1 //===- LoopInfo.cpp - Natural Loop Calculator -----------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the LoopInfo class that is used to identify natural loops
10 // and determine the loop depth of various nodes of the CFG. Note that the
11 // loops identified may actually be several natural loops that share the same
12 // header node... not just a single natural loop.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/ADT/ScopeExit.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/Analysis/IVDescriptors.h"
20 #include "llvm/Analysis/LoopIterator.h"
21 #include "llvm/Analysis/LoopNestAnalysis.h"
22 #include "llvm/Analysis/MemorySSA.h"
23 #include "llvm/Analysis/MemorySSAUpdater.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/CFG.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/IR/Dominators.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/LLVMContext.h"
33 #include "llvm/IR/Metadata.h"
34 #include "llvm/IR/PassManager.h"
35 #include "llvm/IR/PrintPasses.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/GenericLoopInfoImpl.h"
39 #include "llvm/Support/raw_ostream.h"
42 // Explicitly instantiate methods in LoopInfoImpl.h for IR-level Loops.
43 template class llvm::LoopBase
<BasicBlock
, Loop
>;
44 template class llvm::LoopInfoBase
<BasicBlock
, Loop
>;
46 // Always verify loopinfo if expensive checking is enabled.
47 #ifdef EXPENSIVE_CHECKS
48 bool llvm::VerifyLoopInfo
= true;
50 bool llvm::VerifyLoopInfo
= false;
52 static cl::opt
<bool, true>
53 VerifyLoopInfoX("verify-loop-info", cl::location(VerifyLoopInfo
),
54 cl::Hidden
, cl::desc("Verify loop info (time consuming)"));
56 //===----------------------------------------------------------------------===//
57 // Loop implementation
60 bool Loop::isLoopInvariant(const Value
*V
) const {
61 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
63 return true; // All non-instructions are loop invariant
66 bool Loop::hasLoopInvariantOperands(const Instruction
*I
) const {
67 return all_of(I
->operands(), [this](Value
*V
) { return isLoopInvariant(V
); });
70 bool Loop::makeLoopInvariant(Value
*V
, bool &Changed
, Instruction
*InsertPt
,
71 MemorySSAUpdater
*MSSAU
,
72 ScalarEvolution
*SE
) const {
73 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
74 return makeLoopInvariant(I
, Changed
, InsertPt
, MSSAU
, SE
);
75 return true; // All non-instructions are loop-invariant.
78 bool Loop::makeLoopInvariant(Instruction
*I
, bool &Changed
,
79 Instruction
*InsertPt
, MemorySSAUpdater
*MSSAU
,
80 ScalarEvolution
*SE
) const {
81 // Test if the value is already loop-invariant.
82 if (isLoopInvariant(I
))
84 if (!isSafeToSpeculativelyExecute(I
))
86 if (I
->mayReadFromMemory())
88 // EH block instructions are immobile.
91 // Determine the insertion point, unless one was given.
93 BasicBlock
*Preheader
= getLoopPreheader();
94 // Without a preheader, hoisting is not feasible.
97 InsertPt
= Preheader
->getTerminator();
99 // Don't hoist instructions with loop-variant operands.
100 for (Value
*Operand
: I
->operands())
101 if (!makeLoopInvariant(Operand
, Changed
, InsertPt
, MSSAU
, SE
))
105 I
->moveBefore(InsertPt
);
107 if (auto *MUD
= MSSAU
->getMemorySSA()->getMemoryAccess(I
))
108 MSSAU
->moveToPlace(MUD
, InsertPt
->getParent(),
109 MemorySSA::BeforeTerminator
);
111 // There is possibility of hoisting this instruction above some arbitrary
112 // condition. Any metadata defined on it can be control dependent on this
113 // condition. Conservatively strip it here so that we don't give any wrong
114 // information to the optimizer.
115 I
->dropUnknownNonDebugMetadata();
118 SE
->forgetBlockAndLoopDispositions(I
);
124 bool Loop::getIncomingAndBackEdge(BasicBlock
*&Incoming
,
125 BasicBlock
*&Backedge
) const {
126 BasicBlock
*H
= getHeader();
130 pred_iterator PI
= pred_begin(H
);
131 assert(PI
!= pred_end(H
) && "Loop must have at least one backedge!");
133 if (PI
== pred_end(H
))
134 return false; // dead loop
136 if (PI
!= pred_end(H
))
137 return false; // multiple backedges?
139 if (contains(Incoming
)) {
140 if (contains(Backedge
))
142 std::swap(Incoming
, Backedge
);
143 } else if (!contains(Backedge
))
146 assert(Incoming
&& Backedge
&& "expected non-null incoming and backedges");
150 PHINode
*Loop::getCanonicalInductionVariable() const {
151 BasicBlock
*H
= getHeader();
153 BasicBlock
*Incoming
= nullptr, *Backedge
= nullptr;
154 if (!getIncomingAndBackEdge(Incoming
, Backedge
))
157 // Loop over all of the PHI nodes, looking for a canonical indvar.
158 for (BasicBlock::iterator I
= H
->begin(); isa
<PHINode
>(I
); ++I
) {
159 PHINode
*PN
= cast
<PHINode
>(I
);
160 if (ConstantInt
*CI
=
161 dyn_cast
<ConstantInt
>(PN
->getIncomingValueForBlock(Incoming
)))
163 if (Instruction
*Inc
=
164 dyn_cast
<Instruction
>(PN
->getIncomingValueForBlock(Backedge
)))
165 if (Inc
->getOpcode() == Instruction::Add
&& Inc
->getOperand(0) == PN
)
166 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(Inc
->getOperand(1)))
173 /// Get the latch condition instruction.
