Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Analysis / MLInlineAdvisor.cpp
blob75eb8ece2e447e2d47756c3b465b0c8d6ef4e764
1 //===- MLInlineAdvisor.cpp - machine learned InlineAdvisor ----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the interface between the inliner and a learned model.
10 // It delegates model evaluation to either the AOT compiled model (the
11 // 'release' mode) or a runtime-loaded model (the 'development' case).
13 //===----------------------------------------------------------------------===//
14 #include "llvm/Analysis/MLInlineAdvisor.h"
15 #include "llvm/ADT/SCCIterator.h"
16 #include "llvm/Analysis/AssumptionCache.h"
17 #include "llvm/Analysis/CallGraph.h"
18 #include "llvm/Analysis/FunctionPropertiesAnalysis.h"
19 #include "llvm/Analysis/InlineCost.h"
20 #include "llvm/Analysis/InlineModelFeatureMaps.h"
21 #include "llvm/Analysis/InteractiveModelRunner.h"
22 #include "llvm/Analysis/LazyCallGraph.h"
23 #include "llvm/Analysis/LoopInfo.h"
24 #include "llvm/Analysis/MLModelRunner.h"
25 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
26 #include "llvm/Analysis/ReleaseModeModelRunner.h"
27 #include "llvm/Analysis/TargetTransformInfo.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/InstIterator.h"
30 #include "llvm/IR/PassManager.h"
31 #include "llvm/Support/CommandLine.h"
33 using namespace llvm;
35 static cl::opt<std::string> InteractiveChannelBaseName(
36 "inliner-interactive-channel-base", cl::Hidden,
37 cl::desc(
38 "Base file path for the interactive mode. The incoming filename should "
39 "have the name <inliner-interactive-channel-base>.in, while the "
40 "outgoing name should be <inliner-interactive-channel-base>.out"));
41 static const std::string InclDefaultMsg =
42 (Twine("In interactive mode, also send the default policy decision: ") +
43 DefaultDecisionName + ".")
44 .str();
45 static cl::opt<bool>
46 InteractiveIncludeDefault("inliner-interactive-include-default", cl::Hidden,
47 cl::desc(InclDefaultMsg));
49 #if defined(LLVM_HAVE_TF_AOT_INLINERSIZEMODEL)
50 // codegen-ed file
51 #include "InlinerSizeModel.h" // NOLINT
52 using CompiledModelType = llvm::InlinerSizeModel;
53 #else
54 using CompiledModelType = NoopSavedModelImpl;
55 #endif
57 std::unique_ptr<InlineAdvisor>
58 llvm::getReleaseModeAdvisor(Module &M, ModuleAnalysisManager &MAM,
59 std::function<bool(CallBase &)> GetDefaultAdvice) {
60 if (!llvm::isEmbeddedModelEvaluatorValid<CompiledModelType>() &&
61 InteractiveChannelBaseName.empty())
62 return nullptr;
63 std::unique_ptr<MLModelRunner> AOTRunner;
64 if (InteractiveChannelBaseName.empty())
65 AOTRunner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
66 M.getContext(), FeatureMap, DecisionName);
67 else {
68 auto Features = FeatureMap;
69 if (InteractiveIncludeDefault)
70 Features.push_back(DefaultDecisionSpec);
71 AOTRunner = std::make_unique<InteractiveModelRunner>(
72 M.getContext(), Features, InlineDecisionSpec,
73 InteractiveChannelBaseName + ".out",
74 InteractiveChannelBaseName + ".in");
76 return std::make_unique<MLInlineAdvisor>(M, MAM, std::move(AOTRunner),
77 GetDefaultAdvice);
80 #define DEBUG_TYPE "inline-ml"
82 static cl::opt<float> SizeIncreaseThreshold(
83 "ml-advisor-size-increase-threshold", cl::Hidden,
84 cl::desc("Maximum factor by which expected native size may increase before "
85 "blocking any further inlining."),
86 cl::init(2.0));
88 static cl::opt<bool> KeepFPICache(
89 "ml-advisor-keep-fpi-cache", cl::Hidden,
90 cl::desc(
