1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
13 // There are several aspects to this library. First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression. These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
37 //===----------------------------------------------------------------------===//
39 // There are several good references for the techniques used in this analysis.
41 // Chains of recurrences -- a method to expedite the evaluation
42 // of closed-form functions
43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 // On computational properties of chains of recurrences
48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 // Robert A. van Engelen
51 // Efficient Symbolic Analysis for Optimizing Compilers
52 // Robert A. van Engelen
54 // Using the chains of recurrences algebra for data dependence testing and
55 // induction variable substitution
56 // MS Thesis, Johnie Birch
58 //===----------------------------------------------------------------------===//
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/ScopeExit.h"
69 #include "llvm/ADT/Sequence.h"
70 #include "llvm/ADT/SmallPtrSet.h"
71 #include "llvm/ADT/SmallSet.h"
72 #include "llvm/ADT/SmallVector.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/ADT/StringExtras.h"
75 #include "llvm/ADT/StringRef.h"
76 #include "llvm/Analysis/AssumptionCache.h"
77 #include "llvm/Analysis/ConstantFolding.h"
78 #include "llvm/Analysis/InstructionSimplify.h"
79 #include "llvm/Analysis/LoopInfo.h"
80 #include "llvm/Analysis/MemoryBuiltins.h"
81 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
82 #include "llvm/Analysis/TargetLibraryInfo.h"
83 #include "llvm/Analysis/ValueTracking.h"
84 #include "llvm/Config/llvm-config.h"
85 #include "llvm/IR/Argument.h"
86 #include "llvm/IR/BasicBlock.h"
87 #include "llvm/IR/CFG.h"
88 #include "llvm/IR/Constant.h"
89 #include "llvm/IR/ConstantRange.h"
90 #include "llvm/IR/Constants.h"
91 #include "llvm/IR/DataLayout.h"
92 #include "llvm/IR/DerivedTypes.h"
93 #include "llvm/IR/Dominators.h"
94 #include "llvm/IR/Function.h"
95 #include "llvm/IR/GlobalAlias.h"
96 #include "llvm/IR/GlobalValue.h"
97 #include "llvm/IR/InstIterator.h"
98 #include "llvm/IR/InstrTypes.h"
99 #include "llvm/IR/Instruction.h"
100 #include "llvm/IR/Instructions.h"
101 #include "llvm/IR/IntrinsicInst.h"
102 #include "llvm/IR/Intrinsics.h"
103 #include "llvm/IR/LLVMContext.h"
104 #include "llvm/IR/Operator.h"
105 #include "llvm/IR/PatternMatch.h"
106 #include "llvm/IR/Type.h"
107 #include "llvm/IR/Use.h"
108 #include "llvm/IR/User.h"
109 #include "llvm/IR/Value.h"
110 #include "llvm/IR/Verifier.h"
111 #include "llvm/InitializePasses.h"
112 #include "llvm/Pass.h"
113 #include "llvm/Support/Casting.h"
114 #include "llvm/Support/CommandLine.h"
115 #include "llvm/Support/Compiler.h"
116 #include "llvm/Support/Debug.h"
117 #include "llvm/Support/ErrorHandling.h"
118 #include "llvm/Support/KnownBits.h"
119 #include "llvm/Support/SaveAndRestore.h"
120 #include "llvm/Support/raw_ostream.h"
134 using namespace llvm
;
135 using namespace PatternMatch
;
137 #define DEBUG_TYPE "scalar-evolution"
139 STATISTIC(NumExitCountsComputed
,
140 "Number of loop exits with predictable exit counts");
141 STATISTIC(NumExitCountsNotComputed
,
142 "Number of loop exits without predictable exit counts");
143 STATISTIC(NumBruteForceTripCountsComputed
,
144 "Number of loops with trip counts computed by force");
146 #ifdef EXPENSIVE_CHECKS
147 bool llvm::VerifySCEV
= true;
149 bool llvm::VerifySCEV
= false;
152 static cl::opt
<unsigned>
153 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden
,
154 cl::desc("Maximum number of iterations SCEV will "
155 "symbolically execute a constant "
159 static cl::opt
<bool, true> VerifySCEVOpt(
160 "verify-scev", cl::Hidden
, cl::location(VerifySCEV
),
161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt
<bool> VerifySCEVStrict(
163 "verify-scev-strict", cl::Hidden
,
164 cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt
<bool> VerifyIR(
167 "scev-verify-ir", cl::Hidden
,
168 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
171 static cl::opt
<unsigned> MulOpsInlineThreshold(
172 "scev-mulops-inline-threshold", cl::Hidden
,
173 cl::desc("Threshold for inlining multiplication operands into a SCEV"),
176 static cl::opt
<unsigned> AddOpsInlineThreshold(
177 "scev-addops-inline-threshold", cl::Hidden
,
178 cl::desc("Threshold for inlining addition operands into a SCEV"),
181 static cl::opt
<unsigned> MaxSCEVCompareDepth(
182 "scalar-evolution-max-scev-compare-depth", cl::Hidden
,
183 cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
186 static cl::opt
<unsigned> MaxSCEVOperationsImplicationDepth(
187 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden
,
188 cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
191 static cl::opt
<unsigned> MaxValueCompareDepth(
192 "scalar-evolution-max-value-compare-depth", cl::Hidden
,
193 cl::desc("Maximum depth of recursive value complexity comparisons"),
196 static cl::opt
<unsigned>
197 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden
,
198 cl::desc("Maximum depth of recursive arithmetics"),
201 static cl::opt
<unsigned> MaxConstantEvolvingDepth(
202 "scalar-evolution-max-constant-evolving-depth", cl::Hidden
,
203 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
205 static cl::opt
<unsigned>
206 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden
,
207 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
210 static cl::opt
<unsigned>
211 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden
,
212 cl::desc("Max coefficients in AddRec during evolving"),
215 static cl::opt
<unsigned>
216 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden
,
217 cl::desc("Size of the expression which is considered huge"),
220 static cl::opt
<unsigned> RangeIterThreshold(
221 "scev-range-iter-threshold", cl::Hidden
,
222 cl::desc("Threshold for switching to iteratively computing SCEV ranges"),
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227 cl::Hidden
, cl::init(true),
228 cl::desc("When printing analysis, include information on every instruction"));
230 static cl::opt
<bool> UseExpensiveRangeSharpening(
231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden
,
233 cl::desc("Use more powerful methods of sharpening expression ranges. May "
234 "be costly in terms of compile time"));
236 static cl::opt
<unsigned> MaxPhiSCCAnalysisSize(
237 "scalar-evolution-max-scc-analysis-depth", cl::Hidden
,
238 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
239 "Phi strongly connected components"),
243 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden
,
244 cl::desc("Handle <= and >= in finite loops"),
247 static cl::opt
<bool> UseContextForNoWrapFlagInference(
248 "scalar-evolution-use-context-for-no-wrap-flag-strenghening", cl::Hidden
,
249 cl::desc("Infer nuw/nsw flags using context where suitable"),
252 //===----------------------------------------------------------------------===//
253 // SCEV class definitions
254 //===----------------------------------------------------------------------===//
256 //===----------------------------------------------------------------------===//
257 // Implementation of the SCEV class.
260 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
261 LLVM_DUMP_METHOD
void SCEV::dump() const {
267 void SCEV::print(raw_ostream
&OS
) const {
268 switch (getSCEVType()) {
270 cast
<SCEVConstant
>(this)->getValue()->printAsOperand(OS
, false);
276 const SCEVPtrToIntExpr
*PtrToInt
= cast
<SCEVPtrToIntExpr
>(this);
277 const SCEV
*Op
= PtrToInt
->getOperand();
278 OS
<< "(ptrtoint " << *Op
->getType() << " " << *Op
<< " to "
279 << *PtrToInt
->getType() << ")";
283 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(this);
284 const SCEV
*Op
= Trunc
->getOperand();
285 OS
<< "(trunc " << *Op
->getType() << " " << *Op
<< " to "
286 << *Trunc
->getType() << ")";
290 const SCEVZeroExtendExpr
*ZExt
= cast
<SCEVZeroExtendExpr
>(this);
291 const SCEV
*Op
= ZExt
->getOperand();
292 OS
<< "(zext " << *Op
->getType() << " " << *Op
<< " to "
293 << *ZExt
->getType() << ")";
297 const SCEVSignExtendExpr
*SExt
= cast
<SCEVSignExtendExpr
>(this);
298 const SCEV
*Op
= SExt
->getOperand();
299 OS
<< "(sext " << *Op
->getType() << " " << *Op
<< " to "
300 << *SExt
->getType() << ")";
304 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(this);
305 OS
<< "{" << *AR
->getOperand(0);
306 for (unsigned i
= 1, e
= AR
->getNumOperands(); i
!= e
; ++i
)
307 OS
<< ",+," << *AR
->getOperand(i
);
309 if (AR
->hasNoUnsignedWrap())
311 if (AR
->hasNoSignedWrap())
313 if (AR
->hasNoSelfWrap() &&
314 !AR
->getNoWrapFlags((NoWrapFlags
)(FlagNUW
| FlagNSW
)))
316 AR
->getLoop()->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
326 case scSequentialUMinExpr
: {
327 const SCEVNAryExpr
*NAry
= cast
<SCEVNAryExpr
>(this);
328 const char *OpStr
= nullptr;
329 switch (NAry
->getSCEVType()) {
330 case scAddExpr
: OpStr
= " + "; break;
331 case scMulExpr
: OpStr
= " * "; break;
332 case scUMaxExpr
: OpStr
= " umax "; break;
333 case scSMaxExpr
: OpStr
= " smax "; break;
340 case scSequentialUMinExpr
:
341 OpStr
= " umin_seq ";
344 llvm_unreachable("There are no other nary expression types.");
347 ListSeparator
LS(OpStr
);
348 for (const SCEV
*Op
: NAry
->operands())
351 switch (NAry
->getSCEVType()) {
354 if (NAry
->hasNoUnsignedWrap())
356 if (NAry
->hasNoSignedWrap())
360 // Nothing to print for other nary expressions.
366 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(this);
367 OS
<< "(" << *UDiv
->getLHS() << " /u " << *UDiv
->getRHS() << ")";
371 cast
<SCEVUnknown
>(this)->getValue()->printAsOperand(OS
, false);
373 case scCouldNotCompute
:
374 OS
<< "***COULDNOTCOMPUTE***";
377 llvm_unreachable("Unknown SCEV kind!");
380 Type
*SCEV::getType() const {
381 switch (getSCEVType()) {
383 return cast
<SCEVConstant
>(this)->getType();
385 return cast
<SCEVVScale
>(this)->getType();
390 return cast
<SCEVCastExpr
>(this)->getType();
392 return cast
<SCEVAddRecExpr
>(this)->getType();
394 return cast
<SCEVMulExpr
>(this)->getType();
399 return cast
<SCEVMinMaxExpr
>(this)->getType();
400 case scSequentialUMinExpr
:
401 return cast
<SCEVSequentialMinMaxExpr
>(this)->getType();
403 return cast
<SCEVAddExpr
>(this)->getType();
405 return cast
<SCEVUDivExpr
>(this)->getType();
407 return cast
<SCEVUnknown
>(this)->getType();
408 case scCouldNotCompute
:
409 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
411 llvm_unreachable("Unknown SCEV kind!");
414 ArrayRef
<const SCEV
*> SCEV::operands() const {
415 switch (getSCEVType()) {
424 return cast
<SCEVCastExpr
>(this)->operands();
432 case scSequentialUMinExpr
:
433 return cast
<SCEVNAryExpr
>(this)->operands();
435 return cast
<SCEVUDivExpr
>(this)->operands();
436 case scCouldNotCompute
:
437 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
439 llvm_unreachable("Unknown SCEV kind!");
442 bool SCEV::isZero() const {
443 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
444 return SC
->getValue()->isZero();
448 bool SCEV::isOne() const {
449 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
450 return SC
->getValue()->isOne();
454 bool SCEV::isAllOnesValue() const {
455 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(this))
456 return SC
->getValue()->isMinusOne();
460 bool SCEV::isNonConstantNegative() const {
461 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(this);
462 if (!Mul
) return false;
464 // If there is a constant factor, it will be first.
