1 //===- MustExecute.cpp - Printer for isGuaranteedToExecute ----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/MustExecute.h"
10 #include "llvm/ADT/PostOrderIterator.h"
11 #include "llvm/ADT/StringExtras.h"
12 #include "llvm/Analysis/CFG.h"
13 #include "llvm/Analysis/InstructionSimplify.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/Analysis/Passes.h"
16 #include "llvm/Analysis/PostDominators.h"
17 #include "llvm/Analysis/ValueTracking.h"
18 #include "llvm/IR/AssemblyAnnotationWriter.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/InstIterator.h"
21 #include "llvm/IR/Module.h"
22 #include "llvm/IR/PassManager.h"
23 #include "llvm/InitializePasses.h"
24 #include "llvm/Support/FormattedStream.h"
25 #include "llvm/Support/raw_ostream.h"
29 #define DEBUG_TYPE "must-execute"
31 const DenseMap
<BasicBlock
*, ColorVector
> &
32 LoopSafetyInfo::getBlockColors() const {
36 void LoopSafetyInfo::copyColors(BasicBlock
*New
, BasicBlock
*Old
) {
37 ColorVector
&ColorsForNewBlock
= BlockColors
[New
];
38 ColorVector
&ColorsForOldBlock
= BlockColors
[Old
];
39 ColorsForNewBlock
= ColorsForOldBlock
;
42 bool SimpleLoopSafetyInfo::blockMayThrow(const BasicBlock
*BB
) const {
44 return anyBlockMayThrow();
47 bool SimpleLoopSafetyInfo::anyBlockMayThrow() const {
51 void SimpleLoopSafetyInfo::computeLoopSafetyInfo(const Loop
*CurLoop
) {
52 assert(CurLoop
!= nullptr && "CurLoop can't be null");
53 BasicBlock
*Header
= CurLoop
->getHeader();
54 // Iterate over header and compute safety info.
55 HeaderMayThrow
= !isGuaranteedToTransferExecutionToSuccessor(Header
);
56 MayThrow
= HeaderMayThrow
;
57 // Iterate over loop instructions and compute safety info.
58 // Skip header as it has been computed and stored in HeaderMayThrow.
59 // The first block in loopinfo.Blocks is guaranteed to be the header.
60 assert(Header
== *CurLoop
->getBlocks().begin() &&
61 "First block must be header");
62 for (const BasicBlock
*BB
: llvm::drop_begin(CurLoop
->blocks())) {
63 MayThrow
|= !isGuaranteedToTransferExecutionToSuccessor(BB
);
68 computeBlockColors(CurLoop
);
71 bool ICFLoopSafetyInfo::blockMayThrow(const BasicBlock
*BB
) const {
72 return ICF
.hasICF(BB
);
75 bool ICFLoopSafetyInfo::anyBlockMayThrow() const {
79 void ICFLoopSafetyInfo::computeLoopSafetyInfo(const Loop
*CurLoop
) {
80 assert(CurLoop
!= nullptr && "CurLoop can't be null");
84 // Figure out the fact that at least one block may throw.
85 for (const auto &BB
: CurLoop
->blocks())
86 if (ICF
.hasICF(&*BB
)) {
90 computeBlockColors(CurLoop
);
93 void ICFLoopSafetyInfo::insertInstructionTo(const Instruction
*Inst
,
94 const BasicBlock
*BB
) {
95 ICF
.insertInstructionTo(Inst
, BB
);
96 MW
.insertInstructionTo(Inst
, BB
);
99 void ICFLoopSafetyInfo::removeInstruction(const Instruction
*Inst
) {
100 ICF
.removeInstruction(Inst
);
101 MW
.removeInstruction(Inst
);
104 void LoopSafetyInfo::computeBlockColors(const Loop
*CurLoop
) {
105 // Compute funclet colors if we might sink/hoist in a function with a funclet
106 // personality routine.
