
5664 match(Op1
, m_FNeg(m_Specific(Op0
))))
5665 return ConstantFP::getZero(Op0
->getType());
5668 // (X - Y) + Y --> X
5669 // Y + (X - Y) --> X
5671 if (FMF
.noSignedZeros() && FMF
.allowReassoc() &&
5672 (match(Op0
, m_FSub(m_Value(X
), m_Specific(Op1
))) ||
5673 match(Op1
, m_FSub(m_Value(X
), m_Specific(Op0
)))))
5679 /// Given operands for an FSub, see if we can fold the result. If not, this
5682 simplifyFSubInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5683 const SimplifyQuery
&Q
, unsigned MaxRecurse
,
5684 fp::ExceptionBehavior ExBehavior
= fp::ebIgnore
,
5685 RoundingMode Rounding
= RoundingMode::NearestTiesToEven
) {
5686 if (isDefaultFPEnvironment(ExBehavior
, Rounding
))
5687 if (Constant
*C
= foldOrCommuteConstant(Instruction::FSub
, Op0
, Op1
, Q
))
5690 if (Constant
*C
= simplifyFPOp({Op0
, Op1
}, FMF
, Q
, ExBehavior
, Rounding
))
5694 if (canIgnoreSNaN(ExBehavior
, FMF
) &&
5695 (!canRoundingModeBe(Rounding
, RoundingMode::TowardNegative
) ||
5696 FMF
.noSignedZeros()))
5697 if (match(Op1
, m_PosZeroFP()))
5700 // fsub X, -0 ==> X, when we know X is not -0
5701 if (canIgnoreSNaN(ExBehavior
, FMF
))
5702 if (match(Op1
, m_NegZeroFP()) &&
5703 (FMF
.noSignedZeros() || cannotBeNegativeZero(Op0
, Q
.DL
, Q
.TLI
)))
5706 // fsub -0.0, (fsub -0.0, X) ==> X
5707 // fsub -0.0, (fneg X) ==> X
5709 if (canIgnoreSNaN(ExBehavior
, FMF
))
5710 if (match(Op0
, m_NegZeroFP()) && match(Op1
, m_FNeg(m_Value(X
))))
5713 // fsub 0.0, (fsub 0.0, X) ==> X if signed zeros are ignored.
5714 // fsub 0.0, (fneg X) ==> X if signed zeros are ignored.
5715 if (canIgnoreSNaN(ExBehavior
, FMF
))
5716 if (FMF
.noSignedZeros() && match(Op0
, m_AnyZeroFP()) &&
5717 (match(Op1
, m_FSub(m_AnyZeroFP(), m_Value(X
))) ||
5718 match(Op1
, m_FNeg(m_Value(X
)))))
5721 if (!isDefaultFPEnvironment(ExBehavior
, Rounding
))
5725 // fsub nnan x, x ==> 0.0
5727 return Constant::getNullValue(Op0
->getType());
5729 // With nnan: {+/-}Inf - X --> {+/-}Inf
5730 if (match(Op0
, m_Inf()))
5733 // With nnan: X - {+/-}Inf --> {-/+}Inf
5734 if (match(Op1
, m_Inf()))
5735 return foldConstant(Instruction::FNeg
, Op1
, Q
);
5738 // Y - (Y - X) --> X
5739 // (X + Y) - Y --> X
5740 if (FMF
.noSignedZeros() && FMF
.allowReassoc() &&
5741 (match(Op1
, m_FSub(m_Specific(Op0
), m_Value(X
))) ||
5742 match(Op0
, m_c_FAdd(m_Specific(Op1
), m_Value(X
)))))
5748 static Value
*simplifyFMAFMul(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5749 const SimplifyQuery
&Q
, unsigned MaxRecurse
,
5750 fp::ExceptionBehavior ExBehavior
,
5751 RoundingMode Rounding
) {
5752 if (Constant
*C
= simplifyFPOp({Op0
, Op1
}, FMF
, Q
, ExBehavior
, Rounding
))
5755 if (!isDefaultFPEnvironment(ExBehavior
, Rounding
))
5758 // Canonicalize special constants as operand 1.
5759 if (match(Op0
, m_FPOne()) || match(Op0
, m_AnyZeroFP()))
5760 std::swap(Op0
, Op1
);
5763 if (match(Op1
, m_FPOne()))
5766 if (match(Op1
, m_AnyZeroFP())) {
5767 // X * 0.0 --> 0.0 (with nnan and nsz)
5768 if (FMF
.noNaNs() && FMF
.noSignedZeros())
5769 return ConstantFP::getZero(Op0
->getType());
5771 // +normal number * (-)0.0 --> (-)0.0
5772 if (isKnownNeverInfOrNaN(Op0
, Q
.DL
, Q
.TLI
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
) &&
5773 // TODO: Check SignBit from computeKnownFPClass when it's more complete.
5774 SignBitMustBeZero(Op0
, Q
.DL
, Q
.TLI
))
5778 // sqrt(X) * sqrt(X) --> X, if we can:
5779 // 1. Remove the intermediate rounding (reassociate).
5780 // 2. Ignore non-zero negative numbers because sqrt would produce NAN.
5781 // 3. Ignore -0.0 because sqrt(-0.0) == -0.0, but -0.0 * -0.0 == 0.0.
5783 if (Op0
== Op1
&& match(Op0
, m_Sqrt(m_Value(X
))) && FMF
.allowReassoc() &&
5784 FMF
.noNaNs() && FMF
.noSignedZeros())
5790 /// Given the operands for an FMul, see if we can fold the result
5792 simplifyFMulInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5793 const SimplifyQuery
&Q
, unsigned MaxRecurse
,
5794 fp::ExceptionBehavior ExBehavior
= fp::ebIgnore
,
5795 RoundingMode Rounding
= RoundingMode::NearestTiesToEven
) {
5796 if (isDefaultFPEnvironment(ExBehavior
, Rounding
))
5797 if (Constant
*C
= foldOrCommuteConstant(Instruction::FMul
, Op0
, Op1
, Q
))
5800 // Now apply simplifications that do not require rounding.
5801 return simplifyFMAFMul(Op0
, Op1
, FMF
, Q
, MaxRecurse
, ExBehavior
, Rounding
);
5804 Value
*llvm::simplifyFAddInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5805 const SimplifyQuery
&Q
,
5806 fp::ExceptionBehavior ExBehavior
,
5807 RoundingMode Rounding
) {
5808 return ::simplifyFAddInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
, ExBehavior
,
5812 Value
*llvm::simplifyFSubInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5813 const SimplifyQuery
&Q
,
5814 fp::ExceptionBehavior ExBehavior
,
5815 RoundingMode Rounding
) {
5816 return ::simplifyFSubInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
, ExBehavior
,
5820 Value
*llvm::simplifyFMulInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5821 const SimplifyQuery
&Q
,
5822 fp::ExceptionBehavior ExBehavior
,
5823 RoundingMode Rounding
) {
5824 return ::simplifyFMulInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
, ExBehavior
,
5828 Value
*llvm::simplifyFMAFMul(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5829 const SimplifyQuery
&Q
,
5830 fp::ExceptionBehavior ExBehavior
,
5831 RoundingMode Rounding
) {
5832 return ::simplifyFMAFMul(Op0
, Op1
, FMF
, Q
, RecursionLimit
, ExBehavior
,
5837 simplifyFDivInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5838 const SimplifyQuery
&Q
, unsigned,
5839 fp::ExceptionBehavior ExBehavior
= fp::ebIgnore
,
5840 RoundingMode Rounding
= RoundingMode::NearestTiesToEven
) {
5841 if (isDefaultFPEnvironment(ExBehavior
, Rounding
))
5842 if (Constant
*C
= foldOrCommuteConstant(Instruction::FDiv
, Op0
, Op1
, Q
))
5845 if (Constant
*C
= simplifyFPOp({Op0
, Op1
}, FMF
, Q
, ExBehavior
, Rounding
))
5848 if (!isDefaultFPEnvironment(ExBehavior
, Rounding
))
5852 if (match(Op1
, m_FPOne()))
5856 // Requires that NaNs are off (X could be zero) and signed zeroes are
5857 // ignored (X could be positive or negative, so the output sign is unknown).
5858 if (FMF
.noNaNs() && FMF
.noSignedZeros() && match(Op0
, m_AnyZeroFP()))
5859 return ConstantFP::getZero(Op0
->getType());
5862 // X / X -> 1.0 is legal when NaNs are ignored.
5863 // We can ignore infinities because INF/INF is NaN.