465 const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0));
466 if (!SC
) return false;
468 // Return true if the value is negative, this matches things like (-42 * V).
469 return SC
->getAPInt().isNegative();
472 SCEVCouldNotCompute::SCEVCouldNotCompute() :
473 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute
, 0) {}
475 bool SCEVCouldNotCompute::classof(const SCEV
*S
) {
476 return S
->getSCEVType() == scCouldNotCompute
;
479 const SCEV
*ScalarEvolution::getConstant(ConstantInt
*V
) {
481 ID
.AddInteger(scConstant
);
484 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
485 SCEV
*S
= new (SCEVAllocator
) SCEVConstant(ID
.Intern(SCEVAllocator
), V
);
486 UniqueSCEVs
.InsertNode(S
, IP
);
490 const SCEV
*ScalarEvolution::getConstant(const APInt
&Val
) {
491 return getConstant(ConstantInt::get(getContext(), Val
));
495 ScalarEvolution::getConstant(Type
*Ty
, uint64_t V
, bool isSigned
) {
496 IntegerType
*ITy
= cast
<IntegerType
>(getEffectiveSCEVType(Ty
));
497 return getConstant(ConstantInt::get(ITy
, V
, isSigned
));
500 const SCEV
*ScalarEvolution::getVScale(Type
*Ty
) {
502 ID
.AddInteger(scVScale
);
505 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
507 SCEV
*S
= new (SCEVAllocator
) SCEVVScale(ID
.Intern(SCEVAllocator
), Ty
);
508 UniqueSCEVs
.InsertNode(S
, IP
);
512 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID
, SCEVTypes SCEVTy
,
513 const SCEV
*op
, Type
*ty
)
514 : SCEV(ID
, SCEVTy
, computeExpressionSize(op
)), Op(op
), Ty(ty
) {}
516 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID
, const SCEV
*Op
,
518 : SCEVCastExpr(ID
, scPtrToInt
, Op
, ITy
) {
519 assert(getOperand()->getType()->isPointerTy() && Ty
->isIntegerTy() &&
520 "Must be a non-bit-width-changing pointer-to-integer cast!");
523 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID
,
524 SCEVTypes SCEVTy
, const SCEV
*op
,
526 : SCEVCastExpr(ID
, SCEVTy
, op
, ty
) {}
528 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID
, const SCEV
*op
,
530 : SCEVIntegralCastExpr(ID
, scTruncate
, op
, ty
) {
531 assert(getOperand()->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
532 "Cannot truncate non-integer value!");
535 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID
,
536 const SCEV
*op
, Type
*ty
)
537 : SCEVIntegralCastExpr(ID
, scZeroExtend
, op
, ty
) {
538 assert(getOperand()->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
539 "Cannot zero extend non-integer value!");
542 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID
,
543 const SCEV
*op
, Type
*ty
)
544 : SCEVIntegralCastExpr(ID
, scSignExtend
, op
, ty
) {
545 assert(getOperand()->getType()->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
546 "Cannot sign extend non-integer value!");
549 void SCEVUnknown::deleted() {
550 // Clear this SCEVUnknown from various maps.
551 SE
->forgetMemoizedResults(this);
553 // Remove this SCEVUnknown from the uniquing map.
554 SE
->UniqueSCEVs
.RemoveNode(this);
556 // Release the value.
560 void SCEVUnknown::allUsesReplacedWith(Value
*New
) {
561 // Clear this SCEVUnknown from various maps.
562 SE
->forgetMemoizedResults(this);
564 // Remove this SCEVUnknown from the uniquing map.
565 SE
->UniqueSCEVs
.RemoveNode(this);
567 // Replace the value pointer in case someone is still using this SCEVUnknown.
571 //===----------------------------------------------------------------------===//
573 //===----------------------------------------------------------------------===//
575 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
576 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
577 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that
578 /// have been previously deemed to be "equally complex" by this routine. It is
579 /// intended to avoid exponential time complexity in cases like:
589 /// CompareValueComplexity(%f, %c)
591 /// Since we do not continue running this routine on expression trees once we
592 /// have seen unequal values, there is no need to track them in the cache.
594 CompareValueComplexity(EquivalenceClasses
<const Value
*> &EqCacheValue
,
595 const LoopInfo
*const LI
, Value
*LV
, Value
*RV
,
597 if (Depth
> MaxValueCompareDepth
|| EqCacheValue
.isEquivalent(LV
, RV
))
600 // Order pointer values after integer values. This helps SCEVExpander form
602 bool LIsPointer
= LV
->getType()->isPointerTy(),
603 RIsPointer
= RV
->getType()->isPointerTy();
604 if (LIsPointer
!= RIsPointer
)
605 return (int)LIsPointer
- (int)RIsPointer
;
607 // Compare getValueID values.
608 unsigned LID
= LV
->getValueID(), RID
= RV
->getValueID();
610 return (int)LID
- (int)RID
;
612 // Sort arguments by their position.
613 if (const auto *LA
= dyn_cast
<Argument
>(LV
)) {
614 const auto *RA
= cast
<Argument
>(RV
);
615 unsigned LArgNo
= LA
->getArgNo(), RArgNo
= RA
->getArgNo();
616 return (int)LArgNo
- (int)RArgNo
;
619 if (const auto *LGV
= dyn_cast
<GlobalValue
>(LV
)) {
620 const auto *RGV
= cast
<GlobalValue
>(RV
);
622 const auto IsGVNameSemantic
= [&](const GlobalValue
*GV
) {
623 auto LT
= GV
->getLinkage();
624 return !(GlobalValue::isPrivateLinkage(LT
) ||
625 GlobalValue::isInternalLinkage(LT
));
628 // Use the names to distinguish the two values, but only if the
629 // names are semantically important.
630 if (IsGVNameSemantic(LGV
) && IsGVNameSemantic(RGV
))
631 return LGV
->getName().compare(RGV
->getName());
634 // For instructions, compare their loop depth, and their operand count. This
636 if (const auto *LInst
= dyn_cast
<Instruction
>(LV
)) {
637 const auto *RInst
= cast
<Instruction
>(RV
);
639 // Compare loop depths.
640 const BasicBlock
*LParent
= LInst
->getParent(),
641 *RParent
= RInst
->getParent();
642 if (LParent
!= RParent
) {
643 unsigned LDepth
= LI
->getLoopDepth(LParent
),
644 RDepth
= LI
->getLoopDepth(RParent
);
645 if (LDepth
!= RDepth
)
646 return (int)LDepth
- (int)RDepth
;
649 // Compare the number of operands.
650 unsigned LNumOps
= LInst
->getNumOperands(),
651 RNumOps
= RInst
->getNumOperands();
652 if (LNumOps
!= RNumOps
)
653 return (int)LNumOps
- (int)RNumOps
;
655 for (unsigned Idx
: seq(LNumOps
)) {
657 CompareValueComplexity(EqCacheValue
, LI
, LInst
->getOperand(Idx
),
658 RInst
->getOperand(Idx
), Depth
+ 1);
664 EqCacheValue
.unionSets(LV
, RV
);
668 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
669 // than RHS, respectively. A three-way result allows recursive comparisons to be
671 // If the max analysis depth was reached, return std::nullopt, assuming we do
672 // not know if they are equivalent for sure.
673 static std::optional
<int>
674 CompareSCEVComplexity(EquivalenceClasses
<const SCEV
*> &EqCacheSCEV
,
675 EquivalenceClasses
<const Value
*> &EqCacheValue
,
676 const LoopInfo
*const LI
, const SCEV
*LHS
,
677 const SCEV
*RHS
, DominatorTree
&DT
, unsigned Depth
= 0) {
678 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
682 // Primarily, sort the SCEVs by their getSCEVType().
683 SCEVTypes LType
= LHS
->getSCEVType(), RType
= RHS
->getSCEVType();
685 return (int)LType
- (int)RType
;
687 if (EqCacheSCEV
.isEquivalent(LHS
, RHS
))
690 if (Depth
> MaxSCEVCompareDepth
)
693 // Aside from the getSCEVType() ordering, the particular ordering
694 // isn't very important except that it's beneficial to be consistent,
695 // so that (a + b) and (b + a) don't end up as different expressions.
698 const SCEVUnknown
*LU
= cast
<SCEVUnknown
>(LHS
);
699 const SCEVUnknown
*RU
= cast
<SCEVUnknown
>(RHS
);
701 int X
= CompareValueComplexity(EqCacheValue
, LI
, LU
->getValue(),
702 RU
->getValue(), Depth
+ 1);
704 EqCacheSCEV
.unionSets(LHS
, RHS
);
709 const SCEVConstant
*LC
= cast
<SCEVConstant
>(LHS
);
710 const SCEVConstant
*RC
= cast
<SCEVConstant
>(RHS
);
712 // Compare constant values.
713 const APInt
&LA
= LC
->getAPInt();
714 const APInt
&RA
= RC
->getAPInt();
715 unsigned LBitWidth
= LA
.getBitWidth(), RBitWidth
= RA
.getBitWidth();
716 if (LBitWidth
!= RBitWidth
)
717 return (int)LBitWidth
- (int)RBitWidth
;
718 return LA
.ult(RA
) ? -1 : 1;
722 const auto *LTy
= cast
<IntegerType
>(cast
<SCEVVScale
>(LHS
)->getType());
723 const auto *RTy
= cast
<IntegerType
>(cast
<SCEVVScale
>(RHS
)->getType());
724 return LTy
->getBitWidth() - RTy
->getBitWidth();
728 const SCEVAddRecExpr
*LA
= cast
<SCEVAddRecExpr
>(LHS
);
729 const SCEVAddRecExpr
*RA
= cast
<SCEVAddRecExpr
>(RHS
);
731 // There is always a dominance between two recs that are used by one SCEV,
732 // so we can safely sort recs by loop header dominance. We require such
733 // order in getAddExpr.
734 const Loop
*LLoop
= LA
->getLoop(), *RLoop
= RA
->getLoop();
735 if (LLoop
!= RLoop
) {
736 const BasicBlock
*LHead
= LLoop
->getHeader(), *RHead
= RLoop
->getHeader();
737 assert(LHead
!= RHead
&& "Two loops share the same header?");
738 if (DT
.dominates(LHead
, RHead
))
740 assert(DT
.dominates(RHead
, LHead
) &&
741 "No dominance between recurrences used by one SCEV?");
759 case scSequentialUMinExpr
: {
760 ArrayRef
<const SCEV
*> LOps
= LHS
->operands();
761 ArrayRef
<const SCEV
*> ROps
= RHS
->operands();
763 // Lexicographically compare n-ary-like expressions.