91 "For test - keep the ML Inline advisor's FunctionPropertiesInfo cache"),
92 cl::init(false));
94 // clang-format off
95 const std::vector<TensorSpec> llvm::FeatureMap{
96 #define POPULATE_NAMES(DTYPE, SHAPE, NAME, __) TensorSpec::createSpec<DTYPE>(#NAME, SHAPE),
97 // InlineCost features - these must come first
98 INLINE_COST_FEATURE_ITERATOR(POPULATE_NAMES)
100 // Non-cost features
101 INLINE_FEATURE_ITERATOR(POPULATE_NAMES)
102 #undef POPULATE_NAMES
104 // clang-format on
106 const char *const llvm::DecisionName = "inlining_decision";
107 const TensorSpec llvm::InlineDecisionSpec =
108 TensorSpec::createSpec<int64_t>(DecisionName, {1});
109 const char *const llvm::DefaultDecisionName = "inlining_default";
110 const TensorSpec llvm::DefaultDecisionSpec =
111 TensorSpec::createSpec<int64_t>(DefaultDecisionName, {1});
112 const char *const llvm::RewardName = "delta_size";
114 CallBase *getInlinableCS(Instruction &I) {
115 if (auto *CS = dyn_cast<CallBase>(&I))
116 if (Function *Callee = CS->getCalledFunction()) {
117 if (!Callee->isDeclaration()) {
118 return CS;
121 return nullptr;
124 MLInlineAdvisor::MLInlineAdvisor(
125 Module &M, ModuleAnalysisManager &MAM,
126 std::unique_ptr<MLModelRunner> Runner,
127 std::function<bool(CallBase &)> GetDefaultAdvice)
128 : InlineAdvisor(
129 M, MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager()),
130 ModelRunner(std::move(Runner)), GetDefaultAdvice(GetDefaultAdvice),
131 CG(MAM.getResult<LazyCallGraphAnalysis>(M)),
132 InitialIRSize(getModuleIRSize()), CurrentIRSize(InitialIRSize) {
133 assert(ModelRunner);
134 ModelRunner->switchContext("");
135 // Extract the 'call site height' feature - the position of a call site
136 // relative to the farthest statically reachable SCC node. We don't mutate
137 // this value while inlining happens. Empirically, this feature proved
138 // critical in behavioral cloning - i.e. training a model to mimic the manual
139 // heuristic's decisions - and, thus, equally important for training for
140 // improvement.
141 CallGraph CGraph(M);
142 for (auto I = scc_begin(&CGraph); !I.isAtEnd(); ++I) {
143 const std::vector<CallGraphNode *> &CGNodes = *I;
144 unsigned Level = 0;
145 for (auto *CGNode : CGNodes) {
146 Function *F = CGNode->getFunction();
147 if (!F || F->isDeclaration())
148 continue;
149 for (auto &I : instructions(F)) {
150 if (auto *CS = getInlinableCS(I)) {
151 auto *Called = CS->getCalledFunction();
152 auto Pos = FunctionLevels.find(&CG.get(*Called));
153 // In bottom up traversal, an inlinable callee is either in the
154 // same SCC, or to a function in a visited SCC. So not finding its
155 // level means we haven't visited it yet, meaning it's in this SCC.
156 if (Pos == FunctionLevels.end())
157 continue;
158 Level = std::max(Level, Pos->second + 1);
162 for (auto *CGNode : CGNodes) {
163 Function *F = CGNode->getFunction();
164 if (F && !F->isDeclaration())
165 FunctionLevels[&CG.get(*F)] = Level;
168 for (auto KVP : FunctionLevels) {
169 AllNodes.insert(KVP.first);
170 EdgeCount += getLocalCalls(KVP.first->getFunction());
172 NodeCount = AllNodes.size();
175 unsigned MLInlineAdvisor::getInitialFunctionLevel(const Function &F) const {
176 return CG.lookup(F) ? FunctionLevels.at(CG.lookup(F)) : 0;
179 void MLInlineAdvisor::onPassEntry(LazyCallGraph::SCC *LastSCC) {
180 if (!LastSCC || ForceStop)
181 return;
182 FPICache.clear();
183 // Function passes executed between InlinerPass runs may have changed the
184 // module-wide features.