107 Function
*Fn
= CurLoop
->getHeader()->getParent();
108 if (Fn
->hasPersonalityFn())
109 if (Constant
*PersonalityFn
= Fn
->getPersonalityFn())
110 if (isScopedEHPersonality(classifyEHPersonality(PersonalityFn
)))
111 BlockColors
= colorEHFunclets(*Fn
);
114 /// Return true if we can prove that the given ExitBlock is not reached on the
115 /// first iteration of the given loop. That is, the backedge of the loop must
116 /// be executed before the ExitBlock is executed in any dynamic execution trace.
117 static bool CanProveNotTakenFirstIteration(const BasicBlock
*ExitBlock
,
118 const DominatorTree
*DT
,
119 const Loop
*CurLoop
) {
120 auto *CondExitBlock
= ExitBlock
->getSinglePredecessor();
122 // expect unique exits
124 assert(CurLoop
->contains(CondExitBlock
) && "meaning of exit block");
125 auto *BI
= dyn_cast
<BranchInst
>(CondExitBlock
->getTerminator());
126 if (!BI
|| !BI
->isConditional())
128 // If condition is constant and false leads to ExitBlock then we always
129 // execute the true branch.
130 if (auto *Cond
= dyn_cast
<ConstantInt
>(BI
->getCondition()))
131 return BI
->getSuccessor(Cond
->getZExtValue() ? 1 : 0) == ExitBlock
;
132 auto *Cond
= dyn_cast
<CmpInst
>(BI
->getCondition());
135 // todo: this would be a lot more powerful if we used scev, but all the
136 // plumbing is currently missing to pass a pointer in from the pass
137 // Check for cmp (phi [x, preheader] ...), y where (pred x, y is known
138 auto *LHS
= dyn_cast
<PHINode
>(Cond
->getOperand(0));
139 auto *RHS
= Cond
->getOperand(1);
140 if (!LHS
|| LHS
->getParent() != CurLoop
->getHeader())
142 auto DL
= ExitBlock
->getModule()->getDataLayout();
143 auto *IVStart
= LHS
->getIncomingValueForBlock(CurLoop
->getLoopPreheader());
144 auto *SimpleValOrNull
= simplifyCmpInst(Cond
->getPredicate(),
146 {DL
, /*TLI*/ nullptr,
147 DT
, /*AC*/ nullptr, BI
});
148 auto *SimpleCst
= dyn_cast_or_null
<Constant
>(SimpleValOrNull
);
151 if (ExitBlock
== BI
->getSuccessor(0))
152 return SimpleCst
->isZeroValue();
153 assert(ExitBlock
== BI
->getSuccessor(1) && "implied by above");
154 return SimpleCst
->isAllOnesValue();
157 /// Collect all blocks from \p CurLoop which lie on all possible paths from
158 /// the header of \p CurLoop (inclusive) to BB (exclusive) into the set
159 /// \p Predecessors. If \p BB is the header, \p Predecessors will be empty.
160 static void collectTransitivePredecessors(
161 const Loop
*CurLoop
, const BasicBlock
*BB
,
162 SmallPtrSetImpl
<const BasicBlock
*> &Predecessors
) {
163 assert(Predecessors
.empty() && "Garbage in predecessors set?");
164 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
165 if (BB
== CurLoop
->getHeader())
167 SmallVector
<const BasicBlock
*, 4> WorkList
;
168 for (const auto *Pred
: predecessors(BB
)) {
169 Predecessors
.insert(Pred
);
170 WorkList
.push_back(Pred
);
172 while (!WorkList
.empty()) {
173 auto *Pred
= WorkList
.pop_back_val();
174 assert(CurLoop
->contains(Pred
) && "Should only reach loop blocks!");
175 // We are not interested in backedges and we don't want to leave loop.
176 if (Pred
== CurLoop
->getHeader())
178 // TODO: If BB lies in an inner loop of CurLoop, this will traverse over all
179 // blocks of this inner loop, even those that are always executed AFTER the
180 // BB. It may make our analysis more conservative than it could be, see test
181 // @nested and @nested_no_throw in test/Analysis/MustExecute/loop-header.ll.
182 // We can ignore backedge of all loops containing BB to get a sligtly more
183 // optimistic result.