174 ICmpInst
*Loop::getLatchCmpInst() const {
175 if (BasicBlock
*Latch
= getLoopLatch())
176 if (BranchInst
*BI
= dyn_cast_or_null
<BranchInst
>(Latch
->getTerminator()))
177 if (BI
->isConditional())
178 return dyn_cast
<ICmpInst
>(BI
->getCondition());
183 /// Return the final value of the loop induction variable if found.
184 static Value
*findFinalIVValue(const Loop
&L
, const PHINode
&IndVar
,
185 const Instruction
&StepInst
) {
186 ICmpInst
*LatchCmpInst
= L
.getLatchCmpInst();
190 Value
*Op0
= LatchCmpInst
->getOperand(0);
191 Value
*Op1
= LatchCmpInst
->getOperand(1);
192 if (Op0
== &IndVar
|| Op0
== &StepInst
)
195 if (Op1
== &IndVar
|| Op1
== &StepInst
)
201 std::optional
<Loop::LoopBounds
>
202 Loop::LoopBounds::getBounds(const Loop
&L
, PHINode
&IndVar
,
203 ScalarEvolution
&SE
) {
204 InductionDescriptor IndDesc
;
205 if (!InductionDescriptor::isInductionPHI(&IndVar
, &L
, &SE
, IndDesc
))
208 Value
*InitialIVValue
= IndDesc
.getStartValue();
209 Instruction
*StepInst
= IndDesc
.getInductionBinOp();
210 if (!InitialIVValue
|| !StepInst
)
213 const SCEV
*Step
= IndDesc
.getStep();
214 Value
*StepInstOp1
= StepInst
->getOperand(1);
215 Value
*StepInstOp0
= StepInst
->getOperand(0);
216 Value
*StepValue
= nullptr;
217 if (SE
.getSCEV(StepInstOp1
) == Step
)
218 StepValue
= StepInstOp1
;
219 else if (SE
.getSCEV(StepInstOp0
) == Step
)
220 StepValue
= StepInstOp0
;
222 Value
*FinalIVValue
= findFinalIVValue(L
, IndVar
, *StepInst
);
226 return LoopBounds(L
, *InitialIVValue
, *StepInst
, StepValue
, *FinalIVValue
,
230 using Direction
= Loop::LoopBounds::Direction
;
232 ICmpInst::Predicate
Loop::LoopBounds::getCanonicalPredicate() const {
233 BasicBlock
*Latch
= L
.getLoopLatch();
234 assert(Latch
&& "Expecting valid latch");
236 BranchInst
*BI
= dyn_cast_or_null
<BranchInst
>(Latch
->getTerminator());
237 assert(BI
&& BI
->isConditional() && "Expecting conditional latch branch");
239 ICmpInst
*LatchCmpInst
= dyn_cast
<ICmpInst
>(BI
->getCondition());
240 assert(LatchCmpInst
&&
241 "Expecting the latch compare instruction to be a CmpInst");
243 // Need to inverse the predicate when first successor is not the loop
245 ICmpInst::Predicate Pred
= (BI
->getSuccessor(0) == L
.getHeader())
246 ? LatchCmpInst
->getPredicate()
247 : LatchCmpInst
->getInversePredicate();
249 if (LatchCmpInst
->getOperand(0) == &getFinalIVValue())
250 Pred
= ICmpInst::getSwappedPredicate(Pred
);
252 // Need to flip strictness of the predicate when the latch compare instruction
253 // is not using StepInst
254 if (LatchCmpInst
->getOperand(0) == &getStepInst() ||
255 LatchCmpInst
->getOperand(1) == &getStepInst())
258 // Cannot flip strictness of NE and EQ
259 if (Pred
!= ICmpInst::ICMP_NE
&& Pred
!= ICmpInst::ICMP_EQ
)
260 return ICmpInst::getFlippedStrictnessPredicate(Pred
);
262 Direction D
= getDirection();
263 if (D
== Direction::Increasing
)
264 return ICmpInst::ICMP_SLT
;
266 if (D
== Direction::Decreasing
)
267 return ICmpInst::ICMP_SGT
;
269 // If cannot determine the direction, then unable to find the canonical
271 return ICmpInst::BAD_ICMP_PREDICATE
;
274 Direction
Loop::LoopBounds::getDirection() const {
275 if (const SCEVAddRecExpr
*StepAddRecExpr
=
276 dyn_cast
<SCEVAddRecExpr
>(SE
.getSCEV(&getStepInst())))
277 if (const SCEV
*StepRecur
= StepAddRecExpr
->getStepRecurrence(SE
)) {
278 if (SE
.isKnownPositive(StepRecur
))
279 return Direction::Increasing
;
280 if (SE
.isKnownNegative(StepRecur
))
281 return Direction::Decreasing
;
284 return Direction::Unknown
;
287 std::optional
<Loop::LoopBounds
> Loop::getBounds(ScalarEvolution
&SE
) const {
288 if (PHINode
*IndVar
= getInductionVariable(SE
))
289 return LoopBounds::getBounds(*this, *IndVar
, SE
);
294 PHINode
*Loop::getInductionVariable(ScalarEvolution
&SE
) const {
295 if (!isLoopSimplifyForm())
298 BasicBlock
*Header
= getHeader();
299 assert(Header
&& "Expected a valid loop header");
300 ICmpInst
*CmpInst
= getLatchCmpInst();
304 Value
*LatchCmpOp0
= CmpInst
->getOperand(0);
305 Value
*LatchCmpOp1
= CmpInst
->getOperand(1);
307 for (PHINode
&IndVar
: Header
->phis()) {
308 InductionDescriptor IndDesc
;
309 if (!InductionDescriptor::isInductionPHI(&IndVar
, this, &SE
, IndDesc
))
312 BasicBlock
*Latch
= getLoopLatch();
313 Value