764 unsigned LNumOps
= LOps
.size(), RNumOps
= ROps
.size();
765 if (LNumOps
!= RNumOps
)
766 return (int)LNumOps
- (int)RNumOps
;
768 for (unsigned i
= 0; i
!= LNumOps
; ++i
) {
769 auto X
= CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
, LOps
[i
],
770 ROps
[i
], DT
, Depth
+ 1);
774 EqCacheSCEV
.unionSets(LHS
, RHS
);
778 case scCouldNotCompute
:
779 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
781 llvm_unreachable("Unknown SCEV kind!");
784 /// Given a list of SCEV objects, order them by their complexity, and group
785 /// objects of the same complexity together by value. When this routine is
786 /// finished, we know that any duplicates in the vector are consecutive and that
787 /// complexity is monotonically increasing.
789 /// Note that we go take special precautions to ensure that we get deterministic
790 /// results from this routine. In other words, we don't want the results of
791 /// this to depend on where the addresses of various SCEV objects happened to
793 static void GroupByComplexity(SmallVectorImpl
<const SCEV
*> &Ops
,
794 LoopInfo
*LI
, DominatorTree
&DT
) {
795 if (Ops
.size() < 2) return; // Noop
797 EquivalenceClasses
<const SCEV
*> EqCacheSCEV
;
798 EquivalenceClasses
<const Value
*> EqCacheValue
;
800 // Whether LHS has provably less complexity than RHS.
801 auto IsLessComplex
= [&](const SCEV
*LHS
, const SCEV
*RHS
) {
803 CompareSCEVComplexity(EqCacheSCEV
, EqCacheValue
, LI
, LHS
, RHS
, DT
);
804 return Complexity
&& *Complexity
< 0;
806 if (Ops
.size() == 2) {
807 // This is the common case, which also happens to be trivially simple.
809 const SCEV
*&LHS
= Ops
[0], *&RHS
= Ops
[1];
810 if (IsLessComplex(RHS
, LHS
))
815 // Do the rough sort by complexity.
816 llvm::stable_sort(Ops
, [&](const SCEV
*LHS
, const SCEV
*RHS
) {
817 return IsLessComplex(LHS
, RHS
);
820 // Now that we are sorted by complexity, group elements of the same
821 // complexity. Note that this is, at worst, N^2, but the vector is likely to
822 // be extremely short in practice. Note that we take this approach because we
823 // do not want to depend on the addresses of the objects we are grouping.
824 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-2; ++i
) {
825 const SCEV
*S
= Ops
[i
];
826 unsigned Complexity
= S
->getSCEVType();
828 // If there are any objects of the same complexity and same value as this
830 for (unsigned j
= i
+1; j
!= e
&& Ops
[j
]->getSCEVType() == Complexity
; ++j
) {
831 if (Ops
[j
] == S
) { // Found a duplicate.
832 // Move it to immediately after i'th element.
833 std::swap(Ops
[i
+1], Ops
[j
]);
834 ++i
; // no need to rescan it.
835 if (i
== e
-2) return; // Done!
841 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
842 /// least HugeExprThreshold nodes).
843 static bool hasHugeExpression(ArrayRef
<const SCEV
*> Ops
) {
844 return any_of(Ops
, [](const SCEV
*S
) {
845 return S
->getExpressionSize() >= HugeExprThreshold
;
849 //===----------------------------------------------------------------------===//
850 // Simple SCEV method implementations
851 //===----------------------------------------------------------------------===//
853 /// Compute BC(It, K). The result has width W. Assume, K > 0.
854 static const SCEV
*BinomialCoefficient(const SCEV
*It
, unsigned K
,
857 // Handle the simplest case efficiently.
859 return SE
.getTruncateOrZeroExtend(It
, ResultTy
);
861 // We are using the following formula for BC(It, K):
863 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
865 // Suppose, W is the bitwidth of the return value. We must be prepared for
866 // overflow. Hence, we must assure that the result of our computation is
867 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
868 // safe in modular arithmetic.
870 // However, this code doesn't use exactly that formula; the formula it uses
871 // is something like the following, where T is the number of factors of 2 in
872 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
875 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
877 // This formula is trivially equivalent to the previous formula. However,
878 // this formula can be implemented much more efficiently. The trick is that
879 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
880 // arithmetic. To do exact division in modular arithmetic, all we have
881 // to do is multiply by the inverse. Therefore, this step can be done at
884 // The next issue is how to safely do the division by 2^T. The way this
885 // is done is by doing the multiplication step at a width of at least W + T
886 // bits. This way, the bottom W+T bits of the product are accurate. Then,
887 // when we perform the division by 2^T (which is equivalent to a right shift
888 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
889 // truncated out after the division by 2^T.
891 // In comparison to just directly using the first formula, this technique
892 // is much more efficient; using the first formula requires W * K bits,
893 // but this formula less than W + K bits. Also, the first formula requires
894 // a division step, whereas this formula only requires multiplies and shifts.
896 // It doesn't matter whether the subtraction step is done in the calculation
897 // width or the input iteration count's width; if the subtraction overflows,
898 // the result must be zero anyway. We prefer here to do it in the width of
899 // the induction variable because it helps a lot for certain cases; CodeGen
900 // isn't smart enough to ignore the overflow, which leads to much less
901 // efficient code if the width of the subtraction is wider than the native
904 // (It's possible to not widen at all by pulling out factors of 2 before
905 // the multiplication; for example, K=2 can be calculated as
906 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
907 // extra arithmetic, so it's not an obvious win, and it gets
908 // much more complicated for K > 3.)
910 // Protection from insane SCEVs; this bound is conservative,
911 // but it probably doesn't matter.
913 return SE
.getCouldNotCompute();
915 unsigned W
= SE
.getTypeSizeInBits(ResultTy
);
917 // Calculate K! / 2^T and T; we divide out the factors of two before
918 // multiplying for calculating K! / 2^T to avoid overflow.
919 // Other overflow doesn't matter because we only care about the bottom
920 // W bits of the result.
921 APInt
OddFactorial(W
, 1);
923 for (unsigned i
= 3; i
<= K
; ++i
) {
925 unsigned TwoFactors
= Mult
.countr_zero();
927 Mult
.lshrInPlace(TwoFactors
);
928 OddFactorial
*= Mult
;
931 // We need at least W + T bits for the multiplication step
932 unsigned CalculationBits
= W
+ T
;
934 // Calculate 2^T, at width T+W.
935 APInt DivFactor
= APInt::getOneBitSet(CalculationBits
, T
);
937 // Calculate the multiplicative inverse of K! / 2^T;
938 // this multiplication factor will perform the exact division by
940 APInt Mod
= APInt::getSignedMinValue(W
+1);
941 APInt MultiplyFactor
= OddFactorial
.zext(W
+1);
942 MultiplyFactor
= MultiplyFactor
.multiplicativeInverse(Mod
);
943 MultiplyFactor
= MultiplyFactor
.trunc(W
);
945 // Calculate the product, at width T+W
946 IntegerType
*CalculationTy
= IntegerType::get(SE
.getContext(),
948 const SCEV
*Dividend
= SE
.getTruncateOrZeroExtend(It
, CalculationTy
);
949 for (unsigned i
= 1; i
!= K
; ++i
) {
950 const SCEV
*S
= SE
.getMinusSCEV(It
, SE
.getConstant(It
->getType(), i
));
951 Dividend
= SE
.getMulExpr(Dividend
,
952 SE
.getTruncateOrZeroExtend(S
, CalculationTy
));
956 const SCEV
*DivResult
= SE
.getUDivExpr(Dividend
, SE
.getConstant(DivFactor
));
958 // Truncate the result, and divide by K! / 2^T.
960 return SE
.getMulExpr(SE
.getConstant(MultiplyFactor
),
961 SE
.getTruncateOrZeroExtend(DivResult
, ResultTy
));
964 /// Return the value of this chain of recurrences at the specified iteration
965 /// number. We can evaluate this recurrence by multiplying each element in the
966 /// chain by the binomial coefficient corresponding to it. In other words, we
967 /// can evaluate {A,+,B,+,C,+,D} as:
969 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
971 /// where BC(It, k) stands for binomial coefficient.
972 const SCEV
*SCEVAddRecExpr::evaluateAtIteration(const SCEV
*It
,
973 ScalarEvolution
&SE
) const {
974 return evaluateAtIteration(operands(), It
, SE
);
978 SCEVAddRecExpr::evaluateAtIteration(ArrayRef
<const SCEV
*> Operands
,
979 const SCEV
*It
, ScalarEvolution
&SE
) {
980 assert(Operands
.size() > 0);
981 const SCEV
*Result
= Operands
[0];
982 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
) {
983 // The computation is correct in the face of overflow provided that the
984 // multiplication is performed _after_ the evaluation of the binomial
986 const SCEV
*Coeff
= BinomialCoefficient(It
, i
, SE
, Result
->getType());
987 if (isa
<SCEVCouldNotCompute
>(Coeff
))
990 Result
= SE
.getAddExpr(Result
, SE
.getMulExpr(Operands
[i
], Coeff
));
995 //===----------------------------------------------------------------------===//
996 // SCEV Expression folder implementations
997 //===----------------------------------------------------------------------===//
999 const SCEV
*ScalarEvolution::getLosslessPtrToIntExpr(const SCEV
*Op
,
1001 assert(Depth
<= 1 &&
1002 "getLosslessPtrToIntExpr() should self-recurse at most once.");
1004 // We could be called with an integer-typed operands during SCEV rewrites.
1005 // Since the operand is an integer already, just perform zext/trunc/self cast.
1006 if (!Op
->getType()->isPointerTy())
1009 // What would be an ID for such a SCEV cast expression?
1010 FoldingSetNodeID ID
;
1011 ID
.AddInteger(scPtrToInt
);
1016 // Is there already an expression for such a cast?
1017 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
1020 // It isn't legal for optimizations to construct new ptrtoint expressions
1021 // for non-integral pointers.
1022 if (getDataLayout().isNonIntegralPointerType(Op
->getType()))
1023 return getCouldNotCompute();
1025 Type
*IntPtrTy
= getDataLayout().getIntPtrType(Op
->getType());
1027 // We can only trivially model ptrtoint if SCEV's effective (integer) type
1028 // is sufficiently wide to represent all possible pointer values.
1029 // We could theoretically teach SCEV to truncate wider pointers, but
1030 // that isn't implemented for now.
1031 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op
->getType())) !=
1032 getDataLayout().getTypeSizeInBits(IntPtrTy
))
1033 return getCouldNotCompute();
1035 // If not, is this expression something we can't reduce any further?
1036 if (auto *U
= dyn_cast
<SCEVUnknown
>(Op
)) {
1037 // Perform some basic constant folding. If the operand of the ptr2int cast
1038 // is a null pointer, don't create a ptr2int SCEV expression (that will be
1039 // left as-is), but produce a zero constant.
1040 // NOTE: We could handle a more general case, but lack motivational cases.
1041 if (isa
<ConstantPointerNull
>(U
->getValue()))
1042 return getZero(IntPtrTy
);
1044 // Create an explicit cast node.
1045 // We can reuse the existing insert position since if we get here,
1046 // we won't have made any changes which would invalidate it.
1047 SCEV
*S
= new (SCEVAllocator
)
1048 SCEVPtrToIntExpr(ID
.Intern(SCEVAllocator
), Op
, IntPtrTy
);
1049 UniqueSCEVs
.InsertNode(S
, IP
);
1050 registerUser(S
, Op
);
1054 assert(Depth
== 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1055 "non-SCEVUnknown's.");
1057 // Otherwise, we've got some expression that is more complex than just a
1058 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1059 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1060 // only, and the expressions must otherwise be integer-typed.