5865 return ConstantFP::get(Op0
->getType(), 1.0);
5867 // (X * Y) / Y --> X if we can reassociate to the above form.
5869 if (FMF
.allowReassoc() && match(Op0
, m_c_FMul(m_Value(X
), m_Specific(Op1
))))
5872 // -X / X -> -1.0 and
5873 // X / -X -> -1.0 are legal when NaNs are ignored.
5874 // We can ignore signed zeros because +-0.0/+-0.0 is NaN and ignored.
5875 if (match(Op0
, m_FNegNSZ(m_Specific(Op1
))) ||
5876 match(Op1
, m_FNegNSZ(m_Specific(Op0
))))
5877 return ConstantFP::get(Op0
->getType(), -1.0);
5879 // nnan ninf X / [-]0.0 -> poison
5880 if (FMF
.noInfs() && match(Op1
, m_AnyZeroFP()))
5881 return PoisonValue::get(Op1
->getType());
5887 Value
*llvm::simplifyFDivInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5888 const SimplifyQuery
&Q
,
5889 fp::ExceptionBehavior ExBehavior
,
5890 RoundingMode Rounding
) {
5891 return ::simplifyFDivInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
, ExBehavior
,
5896 simplifyFRemInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5897 const SimplifyQuery
&Q
, unsigned,
5898 fp::ExceptionBehavior ExBehavior
= fp::ebIgnore
,
5899 RoundingMode Rounding
= RoundingMode::NearestTiesToEven
) {
5900 if (isDefaultFPEnvironment(ExBehavior
, Rounding
))
5901 if (Constant
*C
= foldOrCommuteConstant(Instruction::FRem
, Op0
, Op1
, Q
))
5904 if (Constant
*C
= simplifyFPOp({Op0
, Op1
}, FMF
, Q
, ExBehavior
, Rounding
))
5907 if (!isDefaultFPEnvironment(ExBehavior
, Rounding
))
5910 // Unlike fdiv, the result of frem always matches the sign of the dividend.
5911 // The constant match may include undef elements in a vector, so return a full
5912 // zero constant as the result.
5915 if (match(Op0
, m_PosZeroFP()))
5916 return ConstantFP::getZero(Op0
->getType());
5918 if (match(Op0
, m_NegZeroFP()))
5919 return ConstantFP::getNegativeZero(Op0
->getType());
5925 Value
*llvm::simplifyFRemInst(Value
*Op0
, Value
*Op1
, FastMathFlags FMF
,
5926 const SimplifyQuery
&Q
,
5927 fp::ExceptionBehavior ExBehavior
,
5928 RoundingMode Rounding
) {
5929 return ::simplifyFRemInst(Op0
, Op1
, FMF
, Q
, RecursionLimit
, ExBehavior
,
5933 //=== Helper functions for higher up the class hierarchy.
5935 /// Given the operand for a UnaryOperator, see if we can fold the result.
5936 /// If not, this returns null.
5937 static Value
*simplifyUnOp(unsigned Opcode
, Value
*Op
, const SimplifyQuery
&Q
,
5938 unsigned MaxRecurse
) {
5940 case Instruction::FNeg
:
5941 return simplifyFNegInst(Op
, FastMathFlags(), Q
, MaxRecurse
);
5943 llvm_unreachable("Unexpected opcode");
5947 /// Given the operand for a UnaryOperator, see if we can fold the result.
5948 /// If not, this returns null.
5949 /// Try to use FastMathFlags when folding the result.
5950 static Value
*simplifyFPUnOp(unsigned Opcode
, Value
*Op
,
5951 const FastMathFlags
&FMF
, const SimplifyQuery
&Q
,
5952 unsigned MaxRecurse
) {
5954 case Instruction::FNeg
:
5955 return simplifyFNegInst(Op
, FMF
, Q
, MaxRecurse
);
5957 return simplifyUnOp(Opcode
, Op
, Q
, MaxRecurse
);
5961 Value
*llvm::simplifyUnOp(unsigned Opcode
, Value
*Op
, const SimplifyQuery
&Q
) {
5962 return ::simplifyUnOp(Opcode
, Op
, Q
, RecursionLimit
);
5965 Value
*llvm::simplifyUnOp(unsigned Opcode
, Value
*Op
, FastMathFlags FMF
,
5966 const SimplifyQuery
&Q
) {
5967 return ::simplifyFPUnOp(Opcode
, Op
, FMF
, Q
, RecursionLimit
);
5970 /// Given operands for a BinaryOperator, see if we can fold the result.
5971 /// If not, this returns null.
5972 static Value
*simplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
5973 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
5975 case Instruction::Add
:
5976 return simplifyAddInst(LHS
, RHS
, /* IsNSW */ false, /* IsNUW */ false, Q
,
5978 case Instruction::Sub
:
5979 return simplifySubInst(LHS
, RHS
, /* IsNSW */ false, /* IsNUW */ false, Q
,
5981 case Instruction::Mul
:
5982 return simplifyMulInst(LHS
, RHS
, /* IsNSW */ false, /* IsNUW */ false, Q
,
5984 case Instruction::SDiv
:
5985 return simplifySDivInst(LHS
, RHS
, /* IsExact */ false, Q
, MaxRecurse
);
5986 case Instruction::UDiv
:
5987 return simplifyUDivInst(LHS
, RHS
, /* IsExact */ false, Q
, MaxRecurse
);
5988 case Instruction::SRem
:
5989 return simplifySRemInst(LHS
, RHS
, Q
, MaxRecurse
);
5990 case Instruction::URem
:
5991 return simplifyURemInst(LHS
, RHS
, Q
, MaxRecurse
);
5992 case Instruction::Shl
:
5993 return simplifyShlInst(LHS
, RHS
, /* IsNSW */ false, /* IsNUW */ false, Q
,
5995 case Instruction::LShr
:
5996 return simplifyLShrInst(LHS
, RHS
, /* IsExact */ false, Q
, MaxRecurse
);
5997 case Instruction::AShr
:
5998 return simplifyAShrInst(LHS
, RHS
, /* IsExact */ false, Q
, MaxRecurse
);
5999 case Instruction::And
:
6000 return simplifyAndInst(LHS
, RHS
, Q
, MaxRecurse
);
6001 case Instruction::Or
:
6002 return simplifyOrInst(LHS
, RHS
, Q
, MaxRecurse
);
6003 case Instruction::Xor
:
6004 return simplifyXorInst(LHS
, RHS
, Q
, MaxRecurse
);
6005 case Instruction::FAdd
:
6006 return simplifyFAddInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
6007 case Instruction::FSub
:
6008 return simplifyFSubInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
6009 case Instruction::FMul
:
6010 return simplifyFMulInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
6011 case Instruction::FDiv
:
6012 return simplifyFDivInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
6013 case Instruction::FRem
:
6014 return simplifyFRemInst(LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
6016 llvm_unreachable("Unexpected opcode");
6020 /// Given operands for a BinaryOperator, see if we can fold the result.
6021 /// If not, this returns null.
6022 /// Try to use FastMathFlags when folding the result.
6023 static Value
*simplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
6024 const FastMathFlags
&FMF
, const SimplifyQuery
&Q
,
6025 unsigned MaxRecurse
) {
6027 case Instruction::FAdd
:
6028 return simplifyFAddInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
6029 case Instruction::FSub
:
6030 return simplifyFSubInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
6031 case Instruction::FMul
:
6032 return simplifyFMulInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
6033 case Instruction::FDiv
:
6034 return simplifyFDivInst(LHS
, RHS
, FMF
, Q
, MaxRecurse
);
6036 return simplifyBinOp(Opcode
, LHS
, RHS
, Q
, MaxRecurse
);
6040 Value
*llvm::simplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
6041 const SimplifyQuery
&Q
) {
6042 return ::simplifyBinOp(Opcode
, LHS
, RHS
, Q
, RecursionLimit
);
6045 Value
*llvm::simplifyBinOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
,
6046 FastMathFlags FMF
, const SimplifyQuery
&Q
) {
6047 return ::simplifyBinOp(Opcode
, LHS
, RHS
, FMF
, Q
, RecursionLimit
);
6050 /// Given operands for a CmpInst, see if we can fold the result.