185 // The cgscc pass manager rules are such that:
186 // - if a pass leads to merging SCCs, then the pipeline is restarted on the
187 // merged SCC
188 // - if a pass leads to splitting the SCC, then we continue with one of the
189 // splits
190 // This means that the NodesInLastSCC is a superset (not strict) of the nodes
191 // that subsequent passes would have processed
192 // - in addition, if new Nodes were created by a pass (e.g. CoroSplit),
193 // they'd be adjacent to Nodes in the last SCC. So we just need to check the
194 // boundary of Nodes in NodesInLastSCC for Nodes we haven't seen. We don't
195 // care about the nature of the Edge (call or ref). `FunctionLevels`-wise, we
196 // record them at the same level as the original node (this is a choice, may
197 // need revisiting).
198 NodeCount -= static_cast<int64_t>(NodesInLastSCC.size());
199 while (!NodesInLastSCC.empty()) {
200 const auto *N = *NodesInLastSCC.begin();
201 NodesInLastSCC.erase(N);
202 // The Function wrapped by N could have been deleted since we last saw it.
203 if (N->isDead()) {
204 assert(!N->getFunction().isDeclaration());
205 continue;
207 ++NodeCount;
208 EdgeCount += getLocalCalls(N->getFunction());
209 const auto NLevel = FunctionLevels.at(N);
210 for (const auto &E : *(*N)) {
211 const auto *AdjNode = &E.getNode();
212 assert(!AdjNode->isDead() && !AdjNode->getFunction().isDeclaration());
213 auto I = AllNodes.insert(AdjNode);
214 if (I.second) {
215 NodesInLastSCC.insert(AdjNode);
216 FunctionLevels[AdjNode] = NLevel;
221 EdgeCount -= EdgesOfLastSeenNodes;
222 EdgesOfLastSeenNodes = 0;
224 // (Re)use NodesInLastSCC to remember the nodes in the SCC right now,
225 // in case the SCC is split before onPassExit and some nodes are split out
226 assert(NodesInLastSCC.empty());
227 for (const auto &N : *LastSCC)
228 NodesInLastSCC.insert(&N);
231 void MLInlineAdvisor::onPassExit(LazyCallGraph::SCC *LastSCC) {
232 // No need to keep this around - function passes will invalidate it.
233 if (!KeepFPICache)
234 FPICache.clear();
235 if (!LastSCC || ForceStop)
236 return;
237 // Keep track of the nodes and edges we last saw. Then, in onPassEntry,
238 // we update the node count and edge count from the subset of these nodes that
239 // survived.
240 EdgesOfLastSeenNodes = 0;
242 // Check on nodes that were in SCC onPassEntry
243 for (auto I = NodesInLastSCC.begin(); I != NodesInLastSCC.end();) {
244 if ((*I)->isDead())
245 NodesInLastSCC.erase(*I++);
246 else
247 EdgesOfLastSeenNodes += getLocalCalls((*I++)->getFunction());
250 // Check on nodes that may have got added to SCC
251 for (const auto &N : *LastSCC) {
252 assert(!N.isDead());
253 auto I = NodesInLastSCC.insert(&N);
254 if (I.second)
255 EdgesOfLastSeenNodes += getLocalCalls(N.getFunction());
257 assert(NodeCount >= NodesInLastSCC.size());
258 assert(EdgeCount >= EdgesOfLastSeenNodes);
261 int64_t MLInlineAdvisor::getLocalCalls(Function &F) {
262 return getCachedFPI(F).DirectCallsToDefinedFunctions;
265 // Update the internal state of the advisor, and force invalidate feature
266 // analysis. Currently, we maintain minimal (and very simple) global state - the
267 // number of functions and the number of static calls. We also keep track of the
268 // total IR size in this module, to stop misbehaving policies at a certain bloat
269 // factor (SizeIncreaseThreshold)
270 void MLInlineAdvisor::onSuccessfulInlining(const MLInlineAdvice &Advice,
271 bool CalleeWasDeleted) {
272 assert(!ForceStop);
273 Function *Caller = Advice.getCaller();
274 Function *Callee = Advice.getCallee();
275 // The caller features aren't valid anymore.