1061 // So sink the cast down to the SCEVUnknown's.
1063 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1064 /// which computes a pointer-typed value, and rewrites the whole expression
1065 /// tree so that *all* the computations are done on integers, and the only
1066 /// pointer-typed operands in the expression are SCEVUnknown.
1067 class SCEVPtrToIntSinkingRewriter
1068 : public SCEVRewriteVisitor
<SCEVPtrToIntSinkingRewriter
> {
1069 using Base
= SCEVRewriteVisitor
<SCEVPtrToIntSinkingRewriter
>;
1072 SCEVPtrToIntSinkingRewriter(ScalarEvolution
&SE
) : SCEVRewriteVisitor(SE
) {}
1074 static const SCEV
*rewrite(const SCEV
*Scev
, ScalarEvolution
&SE
) {
1075 SCEVPtrToIntSinkingRewriter
Rewriter(SE
);
1076 return Rewriter
.visit(Scev
);
1079 const SCEV
*visit(const SCEV
*S
) {
1080 Type
*STy
= S
->getType();
1081 // If the expression is not pointer-typed, just keep it as-is.
1082 if (!STy
->isPointerTy())
1084 // Else, recursively sink the cast down into it.
1085 return Base::visit(S
);
1088 const SCEV
*visitAddExpr(const SCEVAddExpr
*Expr
) {
1089 SmallVector
<const SCEV
*, 2> Operands
;
1090 bool Changed
= false;
1091 for (const auto *Op
: Expr
->operands()) {
1092 Operands
.push_back(visit(Op
));
1093 Changed
|= Op
!= Operands
.back();
1095 return !Changed
? Expr
: SE
.getAddExpr(Operands
, Expr
->getNoWrapFlags());
1098 const SCEV
*visitMulExpr(const SCEVMulExpr
*Expr
) {
1099 SmallVector
<const SCEV
*, 2> Operands
;
1100 bool Changed
= false;
1101 for (const auto *Op
: Expr
->operands()) {
1102 Operands
.push_back(visit(Op
));
1103 Changed
|= Op
!= Operands
.back();
1105 return !Changed
? Expr
: SE
.getMulExpr(Operands
, Expr
->getNoWrapFlags());
1108 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
1109 assert(Expr
->getType()->isPointerTy() &&
1110 "Should only reach pointer-typed SCEVUnknown's.");
1111 return SE
.getLosslessPtrToIntExpr(Expr
, /*Depth=*/1);
1115 // And actually perform the cast sinking.
1116 const SCEV
*IntOp
= SCEVPtrToIntSinkingRewriter::rewrite(Op
, *this);
1117 assert(IntOp
->getType()->isIntegerTy() &&
1118 "We must have succeeded in sinking the cast, "
1119 "and ending up with an integer-typed expression!");
1123 const SCEV
*ScalarEvolution::getPtrToIntExpr(const SCEV
*Op
, Type
*Ty
) {
1124 assert(Ty
->isIntegerTy() && "Target type must be an integer type!");
1126 const SCEV
*IntOp
= getLosslessPtrToIntExpr(Op
);
1127 if (isa
<SCEVCouldNotCompute
>(IntOp
))
1130 return getTruncateOrZeroExtend(IntOp
, Ty
);
1133 const SCEV
*ScalarEvolution::getTruncateExpr(const SCEV
*Op
, Type
*Ty
,
1135 assert(getTypeSizeInBits(Op
->getType()) > getTypeSizeInBits(Ty
) &&
1136 "This is not a truncating conversion!");
1137 assert(isSCEVable(Ty
) &&
1138 "This is not a conversion to a SCEVable type!");
1139 assert(!Op
->getType()->isPointerTy() && "Can't truncate pointer!");
1140 Ty
= getEffectiveSCEVType(Ty
);
1142 FoldingSetNodeID ID
;
1143 ID
.AddInteger(scTruncate
);
1147 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1149 // Fold if the operand is constant.
1150 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1152 cast
<ConstantInt
>(ConstantExpr::getTrunc(SC
->getValue(), Ty
)));
1154 // trunc(trunc(x)) --> trunc(x)
1155 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
))
1156 return getTruncateExpr(ST
->getOperand(), Ty
, Depth
+ 1);
1158 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1159 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
1160 return getTruncateOrSignExtend(SS
->getOperand(), Ty
, Depth
+ 1);
1162 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1163 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1164 return getTruncateOrZeroExtend(SZ
->getOperand(), Ty
, Depth
+ 1);
1166 if (Depth
> MaxCastDepth
) {
1168 new (SCEVAllocator
) SCEVTruncateExpr(ID
.Intern(SCEVAllocator
), Op
, Ty
);
1169 UniqueSCEVs
.InsertNode(S
, IP
);
1170 registerUser(S
, Op
);
1174 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1175 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1176 // if after transforming we have at most one truncate, not counting truncates
1177 // that replace other casts.
1178 if (isa
<SCEVAddExpr
>(Op
) || isa
<SCEVMulExpr
>(Op
)) {
1179 auto *CommOp
= cast
<SCEVCommutativeExpr
>(Op
);
1180 SmallVector
<const SCEV
*, 4> Operands
;
1181 unsigned numTruncs
= 0;
1182 for (unsigned i
= 0, e
= CommOp
->getNumOperands(); i
!= e
&& numTruncs
< 2;
1184 const SCEV
*S
= getTruncateExpr(CommOp
->getOperand(i
), Ty
, Depth
+ 1);
1185 if (!isa
<SCEVIntegralCastExpr
>(CommOp
->getOperand(i
)) &&
1186 isa
<SCEVTruncateExpr
>(S
))
1188 Operands
.push_back(S
);
1190 if (numTruncs
< 2) {
1191 if (isa
<SCEVAddExpr
>(Op
))
1192 return getAddExpr(Operands
);
1193 if (isa
<SCEVMulExpr
>(Op
))
1194 return getMulExpr(Operands
);
1195 llvm_unreachable("Unexpected SCEV type for Op.");
1197 // Although we checked in the beginning that ID is not in the cache, it is
1198 // possible that during recursion and different modification ID was inserted
1199 // into the cache. So if we find it, just return it.
1200 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
1204 // If the input value is a chrec scev, truncate the chrec's operands.
1205 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
1206 SmallVector
<const SCEV
*, 4> Operands
;
1207 for (const SCEV
*Op
: AddRec
->operands())
1208 Operands
.push_back(getTruncateExpr(Op
, Ty
, Depth
+ 1));
1209 return getAddRecExpr(Operands
, AddRec
->getLoop(), SCEV::FlagAnyWrap
);
1212 // Return zero if truncating to known zeros.
1213 uint32_t MinTrailingZeros
= getMinTrailingZeros(Op
);
1214 if (MinTrailingZeros
>= getTypeSizeInBits(Ty
))
1217 // The cast wasn't folded; create an explicit cast node. We can reuse
1218 // the existing insert position since if we get here, we won't have
1219 // made any changes which would invalidate it.
1220 SCEV
*S
= new (SCEVAllocator
) SCEVTruncateExpr(ID
.Intern(SCEVAllocator
),
1222 UniqueSCEVs
.InsertNode(S
, IP
);
1223 registerUser(S
, Op
);
1227 // Get the limit of a recurrence such that incrementing by Step cannot cause
1228 // signed overflow as long as the value of the recurrence within the
1229 // loop does not exceed this limit before incrementing.
1230 static const SCEV
*getSignedOverflowLimitForStep(const SCEV
*Step
,
1231 ICmpInst::Predicate
*Pred
,
1232 ScalarEvolution
*SE
) {
1233 unsigned BitWidth
= SE
->getTypeSizeInBits(Step
->getType());
1234 if (SE
->isKnownPositive(Step
)) {
1235 *Pred
= ICmpInst::ICMP_SLT
;
1236 return SE
->getConstant(APInt::getSignedMinValue(BitWidth
) -
1237 SE
->getSignedRangeMax(Step
));
1239 if (SE
->isKnownNegative(Step
)) {
1240 *Pred
= ICmpInst::ICMP_SGT
;
1241 return SE
->getConstant(APInt::getSignedMaxValue(BitWidth
) -
1242 SE
->getSignedRangeMin(Step
));
1247 // Get the limit of a recurrence such that incrementing by Step cannot cause
1248 // unsigned overflow as long as the value of the recurrence within the loop does
1249 // not exceed this limit before incrementing.
1250 static const SCEV
*getUnsignedOverflowLimitForStep(const SCEV
*Step
,
1251 ICmpInst::Predicate
*Pred
,
1252 ScalarEvolution
*SE
) {
1253 unsigned BitWidth
= SE
->getTypeSizeInBits(Step
->getType());
1254 *Pred
= ICmpInst::ICMP_ULT
;
1256 return SE
->getConstant(APInt::getMinValue(BitWidth
) -
1257 SE
->getUnsignedRangeMax(Step
));
1262 struct ExtendOpTraitsBase
{
1263 typedef const SCEV
*(ScalarEvolution::*GetExtendExprTy
)(const SCEV
*, Type
*,
1267 // Used to make code generic over signed and unsigned overflow.
1268 template <typename ExtendOp
> struct ExtendOpTraits
{
1271 // static const SCEV::NoWrapFlags WrapType;
1273 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1275 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1276 // ICmpInst::Predicate *Pred,
1277 // ScalarEvolution *SE);
1281 struct ExtendOpTraits
<SCEVSignExtendExpr
> : public ExtendOpTraitsBase
{
1282 static const SCEV::NoWrapFlags WrapType
= SCEV::FlagNSW
;
1284 static const GetExtendExprTy GetExtendExpr
;
1286 static const SCEV
*getOverflowLimitForStep(const SCEV
*Step
,
1287 ICmpInst::Predicate
*Pred
,
1288 ScalarEvolution
*SE
) {
1289 return getSignedOverflowLimitForStep(Step
, Pred
, SE
);
1293 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits
<
1294 SCEVSignExtendExpr
>::GetExtendExpr
= &ScalarEvolution::getSignExtendExpr
;
1297 struct ExtendOpTraits
<SCEVZeroExtendExpr
> : public ExtendOpTraitsBase
{
1298 static const SCEV::NoWrapFlags WrapType
= SCEV::FlagNUW
;
1300 static const GetExtendExprTy GetExtendExpr
;
1302 static const SCEV
*getOverflowLimitForStep(const SCEV
*Step
,
1303 ICmpInst::Predicate
*Pred
,
1304 ScalarEvolution
*SE
) {
1305 return getUnsignedOverflowLimitForStep(Step
, Pred
, SE
);
1309 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits
<
1310 SCEVZeroExtendExpr
>::GetExtendExpr
= &ScalarEvolution::getZeroExtendExpr
;
1312 } // end anonymous namespace
1314 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1315 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1316 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1317 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1318 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1319 // expression "Step + sext/zext(PreIncAR)" is congruent with
1320 // "sext/zext(PostIncAR)"
1321 template <typename ExtendOpTy
>
1322 static const SCEV
*getPreStartForExtend(const SCEVAddRecExpr
*AR
, Type
*Ty
,
1323 ScalarEvolution
*SE
, unsigned Depth
) {
1324 auto WrapType
= ExtendOpTraits
<ExtendOpTy
>::WrapType
;
1325 auto GetExtendExpr
= ExtendOpTraits
<ExtendOpTy
>::GetExtendExpr
;
1327 const Loop
*L
= AR
->getLoop();
1328 const SCEV
*Start
= AR
->getStart();
1329 const SCEV
*Step
= AR
->getStepRecurrence(*SE
);
1331 // Check for a simple looking step prior to loop entry.