6051 static Value
*simplifyCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
6052 const SimplifyQuery
&Q
, unsigned MaxRecurse
) {
6053 if (CmpInst::isIntPredicate((CmpInst::Predicate
)Predicate
))
6054 return simplifyICmpInst(Predicate
, LHS
, RHS
, Q
, MaxRecurse
);
6055 return simplifyFCmpInst(Predicate
, LHS
, RHS
, FastMathFlags(), Q
, MaxRecurse
);
6058 Value
*llvm::simplifyCmpInst(unsigned Predicate
, Value
*LHS
, Value
*RHS
,
6059 const SimplifyQuery
&Q
) {
6060 return ::simplifyCmpInst(Predicate
, LHS
, RHS
, Q
, RecursionLimit
);
6063 static bool isIdempotent(Intrinsic::ID ID
) {
6068 // Unary idempotent: f(f(x)) = f(x)
6069 case Intrinsic::fabs
:
6070 case Intrinsic::floor
:
6071 case Intrinsic::ceil
:
6072 case Intrinsic::trunc
:
6073 case Intrinsic::rint
:
6074 case Intrinsic::nearbyint
:
6075 case Intrinsic::round
:
6076 case Intrinsic::roundeven
:
6077 case Intrinsic::canonicalize
:
6078 case Intrinsic::arithmetic_fence
:
6083 /// Return true if the intrinsic rounds a floating-point value to an integral
6084 /// floating-point value (not an integer type).
6085 static bool removesFPFraction(Intrinsic::ID ID
) {
6090 case Intrinsic::floor
:
6091 case Intrinsic::ceil
:
6092 case Intrinsic::trunc
:
6093 case Intrinsic::rint
:
6094 case Intrinsic::nearbyint
:
6095 case Intrinsic::round
:
6096 case Intrinsic::roundeven
:
6101 static Value
*simplifyRelativeLoad(Constant
*Ptr
, Constant
*Offset
,
6102 const DataLayout
&DL
) {
6103 GlobalValue
*PtrSym
;
6105 if (!IsConstantOffsetFromGlobal(Ptr
, PtrSym
, PtrOffset
, DL
))
6108 Type
*Int32Ty
= Type::getInt32Ty(Ptr
->getContext());
6110 auto *OffsetConstInt
= dyn_cast
<ConstantInt
>(Offset
);
6111 if (!OffsetConstInt
|| OffsetConstInt
->getType()->getBitWidth() > 64)
6114 APInt OffsetInt
= OffsetConstInt
->getValue().sextOrTrunc(
6115 DL
.getIndexTypeSizeInBits(Ptr
->getType()));
6116 if (OffsetInt
.srem(4) != 0)
6119 Constant
*Loaded
= ConstantFoldLoadFromConstPtr(Ptr
, Int32Ty
, OffsetInt
, DL
);
6123 auto *LoadedCE
= dyn_cast
<ConstantExpr
>(Loaded
);
6127 if (LoadedCE
->getOpcode() == Instruction::Trunc
) {
6128 LoadedCE
= dyn_cast
<ConstantExpr
>(LoadedCE
->getOperand(0));
6133 if (LoadedCE
->getOpcode() != Instruction::Sub
)
6136 auto *LoadedLHS
= dyn_cast
<ConstantExpr
>(LoadedCE
->getOperand(0));
6137 if (!LoadedLHS
|| LoadedLHS
->getOpcode() != Instruction::PtrToInt
)
6139 auto *LoadedLHSPtr
= LoadedLHS
->getOperand(0);
6141 Constant
*LoadedRHS
= LoadedCE
->getOperand(1);
6142 GlobalValue
*LoadedRHSSym
;
6143 APInt LoadedRHSOffset
;
6144 if (!IsConstantOffsetFromGlobal(LoadedRHS
, LoadedRHSSym
, LoadedRHSOffset
,
6146 PtrSym
!= LoadedRHSSym
|| PtrOffset
!= LoadedRHSOffset
)
6149 return LoadedLHSPtr
;
6152 // TODO: Need to pass in FastMathFlags
6153 static Value
*simplifyLdexp(Value
*Op0
, Value
*Op1
, const SimplifyQuery
&Q
,
6155 // ldexp(poison, x) -> poison
6156 // ldexp(x, poison) -> poison
6157 if (isa
<PoisonValue
>(Op0
) || isa
<PoisonValue
>(Op1
))
6160 // ldexp(undef, x) -> nan
6161 if (Q
.isUndefValue(Op0
))
6162 return ConstantFP::getNaN(Op0
->getType());
6165 // TODO: Could insert a canonicalize for strict
6167 // ldexp(x, undef) -> x
6168 if (Q
.isUndefValue(Op1
))
6172 const APFloat
*C
= nullptr;
6173 match(Op0
, PatternMatch::m_APFloat(C
));
6175 // These cases should be safe, even with strictfp.
6176 // ldexp(0.0, x) -> 0.0
6177 // ldexp(-0.0, x) -> -0.0
6178 // ldexp(inf, x) -> inf
6179 // ldexp(-inf, x) -> -inf
6180 if (C
&& (C
->isZero() || C
->isInfinity()))
6183 // These are canonicalization dropping, could do it if we knew how we could
6184 // ignore denormal flushes and target handling of nan payload bits.
6188 // TODO: Could quiet this with strictfp if the exception mode isn't strict.
6189 if (C
&& C
->isNaN())
6190 return ConstantFP::get(Op0
->getType(), C
->makeQuiet());
6194 // TODO: Could fold this if we know the exception mode isn't
6195 // strict, we know the denormal mode and other target modes.
6196 if (match(Op1
, PatternMatch::m_ZeroInt()))
6202 static Value
*simplifyUnaryIntrinsic(Function
*F
, Value
*Op0
,
6203 const SimplifyQuery
&Q
) {
6204 // Idempotent functions return the same result when called repeatedly.
6205 Intrinsic::ID IID
= F
->getIntrinsicID();
6206 if (isIdempotent(IID
))
6207 if (auto *II
= dyn_cast
<IntrinsicInst
>(Op0
))
6208 if (II
->getIntrinsicID() == IID
)
6211 if (removesFPFraction(IID
)) {
6212 // Converting from int or calling a rounding function always results in a
6213 // finite integral number or infinity. For those inputs, rounding functions
6214 // always return the same value, so the (2nd) rounding is eliminated. Ex:
6215 // floor (sitofp x) -> sitofp x
6216 // round (ceil x) -> ceil x
6217 auto *II
= dyn_cast
<IntrinsicInst
>(Op0
);
6218 if ((II
&& removesFPFraction(II
->getIntrinsicID())) ||
6219 match(Op0
, m_SIToFP(m_Value())) || match(Op0
, m_UIToFP(m_Value())))
6225 case Intrinsic::fabs
:
6226 if (SignBitMustBeZero(Op0
, Q
.DL
, Q
.TLI
))
6229 case Intrinsic::bswap
:
6230 // bswap(bswap(x)) -> x
6231 if (match(Op0
, m_BSwap(m_Value(X
))))
6234 case Intrinsic::bitreverse
:
6235 // bitreverse(bitreverse(x)) -> x
6236 if (match(Op0
, m_BitReverse(m_Value(X
))))
6239 case Intrinsic::ctpop
: {
6240 // ctpop(X) -> 1 iff X is non-zero power of 2.
6241 if (isKnownToBeAPowerOfTwo(Op0
, Q
.DL
, /*OrZero*/ false, 0, Q
.AC
, Q
.CxtI
,
6243 return ConstantInt::get(Op0
->getType(), 1);
6244 // If everything but the lowest bit is zero, that bit is the pop-count. Ex:
6245 // ctpop(and X, 1) --> and X, 1
6246 unsigned BitWidth
= Op0
->getType()->getScalarSizeInBits();
6247 if (MaskedValueIsZero(Op0
, APInt::getHighBitsSet(BitWidth
, BitWidth
- 1),
6248 Q
.DL
, 0, Q
.AC
, Q
.CxtI
, Q
.DT
))
6252 case Intrinsic::exp
:
6254 if (Q
.CxtI
->hasAllowReassoc() &&
6255 match(Op0
, m_Intrinsic
<Intrinsic::log
>(m_Value(X
))))
6258 case Intrinsic::exp2
:
6259 // exp2(log2(x)) -> x
6260 if (Q
.CxtI
->hasAllowReassoc() &&
6261 match(Op0
, m_Intrinsic
<Intrinsic::log2
>(m_Value(X
))))
6264 case Intrinsic::exp10
:
6265 // exp10(log10(x)) -> x
6266 if (Q
.CxtI
->hasAllowReassoc() &&
6267 match(Op0
, m_Intrinsic
<Intrinsic::log10
>(m_Value(X
))))
6270 case Intrinsic::log
:
6272 if (Q
.CxtI
->hasAllowReassoc() &&
6273 match(Op0
, m_Intrinsic
<Intrinsic::exp
>(m_Value(X
))))
6276 case Intrinsic::log2
:
6277 // log2(exp2(x)) -> x
6278 if (Q
.CxtI
->hasAllowReassoc() &&
6279 (match(Op0
, m_Intrinsic
<Intrinsic::exp2
>(m_Value(X
))) ||
6281 m_Intrinsic
<Intrinsic::pow
>(m_SpecificFP(2.0), m_Value(X
)))))
6284 case Intrinsic::log10
:
6285 // log10(pow(10.0, x)) -> x
6286 // log10(exp10(x)) -> x
6287 if (Q
.CxtI
->hasAllowReassoc() &&
6288 (match(Op0
, m_Intrinsic
<Intrinsic::exp10
>(m_Value(X
))) ||
6290 m_Intrinsic
<Intrinsic::pow
>(m_SpecificFP(10.0), m_Value(X
)))))
6293 case Intrinsic::experimental_vector_reverse
:
6294 // experimental.vector.reverse(experimental.vector.reverse(x)) -> x
6295 if (match(Op0
, m_VecReverse(m_Value(X
))))
6297 // experimental.vector.reverse(splat(X)) -> splat(X)
6298 if (isSplatValue(Op0
))
6301 case Intrinsic::frexp
: {
6302 // Frexp is idempotent with the added complication of the struct return.