277 PreservedAnalyses PA = PreservedAnalyses::all();
278 PA.abandon<FunctionPropertiesAnalysis>();
279 PA.abandon<DominatorTreeAnalysis>();
280 PA.abandon<LoopAnalysis>();
281 FAM.invalidate(*Caller, PA);
283 Advice.updateCachedCallerFPI(FAM);
284 int64_t IRSizeAfter =
285 getIRSize(*Caller) + (CalleeWasDeleted ? 0 : Advice.CalleeIRSize);
286 CurrentIRSize += IRSizeAfter - (Advice.CallerIRSize + Advice.CalleeIRSize);
287 if (CurrentIRSize > SizeIncreaseThreshold * InitialIRSize)
288 ForceStop = true;
290 // We can delta-update module-wide features. We know the inlining only changed
291 // the caller, and maybe the callee (by deleting the latter).
292 // Nodes are simple to update.
293 // For edges, we 'forget' the edges that the caller and callee used to have
294 // before inlining, and add back what they currently have together.
295 int64_t NewCallerAndCalleeEdges =
296 getCachedFPI(*Caller).DirectCallsToDefinedFunctions;
298 if (CalleeWasDeleted)
299 --NodeCount;
300 else
301 NewCallerAndCalleeEdges +=
302 getCachedFPI(*Callee).DirectCallsToDefinedFunctions;
303 EdgeCount += (NewCallerAndCalleeEdges - Advice.CallerAndCalleeEdges);
304 assert(CurrentIRSize >= 0 && EdgeCount >= 0 && NodeCount >= 0);
307 int64_t MLInlineAdvisor::getModuleIRSize() const {
308 int64_t Ret = 0;
309 for (auto &F : M)
310 if (!F.isDeclaration())
311 Ret += getIRSize(F);
312 return Ret;
315 FunctionPropertiesInfo &MLInlineAdvisor::getCachedFPI(Function &F) const {
316 auto InsertPair =
317 FPICache.insert(std::make_pair(&F, FunctionPropertiesInfo()));
318 if (!InsertPair.second)
319 return InsertPair.first->second;
320 InsertPair.first->second = FAM.getResult<FunctionPropertiesAnalysis>(F);
321 return InsertPair.first->second;
324 std::unique_ptr<InlineAdvice> MLInlineAdvisor::getAdviceImpl(CallBase &CB) {
325 if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
326 return Skip;
328 auto &Caller = *CB.getCaller();
329 auto &Callee = *CB.getCalledFunction();
331 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
332 return FAM.getResult<AssumptionAnalysis>(F);
334 auto &TIR = FAM.getResult<TargetIRAnalysis>(Callee);
335 auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(Caller);
337 auto MandatoryKind = InlineAdvisor::getMandatoryKind(CB, FAM, ORE);
338 // If this is a "never inline" case, there won't be any changes to internal
339 // state we need to track, so we can just return the base InlineAdvice, which
340 // will do nothing interesting.
341 // Same thing if this is a recursive case.
342 if (MandatoryKind == InlineAdvisor::MandatoryInliningKind::Never ||
343 &Caller == &Callee)
344 return getMandatoryAdvice(CB, false);
346 bool Mandatory =
347 MandatoryKind == InlineAdvisor::MandatoryInliningKind::Always;
349 // If we need to stop, we won't want to track anymore any state changes, so
350 // we just return the base InlineAdvice, which acts as a noop.
351 if (ForceStop) {
352 ORE.emit([&] {
353 return OptimizationRemarkMissed(DEBUG_TYPE, "ForceStop", &CB)
354 << "Won't attempt inlining because module size grew too much.";
356 return std::make_unique<InlineAdvice>(this, CB, ORE, Mandatory);
359 int CostEstimate = 0;
360 if (!Mandatory) {
361 auto IsCallSiteInlinable =
362 llvm::getInliningCostEstimate(CB, TIR, GetAssumptionCache);
363 if (!IsCallSiteInlinable) {
364 // We can't inline this for correctness reasons, so return the base
365 // InlineAdvice, as we don't care about tracking any state changes (which
366 // won't happen).