1332 const SCEVAddExpr
*SA
= dyn_cast
<SCEVAddExpr
>(Start
);
1336 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1337 // subtraction is expensive. For this purpose, perform a quick and dirty
1338 // difference, by checking for Step in the operand list. Note, that
1339 // SA might have repeated ops, like %a + %a + ..., so only remove one.
1340 SmallVector
<const SCEV
*, 4> DiffOps(SA
->operands());
1341 for (auto It
= DiffOps
.begin(); It
!= DiffOps
.end(); ++It
)
1347 if (DiffOps
.size() == SA
->getNumOperands())
1350 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1353 // 1. NSW/NUW flags on the step increment.
1354 auto PreStartFlags
=
1355 ScalarEvolution::maskFlags(SA
->getNoWrapFlags(), SCEV::FlagNUW
);
1356 const SCEV
*PreStart
= SE
->getAddExpr(DiffOps
, PreStartFlags
);
1357 const SCEVAddRecExpr
*PreAR
= dyn_cast
<SCEVAddRecExpr
>(
1358 SE
->getAddRecExpr(PreStart
, Step
, L
, SCEV::FlagAnyWrap
));
1360 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1361 // "S+X does not sign/unsign-overflow".
1364 const SCEV
*BECount
= SE
->getBackedgeTakenCount(L
);
1365 if (PreAR
&& PreAR
->getNoWrapFlags(WrapType
) &&
1366 !isa
<SCEVCouldNotCompute
>(BECount
) && SE
->isKnownPositive(BECount
))
1369 // 2. Direct overflow check on the step operation's expression.
1370 unsigned BitWidth
= SE
->getTypeSizeInBits(AR
->getType());
1371 Type
*WideTy
= IntegerType::get(SE
->getContext(), BitWidth
* 2);
1372 const SCEV
*OperandExtendedStart
=
1373 SE
->getAddExpr((SE
->*GetExtendExpr
)(PreStart
, WideTy
, Depth
),
1374 (SE
->*GetExtendExpr
)(Step
, WideTy
, Depth
));
1375 if ((SE
->*GetExtendExpr
)(Start
, WideTy
, Depth
) == OperandExtendedStart
) {
1376 if (PreAR
&& AR
->getNoWrapFlags(WrapType
)) {
1377 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1378 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1379 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1380 SE
->setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(PreAR
), WrapType
);
1385 // 3. Loop precondition.
1386 ICmpInst::Predicate Pred
;
1387 const SCEV
*OverflowLimit
=
1388 ExtendOpTraits
<ExtendOpTy
>::getOverflowLimitForStep(Step
, &Pred
, SE
);
1390 if (OverflowLimit
&&
1391 SE
->isLoopEntryGuardedByCond(L
, Pred
, PreStart
, OverflowLimit
))
1397 // Get the normalized zero or sign extended expression for this AddRec's Start.
1398 template <typename ExtendOpTy
>
1399 static const SCEV
*getExtendAddRecStart(const SCEVAddRecExpr
*AR
, Type
*Ty
,
1400 ScalarEvolution
*SE
,
1402 auto GetExtendExpr
= ExtendOpTraits
<ExtendOpTy
>::GetExtendExpr
;
1404 const SCEV
*PreStart
= getPreStartForExtend
<ExtendOpTy
>(AR
, Ty
, SE
, Depth
);
1406 return (SE
->*GetExtendExpr
)(AR
->getStart(), Ty
, Depth
);
1408 return SE
->getAddExpr((SE
->*GetExtendExpr
)(AR
->getStepRecurrence(*SE
), Ty
,
1410 (SE
->*GetExtendExpr
)(PreStart
, Ty
, Depth
));
1413 // Try to prove away overflow by looking at "nearby" add recurrences. A
1414 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1415 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1419 // {S,+,X} == {S-T,+,X} + T
1420 // => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1422 // If ({S-T,+,X} + T) does not overflow ... (1)
1424 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1426 // If {S-T,+,X} does not overflow ... (2)
1428 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1429 // == {Ext(S-T)+Ext(T),+,Ext(X)}
1431 // If (S-T)+T does not overflow ... (3)
1433 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1434 // == {Ext(S),+,Ext(X)} == LHS
1436 // Thus, if (1), (2) and (3) are true for some T, then
1437 // Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1439 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1440 // does not overflow" restricted to the 0th iteration. Therefore we only need
1441 // to check for (1) and (2).
1443 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1444 // is `Delta` (defined below).
1445 template <typename ExtendOpTy
>
1446 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV
*Start
,
1449 auto WrapType
= ExtendOpTraits
<ExtendOpTy
>::WrapType
;
1451 // We restrict `Start` to a constant to prevent SCEV from spending too much
1452 // time here. It is correct (but more expensive) to continue with a
1453 // non-constant `Start` and do a general SCEV subtraction to compute
1454 // `PreStart` below.
1455 const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(Start
);
1459 APInt StartAI
= StartC
->getAPInt();
1461 for (unsigned Delta
: {-2, -1, 1, 2}) {
1462 const SCEV
*PreStart
= getConstant(StartAI
- Delta
);
1464 FoldingSetNodeID ID
;
1465 ID
.AddInteger(scAddRecExpr
);
1466 ID
.AddPointer(PreStart
);
1467 ID
.AddPointer(Step
);
1471 static_cast<SCEVAddRecExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
1473 // Give up if we don't already have the add recurrence we need because
1474 // actually constructing an add recurrence is relatively expensive.
1475 if (PreAR
&& PreAR
->getNoWrapFlags(WrapType
)) { // proves (2)
1476 const SCEV
*DeltaS
= getConstant(StartC
->getType(), Delta
);
1477 ICmpInst::Predicate Pred
= ICmpInst::BAD_ICMP_PREDICATE
;
1478 const SCEV
*Limit
= ExtendOpTraits
<ExtendOpTy
>::getOverflowLimitForStep(
1479 DeltaS
, &Pred
, this);
1480 if (Limit
&& isKnownPredicate(Pred
, PreAR
, Limit
)) // proves (1)
1488 // Finds an integer D for an expression (C + x + y + ...) such that the top
1489 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1490 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1491 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1492 // the (C + x + y + ...) expression is \p WholeAddExpr.
1493 static APInt
extractConstantWithoutWrapping(ScalarEvolution
&SE
,
1494 const SCEVConstant
*ConstantTerm
,
1495 const SCEVAddExpr
*WholeAddExpr
) {
1496 const APInt
&C
= ConstantTerm
->getAPInt();
1497 const unsigned BitWidth
= C
.getBitWidth();
1498 // Find number of trailing zeros of (x + y + ...) w/o the C first:
1499 uint32_t TZ
= BitWidth
;
1500 for (unsigned I
= 1, E
= WholeAddExpr
->getNumOperands(); I
< E
&& TZ
; ++I
)
1501 TZ
= std::min(TZ
, SE
.getMinTrailingZeros(WholeAddExpr
->getOperand(I
)));
1503 // Set D to be as many least significant bits of C as possible while still
1504 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1505 return TZ
< BitWidth
? C
.trunc(TZ
).zext(BitWidth
) : C
;
1507 return APInt(BitWidth
, 0);
1510 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1511 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1512 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1513 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1514 static APInt
extractConstantWithoutWrapping(ScalarEvolution
&SE
,
1515 const APInt
&ConstantStart
,
1517 const unsigned BitWidth
= ConstantStart
.getBitWidth();
1518 const uint32_t TZ
= SE
.getMinTrailingZeros(Step
);
1520 return TZ
< BitWidth
? ConstantStart
.trunc(TZ
).zext(BitWidth
)
1522 return APInt(BitWidth
, 0);
1525 static void insertFoldCacheEntry(
1526 const ScalarEvolution::FoldID
&ID
, const SCEV
*S
,
1527 DenseMap
<ScalarEvolution::FoldID
, const SCEV
*> &FoldCache
,
1528 DenseMap
<const SCEV
*, SmallVector
<ScalarEvolution::FoldID
, 2>>
1530 auto I
= FoldCache
.insert({ID
, S
});
1532 // Remove FoldCacheUser entry for ID when replacing an existing FoldCache
1534 auto &UserIDs
= FoldCacheUser
[I
.first
->second
];
1535 assert(count(UserIDs
, ID
) == 1 && "unexpected duplicates in UserIDs");
1536 for (unsigned I
= 0; I
!= UserIDs
.size(); ++I
)
1537 if (UserIDs
[I
] == ID
) {
1538 std::swap(UserIDs
[I
], UserIDs
.back());
1542 I
.first
->second
= S
;
1544 auto R
= FoldCacheUser
.insert({S
, {}});
1545 R
.first
->second
.push_back(ID
);
1549 ScalarEvolution::getZeroExtendExpr(const SCEV
*Op
, Type
*Ty
, unsigned Depth
) {
1550 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1551 "This is not an extending conversion!");
1552 assert(isSCEVable(Ty
) &&
1553 "This is not a conversion to a SCEVable type!");
1554 assert(!Op
->getType()->isPointerTy() && "Can't extend pointer!");
1555 Ty
= getEffectiveSCEVType(Ty
);
1557 FoldID
ID(scZeroExtend
, Op
, Ty
);
1558 auto Iter
= FoldCache
.find(ID
);
1559 if (Iter
!= FoldCache
.end())
1560 return Iter
->second
;
1562 const SCEV
*S
= getZeroExtendExprImpl(Op
, Ty
, Depth
);
1563 if (!isa
<SCEVZeroExtendExpr
>(S
))
1564 insertFoldCacheEntry(ID
, S
, FoldCache
, FoldCacheUser
);
1568 const SCEV
*ScalarEvolution::getZeroExtendExprImpl(const SCEV
*Op
, Type
*Ty
,
1570 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1571 "This is not an extending conversion!");
1572 assert(isSCEVable(Ty
) && "This is not a conversion to a SCEVable type!");
1573 assert(!Op
->getType()->isPointerTy() && "Can't extend pointer!");
1575 // Fold if the operand is constant.
1576 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1577 return getConstant(SC
->getAPInt().zext(getTypeSizeInBits(Ty
)));
1579 // zext(zext(x)) --> zext(x)
1580 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1581 return getZeroExtendExpr(SZ
->getOperand(), Ty
, Depth
+ 1);
1583 // Before doing any expensive analysis, check to see if we've already
1584 // computed a SCEV for this Op and Ty.
1585 FoldingSetNodeID ID
;
1586 ID
.AddInteger(scZeroExtend
);
1590 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1591 if (Depth
> MaxCastDepth
) {
1592 SCEV
*S
= new (SCEVAllocator
) SCEVZeroExtendExpr(ID
.Intern(SCEVAllocator
),
1594 UniqueSCEVs
.InsertNode(S
, IP
);
1595 registerUser(S
, Op
);
1599 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1600 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1601 // It's possible the bits taken off by the truncate were all zero bits. If
1602 // so, we should be able to simplify this further.
1603 const SCEV
*X
= ST
->getOperand();
1604 ConstantRange CR
= getUnsignedRange(X
);
1605 unsigned TruncBits
= getTypeSizeInBits(ST
->getType());
1606 unsigned NewBits
= getTypeSizeInBits(Ty
);
1607 if (CR
.truncate(TruncBits
).zeroExtend(NewBits
).contains(
1608 CR
.zextOrTrunc(NewBits
)))
1609 return getTruncateOrZeroExtend(X
, Ty
, Depth
);
1612 // If the input value is a chrec scev, and we can prove that the value
1613 // did not overflow the old, smaller, value, we can zero extend all of the
1614 // operands (often constants). This allows analysis of something like
1615 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1616 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
1617 if (AR
->isAffine()) {
1618 const SCEV
*Start
= AR
->getStart();
1619 const SCEV
*Step
= AR
->getStepRecurrence(*this);
1620 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
1621 const Loop
*L
= AR
->getLoop();
1623 // If we have special knowledge that this addrec won't overflow,
1624 // we don't need to do any further analysis.