6303 if (match(Op0
, m_ExtractValue
<0>(m_Value(X
)))) {
6304 if (match(X
, m_Intrinsic
<Intrinsic::frexp
>(m_Value())))
6317 /// Given a min/max intrinsic, see if it can be removed based on having an
6318 /// operand that is another min/max intrinsic with shared operand(s). The caller
6319 /// is expected to swap the operand arguments to handle commutation.
6320 static Value
*foldMinMaxSharedOp(Intrinsic::ID IID
, Value
*Op0
, Value
*Op1
) {
6322 if (!match(Op0
, m_MaxOrMin(m_Value(X
), m_Value(Y
))))
6325 auto *MM0
= dyn_cast
<IntrinsicInst
>(Op0
);
6328 Intrinsic::ID IID0
= MM0
->getIntrinsicID();
6330 if (Op1
== X
|| Op1
== Y
||
6331 match(Op1
, m_c_MaxOrMin(m_Specific(X
), m_Specific(Y
)))) {
6332 // max (max X, Y), X --> max X, Y
6335 // max (min X, Y), X --> X
6336 if (IID0
== getInverseMinMaxIntrinsic(IID
))
6342 /// Given a min/max intrinsic, see if it can be removed based on having an
6343 /// operand that is another min/max intrinsic with shared operand(s). The caller
6344 /// is expected to swap the operand arguments to handle commutation.
6345 static Value
*foldMinimumMaximumSharedOp(Intrinsic::ID IID
, Value
*Op0
,
6347 assert((IID
== Intrinsic::maxnum
|| IID
== Intrinsic::minnum
||
6348 IID
== Intrinsic::maximum
|| IID
== Intrinsic::minimum
) &&
6349 "Unsupported intrinsic");
6351 auto *M0
= dyn_cast
<IntrinsicInst
>(Op0
);
6352 // If Op0 is not the same intrinsic as IID, do not process.
6353 // This is a difference with integer min/max handling. We do not process the
6354 // case like max(min(X,Y),min(X,Y)) => min(X,Y). But it can be handled by GVN.
6355 if (!M0
|| M0
->getIntrinsicID() != IID
)
6357 Value
*X0
= M0
->getOperand(0);
6358 Value
*Y0
= M0
->getOperand(1);
6359 // Simple case, m(m(X,Y), X) => m(X, Y)
6360 // m(m(X,Y), Y) => m(X, Y)
6361 // For minimum/maximum, X is NaN => m(NaN, Y) == NaN and m(NaN, NaN) == NaN.
6362 // For minimum/maximum, Y is NaN => m(X, NaN) == NaN and m(NaN, NaN) == NaN.
6363 // For minnum/maxnum, X is NaN => m(NaN, Y) == Y and m(Y, Y) == Y.
6364 // For minnum/maxnum, Y is NaN => m(X, NaN) == X and m(X, NaN) == X.
6365 if (X0
== Op1
|| Y0
== Op1
)
6368 auto *M1
= dyn_cast
<IntrinsicInst
>(Op1
);
6371 Value
*X1
= M1
->getOperand(0);
6372 Value
*Y1
= M1
->getOperand(1);
6373 Intrinsic::ID IID1
= M1
->getIntrinsicID();
6374 // we have a case m(m(X,Y),m'(X,Y)) taking into account m' is commutative.
6375 // if m' is m or inversion of m => m(m(X,Y),m'(X,Y)) == m(X,Y).
6376 // For minimum/maximum, X is NaN => m(NaN,Y) == m'(NaN, Y) == NaN.
6377 // For minimum/maximum, Y is NaN => m(X,NaN) == m'(X, NaN) == NaN.
6378 // For minnum/maxnum, X is NaN => m(NaN,Y) == m'(NaN, Y) == Y.
6379 // For minnum/maxnum, Y is NaN => m(X,NaN) == m'(X, NaN) == X.
6380 if ((X0
== X1
&& Y0
== Y1
) || (X0
== Y1
&& Y0
== X1
))
6381 if (IID1
== IID
|| getInverseMinMaxIntrinsic(IID1
) == IID
)
6387 static Value
*simplifyBinaryIntrinsic(Function
*F
, Value
*Op0
, Value
*Op1
,
6388 const SimplifyQuery
&Q
) {
6389 Intrinsic::ID IID
= F
->getIntrinsicID();
6390 Type
*ReturnType
= F
->getReturnType();
6391 unsigned BitWidth
= ReturnType
->getScalarSizeInBits();
6393 case Intrinsic::abs
:
6394 // abs(abs(x)) -> abs(x). We don't need to worry about the nsw arg here.
6395 // It is always ok to pick the earlier abs. We'll just lose nsw if its only
6396 // on the outer abs.
6397 if (match(Op0
, m_Intrinsic
<Intrinsic::abs
>(m_Value(), m_Value())))
6401 case Intrinsic::cttz
: {
6403 if (match(Op0
, m_Shl(m_One(), m_Value(X
))))
6407 case Intrinsic::ctlz
: {
6409 if (match(Op0
, m_LShr(m_Negative(), m_Value(X
))))
6411 if (match(Op0
, m_AShr(m_Negative(), m_Value())))
6412 return Constant::getNullValue(ReturnType
);
6415 case Intrinsic::smax
:
6416 case Intrinsic::smin
:
6417 case Intrinsic::umax
:
6418 case Intrinsic::umin
: {
6419 // If the arguments are the same, this is a no-op.
6423 // Canonicalize immediate constant operand as Op1.
6424 if (match(Op0
, m_ImmConstant()))
6425 std::swap(Op0
, Op1
);
6427 // Assume undef is the limit value.
6428 if (Q
.isUndefValue(Op1
))
6429 return ConstantInt::get(
6430 ReturnType
, MinMaxIntrinsic::getSaturationPoint(IID
, BitWidth
));
6433 if (match(Op1
, m_APIntAllowUndef(C
))) {
6434 // Clamp to limit value. For example:
6435 // umax(i8 %x, i8 255) --> 255
6436 if (*C
== MinMaxIntrinsic::getSaturationPoint(IID
, BitWidth
))
6437 return ConstantInt::get(ReturnType
, *C
);
6439 // If the constant op is the opposite of the limit value, the other must
6440 // be larger/smaller or equal. For example:
6441 // umin(i8 %x, i8 255) --> %x
6442 if (*C
== MinMaxIntrinsic::getSaturationPoint(
6443 getInverseMinMaxIntrinsic(IID
), BitWidth
))
6446 // Remove nested call if constant operands allow it. Example:
6447 // max (max X, 7), 5 -> max X, 7
6448 auto *MinMax0
= dyn_cast
<IntrinsicInst
>(Op0
);
6449 if (MinMax0
&& MinMax0
->getIntrinsicID() == IID
) {
6450 // TODO: loosen undef/splat restrictions for vector constants.