*StepInst
= IndVar
.getIncomingValueForBlock(Latch
);
316 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
317 // StepInst = IndVar + step
318 // cmp = StepInst < FinalValue
319 if (StepInst
== LatchCmpOp0
|| StepInst
== LatchCmpOp1
)
323 // IndVar = phi[{InitialValue, preheader}, {StepInst, latch}]
324 // StepInst = IndVar + step
325 // cmp = IndVar < FinalValue
326 if (&IndVar
== LatchCmpOp0
|| &IndVar
== LatchCmpOp1
)
333 bool Loop::getInductionDescriptor(ScalarEvolution
&SE
,
334 InductionDescriptor
&IndDesc
) const {
335 if (PHINode
*IndVar
= getInductionVariable(SE
))
336 return InductionDescriptor::isInductionPHI(IndVar
, this, &SE
, IndDesc
);
341 bool Loop::isAuxiliaryInductionVariable(PHINode
&AuxIndVar
,
342 ScalarEvolution
&SE
) const {
343 // Located in the loop header
344 BasicBlock
*Header
= getHeader();
345 if (AuxIndVar
.getParent() != Header
)
348 // No uses outside of the loop
349 for (User
*U
: AuxIndVar
.users())
350 if (const Instruction
*I
= dyn_cast
<Instruction
>(U
))
354 InductionDescriptor IndDesc
;
355 if (!InductionDescriptor::isInductionPHI(&AuxIndVar
, this, &SE
, IndDesc
))
358 // The step instruction opcode should be add or sub.
359 if (IndDesc
.getInductionOpcode() != Instruction::Add
&&
360 IndDesc
.getInductionOpcode() != Instruction::Sub
)
363 // Incremented by a loop invariant step for each loop iteration
364 return SE
.isLoopInvariant(IndDesc
.getStep(), this);
367 BranchInst
*Loop::getLoopGuardBranch() const {
368 if (!isLoopSimplifyForm())
371 BasicBlock
*Preheader
= getLoopPreheader();
372 assert(Preheader
&& getLoopLatch() &&
373 "Expecting a loop with valid preheader and latch");
375 // Loop should be in rotate form.
376 if (!isRotatedForm())
379 // Disallow loops with more than one unique exit block, as we do not verify
380 // that GuardOtherSucc post dominates all exit blocks.
381 BasicBlock
*ExitFromLatch
= getUniqueExitBlock();
385 BasicBlock
*GuardBB
= Preheader
->getUniquePredecessor();
389 assert(GuardBB
->getTerminator() && "Expecting valid guard terminator");
391 BranchInst
*GuardBI
= dyn_cast
<BranchInst
>(GuardBB
->getTerminator());
392 if (!GuardBI
|| GuardBI
->isUnconditional())
395 BasicBlock
*GuardOtherSucc
= (GuardBI
->getSuccessor(0) == Preheader
)
396 ? GuardBI
->getSuccessor(1)
397 : GuardBI
->getSuccessor(0);
399 // Check if ExitFromLatch (or any BasicBlock which is an empty unique
400 // successor of ExitFromLatch) is equal to GuardOtherSucc. If
401 // skipEmptyBlockUntil returns GuardOtherSucc, then the guard branch for the
402 // loop is GuardBI (return GuardBI), otherwise return nullptr.
403 if (&LoopNest::skipEmptyBlockUntil(ExitFromLatch
, GuardOtherSucc
,
404 /*CheckUniquePred=*/true) ==
411 bool Loop::isCanonical(ScalarEvolution
&SE
) const {
412 InductionDescriptor IndDesc
;
413 if (!getInductionDescriptor(SE
, IndDesc
))
416 ConstantInt
*Init
= dyn_cast_or_null
<ConstantInt
>(IndDesc
.getStartValue());
417 if (!Init
|| !Init
->isZero())
420 if (IndDesc
.getInductionOpcode() != Instruction::Add
)
423 ConstantInt
*Step
= IndDesc
.getConstIntStepValue();
424 if (!Step
|| !Step
->isOne())
430 // Check that 'BB' doesn't have any uses outside of the 'L'
431 static bool isBlockInLCSSAForm(const Loop
&L
, const BasicBlock
&BB
,
432 const DominatorTree
&DT
, bool IgnoreTokens
) {
433 for (const Instruction
&I
: BB
) {
434 // Tokens can't be used in PHI nodes and live-out tokens prevent loop
435 // optimizations, so for the purposes of considered LCSSA form, we
437 if (IgnoreTokens
&& I
.getType()->isTokenTy())
440 for (const Use
&U
: I
.uses()) {
441 const Instruction
*UI
= cast
<Instruction
>(U
.getUser());
442 const BasicBlock
*UserBB
= UI
->getParent();
444 // For practical purposes, we consider that the use in a PHI
445 // occurs in the respective predecessor block. For more info,
446 // see the `phi` doc in LangRef and the LCSSA doc.
447 if (const PHINode
*P
= dyn_cast
<PHINode
>(UI
))
448 UserBB
= P
->getIncomingBlock(U
);
450 // Check the current block, as a fast-path, before checking whether
451 // the use is anywhere in the loop. Most values are used in the same
452 // block they are defined in. Also, blocks not reachable from the
453 // entry are special; uses in them don't need to go through PHIs.