1625 if (AR
->hasNoUnsignedWrap()) {
1627 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
1628 Step
= getZeroExtendExpr(Step
, Ty
, Depth
+ 1);
1629 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1632 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1633 // Note that this serves two purposes: It filters out loops that are
1634 // simply not analyzable, and it covers the case where this code is
1635 // being called from within backedge-taken count analysis, such that
1636 // attempting to ask for the backedge-taken count would likely result
1637 // in infinite recursion. In the later case, the analysis code will
1638 // cope with a conservative value, and it will take care to purge
1639 // that value once it has finished.
1640 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
1641 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
1642 // Manually compute the final value for AR, checking for overflow.
1644 // Check whether the backedge-taken count can be losslessly casted to
1645 // the addrec's type. The count is always unsigned.
1646 const SCEV
*CastedMaxBECount
=
1647 getTruncateOrZeroExtend(MaxBECount
, Start
->getType(), Depth
);
1648 const SCEV
*RecastedMaxBECount
= getTruncateOrZeroExtend(
1649 CastedMaxBECount
, MaxBECount
->getType(), Depth
);
1650 if (MaxBECount
== RecastedMaxBECount
) {
1651 Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
1652 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1653 const SCEV
*ZMul
= getMulExpr(CastedMaxBECount
, Step
,
1654 SCEV::FlagAnyWrap
, Depth
+ 1);
1655 const SCEV
*ZAdd
= getZeroExtendExpr(getAddExpr(Start
, ZMul
,
1659 const SCEV
*WideStart
= getZeroExtendExpr(Start
, WideTy
, Depth
+ 1);
1660 const SCEV
*WideMaxBECount
=
1661 getZeroExtendExpr(CastedMaxBECount
, WideTy
, Depth
+ 1);
1662 const SCEV
*OperandExtendedAdd
=
1663 getAddExpr(WideStart
,
1664 getMulExpr(WideMaxBECount
,
1665 getZeroExtendExpr(Step
, WideTy
, Depth
+ 1),
1666 SCEV::FlagAnyWrap
, Depth
+ 1),
1667 SCEV::FlagAnyWrap
, Depth
+ 1);
1668 if (ZAdd
== OperandExtendedAdd
) {
1669 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1670 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNUW
);
1671 // Return the expression with the addrec on the outside.
1672 Start
= getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1674 Step
= getZeroExtendExpr(Step
, Ty
, Depth
+ 1);
1675 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1677 // Similar to above, only this time treat the step value as signed.
1678 // This covers loops that count down.
1679 OperandExtendedAdd
=
1680 getAddExpr(WideStart
,
1681 getMulExpr(WideMaxBECount
,
1682 getSignExtendExpr(Step
, WideTy
, Depth
+ 1),
1683 SCEV::FlagAnyWrap
, Depth
+ 1),
1684 SCEV::FlagAnyWrap
, Depth
+ 1);
1685 if (ZAdd
== OperandExtendedAdd
) {
1686 // Cache knowledge of AR NW, which is propagated to this AddRec.
1687 // Negative step causes unsigned wrap, but it still can't self-wrap.
1688 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNW
);
1689 // Return the expression with the addrec on the outside.
1690 Start
= getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1692 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
1693 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1698 // Normally, in the cases we can prove no-overflow via a
1699 // backedge guarding condition, we can also compute a backedge
1700 // taken count for the loop. The exceptions are assumptions and
1701 // guards present in the loop -- SCEV is not great at exploiting
1702 // these to compute max backedge taken counts, but can still use
1703 // these to prove lack of overflow. Use this fact to avoid
1704 // doing extra work that may not pay off.
1705 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
) || HasGuards
||
1706 !AC
.assumptions().empty()) {
1708 auto NewFlags
= proveNoUnsignedWrapViaInduction(AR
);
1709 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), NewFlags
);
1710 if (AR
->hasNoUnsignedWrap()) {
1711 // Same as nuw case above - duplicated here to avoid a compile time
1712 // issue. It's not clear that the order of checks does matter, but
1713 // it's one of two issue possible causes for a change which was
1714 // reverted. Be conservative for the moment.
1716 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
1717 Step
= getZeroExtendExpr(Step
, Ty
, Depth
+ 1);
1718 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1721 // For a negative step, we can extend the operands iff doing so only
1722 // traverses values in the range zext([0,UINT_MAX]).
1723 if (isKnownNegative(Step
)) {
1724 const SCEV
*N
= getConstant(APInt::getMaxValue(BitWidth
) -
1725 getSignedRangeMin(Step
));
1726 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_UGT
, AR
, N
) ||
1727 isKnownOnEveryIteration(ICmpInst::ICMP_UGT
, AR
, N
)) {
1728 // Cache knowledge of AR NW, which is propagated to this
1729 // AddRec. Negative step causes unsigned wrap, but it
1730 // still can't self-wrap.
1731 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNW
);
1732 // Return the expression with the addrec on the outside.
1733 Start
= getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this,
1735 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
1736 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1741 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1742 // if D + (C - D + Step * n) could be proven to not unsigned wrap
1743 // where D maximizes the number of trailing zeros of (C - D + Step * n)
1744 if (const auto *SC
= dyn_cast
<SCEVConstant
>(Start
)) {
1745 const APInt
&C
= SC
->getAPInt();
1746 const APInt
&D
= extractConstantWithoutWrapping(*this, C
, Step
);
1748 const SCEV
*SZExtD
= getZeroExtendExpr(getConstant(D
), Ty
, Depth
);
1749 const SCEV
*SResidual
=
1750 getAddRecExpr(getConstant(C
- D
), Step
, L
, AR
->getNoWrapFlags());
1751 const SCEV
*SZExtR
= getZeroExtendExpr(SResidual
, Ty
, Depth
+ 1);
1752 return getAddExpr(SZExtD
, SZExtR
,
1753 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
1758 if (proveNoWrapByVaryingStart
<SCEVZeroExtendExpr
>(Start
, Step
, L
)) {
1759 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNUW
);
1761 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
1762 Step
= getZeroExtendExpr(Step
, Ty
, Depth
+ 1);
1763 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
1767 // zext(A % B) --> zext(A) % zext(B)
1771 if (matchURem(Op
, LHS
, RHS
))
1772 return getURemExpr(getZeroExtendExpr(LHS
, Ty
, Depth
+ 1),
1773 getZeroExtendExpr(RHS
, Ty
, Depth
+ 1));
1776 // zext(A / B) --> zext(A) / zext(B).
1777 if (auto *Div
= dyn_cast
<SCEVUDivExpr
>(Op
))
1778 return getUDivExpr(getZeroExtendExpr(Div
->getLHS(), Ty
, Depth
+ 1),
1779 getZeroExtendExpr(Div
->getRHS(), Ty
, Depth
+ 1));
1781 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(Op
)) {
1782 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1783 if (SA
->hasNoUnsignedWrap()) {
1784 // If the addition does not unsign overflow then we can, by definition,
1785 // commute the zero extension with the addition operation.
1786 SmallVector
<const SCEV
*, 4> Ops
;
1787 for (const auto *Op
: SA
->operands())
1788 Ops
.push_back(getZeroExtendExpr(Op
, Ty
, Depth
+ 1));
1789 return getAddExpr(Ops
, SCEV::FlagNUW
, Depth
+ 1);
1792 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1793 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1794 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1796 // Often address arithmetics contain expressions like
1797 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1798 // This transformation is useful while proving that such expressions are
1799 // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1800 if (const auto *SC
= dyn_cast
<SCEVConstant
>(SA
->getOperand(0))) {
1801 const APInt
&D
= extractConstantWithoutWrapping(*this, SC
, SA
);
1803 const SCEV
*SZExtD
= getZeroExtendExpr(getConstant(D
), Ty
, Depth
);
1804 const SCEV
*SResidual
=
1805 getAddExpr(getConstant(-D
), SA
, SCEV::FlagAnyWrap
, Depth
);
1806 const SCEV
*SZExtR
= getZeroExtendExpr(SResidual
, Ty
, Depth
+ 1);
1807 return getAddExpr(SZExtD
, SZExtR
,
1808 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
1814 if (auto *SM
= dyn_cast
<SCEVMulExpr
>(Op
)) {
1815 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1816 if (SM
->hasNoUnsignedWrap()) {
1817 // If the multiply does not unsign overflow then we can, by definition,
1818 // commute the zero extension with the multiply operation.
1819 SmallVector
<const SCEV
*, 4> Ops
;
1820 for (const auto *Op
: SM
->operands())
1821 Ops
.push_back(getZeroExtendExpr(Op
, Ty
, Depth
+ 1));
1822 return getMulExpr(Ops
, SCEV::FlagNUW
, Depth
+ 1);
1825 // zext(2^K * (trunc X to iN)) to iM ->
1826 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1830 // zext(2^K * (trunc X to iN)) to iM
1831 // = zext((trunc X to iN) << K) to iM
1832 // = zext((trunc X to i{N-K}) << K)<nuw> to iM
1833 // (because shl removes the top K bits)
1834 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1835 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1837 if (SM
->getNumOperands() == 2)
1838 if (auto *MulLHS
= dyn_cast
<SCEVConstant
>(SM
->getOperand(0)))
1839 if (MulLHS
->getAPInt().isPowerOf2())
1840 if (auto *TruncRHS
= dyn_cast
<SCEVTruncateExpr
>(SM
->getOperand(1))) {
1841 int NewTruncBits
= getTypeSizeInBits(TruncRHS
->getType()) -
1842 MulLHS
->getAPInt().logBase2();
1843 Type
*NewTruncTy
= IntegerType::get(getContext(), NewTruncBits
);
1845 getZeroExtendExpr(MulLHS
, Ty
),
1847 getTruncateExpr(TruncRHS
->getOperand(), NewTruncTy
), Ty
),
1848 SCEV::FlagNUW
, Depth
+ 1);
1852 // zext(umin(x, y)) -> umin(zext(x), zext(y))
1853 // zext(umax(x, y)) -> umax(zext(x), zext(y))
1854 if (isa
<SCEVUMinExpr
>(Op
) || isa
<SCEVUMaxExpr
>(Op
)) {
1855 auto *MinMax
= cast
<SCEVMinMaxExpr
>(Op
);
1856 SmallVector
<const SCEV
*, 4> Operands
;
1857 for (auto *Operand
: MinMax
->operands())
1858 Operands
.push_back(getZeroExtendExpr(Operand
, Ty
));
1859 if (isa
<SCEVUMinExpr
>(MinMax
))
1860 return getUMinExpr(Operands
);
1861 return getUMaxExpr(Operands
);
1864 // zext(umin_seq(x, y)) -> umin_seq(zext(x), zext(y))
1865 if (auto *MinMax
= dyn_cast
<SCEVSequentialMinMaxExpr
>(Op
)) {
1866 assert(isa
<SCEVSequentialUMinExpr
>(MinMax
) && "Not supported!");
1867 SmallVector
<const SCEV
*, 4> Operands
;
1868 for (auto *Operand
: MinMax
->operands())
1869 Operands
.push_back(getZeroExtendExpr(Operand
, Ty
));
1870 return getUMinExpr(Operands
, /*Sequential*/ true);
1873 // The cast wasn't folded; create an explicit cast node.