6451 Value
*M00
= MinMax0
->getOperand(0), *M01
= MinMax0
->getOperand(1);
6452 const APInt
*InnerC
;
6453 if ((match(M00
, m_APInt(InnerC
)) || match(M01
, m_APInt(InnerC
))) &&
6454 ICmpInst::compare(*InnerC
, *C
,
6455 ICmpInst::getNonStrictPredicate(
6456 MinMaxIntrinsic::getPredicate(IID
))))
6461 if (Value
*V
= foldMinMaxSharedOp(IID
, Op0
, Op1
))
6463 if (Value
*V
= foldMinMaxSharedOp(IID
, Op1
, Op0
))
6466 ICmpInst::Predicate Pred
=
6467 ICmpInst::getNonStrictPredicate(MinMaxIntrinsic::getPredicate(IID
));
6468 if (isICmpTrue(Pred
, Op0
, Op1
, Q
.getWithoutUndef(), RecursionLimit
))
6470 if (isICmpTrue(Pred
, Op1
, Op0
, Q
.getWithoutUndef(), RecursionLimit
))
6475 case Intrinsic::usub_with_overflow
:
6476 case Intrinsic::ssub_with_overflow
:
6477 // X - X -> { 0, false }
6478 // X - undef -> { 0, false }
6479 // undef - X -> { 0, false }
6480 if (Op0
== Op1
|| Q
.isUndefValue(Op0
) || Q
.isUndefValue(Op1
))
6481 return Constant::getNullValue(ReturnType
);
6483 case Intrinsic::uadd_with_overflow
:
6484 case Intrinsic::sadd_with_overflow
:
6485 // X + undef -> { -1, false }
6486 // undef + x -> { -1, false }
6487 if (Q
.isUndefValue(Op0
) || Q
.isUndefValue(Op1
)) {
6488 return ConstantStruct::get(
6489 cast
<StructType
>(ReturnType
),
6490 {Constant::getAllOnesValue(ReturnType
->getStructElementType(0)),
6491 Constant::getNullValue(ReturnType
->getStructElementType(1))});
6494 case Intrinsic::umul_with_overflow
:
6495 case Intrinsic::smul_with_overflow
:
6496 // 0 * X -> { 0, false }
6497 // X * 0 -> { 0, false }
6498 if (match(Op0
, m_Zero()) || match(Op1
, m_Zero()))
6499 return Constant::getNullValue(ReturnType
);
6500 // undef * X -> { 0, false }
6501 // X * undef -> { 0, false }
6502 if (Q
.isUndefValue(Op0
) || Q
.isUndefValue(Op1
))
6503 return Constant::getNullValue(ReturnType
);
6505 case Intrinsic::uadd_sat
:
6506 // sat(MAX + X) -> MAX
6507 // sat(X + MAX) -> MAX
6508 if (match(Op0
, m_AllOnes()) || match(Op1
, m_AllOnes()))
6509 return Constant::getAllOnesValue(ReturnType
);
6511 case Intrinsic::sadd_sat
:
6512 // sat(X + undef) -> -1
6513 // sat(undef + X) -> -1
6514 // For unsigned: Assume undef is MAX, thus we saturate to MAX (-1).
6515 // For signed: Assume undef is ~X, in which case X + ~X = -1.
6516 if (Q
.isUndefValue(Op0
) || Q
.isUndefValue(Op1
))
6517 return Constant::getAllOnesValue(ReturnType
);
6520 if (match(Op1
, m_Zero()))
6523 if (match(Op0
, m_Zero()))
6526 case Intrinsic::usub_sat
:
6527 // sat(0 - X) -> 0, sat(X - MAX) -> 0
6528 if (match(Op0
, m_Zero()) || match(Op1
, m_AllOnes()))
6529 return Constant::getNullValue(ReturnType
);
6531 case Intrinsic::ssub_sat
:
6532 // X - X -> 0, X - undef -> 0, undef - X -> 0
6533 if (Op0
== Op1
|| Q
.isUndefValue(Op0
) || Q
.isUndefValue(Op1
))
6534 return Constant::getNullValue(ReturnType
);
6536 if (match(Op1
, m_Zero()))
6539 case Intrinsic::load_relative
:
6540 if (auto *C0
= dyn_cast
<Constant
>(Op0
))
6541 if (auto *C1
= dyn_cast
<Constant
>(Op1
))
6542 return simplifyRelativeLoad(C0
, C1
, Q
.DL
);
6544 case Intrinsic::powi
:
6545 if (auto *Power
= dyn_cast
<ConstantInt
>(Op1
)) {
6546 // powi(x, 0) -> 1.0
6547 if (Power
->isZero())
6548 return ConstantFP::get(Op0
->getType(), 1.0);
6554 case Intrinsic::ldexp
:
6555 return simplifyLdexp(Op0
, Op1
, Q
, false);
6556 case Intrinsic::copysign
:
6557 // copysign X, X --> X
6560 // copysign -X, X --> X
6561 // copysign X, -X --> -X
6562 if (match(Op0
, m_FNeg(m_Specific(Op1
))) ||
6563 match(Op1
, m_FNeg(m_Specific(Op0
))))
6566 case Intrinsic::is_fpclass
: {
6567 if (isa
<PoisonValue
>(Op0
))
6568 return PoisonValue::get(ReturnType
);
6570 uint64_t Mask
= cast
<ConstantInt
>(Op1
)->getZExtValue();
6571 // If all tests are made, it doesn't matter what the value is.
6572 if ((Mask
& fcAllFlags
) == fcAllFlags
)
6573 return ConstantInt::get(ReturnType
, true);
6574 if ((Mask
& fcAllFlags
) == 0)
6575 return ConstantInt::get(ReturnType
, false);
6576 if (Q
.isUndefValue(Op0
))
6577 return UndefValue::get(ReturnType
);
6580 case Intrinsic::maxnum
:
6581 case Intrinsic::minnum
:
6582 case Intrinsic::maximum
:
6583 case Intrinsic::minimum
: {
6584 // If the arguments are the same, this is a no-op.
6588 // Canonicalize constant operand as Op1.
6589 if (isa
<Constant
>(Op0
))
6590 std::swap(Op0
, Op1
);
6592 // If an argument is undef, return the other argument.
6593 if (Q
.isUndefValue(Op1
))
6596 bool PropagateNaN
= IID
== Intrinsic::minimum
|| IID
== Intrinsic::maximum
;
6597 bool IsMin
= IID
== Intrinsic::minimum
|| IID
== Intrinsic::minnum
;
6599 // minnum(X, nan) -> X
6600 // maxnum(X, nan) -> X
6601 // minimum(X, nan) -> nan
6602 // maximum(X, nan) -> nan
6603 if (match(Op1
, m_NaN()))
6604 return PropagateNaN
? propagateNaN(cast
<Constant
>(Op1
)) : Op0
;
6606 // In the following folds, inf can be replaced with the largest finite
6607 // float, if the ninf flag is set.
6609 if (match(Op1
, m_APFloat(C
)) &&
6610 (C
->isInfinity() || (Q
.CxtI
->hasNoInfs() && C
->isLargest()))) {
6611 // minnum(X, -inf) -> -inf
6612 // maxnum(X, +inf) -> +inf
6613 // minimum(X, -inf) -> -inf if nnan
6614 // maximum(X, +inf) -> +inf if nnan
6615 if (C
->isNegative() == IsMin
&& (!PropagateNaN
|| Q
.CxtI
->hasNoNaNs()))
6616 return ConstantFP::get(ReturnType
, *C
);
6618 // minnum(X, +inf) -> X if nnan
6619 // maxnum(X, -inf) -> X if nnan
6620 // minimum(X, +inf) -> X
6621 // maximum(X, -inf) -> X
6622 if (C
->isNegative() != IsMin
&& (PropagateNaN
|| Q
.CxtI
->hasNoNaNs()))
6626 // Min/max of the same operation with common operand:
6627 // m(m(X, Y)), X --> m(X, Y) (4 commuted variants)
6628 if (Value
*V
= foldMinimumMaximumSharedOp(IID
, Op0
, Op1
))
6630 if (Value
*V
= foldMinimumMaximumSharedOp(IID
, Op1
, Op0
))
6635 case Intrinsic::vector_extract
: {
6636 Type
*ReturnType
= F
->getReturnType();
6638 // (extract_vector (insert_vector _, X, 0), 0) -> X
6639 unsigned IdxN
= cast
<ConstantInt
>(Op1
)->getZExtValue();
6641 if (match(Op0
, m_Intrinsic
<Intrinsic::vector_insert
>(m_Value(), m_Value(X
),
6643 IdxN
== 0 && X
->getType() == ReturnType
)
6655 static Value
*simplifyIntrinsic(CallBase
*Call
, Value
*Callee
,
6656 ArrayRef
<Value
*> Args
,
6657 const SimplifyQuery
&Q
) {
6658 // Operand bundles should not be in Args.