454 if (UserBB
!= &BB
&& !L
.contains(UserBB
) &&
455 DT
.isReachableFromEntry(UserBB
))
462 bool Loop::isLCSSAForm(const DominatorTree
&DT
, bool IgnoreTokens
) const {
463 // For each block we check that it doesn't have any uses outside of this loop.
464 return all_of(this->blocks(), [&](const BasicBlock
*BB
) {
465 return isBlockInLCSSAForm(*this, *BB
, DT
, IgnoreTokens
);
469 bool Loop::isRecursivelyLCSSAForm(const DominatorTree
&DT
, const LoopInfo
&LI
,
470 bool IgnoreTokens
) const {
471 // For each block we check that it doesn't have any uses outside of its
472 // innermost loop. This process will transitively guarantee that the current
473 // loop and all of the nested loops are in LCSSA form.
474 return all_of(this->blocks(), [&](const BasicBlock
*BB
) {
475 return isBlockInLCSSAForm(*LI
.getLoopFor(BB
), *BB
, DT
, IgnoreTokens
);
479 bool Loop::isLoopSimplifyForm() const {
480 // Normal-form loops have a preheader, a single backedge, and all of their
481 // exits have all their predecessors inside the loop.
482 return getLoopPreheader() && getLoopLatch() && hasDedicatedExits();
485 // Routines that reform the loop CFG and split edges often fail on indirectbr.
486 bool Loop::isSafeToClone() const {
487 // Return false if any loop blocks contain indirectbrs, or there are any calls
488 // to noduplicate functions.
489 for (BasicBlock
*BB
: this->blocks()) {
490 if (isa
<IndirectBrInst
>(BB
->getTerminator()))
493 for (Instruction
&I
: *BB
)
494 if (auto *CB
= dyn_cast
<CallBase
>(&I
))
495 if (CB
->cannotDuplicate())
501 MDNode
*Loop::getLoopID() const {
502 MDNode
*LoopID
= nullptr;
504 // Go through the latch blocks and check the terminator for the metadata.
505 SmallVector
<BasicBlock
*, 4> LatchesBlocks
;
506 getLoopLatches(LatchesBlocks
);
507 for (BasicBlock
*BB
: LatchesBlocks
) {
508 Instruction
*TI
= BB
->getTerminator();
509 MDNode
*MD
= TI
->getMetadata(LLVMContext::MD_loop
);
516 else if (MD
!= LoopID
)
519 if (!LoopID
|| LoopID
->getNumOperands() == 0 ||
520 LoopID
->getOperand(0) != LoopID
)
525 void Loop::setLoopID(MDNode
*LoopID
) const {
526 assert((!LoopID
|| LoopID
->getNumOperands() > 0) &&
527 "Loop ID needs at least one operand");
528 assert((!LoopID
|| LoopID
->getOperand(0) == LoopID
) &&
529 "Loop ID should refer to itself");
531 SmallVector
<BasicBlock
*, 4> LoopLatches
;
532 getLoopLatches(LoopLatches
);
533 for (BasicBlock
*BB
: LoopLatches
)
534 BB
->getTerminator()->setMetadata(LLVMContext::MD_loop
, LoopID
);
537 void Loop::setLoopAlreadyUnrolled() {
538 LLVMContext
&Context
= getHeader()->getContext();
540 MDNode
*DisableUnrollMD
=
541 MDNode::get(Context
, MDString::get(Context
, "llvm.loop.unroll.disable"));
542 MDNode
*LoopID
= getLoopID();
543 MDNode
*NewLoopID
= makePostTransformationMetadata(
544 Context
, LoopID
, {"llvm.loop.unroll."}, {DisableUnrollMD
});
545 setLoopID(NewLoopID
);
548 void Loop::setLoopMustProgress() {
549 LLVMContext
&Context
= getHeader()->getContext();
551 MDNode
*MustProgress
= findOptionMDForLoop(this, "llvm.loop.mustprogress");
556 MDNode
*MustProgressMD
=
557 MDNode::get(Context
, MDString::get(Context
, "llvm.loop.mustprogress"));
558 MDNode
*LoopID
= getLoopID();
560 makePostTransformationMetadata(Context
, LoopID
, {}, {MustProgressMD
});
561 setLoopID(NewLoopID
);
564 bool Loop::isAnnotatedParallel() const {
565 MDNode
*DesiredLoopIdMetadata
= getLoopID();
567 if (!DesiredLoopIdMetadata
)
570 MDNode
*ParallelAccesses
=
571 findOptionMDForLoop(this, "llvm.loop.parallel_accesses");
572 SmallPtrSet
<MDNode
*, 4>
573 ParallelAccessGroups
; // For scalable 'contains' check.
574 if (ParallelAccesses
) {
575 for (const MDOperand
&MD
: drop_begin(ParallelAccesses
->operands())) {
576 MDNode
*AccGroup
= cast
<MDNode
>(MD
.get());
577 assert(isValidAsAccessGroup(AccGroup
) &&
578 "List item must be an access group");
579 ParallelAccessGroups
.insert(AccGroup
);
583 // The loop branch contains the parallel loop metadata. In order to ensure
584 // that any parallel-loop-unaware optimization pass hasn't added loop-carried
585 // dependencies (thus converted the loop back to a sequential loop), check
586 // that all the memory instructions in the loop belong to an access group that
587 // is parallel to this loop.