1874 // Recompute the insert position, as it may have been invalidated.
1875 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1876 SCEV
*S
= new (SCEVAllocator
) SCEVZeroExtendExpr(ID
.Intern(SCEVAllocator
),
1878 UniqueSCEVs
.InsertNode(S
, IP
);
1879 registerUser(S
, Op
);
1884 ScalarEvolution::getSignExtendExpr(const SCEV
*Op
, Type
*Ty
, unsigned Depth
) {
1885 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1886 "This is not an extending conversion!");
1887 assert(isSCEVable(Ty
) &&
1888 "This is not a conversion to a SCEVable type!");
1889 assert(!Op
->getType()->isPointerTy() && "Can't extend pointer!");
1890 Ty
= getEffectiveSCEVType(Ty
);
1892 FoldID
ID(scSignExtend
, Op
, Ty
);
1893 auto Iter
= FoldCache
.find(ID
);
1894 if (Iter
!= FoldCache
.end())
1895 return Iter
->second
;
1897 const SCEV
*S
= getSignExtendExprImpl(Op
, Ty
, Depth
);
1898 if (!isa
<SCEVSignExtendExpr
>(S
))
1899 insertFoldCacheEntry(ID
, S
, FoldCache
, FoldCacheUser
);
1903 const SCEV
*ScalarEvolution::getSignExtendExprImpl(const SCEV
*Op
, Type
*Ty
,
1905 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
1906 "This is not an extending conversion!");
1907 assert(isSCEVable(Ty
) && "This is not a conversion to a SCEVable type!");
1908 assert(!Op
->getType()->isPointerTy() && "Can't extend pointer!");
1909 Ty
= getEffectiveSCEVType(Ty
);
1911 // Fold if the operand is constant.
1912 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
1913 return getConstant(SC
->getAPInt().sext(getTypeSizeInBits(Ty
)));
1915 // sext(sext(x)) --> sext(x)
1916 if (const SCEVSignExtendExpr
*SS
= dyn_cast
<SCEVSignExtendExpr
>(Op
))
1917 return getSignExtendExpr(SS
->getOperand(), Ty
, Depth
+ 1);
1919 // sext(zext(x)) --> zext(x)
1920 if (const SCEVZeroExtendExpr
*SZ
= dyn_cast
<SCEVZeroExtendExpr
>(Op
))
1921 return getZeroExtendExpr(SZ
->getOperand(), Ty
, Depth
+ 1);
1923 // Before doing any expensive analysis, check to see if we've already
1924 // computed a SCEV for this Op and Ty.
1925 FoldingSetNodeID ID
;
1926 ID
.AddInteger(scSignExtend
);
1930 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
1931 // Limit recursion depth.
1932 if (Depth
> MaxCastDepth
) {
1933 SCEV
*S
= new (SCEVAllocator
) SCEVSignExtendExpr(ID
.Intern(SCEVAllocator
),
1935 UniqueSCEVs
.InsertNode(S
, IP
);
1936 registerUser(S
, Op
);
1940 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1941 if (const SCEVTruncateExpr
*ST
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
1942 // It's possible the bits taken off by the truncate were all sign bits. If
1943 // so, we should be able to simplify this further.
1944 const SCEV
*X
= ST
->getOperand();
1945 ConstantRange CR
= getSignedRange(X
);
1946 unsigned TruncBits
= getTypeSizeInBits(ST
->getType());
1947 unsigned NewBits
= getTypeSizeInBits(Ty
);
1948 if (CR
.truncate(TruncBits
).signExtend(NewBits
).contains(
1949 CR
.sextOrTrunc(NewBits
)))
1950 return getTruncateOrSignExtend(X
, Ty
, Depth
);
1953 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(Op
)) {
1954 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1955 if (SA
->hasNoSignedWrap()) {
1956 // If the addition does not sign overflow then we can, by definition,
1957 // commute the sign extension with the addition operation.
1958 SmallVector
<const SCEV
*, 4> Ops
;
1959 for (const auto *Op
: SA
->operands())
1960 Ops
.push_back(getSignExtendExpr(Op
, Ty
, Depth
+ 1));
1961 return getAddExpr(Ops
, SCEV::FlagNSW
, Depth
+ 1);
1964 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1965 // if D + (C - D + x + y + ...) could be proven to not signed wrap
1966 // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1968 // For instance, this will bring two seemingly different expressions:
1969 // 1 + sext(5 + 20 * %x + 24 * %y) and
1970 // sext(6 + 20 * %x + 24 * %y)
1971 // to the same form:
1972 // 2 + sext(4 + 20 * %x + 24 * %y)
1973 if (const auto *SC
= dyn_cast
<SCEVConstant
>(SA
->getOperand(0))) {
1974 const APInt
&D
= extractConstantWithoutWrapping(*this, SC
, SA
);
1976 const SCEV
*SSExtD
= getSignExtendExpr(getConstant(D
), Ty
, Depth
);
1977 const SCEV
*SResidual
=
1978 getAddExpr(getConstant(-D
), SA
, SCEV::FlagAnyWrap
, Depth
);
1979 const SCEV
*SSExtR
= getSignExtendExpr(SResidual
, Ty
, Depth
+ 1);
1980 return getAddExpr(SSExtD
, SSExtR
,
1981 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
1986 // If the input value is a chrec scev, and we can prove that the value
1987 // did not overflow the old, smaller, value, we can sign extend all of the
1988 // operands (often constants). This allows analysis of something like
1989 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1990 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
))
1991 if (AR
->isAffine()) {
1992 const SCEV
*Start
= AR
->getStart();
1993 const SCEV
*Step
= AR
->getStepRecurrence(*this);
1994 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
1995 const Loop
*L
= AR
->getLoop();
1997 // If we have special knowledge that this addrec won't overflow,
1998 // we don't need to do any further analysis.
1999 if (AR
->hasNoSignedWrap()) {
2001 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
2002 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
2003 return getAddRecExpr(Start
, Step
, L
, SCEV::FlagNSW
);
2006 // Check whether the backedge-taken count is SCEVCouldNotCompute.
2007 // Note that this serves two purposes: It filters out loops that are
2008 // simply not analyzable, and it covers the case where this code is
2009 // being called from within backedge-taken count analysis, such that
2010 // attempting to ask for the backedge-taken count would likely result
2011 // in infinite recursion. In the later case, the analysis code will
2012 // cope with a conservative value, and it will take care to purge
2013 // that value once it has finished.
2014 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
2015 if (!isa
<SCEVCouldNotCompute
>(MaxBECount
)) {
2016 // Manually compute the final value for AR, checking for
2019 // Check whether the backedge-taken count can be losslessly casted to
2020 // the addrec's type. The count is always unsigned.
2021 const SCEV
*CastedMaxBECount
=
2022 getTruncateOrZeroExtend(MaxBECount
, Start
->getType(), Depth
);
2023 const SCEV
*RecastedMaxBECount
= getTruncateOrZeroExtend(
2024 CastedMaxBECount
, MaxBECount
->getType(), Depth
);
2025 if (MaxBECount
== RecastedMaxBECount
) {
2026 Type
*WideTy
= IntegerType::get(getContext(), BitWidth
* 2);
2027 // Check whether Start+Step*MaxBECount has no signed overflow.
2028 const SCEV
*SMul
= getMulExpr(CastedMaxBECount
, Step
,
2029 SCEV::FlagAnyWrap
, Depth
+ 1);
2030 const SCEV
*SAdd
= getSignExtendExpr(getAddExpr(Start
, SMul
,
2034 const SCEV
*WideStart
= getSignExtendExpr(Start
, WideTy
, Depth
+ 1);
2035 const SCEV
*WideMaxBECount
=
2036 getZeroExtendExpr(CastedMaxBECount
, WideTy
, Depth
+ 1);
2037 const SCEV
*OperandExtendedAdd
=
2038 getAddExpr(WideStart
,
2039 getMulExpr(WideMaxBECount
,
2040 getSignExtendExpr(Step
, WideTy
, Depth
+ 1),
2041 SCEV::FlagAnyWrap
, Depth
+ 1),
2042 SCEV::FlagAnyWrap
, Depth
+ 1);
2043 if (SAdd
== OperandExtendedAdd
) {
2044 // Cache knowledge of AR NSW, which is propagated to this AddRec.
2045 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNSW
);
2046 // Return the expression with the addrec on the outside.
2047 Start
= getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this,
2049 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
2050 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
2052 // Similar to above, only this time treat the step value as unsigned.
2053 // This covers loops that count up with an unsigned step.
2054 OperandExtendedAdd
=
2055 getAddExpr(WideStart
,
2056 getMulExpr(WideMaxBECount
,
2057 getZeroExtendExpr(Step
, WideTy
, Depth
+ 1),
2058 SCEV::FlagAnyWrap
, Depth
+ 1),
2059 SCEV::FlagAnyWrap
, Depth
+ 1);
2060 if (SAdd
== OperandExtendedAdd
) {
2061 // If AR wraps around then
2063 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
2064 // => SAdd != OperandExtendedAdd
2066 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2067 // (SAdd == OperandExtendedAdd => AR is NW)
2069 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNW
);
2071 // Return the expression with the addrec on the outside.
2072 Start
= getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this,
2074 Step
= getZeroExtendExpr(Step
, Ty
, Depth
+ 1);
2075 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
2080 auto NewFlags
= proveNoSignedWrapViaInduction(AR
);
2081 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), NewFlags
);
2082 if (AR
->hasNoSignedWrap()) {
2083 // Same as nsw case above - duplicated here to avoid a compile time
2084 // issue. It's not clear that the order of checks does matter, but
2085 // it's one of two issue possible causes for a change which was
2086 // reverted. Be conservative for the moment.
2088 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
2089 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
2090 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
2093 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2094 // if D + (C - D + Step * n) could be proven to not signed wrap
2095 // where D maximizes the number of trailing zeros of (C - D + Step * n)
2096 if (const auto *SC
= dyn_cast
<SCEVConstant
>(Start
)) {
2097 const APInt
&C
= SC
->getAPInt();
2098 const APInt
&D
= extractConstantWithoutWrapping(*this, C
, Step
);
2100 const SCEV
*SSExtD
= getSignExtendExpr(getConstant(D
), Ty
, Depth
);
2101 const SCEV
*SResidual
=
2102 getAddRecExpr(getConstant(C
- D
), Step
, L
, AR
->getNoWrapFlags());
2103 const SCEV
*SSExtR
= getSignExtendExpr(SResidual
, Ty
, Depth
+ 1);
2104 return getAddExpr(SSExtD
, SSExtR
,
2105 (SCEV::NoWrapFlags
)(SCEV::FlagNSW
| SCEV::FlagNUW
),
2110 if (proveNoWrapByVaryingStart
<SCEVSignExtendExpr
>(Start
, Step
, L
)) {
2111 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), SCEV::FlagNSW
);
2113 getExtendAddRecStart
<SCEVSignExtendExpr
>(AR
, Ty
, this, Depth
+ 1);
2114 Step
= getSignExtendExpr(Step
, Ty
, Depth
+ 1);
2115 return getAddRecExpr(Start
, Step
, L
, AR
->getNoWrapFlags());
2119 // If the input value is provably positive and we could not simplify
2120 // away the sext build a zext instead.