184 for (const auto *PredPred
: predecessors(Pred
))
185 if (Predecessors
.insert(PredPred
).second
)
186 WorkList
.push_back(PredPred
);
190 bool LoopSafetyInfo::allLoopPathsLeadToBlock(const Loop
*CurLoop
,
191 const BasicBlock
*BB
,
192 const DominatorTree
*DT
) const {
193 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
195 // Fast path: header is always reached once the loop is entered.
196 if (BB
== CurLoop
->getHeader())
199 // Collect all transitive predecessors of BB in the same loop. This set will
200 // be a subset of the blocks within the loop.
201 SmallPtrSet
<const BasicBlock
*, 4> Predecessors
;
202 collectTransitivePredecessors(CurLoop
, BB
, Predecessors
);
204 // Bail out if a latch block is part of the predecessor set. In this case
205 // we may take the backedge to the header and not execute other latch
207 for (const BasicBlock
*Pred
: predecessors(CurLoop
->getHeader()))
208 // Predecessors only contains loop blocks, so we don't have to worry about
209 // preheader predecessors here.
210 if (Predecessors
.contains(Pred
))
213 // Make sure that all successors of, all predecessors of BB which are not
214 // dominated by BB, are either:
216 // 2) Also predecessors of BB,
217 // 3) Exit blocks which are not taken on 1st iteration.
218 // Memoize blocks we've already checked.
219 SmallPtrSet
<const BasicBlock
*, 4> CheckedSuccessors
;
220 for (const auto *Pred
: Predecessors
) {
221 // Predecessor block may throw, so it has a side exit.
222 if (blockMayThrow(Pred
))
225 // BB dominates Pred, so if Pred runs, BB must run.
226 // This is true when Pred is a loop latch.
227 if (DT
->dominates(BB
, Pred
))
230 for (const auto *Succ
: successors(Pred
))
231 if (CheckedSuccessors
.insert(Succ
).second
&&
232 Succ
!= BB
&& !Predecessors
.count(Succ
))
233 // By discharging conditions that are not executed on the 1st iteration,
234 // we guarantee that *at least* on the first iteration all paths from
235 // header that *may* execute will lead us to the block of interest. So
236 // that if we had virtually peeled one iteration away, in this peeled
237 // iteration the set of predecessors would contain only paths from
238 // header to BB without any exiting edges that may execute.
240 // TODO: We only do it for exiting edges currently. We could use the
241 // same function to skip some of the edges within the loop if we know
242 // that they will not be taken on the 1st iteration.
244 // TODO: If we somehow know the number of iterations in loop, the same
245 // check may be done for any arbitrary N-th iteration as long as N is
246 // not greater than minimum number of iterations in this loop.
247 if (CurLoop
->contains(Succ
) ||
248 !CanProveNotTakenFirstIteration(Succ
, DT
, CurLoop
))
252 // All predecessors can only lead us to BB.
256 /// Returns true if the instruction in a loop is guaranteed to execute at least
258 bool SimpleLoopSafetyInfo::isGuaranteedToExecute(const Instruction
&Inst
,
259 const DominatorTree
*DT
,
260 const Loop
*CurLoop
) const {
261 // If the instruction is in the header block for the loop (which is very
262 // common), it is always guaranteed to dominate the exit blocks. Since this
263 // is a common case, and can save some work, check it now.
264 if (Inst
.getParent() == CurLoop
->getHeader())
265 // If there's a throw in the header block, we can't guarantee we'll reach
266 // Inst unless we can prove that Inst comes before the potential implicit
267 // exit. At the moment, we use a (cheap) hack for the common case where
268 // the instruction of interest is the first one in the block.
269 return !HeaderMayThrow
||
270 Inst
.getParent()->getFirstNonPHIOrDbg() == &Inst
;
272 // If there is a path from header to exit or latch that doesn't lead to our
273 // instruction's block, return false.