588 for (BasicBlock
*BB
: this->blocks()) {
589 for (Instruction
&I
: *BB
) {
590 if (!I
.mayReadOrWriteMemory())
593 if (MDNode
*AccessGroup
= I
.getMetadata(LLVMContext::MD_access_group
)) {
594 auto ContainsAccessGroup
= [&ParallelAccessGroups
](MDNode
*AG
) -> bool {
595 if (AG
->getNumOperands() == 0) {
596 assert(isValidAsAccessGroup(AG
) && "Item must be an access group");
597 return ParallelAccessGroups
.count(AG
);
600 for (const MDOperand
&AccessListItem
: AG
->operands()) {
601 MDNode
*AccGroup
= cast
<MDNode
>(AccessListItem
.get());
602 assert(isValidAsAccessGroup(AccGroup
) &&
603 "List item must be an access group");
604 if (ParallelAccessGroups
.count(AccGroup
))
610 if (ContainsAccessGroup(AccessGroup
))
614 // The memory instruction can refer to the loop identifier metadata
615 // directly or indirectly through another list metadata (in case of
616 // nested parallel loops). The loop identifier metadata refers to
617 // itself so we can check both cases with the same routine.
619 I
.getMetadata(LLVMContext::MD_mem_parallel_loop_access
);
624 if (!llvm::is_contained(LoopIdMD
->operands(), DesiredLoopIdMetadata
))
631 DebugLoc
Loop::getStartLoc() const { return getLocRange().getStart(); }
633 Loop::LocRange
Loop::getLocRange() const {
634 // If we have a debug location in the loop ID, then use it.
635 if (MDNode
*LoopID
= getLoopID()) {
637 // We use the first DebugLoc in the header as the start location of the loop
638 // and if there is a second DebugLoc in the header we use it as end location
640 for (unsigned i
= 1, ie
= LoopID
->getNumOperands(); i
< ie
; ++i
) {
641 if (DILocation
*L
= dyn_cast
<DILocation
>(LoopID
->getOperand(i
))) {
645 return LocRange(Start
, DebugLoc(L
));
650 return LocRange(Start
);
653 // Try the pre-header first.
654 if (BasicBlock
*PHeadBB
= getLoopPreheader())
655 if (DebugLoc DL
= PHeadBB
->getTerminator()->getDebugLoc())
658 // If we have no pre-header or there are no instructions with debug
659 // info in it, try the header.
660 if (BasicBlock
*HeadBB
= getHeader())
661 return LocRange(HeadBB
->getTerminator()->getDebugLoc());
666 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
667 LLVM_DUMP_METHOD
void Loop::dump() const { print(dbgs()); }
669 LLVM_DUMP_METHOD
void Loop::dumpVerbose() const {
670 print(dbgs(), /*Verbose=*/true);
674 //===----------------------------------------------------------------------===//
675 // UnloopUpdater implementation
679 /// Find the new parent loop for all blocks within the "unloop" whose last
680 /// backedges has just been removed.
681 class UnloopUpdater
{
687 // Map unloop's immediate subloops to their nearest reachable parents. Nested
688 // loops within these subloops will not change parents. However, an immediate
689 // subloop's new parent will be the nearest loop reachable from either its own
690 // exits *or* any of its nested loop's exits.
691 DenseMap
<Loop
*, Loop
*> SubloopParents
;
693 // Flag the presence of an irreducible backedge whose destination is a block
694 // directly contained by the original unloop.
695 bool FoundIB
= false;
698 UnloopUpdater(Loop
*UL
, LoopInfo
*LInfo
) : Unloop(*UL
), LI(LInfo
), DFS(UL
) {}
700 void updateBlockParents();
702 void removeBlocksFromAncestors();
704 void updateSubloopParents();
707 Loop
*getNearestLoop(BasicBlock
*BB
, Loop
*BBLoop
);
709 } // end anonymous namespace
711 /// Update the parent loop for all blocks that are directly contained within the
712 /// original "unloop".
713 void UnloopUpdater::updateBlockParents() {
714 if (Unloop
.getNumBlocks()) {
715 // Perform a post order CFG traversal of all blocks within this loop,
716 // propagating the nearest loop from successors to predecessors.
717 LoopBlocksTraversal
Traversal(DFS
, LI
);
718 for (BasicBlock
*POI
: Traversal
) {
720 Loop
*L
= LI
->getLoopFor(POI
);
721 Loop
*NL
= getNearestLoop(POI
, L
);
724 // For reducible loops, NL is now an ancestor of Unloop.
725 assert((NL
!= &Unloop
&& (!NL
|| NL
->contains(&Unloop
))) &&
726 "uninitialized successor");
727 LI
->changeLoopFor(POI
, NL
);
729 // Or the current block is part of a subloop, in which case its parent
731 assert((FoundIB
|| Unloop
.contains(L
)) && "uninitialized successor");
735 // Each irreducible loop within the unloop induces a round of iteration using
736 // the DFS result cached by Traversal.
737 bool Changed
= FoundIB
;
738 for (unsigned NIters
= 0; Changed
; ++NIters
) {
739 assert(NIters
< Unloop
.getNumBlocks() && "runaway iterative algorithm");
742 // Iterate over the postorder list of blocks, propagating the nearest loop
743 // from successors to predecessors as before.
745 for (LoopBlocksDFS::POIterator POI
= DFS
.beginPostorder(),
746 POE
= DFS
.endPostorder();
749 Loop
*L
= LI
->getLoopFor(*POI
);
750 Loop
*NL
= getNearestLoop(*POI
, L
);
752 assert(NL
!= &Unloop
&& (!NL
|| NL
->contains(&Unloop
)) &&
753 "uninitialized successor");
754 LI
->changeLoopFor(*POI
, NL
);
761 /// Remove unloop's blocks from all ancestors below their new parents.
