Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Analysis / MemoryProfileInfo.cpp
blob7fbcffc6489dcfd43631be9a9aa3698f1ce15273
1 //===-- MemoryProfileInfo.cpp - memory profile info ------------------------==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains utilities to analyze memory profile information.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/MemoryProfileInfo.h"
14 #include "llvm/Support/CommandLine.h"
16 using namespace llvm;
17 using namespace llvm::memprof;
19 #define DEBUG_TYPE "memory-profile-info"
21 // Upper bound on lifetime access density (accesses per byte per lifetime sec)
22 // for marking an allocation cold.
23 cl::opt<float> MemProfLifetimeAccessDensityColdThreshold(
24 "memprof-lifetime-access-density-cold-threshold", cl::init(0.05),
25 cl::Hidden,
26 cl::desc("The threshold the lifetime access density (accesses per byte per "
27 "lifetime sec) must be under to consider an allocation cold"));
29 // Lower bound on lifetime to mark an allocation cold (in addition to accesses
30 // per byte per sec above). This is to avoid pessimizing short lived objects.
31 cl::opt<unsigned> MemProfAveLifetimeColdThreshold(
32 "memprof-ave-lifetime-cold-threshold", cl::init(200), cl::Hidden,
33 cl::desc("The average lifetime (s) for an allocation to be considered "
34 "cold"));
36 // Lower bound on average lifetime accesses density (total life time access
37 // density / alloc count) for marking an allocation hot.
38 cl::opt<unsigned> MemProfMinAveLifetimeAccessDensityHotThreshold(
39 "memprof-min-ave-lifetime-access-density-hot-threshold", cl::init(1000),
40 cl::Hidden,
41 cl::desc("The minimum TotalLifetimeAccessDensity / AllocCount for an "
42 "allocation to be considered hot"));
44 AllocationType llvm::memprof::getAllocType(uint64_t TotalLifetimeAccessDensity,
45 uint64_t AllocCount,
46 uint64_t TotalLifetime) {
47 // The access densities are multiplied by 100 to hold 2 decimal places of
48 // precision, so need to divide by 100.
49 if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 <
50 MemProfLifetimeAccessDensityColdThreshold
51 // Lifetime is expected to be in ms, so convert the threshold to ms.
52 && ((float)TotalLifetime) / AllocCount >=
53 MemProfAveLifetimeColdThreshold * 1000)
54 return AllocationType::Cold;
56 // The access densities are multiplied by 100 to hold 2 decimal places of
57 // precision, so need to divide by 100.
58 if (((float)TotalLifetimeAccessDensity) / AllocCount / 100 >
59 MemProfMinAveLifetimeAccessDensityHotThreshold)
60 return AllocationType::Hot;
62 return AllocationType::NotCold;
65 MDNode *llvm::memprof::buildCallstackMetadata(ArrayRef<uint64_t> CallStack,
66 LLVMContext &Ctx) {
67 std::vector<Metadata *> StackVals;
68 for (auto Id : CallStack) {
69 auto *StackValMD =
70 ValueAsMetadata::get(ConstantInt::get(Type::getInt64Ty(Ctx), Id));
71 StackVals.push_back(StackValMD);
73 return MDNode::get(Ctx, StackVals);
76 MDNode *llvm::memprof::getMIBStackNode(const MDNode *MIB) {
77 assert(MIB->getNumOperands() == 2);
78 // The stack metadata is the first operand of each memprof MIB metadata.
79 return cast<MDNode>(MIB->getOperand(0));
82 AllocationType llvm::memprof::getMIBAllocType(const MDNode *MIB) {
83 assert(MIB->getNumOperands() == 2);
84 // The allocation type is currently the second operand of each memprof
85 // MIB metadata. This will need to change as we add additional allocation
86 // types that can be applied based on the allocation profile data.