274 return allLoopPathsLeadToBlock(CurLoop
, Inst
.getParent(), DT
);
277 bool ICFLoopSafetyInfo::isGuaranteedToExecute(const Instruction
&Inst
,
278 const DominatorTree
*DT
,
279 const Loop
*CurLoop
) const {
280 return !ICF
.isDominatedByICFIFromSameBlock(&Inst
) &&
281 allLoopPathsLeadToBlock(CurLoop
, Inst
.getParent(), DT
);
284 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const BasicBlock
*BB
,
285 const Loop
*CurLoop
) const {
286 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
288 // Fast path: there are no instructions before header.
289 if (BB
== CurLoop
->getHeader())
292 // Collect all transitive predecessors of BB in the same loop. This set will
293 // be a subset of the blocks within the loop.
294 SmallPtrSet
<const BasicBlock
*, 4> Predecessors
;
295 collectTransitivePredecessors(CurLoop
, BB
, Predecessors
);
296 // Find if there any instruction in either predecessor that could write
298 for (const auto *Pred
: Predecessors
)
299 if (MW
.mayWriteToMemory(Pred
))
304 bool ICFLoopSafetyInfo::doesNotWriteMemoryBefore(const Instruction
&I
,
305 const Loop
*CurLoop
) const {
306 auto *BB
= I
.getParent();
307 assert(CurLoop
->contains(BB
) && "Should only be called for loop blocks!");
308 return !MW
.isDominatedByMemoryWriteFromSameBlock(&I
) &&
309 doesNotWriteMemoryBefore(BB
, CurLoop
);
312 static bool isMustExecuteIn(const Instruction
&I
, Loop
*L
, DominatorTree
*DT
) {
313 // TODO: merge these two routines. For the moment, we display the best
314 // result obtained by *either* implementation. This is a bit unfair since no
315 // caller actually gets the full power at the moment.
316 SimpleLoopSafetyInfo LSI
;
317 LSI
.computeLoopSafetyInfo(L
);
318 return LSI
.isGuaranteedToExecute(I
, DT
, L
) ||
319 isGuaranteedToExecuteForEveryIteration(&I
, L
);
323 /// An assembly annotator class to print must execute information in
325 class MustExecuteAnnotatedWriter
: public AssemblyAnnotationWriter
{
326 DenseMap
<const Value
*, SmallVector
<Loop
*, 4> > MustExec
;
329 MustExecuteAnnotatedWriter(const Function
&F
,
330 DominatorTree
&DT
, LoopInfo
&LI
) {
331 for (const auto &I
: instructions(F
)) {
332 Loop
*L
= LI
.getLoopFor(I
.getParent());
334 if (isMustExecuteIn(I
, L
, &DT
)) {
335 MustExec
[&I
].push_back(L
);
337 L
= L
->getParentLoop();
341 MustExecuteAnnotatedWriter(const Module
&M
,
342 DominatorTree
&DT
, LoopInfo
&LI
) {
343 for (const auto &F
: M
)
344 for (const auto &I
: instructions(F
)) {
345 Loop
*L
= LI
.getLoopFor(I
.getParent());
347 if (isMustExecuteIn(I
, L
, &DT
)) {
348 MustExec
[&I
].push_back(L
);
350 L
= L
->getParentLoop();
356 void printInfoComment(const Value
&V
, formatted_raw_ostream
&OS
) override
{
357 if (!MustExec
.count(&V
))
360 const auto &Loops
= MustExec
.lookup(&V
);
361 const auto NumLoops
= Loops
.size();
363 OS
<< " ; (mustexec in " << NumLoops
<< " loops: ";
365 OS
<< " ; (mustexec in: ";
368 for (const Loop
*L
: Loops
)
369 OS
<< LS
<< L
->getHeader()->getName();
375 /// Return true if \p L might be an endless loop.
376 static bool maybeEndlessLoop(const Loop
&L
) {
377 if (L
.getHeader()->getParent()->hasFnAttribute(Attribute::WillReturn
))
379 // TODO: Actually try to prove it is not.
380 // TODO: If maybeEndlessLoop is going to be expensive, cache it.