6659 assert(Call
->arg_size() == Args
.size());
6660 unsigned NumOperands
= Args
.size();
6661 Function
*F
= cast
<Function
>(Callee
);
6662 Intrinsic::ID IID
= F
->getIntrinsicID();
6664 // Most of the intrinsics with no operands have some kind of side effect.
6668 case Intrinsic::vscale
: {
6669 Type
*RetTy
= F
->getReturnType();
6670 ConstantRange CR
= getVScaleRange(Call
->getFunction(), 64);
6671 if (const APInt
*C
= CR
.getSingleElement())
6672 return ConstantInt::get(RetTy
, C
->getZExtValue());
6680 if (NumOperands
== 1)
6681 return simplifyUnaryIntrinsic(F
, Args
[0], Q
);
6683 if (NumOperands
== 2)
6684 return simplifyBinaryIntrinsic(F
, Args
[0], Args
[1], Q
);
6686 // Handle intrinsics with 3 or more arguments.
6688 case Intrinsic::masked_load
:
6689 case Intrinsic::masked_gather
: {
6690 Value
*MaskArg
= Args
[2];
6691 Value
*PassthruArg
= Args
[3];
6692 // If the mask is all zeros or undef, the "passthru" argument is the result.
6693 if (maskIsAllZeroOrUndef(MaskArg
))
6697 case Intrinsic::fshl
:
6698 case Intrinsic::fshr
: {
6699 Value
*Op0
= Args
[0], *Op1
= Args
[1], *ShAmtArg
= Args
[2];
6701 // If both operands are undef, the result is undef.
6702 if (Q
.isUndefValue(Op0
) && Q
.isUndefValue(Op1
))
6703 return UndefValue::get(F
->getReturnType());
6705 // If shift amount is undef, assume it is zero.
6706 if (Q
.isUndefValue(ShAmtArg
))
6707 return Args
[IID
== Intrinsic::fshl
? 0 : 1];
6709 const APInt
*ShAmtC
;
6710 if (match(ShAmtArg
, m_APInt(ShAmtC
))) {
6711 // If there's effectively no shift, return the 1st arg or 2nd arg.
6712 APInt BitWidth
= APInt(ShAmtC
->getBitWidth(), ShAmtC
->getBitWidth());
6713 if (ShAmtC
->urem(BitWidth
).isZero())
6714 return Args
[IID
== Intrinsic::fshl
? 0 : 1];
6717 // Rotating zero by anything is zero.
6718 if (match(Op0
, m_Zero()) && match(Op1
, m_Zero()))
6719 return ConstantInt::getNullValue(F
->getReturnType());
6721 // Rotating -1 by anything is -1.
6722 if (match(Op0
, m_AllOnes()) && match(Op1
, m_AllOnes()))
6723 return ConstantInt::getAllOnesValue(F
->getReturnType());
6727 case Intrinsic::experimental_constrained_fma
: {
6728 auto *FPI
= cast
<ConstrainedFPIntrinsic
>(Call
);
6729 if (Value
*V
= simplifyFPOp(Args
, {}, Q
, *FPI
->getExceptionBehavior(),
6730 *FPI
->getRoundingMode()))
6734 case Intrinsic::fma
:
6735 case Intrinsic::fmuladd
: {
6736 if (Value
*V
= simplifyFPOp(Args
, {}, Q
, fp::ebIgnore
,
6737 RoundingMode::NearestTiesToEven
))
6741 case Intrinsic::smul_fix
:
6742 case Intrinsic::smul_fix_sat
: {
6743 Value
*Op0
= Args
[0];
6744 Value
*Op1
= Args
[1];
6745 Value
*Op2
= Args
[2];
6746 Type
*ReturnType
= F
->getReturnType();
6748 // Canonicalize constant operand as Op1 (ConstantFolding handles the case
6749 // when both Op0 and Op1 are constant so we do not care about that special
6751 if (isa
<Constant
>(Op0
))
6752 std::swap(Op0
, Op1
);
6755 if (match(Op1
, m_Zero()))
6756 return Constant::getNullValue(ReturnType
);
6759 if (Q
.isUndefValue(Op1
))
6760 return Constant::getNullValue(ReturnType
);
6762 // X * (1 << Scale) -> X
6764 APInt::getOneBitSet(ReturnType
->getScalarSizeInBits(),
6765 cast
<ConstantInt
>(Op2
)->getZExtValue());
6766 if (ScaledOne
.isNonNegative() && match(Op1
, m_SpecificInt(ScaledOne
)))
6771 case Intrinsic::vector_insert
: {
6772 Value
*Vec
= Args
[0];
6773 Value
*SubVec
= Args
[1];
6774 Value
*Idx
= Args
[2];
6775 Type
*ReturnType
= F
->getReturnType();
6777 // (insert_vector Y, (extract_vector X, 0), 0) -> X
6778 // where: Y is X, or Y is undef
6779 unsigned IdxN
= cast
<ConstantInt
>(Idx
)->getZExtValue();
6782 m_Intrinsic
<Intrinsic::vector_extract
>(m_Value(X
), m_Zero())) &&
6783 (Q
.isUndefValue(Vec
) || Vec
== X
) && IdxN
== 0 &&
6784 X
->getType() == ReturnType
)
6789 case Intrinsic::experimental_constrained_fadd
: {
6790 auto *FPI
= cast
<ConstrainedFPIntrinsic
>(Call
);
6791 return simplifyFAddInst(Args
[0], Args
[1], FPI
->getFastMathFlags(), Q
,
6792 *FPI
->getExceptionBehavior(),
6793 *FPI
->getRoundingMode());
6795 case Intrinsic::experimental_constrained_fsub
: {
6796 auto *FPI
= cast
<ConstrainedFPIntrinsic
>(Call
);
6797 return simplifyFSubInst(Args
[0], Args
[1], FPI
->getFastMathFlags(), Q
,
6798 *FPI
->getExceptionBehavior(),
6799 *FPI
->getRoundingMode());
6801 case Intrinsic::experimental_constrained_fmul
: {
6802 auto *FPI
= cast
<ConstrainedFPIntrinsic
>(Call
);
6803 return simplifyFMulInst(Args
[0], Args
[1], FPI
->getFastMathFlags(), Q
,
6804 *FPI
->getExceptionBehavior(),
6805 *FPI
->getRoundingMode());
6807 case Intrinsic::experimental_constrained_fdiv
: {
6808 auto *FPI
= cast
<ConstrainedFPIntrinsic
>(Call
);
6809 return simplifyFDivInst(Args
[0], Args
[1], FPI
->getFastMathFlags(), Q
,
6810 *FPI
->getExceptionBehavior(),
6811 *FPI
->getRoundingMode());
6813 case Intrinsic::experimental_constrained_frem
: {
6814 auto *FPI
= cast
<ConstrainedFPIntrinsic
>(Call
);
6815 return simplifyFRemInst(Args
[0], Args
[1], FPI
->getFastMathFlags(), Q
,
6816 *FPI
->getExceptionBehavior(),
6817 *FPI
->getRoundingMode());
6819 case Intrinsic::experimental_constrained_ldexp
:
6820 return simplifyLdexp(Args
[0], Args
[1], Q
, true);
6826 static Value
*tryConstantFoldCall(CallBase
*Call
, Value
*Callee
,
6827 ArrayRef
<Value
*> Args
,
6828 const SimplifyQuery
&Q
) {
6829 auto *F
= dyn_cast
<Function
>(Callee
);
6830 if (!F
|| !canConstantFoldCallTo(Call
, F
))
6833 SmallVector
<Constant
*, 4> ConstantArgs
;
6834 ConstantArgs
.reserve(Args
.size());
6835 for (Value
*Arg
: Args
) {
6836 Constant
*C
= dyn_cast
<Constant
>(Arg
);
6838 if (isa
<MetadataAsValue
>(Arg
))
6842 ConstantArgs
.push_back(C
);
6845 return ConstantFoldCall(Call
, F
, ConstantArgs
, Q
.TLI
);
6848 Value
*llvm::simplifyCall(CallBase
*Call
, Value
*Callee
, ArrayRef
<Value
*> Args
,
6849 const SimplifyQuery
&Q
) {
6850 // Args should not contain operand bundle operands.
6851 assert(Call
->arg_size() == Args
.size());
6853 // musttail calls can only be simplified if they are also DCEd.
6854 // As we can't guarantee this here, don't simplify them.