87 auto *MDS = dyn_cast<MDString>(MIB->getOperand(1));
88 assert(MDS);
89 if (MDS->getString().equals("cold")) {
90 return AllocationType::Cold;
91 } else if (MDS->getString().equals("hot")) {
92 return AllocationType::Hot;
94 return AllocationType::NotCold;
97 std::string llvm::memprof::getAllocTypeAttributeString(AllocationType Type) {
98 switch (Type) {
99 case AllocationType::NotCold:
100 return "notcold";
101 break;
102 case AllocationType::Cold:
103 return "cold";
104 break;
105 case AllocationType::Hot:
106 return "hot";
107 break;
108 default:
109 assert(false && "Unexpected alloc type");
111 llvm_unreachable("invalid alloc type");
114 static void addAllocTypeAttribute(LLVMContext &Ctx, CallBase *CI,
115 AllocationType AllocType) {
116 auto AllocTypeString = getAllocTypeAttributeString(AllocType);
117 auto A = llvm::Attribute::get(Ctx, "memprof", AllocTypeString);
118 CI->addFnAttr(A);
121 bool llvm::memprof::hasSingleAllocType(uint8_t AllocTypes) {
122 const unsigned NumAllocTypes = llvm::popcount(AllocTypes);
123 assert(NumAllocTypes != 0);
124 return NumAllocTypes == 1;
127 void CallStackTrie::addCallStack(AllocationType AllocType,
128 ArrayRef<uint64_t> StackIds) {
129 bool First = true;
130 CallStackTrieNode *Curr = nullptr;
131 for (auto StackId : StackIds) {
132 // If this is the first stack frame, add or update alloc node.
133 if (First) {
134 First = false;
135 if (Alloc) {
136 assert(AllocStackId == StackId);
137 Alloc->AllocTypes |= static_cast<uint8_t>(AllocType);
138 } else {
139 AllocStackId = StackId;
140 Alloc = new CallStackTrieNode(AllocType);
142 Curr = Alloc;
143 continue;
145 // Update existing caller node if it exists.
146 auto Next = Curr->Callers.find(StackId);
147 if (Next != Curr->Callers.end()) {
148 Curr = Next->second;
149 Curr->AllocTypes |= static_cast<uint8_t>(AllocType);
150 continue;
152 // Otherwise add a new caller node.
153 auto *New = new CallStackTrieNode(AllocType);
154 Curr->Callers[StackId] = New;
155 Curr = New;
157 assert(Curr);
160 void CallStackTrie::addCallStack(MDNode *MIB) {
161 MDNode *StackMD = getMIBStackNode(MIB);
162 assert(StackMD);
163 std::vector<uint64_t> CallStack;
164 CallStack.reserve(StackMD->getNumOperands());
165 for (const auto &MIBStackIter : StackMD->operands()) {
166 auto *StackId = mdconst::dyn_extract<ConstantInt>(MIBStackIter);
167 assert(StackId);
168 CallStack.push_back(StackId->getZExtValue());
170 addCallStack(getMIBAllocType(MIB), CallStack);
173 static MDNode *createMIBNode(LLVMContext &Ctx,
174 std::vector<uint64_t> &MIBCallStack,
175 AllocationType AllocType) {
176 std::vector<Metadata *> MIBPayload(
177 {buildCallstackMetadata(MIBCallStack, Ctx)});
178 MIBPayload.push_back(
179 MDString::get(Ctx, getAllocTypeAttributeString(AllocType)));
180 return MDNode::get(Ctx, MIBPayload);
183 // Recursive helper to trim contexts and create metadata nodes.
184 // Caller should have pushed Node's loc to MIBCallStack. Doing this in the
185 // caller makes it simpler to handle the many early returns in this method.
186 bool CallStackTrie::buildMIBNodes(CallStackTrieNode *Node, LLVMContext &Ctx,
187 std::vector<uint64_t> &MIBCallStack,
188 std::vector<Metadata *> &MIBNodes,
189 bool CalleeHasAmbiguousCallerContext) {
190 // Trim context below the first node in a prefix with a single alloc type.