384 bool llvm::mayContainIrreducibleControl(const Function
&F
, const LoopInfo
*LI
) {
387 using RPOTraversal
= ReversePostOrderTraversal
<const Function
*>;
388 RPOTraversal
FuncRPOT(&F
);
389 return containsIrreducibleCFG
<const BasicBlock
*, const RPOTraversal
,
390 const LoopInfo
>(FuncRPOT
, *LI
);
393 /// Lookup \p Key in \p Map and return the result, potentially after
394 /// initializing the optional through \p Fn(\p args).
395 template <typename K
, typename V
, typename FnTy
, typename
... ArgsTy
>
396 static V
getOrCreateCachedOptional(K Key
, DenseMap
<K
, std::optional
<V
>> &Map
,
397 FnTy
&&Fn
, ArgsTy
&&...args
) {
398 std::optional
<V
> &OptVal
= Map
[Key
];
400 OptVal
= Fn(std::forward
<ArgsTy
>(args
)...);
405 MustBeExecutedContextExplorer::findForwardJoinPoint(const BasicBlock
*InitBB
) {
406 const LoopInfo
*LI
= LIGetter(*InitBB
->getParent());
407 const PostDominatorTree
*PDT
= PDTGetter(*InitBB
->getParent());
409 LLVM_DEBUG(dbgs() << "\tFind forward join point for " << InitBB
->getName()
410 << (LI
? " [LI]" : "") << (PDT
? " [PDT]" : ""));
412 const Function
&F
= *InitBB
->getParent();
413 const Loop
*L
= LI
? LI
->getLoopFor(InitBB
) : nullptr;
414 const BasicBlock
*HeaderBB
= L
? L
->getHeader() : InitBB
;
415 bool WillReturnAndNoThrow
= (F
.hasFnAttribute(Attribute::WillReturn
) ||
416 (L
&& !maybeEndlessLoop(*L
))) &&
418 LLVM_DEBUG(dbgs() << (L
? " [in loop]" : "")
419 << (WillReturnAndNoThrow
? " [WillReturn] [NoUnwind]" : "")
422 // Determine the adjacent blocks in the given direction but exclude (self)
423 // loops under certain circumstances.
424 SmallVector
<const BasicBlock
*, 8> Worklist
;
425 for (const BasicBlock
*SuccBB
: successors(InitBB
)) {
426 bool IsLatch
= SuccBB
== HeaderBB
;
427 // Loop latches are ignored in forward propagation if the loop cannot be
428 // endless and may not throw: control has to go somewhere.
429 if (!WillReturnAndNoThrow
|| !IsLatch
)
430 Worklist
.push_back(SuccBB
);
432 LLVM_DEBUG(dbgs() << "\t\t#Worklist: " << Worklist
.size() << "\n");
434 // If there are no other adjacent blocks, there is no join point.
435 if (Worklist
.empty())
438 // If there is one adjacent block, it is the join point.
439 if (Worklist
.size() == 1)
442 // Try to determine a join block through the help of the post-dominance
443 // tree. If no tree was provided, we perform simple pattern matching for one
444 // block conditionals and one block loops only.