762 void UnloopUpdater::removeBlocksFromAncestors() {
763 // Remove all unloop's blocks (including those in nested subloops) from
764 // ancestors below the new parent loop.
765 for (BasicBlock
*BB
: Unloop
.blocks()) {
766 Loop
*OuterParent
= LI
->getLoopFor(BB
);
767 if (Unloop
.contains(OuterParent
)) {
768 while (OuterParent
->getParentLoop() != &Unloop
)
769 OuterParent
= OuterParent
->getParentLoop();
770 OuterParent
= SubloopParents
[OuterParent
];
772 // Remove blocks from former Ancestors except Unloop itself which will be
774 for (Loop
*OldParent
= Unloop
.getParentLoop(); OldParent
!= OuterParent
;
775 OldParent
= OldParent
->getParentLoop()) {
776 assert(OldParent
&& "new loop is not an ancestor of the original");
777 OldParent
->removeBlockFromLoop(BB
);
782 /// Update the parent loop for all subloops directly nested within unloop.
783 void UnloopUpdater::updateSubloopParents() {
784 while (!Unloop
.isInnermost()) {
785 Loop
*Subloop
= *std::prev(Unloop
.end());
786 Unloop
.removeChildLoop(std::prev(Unloop
.end()));
788 assert(SubloopParents
.count(Subloop
) && "DFS failed to visit subloop");
789 if (Loop
*Parent
= SubloopParents
[Subloop
])
790 Parent
->addChildLoop(Subloop
);
792 LI
->addTopLevelLoop(Subloop
);
796 /// Return the nearest parent loop among this block's successors. If a successor
797 /// is a subloop header, consider its parent to be the nearest parent of the
800 /// For subloop blocks, simply update SubloopParents and return NULL.
801 Loop
*UnloopUpdater::getNearestLoop(BasicBlock
*BB
, Loop
*BBLoop
) {
803 // Initially for blocks directly contained by Unloop, NearLoop == Unloop and
804 // is considered uninitialized.
805 Loop
*NearLoop
= BBLoop
;
807 Loop
*Subloop
= nullptr;
808 if (NearLoop
!= &Unloop
&& Unloop
.contains(NearLoop
)) {
810 // Find the subloop ancestor that is directly contained within Unloop.
811 while (Subloop
->getParentLoop() != &Unloop
) {
812 Subloop
= Subloop
->getParentLoop();
813 assert(Subloop
&& "subloop is not an ancestor of the original loop");
815 // Get the current nearest parent of the Subloop exits, initially Unloop.
816 NearLoop
= SubloopParents
.insert({Subloop
, &Unloop
}).first
->second
;
819 succ_iterator I
= succ_begin(BB
), E
= succ_end(BB
);
821 assert(!Subloop
&& "subloop blocks must have a successor");
822 NearLoop
= nullptr; // unloop blocks may now exit the function.
824 for (; I
!= E
; ++I
) {
826 continue; // self loops are uninteresting
828 Loop
*L
= LI
->getLoopFor(*I
);
830 // This successor has not been processed. This path must lead to an
831 // irreducible backedge.
832 assert((FoundIB
|| !DFS
.hasPostorder(*I
)) && "should have seen IB");
835 if (L
!= &Unloop
&& Unloop
.contains(L
)) {
836 // Successor is in a subloop.
838 continue; // Branching within subloops. Ignore it.
840 // BB branches from the original into a subloop header.
841 assert(L
->getParentLoop() == &Unloop
&& "cannot skip into nested loops");
843 // Get the current nearest parent of the Subloop's exits.
844 L
= SubloopParents
[L
];
845 // L could be Unloop if the only exit was an irreducible backedge.
850 // Handle critical edges from Unloop into a sibling loop.
851 if (L
&& !L
->contains(&Unloop
)) {
852 L
= L
->getParentLoop();
854 // Remember the nearest parent loop among successors or subloop exits.
855 if (NearLoop
== &Unloop
|| !NearLoop
|| NearLoop
->contains(L
))
859 SubloopParents
[Subloop
] = NearLoop
;
865 LoopInfo::LoopInfo(const DomTreeBase
<BasicBlock
> &DomTree
) { analyze(DomTree
); }
867 bool LoopInfo::invalidate(Function
&F
, const PreservedAnalyses
&PA
,
868 FunctionAnalysisManager::Invalidator
&) {
869 // Check whether the analysis, all analyses on functions, or the function's
870 // CFG have been preserved.
871 auto PAC
= PA
.getChecker
<LoopAnalysis
>();
872 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>() ||
873 PAC
.preservedSet
<CFGAnalyses
>());
876 void LoopInfo::erase(Loop
*Unloop
) {
877 assert(!Unloop
->isInvalid() && "Loop has already been erased!");
879 auto InvalidateOnExit
= make_scope_exit([&]() { destroy(Unloop
); });
881 // First handle the special case of no parent loop to simplify the algorithm.
882 if (Unloop
->isOutermost()) {
883 // Since BBLoop had no parent, Unloop blocks are no longer in a loop.
884 for (BasicBlock
*BB
: Unloop
->blocks()) {
885 // Don't reparent blocks in subloops.
886 if (getLoopFor(BB
) != Unloop
)
889 // Blocks no longer have a parent but are still referenced by Unloop until
890 // the Unloop object is deleted.
891 changeLoopFor(BB
, nullptr);
894 // Remove the loop from the top-level LoopInfo object.
895 for (iterator I
= begin();; ++I
) {
896 assert(I
!= end() && "Couldn't find loop");
903 // Move all of the subloops to the top-level.