6855 if (Call
->isMustTailCall())
6858 // call undef -> poison
6859 // call null -> poison
6860 if (isa
<UndefValue
>(Callee
) || isa
<ConstantPointerNull
>(Callee
))
6861 return PoisonValue::get(Call
->getType());
6863 if (Value
*V
= tryConstantFoldCall(Call
, Callee
, Args
, Q
))
6866 auto *F
= dyn_cast
<Function
>(Callee
);
6867 if (F
&& F
->isIntrinsic())
6868 if (Value
*Ret
= simplifyIntrinsic(Call
, Callee
, Args
, Q
))
6874 Value
*llvm::simplifyConstrainedFPCall(CallBase
*Call
, const SimplifyQuery
&Q
) {
6875 assert(isa
<ConstrainedFPIntrinsic
>(Call
));
6876 SmallVector
<Value
*, 4> Args(Call
->args());
6877 if (Value
*V
= tryConstantFoldCall(Call
, Call
->getCalledOperand(), Args
, Q
))
6879 if (Value
*Ret
= simplifyIntrinsic(Call
, Call
->getCalledOperand(), Args
, Q
))
6884 /// Given operands for a Freeze, see if we can fold the result.
6885 static Value
*simplifyFreezeInst(Value
*Op0
, const SimplifyQuery
&Q
) {
6886 // Use a utility function defined in ValueTracking.
6887 if (llvm::isGuaranteedNotToBeUndefOrPoison(Op0
, Q
.AC
, Q
.CxtI
, Q
.DT
))
6889 // We have room for improvement.
6893 Value
*llvm::simplifyFreezeInst(Value
*Op0
, const SimplifyQuery
&Q
) {
6894 return ::simplifyFreezeInst(Op0
, Q
);
6897 Value
*llvm::simplifyLoadInst(LoadInst
*LI
, Value
*PtrOp
,
6898 const SimplifyQuery
&Q
) {
6899 if (LI
->isVolatile())
6902 if (auto *PtrOpC
= dyn_cast
<Constant
>(PtrOp
))
6903 return ConstantFoldLoadFromConstPtr(PtrOpC
, LI
->getType(), Q
.DL
);
6905 // We can only fold the load if it is from a constant global with definitive
6906 // initializer. Skip expensive logic if this is not the case.
6907 auto *GV
= dyn_cast
<GlobalVariable
>(getUnderlyingObject(PtrOp
));
6908 if (!GV
|| !GV
->isConstant() || !GV
->hasDefinitiveInitializer())
6911 // If GlobalVariable's initializer is uniform, then return the constant
6912 // regardless of its offset.
6914 ConstantFoldLoadFromUniformValue(GV
->getInitializer(), LI
->getType()))
6917 // Try to convert operand into a constant by stripping offsets while looking
6918 // through invariant.group intrinsics.
6919 APInt
Offset(Q
.DL
.getIndexTypeSizeInBits(PtrOp
->getType()), 0);
6920 PtrOp
= PtrOp
->stripAndAccumulateConstantOffsets(
6921 Q
.DL
, Offset
, /* AllowNonInbounts */ true,
6922 /* AllowInvariantGroup */ true);
6924 // Index size may have changed due to address space casts.
6925 Offset
= Offset
.sextOrTrunc(Q
.DL
.getIndexTypeSizeInBits(PtrOp
->getType()));
6926 return ConstantFoldLoadFromConstPtr(GV
, LI
->getType(), Offset
, Q
.DL
);
6932 /// See if we can compute a simplified version of this instruction.
6933 /// If not, this returns null.
6935 static Value
*simplifyInstructionWithOperands(Instruction
*I
,
6936 ArrayRef
<Value
*> NewOps
,
6937 const SimplifyQuery
&SQ
,
6938 unsigned MaxRecurse
) {
6939 assert(I
->getFunction() && "instruction should be inserted in a function");
6940 assert((!SQ
.CxtI
|| SQ
.CxtI
->getFunction() == I
->getFunction()) &&
6941 "context instruction should be in the same function");
6943 const SimplifyQuery Q
= SQ
.CxtI
? SQ
: SQ
.getWithInstruction(I
);
6945 switch (I
->getOpcode()) {
6947 if (llvm::all_of(NewOps
, [](Value
*V
) { return isa
<Constant
>(V
); })) {
6948 SmallVector
<Constant
*, 8> NewConstOps(NewOps
.size());
6949 transform(NewOps
, NewConstOps
.begin(),
6950 [](Value
*V
) { return cast
<Constant
>(V
); });
6951 return ConstantFoldInstOperands(I
, NewConstOps
, Q
.DL
, Q
.TLI
);
6954 case Instruction::FNeg
:
6955 return simplifyFNegInst(NewOps
[0], I
->getFastMathFlags(), Q
, MaxRecurse
);
6956 case Instruction::FAdd
:
6957 return simplifyFAddInst(NewOps
[0], NewOps
[1], I
->getFastMathFlags(), Q
,
6959 case Instruction::Add
:
6960 return simplifyAddInst(
6961 NewOps
[0], NewOps
[1], Q
.IIQ
.hasNoSignedWrap(cast
<BinaryOperator
>(I
)),
6962 Q
.IIQ
.hasNoUnsignedWrap(cast
<BinaryOperator
>(I
)), Q
, MaxRecurse
);
6963 case Instruction::FSub
:
6964 return simplifyFSubInst(NewOps
[0], NewOps
[1], I
->getFastMathFlags(), Q
,
6966 case Instruction::Sub
:
6967 return simplifySubInst(
6968 NewOps
[0], NewOps
[1], Q
.IIQ
.hasNoSignedWrap(cast
<BinaryOperator
>(I
)),
6969 Q
.IIQ
.hasNoUnsignedWrap(cast
<BinaryOperator
>(I
)), Q
, MaxRecurse
);
6970 case Instruction::FMul
:
6971 return simplifyFMulInst(NewOps
[0], NewOps
[1], I
->getFastMathFlags(), Q
,
6973 case Instruction::Mul
:
6974 return simplifyMulInst(
6975 NewOps
[0], NewOps
[1], Q
.IIQ
.hasNoSignedWrap(cast
<BinaryOperator
>(I
)),
6976 Q
.IIQ
.hasNoUnsignedWrap(cast
<BinaryOperator
>(I
)), Q
, MaxRecurse
);
6977 case Instruction::SDiv
:
6978 return simplifySDivInst(NewOps
[0], NewOps
[1],
6979 Q
.IIQ
.isExact(cast
<BinaryOperator
>(I
)), Q
,
6981 case Instruction::UDiv
:
6982 return simplifyUDivInst(NewOps
[0], NewOps
[1],
6983 Q
.IIQ
.isExact(cast
<BinaryOperator
>(I
)), Q
,
6985 case Instruction::FDiv
:
6986 return simplifyFDivInst(NewOps
[0], NewOps
[1], I
->getFastMathFlags(), Q
,
6988 case Instruction::SRem
:
6989 return simplifySRemInst(NewOps
[0], NewOps
[1], Q
, MaxRecurse
);
6990 case Instruction::URem
:
6991 return simplifyURemInst(NewOps
[0], NewOps
[1], Q
, MaxRecurse
);
6992 case Instruction::FRem
:
6993 return simplifyFRemInst(NewOps
[0], NewOps
[1], I
->getFastMathFlags(), Q
,
6995 case Instruction::Shl
:
6996 return simplifyShlInst(
6997 NewOps
[0], NewOps
[1], Q
.IIQ
.hasNoSignedWrap(cast
<BinaryOperator
>(I
)),
6998 Q
.IIQ
.hasNoUnsignedWrap(cast
<BinaryOperator
>(I
)), Q
, MaxRecurse
);
6999 case Instruction::LShr
:
7000 return simplifyLShrInst(NewOps
[0], NewOps
[1],
7001 Q
.IIQ
.isExact(cast
<BinaryOperator
>(I
)), Q
,
7003 case Instruction::AShr
:
7004 return simplifyAShrInst(NewOps
[0], NewOps
[1],
7005 Q
.IIQ
.isExact(cast
<BinaryOperator
>(I
)), Q
,
7007 case Instruction::And
:
7008 return simplifyAndInst(NewOps
[0], NewOps
[1], Q
, MaxRecurse
);
7009 case Instruction::Or
:
7010 return simplifyOrInst(NewOps
[0], NewOps
[1], Q
, MaxRecurse
);
7011 case Instruction::Xor
:
7012 return simplifyXorInst(NewOps
[0], NewOps
[1], Q
, MaxRecurse
);
7013 case Instruction::ICmp
:
7014 return simplifyICmpInst(cast
<ICmpInst
>(I
)->getPredicate(), NewOps
[0],
7015 NewOps
[1], Q
, MaxRecurse
);
7016 case Instruction::FCmp
:
7017 return simplifyFCmpInst(cast
<FCmpInst
>(I
)->getPredicate(), NewOps
[0],
7018 NewOps
[1], I
->getFastMathFlags(), Q
, MaxRecurse
);
7019 case Instruction::Select
:
7020 return simplifySelectInst(NewOps
[0], NewOps
[1], NewOps
[2], Q
, MaxRecurse
);
7022 case Instruction::GetElementPtr
: {
7023 auto *GEPI