445 const BasicBlock
*JoinBB
= nullptr;
447 if (const auto *InitNode
= PDT
->getNode(InitBB
))
448 if (const auto *IDomNode
= InitNode
->getIDom())
449 JoinBB
= IDomNode
->getBlock();
451 if (!JoinBB
&& Worklist
.size() == 2) {
452 const BasicBlock
*Succ0
= Worklist
[0];
453 const BasicBlock
*Succ1
= Worklist
[1];
454 const BasicBlock
*Succ0UniqueSucc
= Succ0
->getUniqueSuccessor();
455 const BasicBlock
*Succ1UniqueSucc
= Succ1
->getUniqueSuccessor();
456 if (Succ0UniqueSucc
== InitBB
) {
457 // InitBB -> Succ0 -> InitBB
458 // InitBB -> Succ1 = JoinBB
460 } else if (Succ1UniqueSucc
== InitBB
) {
461 // InitBB -> Succ1 -> InitBB
462 // InitBB -> Succ0 = JoinBB
464 } else if (Succ0
== Succ1UniqueSucc
) {
465 // InitBB -> Succ0 = JoinBB
466 // InitBB -> Succ1 -> Succ0 = JoinBB
468 } else if (Succ1
== Succ0UniqueSucc
) {
469 // InitBB -> Succ0 -> Succ1 = JoinBB
470 // InitBB -> Succ1 = JoinBB
472 } else if (Succ0UniqueSucc
== Succ1UniqueSucc
) {
473 // InitBB -> Succ0 -> JoinBB
474 // InitBB -> Succ1 -> JoinBB
475 JoinBB
= Succ0UniqueSucc
;
480 JoinBB
= L
->getUniqueExitBlock();
485 LLVM_DEBUG(dbgs() << "\t\tJoin block candidate: " << JoinBB
->getName() << "\n");
487 // In forward direction we check if control will for sure reach JoinBB from
488 // InitBB, thus it can not be "stopped" along the way. Ways to "stop" control
489 // are: infinite loops and instructions that do not necessarily transfer
490 // execution to their successor. To check for them we traverse the CFG from
491 // the adjacent blocks to the JoinBB, looking at all intermediate blocks.
493 // If we know the function is "will-return" and "no-throw" there is no need
494 // for futher checks.
495 if (!F
.hasFnAttribute(Attribute::WillReturn
) || !F
.doesNotThrow()) {
497 auto BlockTransfersExecutionToSuccessor
= [](const BasicBlock
*BB
) {
498 return isGuaranteedToTransferExecutionToSuccessor(BB
);
501 SmallPtrSet
<const BasicBlock
*, 16> Visited
;
502 while (!Worklist
.empty()) {
503 const BasicBlock
*ToBB
= Worklist
.pop_back_val();
507 // Make sure all loops in-between are finite.
508 if (!Visited
.insert(ToBB
).second
) {
509 if (!F
.hasFnAttribute(Attribute::WillReturn
)) {
513 bool MayContainIrreducibleControl
= getOrCreateCachedOptional(
514 &F
, IrreducibleControlMap
, mayContainIrreducibleControl
, F
, LI
);
515 if (MayContainIrreducibleControl
)
518 const Loop
*L
= LI
->getLoopFor(ToBB
);
519 if (L
&& maybeEndlessLoop(*L
))
526 // Make sure the block has no instructions that could stop control
528 bool TransfersExecution
= getOrCreateCachedOptional(
529 ToBB
, BlockTransferMap
, BlockTransfersExecutionToSuccessor
, ToBB
);
530 if (!TransfersExecution
)
533 append_range(Worklist
, successors(ToBB
));
537 LLVM_DEBUG(dbgs() << "\tJoin block: " << JoinBB
->getName() << "\n");
541 MustBeExecutedContextExplorer::findBackwardJoinPoint(const BasicBlock
*InitBB
) {
542 const LoopInfo
*LI
= LIGetter(*InitBB
->getParent());
543 const DominatorTree
*DT
= DTGetter(*InitBB
->getParent());
544 LLVM_DEBUG(dbgs() << "\tFind backward join point for " << InitBB
->getName()
545 << (LI
? " [LI]" : "") << (DT
? " [DT]" : ""));
547 // Try to determine a join block through the help of the dominance tree. If no
548 // tree was provided, we perform simple pattern matching for one block
549 // conditionals only.
551 if (const auto *InitNode
= DT
->getNode(InitBB
))
552 if (const auto *IDomNode
= InitNode
->getIDom())
553 return IDomNode
->getBlock();
555 const Loop
*L
= LI
? LI
->getLoopFor(InitBB
) : nullptr;
556 const BasicBlock
*HeaderBB
= L
? L
->getHeader() : nullptr;
558 // Determine the predecessor blocks but ignore backedges.
559 SmallVector
<const BasicBlock
*, 8> Worklist
;
560 for (const BasicBlock
*PredBB
: predecessors(InitBB
)) {
562 (PredBB
== InitBB
) || (HeaderBB
== InitBB
&& L
->contains(PredBB
));
563 // Loop backedges are ignored in backwards propagation: control has to come
566 Worklist
.push_back(PredBB
);
569 // If there are no other predecessor blocks, there is no join point.