904 while (!Unloop
->isInnermost())
905 addTopLevelLoop(Unloop
->removeChildLoop(std::prev(Unloop
->end())));
910 // Update the parent loop for all blocks within the loop. Blocks within
911 // subloops will not change parents.
912 UnloopUpdater
Updater(Unloop
, this);
913 Updater
.updateBlockParents();
915 // Remove blocks from former ancestor loops.
916 Updater
.removeBlocksFromAncestors();
918 // Add direct subloops as children in their new parent loop.
919 Updater
.updateSubloopParents();
921 // Remove unloop from its parent loop.
922 Loop
*ParentLoop
= Unloop
->getParentLoop();
923 for (Loop::iterator I
= ParentLoop
->begin();; ++I
) {
924 assert(I
!= ParentLoop
->end() && "Couldn't find loop");
926 ParentLoop
->removeChildLoop(I
);
932 bool LoopInfo::wouldBeOutOfLoopUseRequiringLCSSA(
933 const Value
*V
, const BasicBlock
*ExitBB
) const {
934 if (V
->getType()->isTokenTy())
935 // We can't form PHIs of token type, so the definition of LCSSA excludes
936 // values of that type.
939 const Instruction
*I
= dyn_cast
<Instruction
>(V
);
942 const Loop
*L
= getLoopFor(I
->getParent());
945 if (L
->contains(ExitBB
))
946 // Could be an exit bb of a subloop and contained in defining loop
949 // We found a (new) out-of-loop use location, for a value defined in-loop.
950 // (Note that because of LCSSA, we don't have to account for values defined
951 // in sibling loops. Such values will have LCSSA phis of their own in the
952 // common parent loop.)
956 AnalysisKey
LoopAnalysis::Key
;
958 LoopInfo
LoopAnalysis::run(Function
&F
, FunctionAnalysisManager
&AM
) {
959 // FIXME: Currently we create a LoopInfo from scratch for every function.
960 // This may prove to be too wasteful due to deallocating and re-allocating
961 // memory each time for the underlying map and vector datastructures. At some
962 // point it may prove worthwhile to use a freelist and recycle LoopInfo
963 // objects. I don't want to add that kind of complexity until the scope of
964 // the problem is better understood.
966 LI
.analyze(AM
.getResult
<DominatorTreeAnalysis
>(F
));
970 PreservedAnalyses
LoopPrinterPass::run(Function
&F
,
971 FunctionAnalysisManager
&AM
) {
972 AM
.getResult
<LoopAnalysis
>(F
).print(OS
);
973 return PreservedAnalyses::all();
976 void llvm::printLoop(Loop
&L
, raw_ostream
&OS
, const std::string
&Banner
) {
978 if (forcePrintModuleIR()) {
979 // handling -print-module-scope
980 OS
<< Banner
<< " (loop: ";
981 L
.getHeader()->printAsOperand(OS
, false);
984 // printing whole module
985 OS
<< *L
.getHeader()->getModule();
991 auto *PreHeader
= L
.getLoopPreheader();
993 OS
<< "\n; Preheader:";
994 PreHeader
->print(OS
);
998 for (auto *Block
: L
.blocks())
1002 OS
<< "Printing <null> block";
1004 SmallVector
<BasicBlock
*, 8> ExitBlocks
;
1005 L
.getExitBlocks(ExitBlocks
);
1006 if (!ExitBlocks
.empty()) {
1007 OS
<< "\n; Exit blocks";
1008 for (auto *Block
: ExitBlocks
)
1012 OS
<< "Printing <null> block";
1016 MDNode
*llvm::findOptionMDForLoopID(MDNode
*LoopID
, StringRef Name
) {
1017 // No loop metadata node, no loop properties.
1021 // First operand should refer to the metadata node itself, for legacy reasons.
1022 assert(LoopID
->getNumOperands() > 0 && "requires at least one operand");
1023 assert(LoopID
->getOperand(0) == LoopID
&& "invalid loop id");
1025 // Iterate over the metdata node operands and look for MDString metadata.
1026 for (unsigned i
= 1, e
= LoopID
->getNumOperands(); i
< e
; ++i
) {
1027 MDNode
*MD
= dyn_cast
<MDNode
>(LoopID
->getOperand(i
));
1028 if (!MD
|| MD
->getNumOperands() < 1)
1030 MDString
*S
= dyn_cast
<MDString
>(MD
->getOperand(0));
1033 // Return the operand node if MDString holds expected metadata.
1034 if (Name
.equals(S
->getString()))
1038 // Loop property not found.
1042 MDNode
*llvm::findOptionMDForLoop(const Loop
*TheLoop
, StringRef Name
) {
1043 return findOptionMDForLoopID(TheLoop
->getLoopID(), Name
);
1046 /// Find string metadata for loop
1048 /// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
1049 /// operand or null otherwise. If the string metadata is not found return
1050 /// Optional's not-a-value.
1051 std::optional
<const MDOperand
*>
1052 llvm::findStringMetadataForLoop(const Loop
*TheLoop
, StringRef Name
) {
1053 MDNode
*MD
= findOptionMDForLoop(TheLoop
, Name
);
1055 return std::nullopt
;
1056 switch (MD
->getNumOperands()) {
1060 return &MD
->getOperand(1);
1062 llvm_unreachable("loop metadata has 0 or 1 operand");
1066 std::optional
<bool> llvm::getOptionalBoolLoopAttribute(const Loop
*TheLoop
,
1068 MDNode
*MD
= findOptionMDForLoop(TheLoop
, Name
);
1070 return std::nullopt
;
1071 switch (MD
->getNumOperands()) {
1073 // When the value is absent it is interpreted as 'attribute set'.