= cast
<GetElementPtrInst
>(I
);
7024 return simplifyGEPInst(GEPI
->getSourceElementType(), NewOps
[0],
7025 ArrayRef(NewOps
).slice(1), GEPI
->isInBounds(), Q
,
7028 case Instruction::InsertValue
: {
7029 InsertValueInst
*IV
= cast
<InsertValueInst
>(I
);
7030 return simplifyInsertValueInst(NewOps
[0], NewOps
[1], IV
->getIndices(), Q
,
7033 case Instruction::InsertElement
:
7034 return simplifyInsertElementInst(NewOps
[0], NewOps
[1], NewOps
[2], Q
);
7035 case Instruction::ExtractValue
: {
7036 auto *EVI
= cast
<ExtractValueInst
>(I
);
7037 return simplifyExtractValueInst(NewOps
[0], EVI
->getIndices(), Q
,
7040 case Instruction::ExtractElement
:
7041 return simplifyExtractElementInst(NewOps
[0], NewOps
[1], Q
, MaxRecurse
);
7042 case Instruction::ShuffleVector
: {
7043 auto *SVI
= cast
<ShuffleVectorInst
>(I
);
7044 return simplifyShuffleVectorInst(NewOps
[0], NewOps
[1],
7045 SVI
->getShuffleMask(), SVI
->getType(), Q
,
7048 case Instruction::PHI
:
7049 return simplifyPHINode(cast
<PHINode
>(I
), NewOps
, Q
);
7050 case Instruction::Call
:
7051 return simplifyCall(
7052 cast
<CallInst
>(I
), NewOps
.back(),
7053 NewOps
.drop_back(1 + cast
<CallInst
>(I
)->getNumTotalBundleOperands()), Q
);
7054 case Instruction::Freeze
:
7055 return llvm::simplifyFreezeInst(NewOps
[0], Q
);
7056 #define HANDLE_CAST_INST(num, opc, clas) case Instruction::opc:
7057 #include "llvm/IR/Instruction.def"
7058 #undef HANDLE_CAST_INST
7059 return simplifyCastInst(I
->getOpcode(), NewOps
[0], I
->getType(), Q
,
7061 case Instruction::Alloca
:
7062 // No simplifications for Alloca and it can't be constant folded.
7064 case Instruction::Load
:
7065 return simplifyLoadInst(cast
<LoadInst
>(I
), NewOps
[0], Q
);
7069 Value
*llvm::simplifyInstructionWithOperands(Instruction
*I
,
7070 ArrayRef
<Value
*> NewOps
,
7071 const SimplifyQuery
&SQ
) {
7072 assert(NewOps
.size() == I
->getNumOperands() &&
7073 "Number of operands should match the instruction!");
7074 return ::simplifyInstructionWithOperands(I
, NewOps
, SQ
, RecursionLimit
);
7077 Value
*llvm::simplifyInstruction(Instruction
*I
, const SimplifyQuery
&SQ
) {
7078 SmallVector
<Value
*, 8> Ops(I
->operands());
7079 Value
*Result
= ::simplifyInstructionWithOperands(I
, Ops
, SQ
, RecursionLimit
);
7081 /// If called on unreachable code, the instruction may simplify to itself.
7082 /// Make life easier for users by detecting that case here, and returning a
7083 /// safe value instead.
7084 return Result
== I
? UndefValue::get(I
->getType()) : Result
;
7087 /// Implementation of recursive simplification through an instruction's
7090 /// This is the common implementation of the recursive simplification routines.
7091 /// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
7092 /// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
7093 /// instructions to process and attempt to simplify it using
7094 /// InstructionSimplify. Recursively visited users which could not be
7095 /// simplified themselves are to the optional UnsimplifiedUsers set for
7096 /// further processing by the caller.
7098 /// This routine returns 'true' only when *it* simplifies something. The passed
7099 /// in simplified value does not count toward this.
7100 static bool replaceAndRecursivelySimplifyImpl(
7101 Instruction
*I
, Value
*SimpleV
, const TargetLibraryInfo
*TLI
,
7102 const DominatorTree
*DT
, AssumptionCache
*AC
,
7103 SmallSetVector
<Instruction
*, 8> *UnsimplifiedUsers
= nullptr) {
7104 bool Simplified
= false;
7105 SmallSetVector
<Instruction
*, 8> Worklist
;
7106 const DataLayout
&DL
= I
->getModule()->getDataLayout();
7108 // If we have an explicit value to collapse to, do that round of the
7109 // simplification loop by hand initially.
7111 for (User
*U
: I
->users())
7113 Worklist
.insert(cast
<Instruction
>(U
));
7115 // Replace the instruction with its simplified value.
7116 I
->replaceAllUsesWith(SimpleV
);
7118 if (!I
->isEHPad() && !I
->isTerminator() && !I
->mayHaveSideEffects())
7119 I
->eraseFromParent();
7124 // Note that we must test the size on each iteration, the worklist can grow.
7125 for (unsigned Idx
= 0; Idx
!= Worklist
.size(); ++Idx
) {
7128 // See if this instruction simplifies.
7129 SimpleV
= simplifyInstruction(I
, {DL
, TLI
, DT
, AC
});
7131 if (UnsimplifiedUsers
)
7132 UnsimplifiedUsers
->insert(I
);
7138 // Stash away all the uses of the old instruction so we can check them for
7139 // recursive simplifications after a RAUW. This is cheaper than checking all
7140 // uses of To on the recursive step in most cases.
7141 for (User
*U
: I
->users())
7142 Worklist
.insert(cast
<Instruction
>(U
));
7144 // Replace the instruction with its simplified value.
7145 I
->replaceAllUsesWith(SimpleV
);
7147 if (!I
->isEHPad() && !I
->isTerminator() && !I
->mayHaveSideEffects())
7148 I
->eraseFromParent();
7153 bool llvm::replaceAndRecursivelySimplify(
7154 Instruction
*I
, Value
*SimpleV
, const TargetLibraryInfo
*TLI
,
7155 const DominatorTree
*DT
, AssumptionCache
*AC
,
7156 SmallSetVector
<Instruction
*, 8> *UnsimplifiedUsers
) {
7157 assert(I
!= SimpleV
&& "replaceAndRecursivelySimplify(X,X) is not valid!");
7158 assert(SimpleV
&& "Must provide a simplified value.");
7159 return replaceAndRecursivelySimplifyImpl(I
, SimpleV
, TLI
, DT
, AC
,
7164 const SimplifyQuery
getBestSimplifyQuery(Pass
&P
, Function
&F
) {
7165 auto *DTWP
= P
.getAnalysisIfAvailable
<DominatorTreeWrapperPass
>();
7166 auto *DT
= DTWP
? &DTWP
->getDomTree() : nullptr;
7167 auto *TLIWP
= P
.getAnalysisIfAvailable
<TargetLibraryInfoWrapperPass
>();
7168 auto *TLI
= TLIWP
? &TLIWP
->getTLI(F
) : nullptr;
7169 auto *ACWP
= P
.getAnalysisIfAvailable
<AssumptionCacheTracker
>();
7170 auto *AC
= ACWP
? &ACWP
->getAssumptionCache(F
) : nullptr;
7171 return {F
.getParent()->getDataLayout(), TLI
, DT
, AC
};
7174 const SimplifyQuery
getBestSimplifyQuery(LoopStandardAnalysisResults
&AR
,
7175 const DataLayout
&DL
) {
7176 return {DL
, &AR
.TLI
, &AR
.DT
, &AR
.AC
};
7179 template <class T
, class... TArgs
>
7180 const SimplifyQuery
getBestSimplifyQuery(AnalysisManager
<T
, TArgs
...> &AM
,
7182 auto *DT
= AM
.template getCachedResult
<DominatorTreeAnalysis
>(F
);
7183 auto *TLI
= AM
.template getCachedResult
<TargetLibraryAnalysis
>(F
);
7184 auto *AC
= AM
.template getCachedResult
<AssumptionAnalysis
>(F
);
7185 return {F
.getParent()->getDataLayout(), TLI
, DT
, AC
};
7187 template const SimplifyQuery
getBestSimplifyQuery(AnalysisManager
<Function
> &,
7191 void InstSimplifyFolder::anchor() {}