367 return std::make_unique<InlineAdvice>(this, CB, ORE, false);
369 CostEstimate = *IsCallSiteInlinable;
372 const auto CostFeatures =
373 llvm::getInliningCostFeatures(CB, TIR, GetAssumptionCache);
374 if (!CostFeatures) {
375 return std::make_unique<InlineAdvice>(this, CB, ORE, false);
378 if (Mandatory)
379 return getMandatoryAdvice(CB, true);
381 auto NrCtantParams = 0;
382 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
383 NrCtantParams += (isa<Constant>(*I));
386 auto &CallerBefore = getCachedFPI(Caller);
387 auto &CalleeBefore = getCachedFPI(Callee);
389 *ModelRunner->getTensor<int64_t>(FeatureIndex::callee_basic_block_count) =
390 CalleeBefore.BasicBlockCount;
391 *ModelRunner->getTensor<int64_t>(FeatureIndex::callsite_height) =
392 getInitialFunctionLevel(Caller);
393 *ModelRunner->getTensor<int64_t>(FeatureIndex::node_count) = NodeCount;
394 *ModelRunner->getTensor<int64_t>(FeatureIndex::nr_ctant_params) =
395 NrCtantParams;
396 *ModelRunner->getTensor<int64_t>(FeatureIndex::edge_count) = EdgeCount;
397 *ModelRunner->getTensor<int64_t>(FeatureIndex::caller_users) =
398 CallerBefore.Uses;
399 *ModelRunner->getTensor<int64_t>(
400 FeatureIndex::caller_conditionally_executed_blocks) =
401 CallerBefore.BlocksReachedFromConditionalInstruction;
402 *ModelRunner->getTensor<int64_t>(FeatureIndex::caller_basic_block_count) =
403 CallerBefore.BasicBlockCount;
404 *ModelRunner->getTensor<int64_t>(
405 FeatureIndex::callee_conditionally_executed_blocks) =
406 CalleeBefore.BlocksReachedFromConditionalInstruction;
407 *ModelRunner->getTensor<int64_t>(FeatureIndex::callee_users) =
408 CalleeBefore.Uses;
409 *ModelRunner->getTensor<int64_t>(FeatureIndex::cost_estimate) = CostEstimate;
411 // Add the cost features
412 for (size_t I = 0;
413 I < static_cast<size_t>(InlineCostFeatureIndex::NumberOfFeatures); ++I) {
414 *ModelRunner->getTensor<int64_t>(inlineCostFeatureToMlFeature(
415 static_cast<InlineCostFeatureIndex>(I))) = CostFeatures->at(I);
417 // This one would have been set up to be right at the end.
418 if (!InteractiveChannelBaseName.empty() && InteractiveIncludeDefault)
419 *ModelRunner->getTensor<int64_t>(InlineCostFeatureIndex::NumberOfFeatures) =
420 GetDefaultAdvice(CB);
421 return getAdviceFromModel(CB, ORE);
424 std::unique_ptr<MLInlineAdvice>
425 MLInlineAdvisor::getAdviceFromModel(CallBase &CB,
426 OptimizationRemarkEmitter &ORE) {
427 return std::make_unique<MLInlineAdvice>(
428 this, CB, ORE, static_cast<bool>(ModelRunner->evaluate<int64_t>()));
431 std::unique_ptr<InlineAdvice>
432 MLInlineAdvisor::getSkipAdviceIfUnreachableCallsite(CallBase &CB) {
433 if (!FAM.getResult<DominatorTreeAnalysis>(*CB.getCaller())
434 .isReachableFromEntry(CB.getParent()))
435 return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), false);
436 return nullptr;
439 std::unique_ptr<InlineAdvice> MLInlineAdvisor::getMandatoryAdvice(CallBase &CB,
440 bool Advice) {
441 // Make sure we track inlinings in all cases - mandatory or not.
442 if (auto Skip = getSkipAdviceIfUnreachableCallsite(CB))
443 return Skip;
444 if (Advice && !ForceStop)
445 return getMandatoryAdviceImpl(CB);
447 // If this is a "never inline" case, there won't be any changes to internal
448 // state we need to track, so we can just return the base InlineAdvice, which
449 // will do nothing interesting.