1076 if (ConstantInt
*IntMD
=
1077 mdconst::extract_or_null
<ConstantInt
>(MD
->getOperand(1).get()))
1078 return IntMD
->getZExtValue();
1081 llvm_unreachable("unexpected number of options");
1084 bool llvm::getBooleanLoopAttribute(const Loop
*TheLoop
, StringRef Name
) {
1085 return getOptionalBoolLoopAttribute(TheLoop
, Name
).value_or(false);
1088 std::optional
<int> llvm::getOptionalIntLoopAttribute(const Loop
*TheLoop
,
1090 const MDOperand
*AttrMD
=
1091 findStringMetadataForLoop(TheLoop
, Name
).value_or(nullptr);
1093 return std::nullopt
;
1095 ConstantInt
*IntMD
= mdconst::extract_or_null
<ConstantInt
>(AttrMD
->get());
1097 return std::nullopt
;
1099 return IntMD
->getSExtValue();
1102 int llvm::getIntLoopAttribute(const Loop
*TheLoop
, StringRef Name
,
1104 return getOptionalIntLoopAttribute(TheLoop
, Name
).value_or(Default
);
1107 bool llvm::isFinite(const Loop
*L
) {
1108 return L
->getHeader()->getParent()->willReturn();
1111 static const char *LLVMLoopMustProgress
= "llvm.loop.mustprogress";
1113 bool llvm::hasMustProgress(const Loop
*L
) {
1114 return getBooleanLoopAttribute(L
, LLVMLoopMustProgress
);
1117 bool llvm::isMustProgress(const Loop
*L
) {
1118 return L
->getHeader()->getParent()->mustProgress() || hasMustProgress(L
);
1121 bool llvm::isValidAsAccessGroup(MDNode
*Node
) {
1122 return Node
->getNumOperands() == 0 && Node
->isDistinct();
1125 MDNode
*llvm::makePostTransformationMetadata(LLVMContext
&Context
,
1127 ArrayRef
<StringRef
> RemovePrefixes
,
1128 ArrayRef
<MDNode
*> AddAttrs
) {
1129 // First remove any existing loop metadata related to this transformation.
1130 SmallVector
<Metadata
*, 4> MDs
;
1132 // Reserve first location for self reference to the LoopID metadata node.
1133 MDs
.push_back(nullptr);
1135 // Remove metadata for the transformation that has been applied or that became
1138 for (unsigned i
= 1, ie
= OrigLoopID
->getNumOperands(); i
< ie
; ++i
) {
1139 bool IsVectorMetadata
= false;
1140 Metadata
*Op
= OrigLoopID
->getOperand(i
);
1141 if (MDNode
*MD
= dyn_cast
<MDNode
>(Op
)) {
1142 const MDString
*S
= dyn_cast
<MDString
>(MD
->getOperand(0));
1145 llvm::any_of(RemovePrefixes
, [S
](StringRef Prefix
) -> bool {
1146 return S
->getString().startswith(Prefix
);
1149 if (!IsVectorMetadata
)
1154 // Add metadata to avoid reapplying a transformation, such as
1155 // llvm.loop.unroll.disable and llvm.loop.isvectorized.
1156 MDs
.append(AddAttrs
.begin(), AddAttrs
.end());
1158 MDNode
*NewLoopID
= MDNode::getDistinct(Context
, MDs
);
1159 // Replace the temporary node with a self-reference.
1160 NewLoopID
->replaceOperandWith(0, NewLoopID
);
1164 //===----------------------------------------------------------------------===//
1165 // LoopInfo implementation
1168 LoopInfoWrapperPass::LoopInfoWrapperPass() : FunctionPass(ID
) {
1169 initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
1172 char LoopInfoWrapperPass::ID
= 0;
1173 INITIALIZE_PASS_BEGIN(LoopInfoWrapperPass
, "loops", "Natural Loop Information",
1175 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
1176 INITIALIZE_PASS_END(LoopInfoWrapperPass
, "loops", "Natural Loop Information",
1179 bool LoopInfoWrapperPass::runOnFunction(Function
&) {
1181 LI
.analyze(getAnalysis
<DominatorTreeWrapperPass
>().getDomTree());
1185 void LoopInfoWrapperPass::verifyAnalysis() const {
1186 // LoopInfoWrapperPass is a FunctionPass, but verifying every loop in the
1187 // function each time verifyAnalysis is called is very expensive. The
1188 // -verify-loop-info option can enable this. In order to perform some
1189 // checking by default, LoopPass has been taught to call verifyLoop manually
1190 // during loop pass sequences.
1191 if (VerifyLoopInfo
) {
1192 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1197 void LoopInfoWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
1198 AU
.setPreservesAll();
1199 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
1202 void LoopInfoWrapperPass::print(raw_ostream
&OS
, const Module
*) const {
1206 PreservedAnalyses
LoopVerifierPass::run(Function
&F
,
1207 FunctionAnalysisManager
&AM
) {
1208 LoopInfo
&LI
= AM
.getResult
<LoopAnalysis
>(F
);
1209 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
1211 return PreservedAnalyses::all();
1214 //===----------------------------------------------------------------------===//
1215 // LoopBlocksDFS implementation
1218 /// Traverse the loop blocks and store the DFS result.
1219 /// Useful for clients that just want the final DFS result and don't need to
1220 /// visit blocks during the initial traversal.
1221 void LoopBlocksDFS::perform(const LoopInfo
*LI
) {
1222 LoopBlocksTraversal
Traversal(*this, LI
);
1223 for (LoopBlocksTraversal::POTIterator POI
= Traversal
.begin(),
1224 POE
= Traversal
.end();