570 if (Worklist
.empty())
573 // If there is one predecessor block, it is the join point.
574 if (Worklist
.size() == 1)
577 const BasicBlock
*JoinBB
= nullptr;
578 if (Worklist
.size() == 2) {
579 const BasicBlock
*Pred0
= Worklist
[0];
580 const BasicBlock
*Pred1
= Worklist
[1];
581 const BasicBlock
*Pred0UniquePred
= Pred0
->getUniquePredecessor();
582 const BasicBlock
*Pred1UniquePred
= Pred1
->getUniquePredecessor();
583 if (Pred0
== Pred1UniquePred
) {
584 // InitBB <- Pred0 = JoinBB
585 // InitBB <- Pred1 <- Pred0 = JoinBB
587 } else if (Pred1
== Pred0UniquePred
) {
588 // InitBB <- Pred0 <- Pred1 = JoinBB
589 // InitBB <- Pred1 = JoinBB
591 } else if (Pred0UniquePred
== Pred1UniquePred
) {
592 // InitBB <- Pred0 <- JoinBB
593 // InitBB <- Pred1 <- JoinBB
594 JoinBB
= Pred0UniquePred
;
599 JoinBB
= L
->getHeader();
601 // In backwards direction there is no need to show termination of previous
602 // instructions. If they do not terminate, the code afterward is dead, making
603 // any information/transformation correct anyway.
608 MustBeExecutedContextExplorer::getMustBeExecutedNextInstruction(
609 MustBeExecutedIterator
&It
, const Instruction
*PP
) {
612 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
<< "\n");
614 // If we explore only inside a given basic block we stop at terminators.
615 if (!ExploreInterBlock
&& PP
->isTerminator()) {
616 LLVM_DEBUG(dbgs() << "\tReached terminator in intra-block mode, done\n");
620 // If we do not traverse the call graph we check if we can make progress in
621 // the current function. First, check if the instruction is guaranteed to
622 // transfer execution to the successor.
623 bool TransfersExecution
= isGuaranteedToTransferExecutionToSuccessor(PP
);
624 if (!TransfersExecution
)
627 // If this is not a terminator we know that there is a single instruction
628 // after this one that is executed next if control is transfered. If not,
629 // we can try to go back to a call site we entered earlier. If none exists, we
630 // do not know any instruction that has to be executd next.
631 if (!PP
->isTerminator()) {
632 const Instruction
*NextPP
= PP
->getNextNode();
633 LLVM_DEBUG(dbgs() << "\tIntermediate instruction does transfer control\n");
637 // Finally, we have to handle terminators, trivial ones first.
638 assert(PP
->isTerminator() && "Expected a terminator!");
640 // A terminator without a successor is not handled yet.
641 if (PP
->getNumSuccessors() == 0) {
642 LLVM_DEBUG(dbgs() << "\tUnhandled terminator\n");
646 // A terminator with a single successor, we will continue at the beginning of
648 if (PP
->getNumSuccessors() == 1) {
650 dbgs() << "\tUnconditional terminator, continue with successor\n");
651 return &PP
->getSuccessor(0)->front();
654 // Multiple successors mean we need to find the join point where control flow
655 // converges again. We use the findForwardJoinPoint helper function with
656 // information about the function and helper analyses, if available.
657 if (const BasicBlock
*JoinBB
= findForwardJoinPoint(PP
->getParent()))
658 return &JoinBB
->front();
660 LLVM_DEBUG(dbgs() << "\tNo join point found\n");
665 MustBeExecutedContextExplorer::getMustBeExecutedPrevInstruction(
666 MustBeExecutedIterator
&It
, const Instruction
*PP
) {
670 bool IsFirst
= !(PP
->getPrevNode());
671 LLVM_DEBUG(dbgs() << "Find next instruction for " << *PP
672 << (IsFirst
? " [IsFirst]" : "") << "\n");
674 // If we explore only inside a given basic block we stop at the first
676 if (!ExploreInterBlock
&& IsFirst
) {
677 LLVM_DEBUG(dbgs() << "\tReached block front in intra-block mode, done\n");
681 // The block and function that contains the current position.