450 // Same if we are forced to stop - we don't track anymore.
451 return std::make_unique<InlineAdvice>(this, CB, getCallerORE(CB), Advice);
454 std::unique_ptr<MLInlineAdvice>
455 MLInlineAdvisor::getMandatoryAdviceImpl(CallBase &CB) {
456 return std::make_unique<MLInlineAdvice>(this, CB, getCallerORE(CB), true);
459 void MLInlineAdvisor::print(raw_ostream &OS) const {
460 OS << "[MLInlineAdvisor] Nodes: " << NodeCount << " Edges: " << EdgeCount
461 << " EdgesOfLastSeenNodes: " << EdgesOfLastSeenNodes << "\n";
462 OS << "[MLInlineAdvisor] FPI:\n";
463 for (auto I : FPICache) {
464 OS << I.first->getName() << ":\n";
465 I.second.print(OS);
466 OS << "\n";
468 OS << "\n";
469 OS << "[MLInlineAdvisor] FuncLevels:\n";
470 for (auto I : FunctionLevels)
471 OS << (I.first->isDead() ? "<deleted>" : I.first->getFunction().getName())
472 << " : " << I.second << "\n";
474 OS << "\n";
477 MLInlineAdvice::MLInlineAdvice(MLInlineAdvisor *Advisor, CallBase &CB,
478 OptimizationRemarkEmitter &ORE,
479 bool Recommendation)
480 : InlineAdvice(Advisor, CB, ORE, Recommendation),
481 CallerIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Caller)),
482 CalleeIRSize(Advisor->isForcedToStop() ? 0 : Advisor->getIRSize(*Callee)),
483 CallerAndCalleeEdges(Advisor->isForcedToStop()
485 : (Advisor->getLocalCalls(*Caller) +
486 Advisor->getLocalCalls(*Callee))),
487 PreInlineCallerFPI(Advisor->getCachedFPI(*Caller)) {
488 if (Recommendation)
489 FPU.emplace(Advisor->getCachedFPI(*getCaller()), CB);
492 void MLInlineAdvice::reportContextForRemark(
493 DiagnosticInfoOptimizationBase &OR) {
494 using namespace ore;
495 OR << NV("Callee", Callee->getName());
496 for (size_t I = 0; I < NumberOfFeatures; ++I)
497 OR << NV(FeatureMap[I].name(),
498 *getAdvisor()->getModelRunner().getTensor<int64_t>(I));
499 OR << NV("ShouldInline", isInliningRecommended());
502 void MLInlineAdvice::updateCachedCallerFPI(FunctionAnalysisManager &FAM) const {
503 FPU->finish(FAM);
506 void MLInlineAdvice::recordInliningImpl() {
507 ORE.emit([&]() {
508 OptimizationRemark R(DEBUG_TYPE, "InliningSuccess", DLoc, Block);
509 reportContextForRemark(R);
510 return R;
512 getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ false);
515 void MLInlineAdvice::recordInliningWithCalleeDeletedImpl() {
516 ORE.emit([&]() {
517 OptimizationRemark R(DEBUG_TYPE, "InliningSuccessWithCalleeDeleted", DLoc,
518 Block);
519 reportContextForRemark(R);
520 return R;
522 getAdvisor()->onSuccessfulInlining(*this, /*CalleeWasDeleted*/ true);
525 void MLInlineAdvice::recordUnsuccessfulInliningImpl(
526 const InlineResult &Result) {
527 getAdvisor()->getCachedFPI(*Caller) = PreInlineCallerFPI;
528 ORE.emit([&]() {
529 OptimizationRemarkMissed R(DEBUG_TYPE, "InliningAttemptedAndUnsuccessful",
530 DLoc, Block);
531 reportContextForRemark(R);
532 return R;
535 void MLInlineAdvice::recordUnattemptedInliningImpl() {
536 assert(!FPU);
537 ORE.emit([&]() {
538 OptimizationRemarkMissed R(DEBUG_TYPE, "IniningNotAttempted", DLoc, Block);
539 reportContextForRemark(R);
540 return R;