191 // Add an MIB record for the current call stack prefix.
192 if (hasSingleAllocType(Node->AllocTypes)) {
193 MIBNodes.push_back(
194 createMIBNode(Ctx, MIBCallStack, (AllocationType)Node->AllocTypes));
195 return true;
198 // We don't have a single allocation for all the contexts sharing this prefix,
199 // so recursively descend into callers in trie.
200 if (!Node->Callers.empty()) {
201 bool NodeHasAmbiguousCallerContext = Node->Callers.size() > 1;
202 bool AddedMIBNodesForAllCallerContexts = true;
203 for (auto &Caller : Node->Callers) {
204 MIBCallStack.push_back(Caller.first);
205 AddedMIBNodesForAllCallerContexts &=
206 buildMIBNodes(Caller.second, Ctx, MIBCallStack, MIBNodes,
207 NodeHasAmbiguousCallerContext);
208 // Remove Caller.
209 MIBCallStack.pop_back();
211 if (AddedMIBNodesForAllCallerContexts)
212 return true;
213 // We expect that the callers should be forced to add MIBs to disambiguate
214 // the context in this case (see below).
215 assert(!NodeHasAmbiguousCallerContext);
218 // If we reached here, then this node does not have a single allocation type,
219 // and we didn't add metadata for a longer call stack prefix including any of
220 // Node's callers. That means we never hit a single allocation type along all
221 // call stacks with this prefix. This can happen due to recursion collapsing
222 // or the stack being deeper than tracked by the profiler runtime, leading to
223 // contexts with different allocation types being merged. In that case, we
224 // trim the context just below the deepest context split, which is this
225 // node if the callee has an ambiguous caller context (multiple callers),
226 // since the recursive calls above returned false. Conservatively give it
227 // non-cold allocation type.
228 if (!CalleeHasAmbiguousCallerContext)
229 return false;
230 MIBNodes.push_back(createMIBNode(Ctx, MIBCallStack, AllocationType::NotCold));
231 return true;
234 // Build and attach the minimal necessary MIB metadata. If the alloc has a
235 // single allocation type, add a function attribute instead. Returns true if
236 // memprof metadata attached, false if not (attribute added).
237 bool CallStackTrie::buildAndAttachMIBMetadata(CallBase *CI) {
238 auto &Ctx = CI->getContext();
239 if (hasSingleAllocType(Alloc->AllocTypes)) {
240 addAllocTypeAttribute(Ctx, CI, (AllocationType)Alloc->AllocTypes);
241 return false;
243 std::vector<uint64_t> MIBCallStack;
244 MIBCallStack.push_back(AllocStackId);
245 std::vector<Metadata *> MIBNodes;
246 assert(!Alloc->Callers.empty() && "addCallStack has not been called yet");
247 buildMIBNodes(Alloc, Ctx, MIBCallStack, MIBNodes,
248 /*CalleeHasAmbiguousCallerContext=*/true);
249 assert(MIBCallStack.size() == 1 &&
250 "Should only be left with Alloc's location in stack");
251 CI->setMetadata(LLVMContext::MD_memprof, MDNode::get(Ctx, MIBNodes));
252 return true;
255 template <>
256 CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::CallStackIterator(
257 const MDNode *N, bool End)
258 : N(N) {
259 if (!N)
260 return;
261 Iter = End ? N->op_end() : N->op_begin();
264 template <>
265 uint64_t
266 CallStack<MDNode, MDNode::op_iterator>::CallStackIterator::operator*() {
267 assert(Iter != N->op_end());
268 ConstantInt *StackIdCInt = mdconst::dyn_extract<ConstantInt>(*Iter);
269 assert(StackIdCInt);
270 return StackIdCInt->getZExtValue();
273 template <> uint64_t CallStack<MDNode, MDNode::op_iterator>::back() const {
274 assert(N);
275 return mdconst::dyn_extract<ConstantInt>(N->operands().back())
276 ->getZExtValue();