682 const BasicBlock
*PPBlock
= PP
->getParent();
684 // If we are inside a block we know what instruction was executed before, the
687 const Instruction
*PrevPP
= PP
->getPrevNode();
689 dbgs() << "\tIntermediate instruction, continue with previous\n");
690 // We did not enter a callee so we simply return the previous instruction.
694 // Finally, we have to handle the case where the program point is the first in
695 // a block but not in the function. We use the findBackwardJoinPoint helper
696 // function with information about the function and helper analyses, if
698 if (const BasicBlock
*JoinBB
= findBackwardJoinPoint(PPBlock
))
699 return &JoinBB
->back();
701 LLVM_DEBUG(dbgs() << "\tNo join point found\n");
705 MustBeExecutedIterator::MustBeExecutedIterator(
706 MustBeExecutedContextExplorer
&Explorer
, const Instruction
*I
)
707 : Explorer(Explorer
), CurInst(I
) {
711 void MustBeExecutedIterator::reset(const Instruction
*I
) {
716 void MustBeExecutedIterator::resetInstruction(const Instruction
*I
) {
718 Head
= Tail
= nullptr;
719 Visited
.insert({I
, ExplorationDirection::FORWARD
});
720 Visited
.insert({I
, ExplorationDirection::BACKWARD
});
721 if (Explorer
.ExploreCFGForward
)
723 if (Explorer
.ExploreCFGBackward
)
727 const Instruction
*MustBeExecutedIterator::advance() {
728 assert(CurInst
&& "Cannot advance an end iterator!");
729 Head
= Explorer
.getMustBeExecutedNextInstruction(*this, Head
);
730 if (Head
&& Visited
.insert({Head
, ExplorationDirection ::FORWARD
}).second
)
734 Tail
= Explorer
.getMustBeExecutedPrevInstruction(*this, Tail
);
735 if (Tail
&& Visited
.insert({Tail
, ExplorationDirection ::BACKWARD
}).second
)
741 PreservedAnalyses
MustExecutePrinterPass::run(Function
&F
,
742 FunctionAnalysisManager
&AM
) {
743 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
744 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
746 MustExecuteAnnotatedWriter
Writer(F
, DT
, LI
);
747 F
.print(OS
, &Writer
);
748 return PreservedAnalyses::all();
752 MustBeExecutedContextPrinterPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
753 FunctionAnalysisManager
&FAM
=
754 AM
.getResult
<FunctionAnalysisManagerModuleProxy
>(M
).getManager();
755 GetterTy
<const LoopInfo
> LIGetter
= [&](const Function
&F
) {
756 return &FAM
.getResult
<LoopAnalysis
>(const_cast<Function
&>(F
));
758 GetterTy
<const DominatorTree
> DTGetter
= [&](const Function
&F
) {
759 return &FAM
.getResult
<DominatorTreeAnalysis
>(const_cast<Function
&>(F
));
761 GetterTy
<const PostDominatorTree
> PDTGetter
= [&](const Function
&F
) {
762 return &FAM
.getResult
<PostDominatorTreeAnalysis
>(const_cast<Function
&>(F
));
765 MustBeExecutedContextExplorer
Explorer(
766 /* ExploreInterBlock */ true,
767 /* ExploreCFGForward */ true,
768 /* ExploreCFGBackward */ true, LIGetter
, DTGetter
, PDTGetter
);
770 for (Function
&F
: M
) {
771 for (Instruction
&I
: instructions(F
)) {
772 OS
<< "-- Explore context of: " << I
<< "\n";
773 for (const Instruction
*CI
: Explorer
.range(&I
))
774 OS
<< " [F: " << CI
->getFunction()->getName() << "] " << *CI
<< "\n";
777 return PreservedAnalyses::all();