2121 if (isKnownNonNegative(Op
))
2122 return getZeroExtendExpr(Op
, Ty
, Depth
+ 1);
2124 // sext(smin(x, y)) -> smin(sext(x), sext(y))
2125 // sext(smax(x, y)) -> smax(sext(x), sext(y))
2126 if (isa
<SCEVSMinExpr
>(Op
) || isa
<SCEVSMaxExpr
>(Op
)) {
2127 auto *MinMax
= cast
<SCEVMinMaxExpr
>(Op
);
2128 SmallVector
<const SCEV
*, 4> Operands
;
2129 for (auto *Operand
: MinMax
->operands())
2130 Operands
.push_back(getSignExtendExpr(Operand
, Ty
));
2131 if (isa
<SCEVSMinExpr
>(MinMax
))
2132 return getSMinExpr(Operands
);
2133 return getSMaxExpr(Operands
);
2136 // The cast wasn't folded; create an explicit cast node.
2137 // Recompute the insert position, as it may have been invalidated.
2138 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
2139 SCEV
*S
= new (SCEVAllocator
) SCEVSignExtendExpr(ID
.Intern(SCEVAllocator
),
2141 UniqueSCEVs
.InsertNode(S
, IP
);
2142 registerUser(S
, { Op
});
2146 const SCEV
*ScalarEvolution::getCastExpr(SCEVTypes Kind
, const SCEV
*Op
,
2150 return getTruncateExpr(Op
, Ty
);
2152 return getZeroExtendExpr(Op
, Ty
);
2154 return getSignExtendExpr(Op
, Ty
);
2156 return getPtrToIntExpr(Op
, Ty
);
2158 llvm_unreachable("Not a SCEV cast expression!");
2162 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2163 /// unspecified bits out to the given type.
2164 const SCEV
*ScalarEvolution::getAnyExtendExpr(const SCEV
*Op
,
2166 assert(getTypeSizeInBits(Op
->getType()) < getTypeSizeInBits(Ty
) &&
2167 "This is not an extending conversion!");
2168 assert(isSCEVable(Ty
) &&
2169 "This is not a conversion to a SCEVable type!");
2170 Ty
= getEffectiveSCEVType(Ty
);
2172 // Sign-extend negative constants.
2173 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(Op
))
2174 if (SC
->getAPInt().isNegative())
2175 return getSignExtendExpr(Op
, Ty
);
2177 // Peel off a truncate cast.
2178 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Op
)) {
2179 const SCEV
*NewOp
= T
->getOperand();
2180 if (getTypeSizeInBits(NewOp
->getType()) < getTypeSizeInBits(Ty
))
2181 return getAnyExtendExpr(NewOp
, Ty
);
2182 return getTruncateOrNoop(NewOp
, Ty
);
2185 // Next try a zext cast. If the cast is folded, use it.
2186 const SCEV
*ZExt
= getZeroExtendExpr(Op
, Ty
);
2187 if (!isa
<SCEVZeroExtendExpr
>(ZExt
))
2190 // Next try a sext cast. If the cast is folded, use it.
2191 const SCEV
*SExt
= getSignExtendExpr(Op
, Ty
);
2192 if (!isa
<SCEVSignExtendExpr
>(SExt
))
2195 // Force the cast to be folded into the operands of an addrec.
2196 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Op
)) {
2197 SmallVector
<const SCEV
*, 4> Ops
;
2198 for (const SCEV
*Op
: AR
->operands())
2199 Ops
.push_back(getAnyExtendExpr(Op
, Ty
));
2200 return getAddRecExpr(Ops
, AR
->getLoop(), SCEV::FlagNW
);
2203 // If the expression is obviously signed, use the sext cast value.
2204 if (isa
<SCEVSMaxExpr
>(Op
))
2207 // Absent any other information, use the zext cast value.
2211 /// Process the given Ops list, which is a list of operands to be added under
2212 /// the given scale, update the given map. This is a helper function for
2213 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2214 /// that would form an add expression like this:
2216 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2218 /// where A and B are constants, update the map with these values:
2220 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2222 /// and add 13 + A*B*29 to AccumulatedConstant.
2223 /// This will allow getAddRecExpr to produce this:
2225 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2227 /// This form often exposes folding opportunities that are hidden in
2228 /// the original operand list.
2230 /// Return true iff it appears that any interesting folding opportunities
2231 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2232 /// the common case where no interesting opportunities are present, and
2233 /// is also used as a check to avoid infinite recursion.
2235 CollectAddOperandsWithScales(DenseMap
<const SCEV
*, APInt
> &M
,
2236 SmallVectorImpl
<const SCEV
*> &NewOps
,
2237 APInt
&AccumulatedConstant
,
2238 ArrayRef
<const SCEV
*> Ops
, const APInt
&Scale
,
2239 ScalarEvolution
&SE
) {
2240 bool Interesting
= false;
2242 // Iterate over the add operands. They are sorted, with constants first.
2244 while (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
2246 // Pull a buried constant out to the outside.
2247 if (Scale
!= 1 || AccumulatedConstant
!= 0 || C
->getValue()->isZero())
2249 AccumulatedConstant
+= Scale
* C
->getAPInt();
2252 // Next comes everything else. We're especially interested in multiplies
2253 // here, but they're in the middle, so just visit the rest with one loop.
2254 for (; i
!= Ops
.size(); ++i
) {
2255 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[i
]);
2256 if (Mul
&& isa
<SCEVConstant
>(Mul
->getOperand(0))) {
2258 Scale
* cast
<SCEVConstant
>(Mul
->getOperand(0))->getAPInt();
2259 if (Mul
->getNumOperands() == 2 && isa
<SCEVAddExpr
>(Mul
->getOperand(1))) {
2260 // A multiplication of a constant with another add; recurse.
2261 const SCEVAddExpr
*Add
= cast
<SCEVAddExpr
>(Mul
->getOperand(1));
2263 CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
2264 Add
->operands(), NewScale
, SE
);
2266 // A multiplication of a constant with some other value. Update
2268 SmallVector
<const SCEV
*, 4> MulOps(drop_begin(Mul
->operands()));
2269 const SCEV
*Key
= SE
.getMulExpr(MulOps
);
2270 auto Pair
= M
.insert({Key
, NewScale
});
2272 NewOps
.push_back(Pair
.first
->first
);
2274 Pair
.first
->second
+= NewScale
;
2275 // The map already had an entry for this value, which may indicate
2276 // a folding opportunity.
2281 // An ordinary operand. Update the map.
2282 std::pair
<DenseMap
<const SCEV
*, APInt
>::iterator
, bool> Pair
=
2283 M
.insert({Ops
[i
], Scale
});
2285 NewOps
.push_back(Pair
.first
->first
);
2287 Pair
.first
->second
+= Scale
;
2288 // The map already had an entry for this value, which may indicate
2289 // a folding opportunity.
2298 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp
, bool Signed
,
2299 const SCEV
*LHS
, const SCEV
*RHS
,
2300 const Instruction
*CtxI
) {
2301 const SCEV
*(ScalarEvolution::*Operation
)(const SCEV
*, const SCEV
*,
2302 SCEV::NoWrapFlags
, unsigned);
2305 llvm_unreachable("Unsupported binary op");
2306 case Instruction::Add
:
2307 Operation
= &ScalarEvolution::getAddExpr
;
2309 case Instruction::Sub
:
2310 Operation
= &ScalarEvolution::getMinusSCEV
;
2312 case Instruction::Mul
:
2313 Operation
= &ScalarEvolution::getMulExpr
;
2317 const SCEV
*(ScalarEvolution::*Extension
)(const SCEV
*, Type
*, unsigned) =
2318 Signed
? &ScalarEvolution::getSignExtendExpr
2319 : &ScalarEvolution::getZeroExtendExpr
;
2321 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2322 auto *NarrowTy
= cast
<IntegerType
>(LHS
->getType());
2324 IntegerType::get(NarrowTy
->getContext(), NarrowTy
->getBitWidth() * 2);
2326 const SCEV
*A
= (this->*Extension
)(
2327 (this->*Operation
)(LHS
, RHS
, SCEV::FlagAnyWrap
, 0), WideTy
, 0);
2328 const SCEV
*LHSB
= (this->*Extension
)(LHS
, WideTy
, 0);
2329 const SCEV
*RHSB
= (this->*Extension
)(RHS
, WideTy
, 0);
2330 const SCEV
*B
= (this->*Operation
)(LHSB
, RHSB
, SCEV::FlagAnyWrap
, 0);
2333 // Can we use context to prove the fact we need?
2336 // TODO: Support mul.
2337 if (BinOp
== Instruction::Mul
)
2339 auto *RHSC
= dyn_cast
<SCEVConstant
>(RHS
);
2340 // TODO: Lift this limitation.
2343 APInt C
= RHSC
->getAPInt();
2344 unsigned NumBits
= C
.getBitWidth();
2345 bool IsSub
= (BinOp
== Instruction::Sub
);
2346 bool IsNegativeConst
= (Signed
&& C
.isNegative());
2347 // Compute the direction and magnitude by which we need to check overflow.
2348 bool OverflowDown
= IsSub
^ IsNegativeConst
;
2349 APInt Magnitude
= C
;
2350 if (IsNegativeConst
) {
2351 if (C
== APInt::getSignedMinValue(NumBits
))
2352 // TODO: SINT_MIN on inversion gives the same negative value, we don't
2353 // want to deal with that.
2358 ICmpInst::Predicate Pred
= Signed
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
2360 // To avoid overflow down, we need to make sure that MIN + Magnitude <= LHS.
2361 APInt Min
= Signed
? APInt::getSignedMinValue(NumBits
)
2362 : APInt::getMinValue(NumBits
);
2363 APInt Limit
= Min
+ Magnitude
;
2364 return isKnownPredicateAt(Pred
, getConstant(Limit
), LHS
, CtxI
);
2366 // To avoid overflow up, we need to make sure that LHS <= MAX - Magnitude.
2367 APInt Max
= Signed
? APInt::getSignedMaxValue(NumBits
)
2368 : APInt::getMaxValue(NumBits
);
2369 APInt Limit
= Max
- Magnitude
;
2370 return isKnownPredicateAt(Pred
, LHS
, getConstant(Limit
), CtxI
);
2374 std::optional
<SCEV::NoWrapFlags
>
2375 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2376 const OverflowingBinaryOperator
*OBO
) {
2377 // It cannot be done any better.
2378 if (OBO
->hasNoUnsignedWrap() && OBO
->hasNoSignedWrap())
2379 return std::nullopt
;
2381 SCEV::NoWrapFlags Flags
= SCEV::NoWrapFlags::FlagAnyWrap
;
2383 if (OBO
->hasNoUnsignedWrap())
2384 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2385 if (OBO
->hasNoSignedWrap())
2386 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
2388 bool Deduced
= false;
2390 if (OBO
->getOpcode() != Instruction::Add
&&
2391 OBO
->getOpcode() != Instruction::Sub
&&
2392 OBO
->getOpcode() != Instruction::Mul
)
2393 return std::nullopt
;
2395 const SCEV
*LHS
= getSCEV(OBO
->getOperand(0));
2396 const SCEV
*RHS
= getSCEV(OBO
->getOperand(1));
2398 const Instruction
*CtxI
=
2399 UseContextForNoWrapFlagInference
? dyn_cast
<Instruction
>(OBO
) : nullptr;
2400 if (!OBO
->hasNoUnsignedWrap() &&
2401 willNotOverflow((Instruction::BinaryOps
)OBO
->getOpcode(),
2402 /* Signed */ false, LHS
, RHS
, CtxI
)) {
2403 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2407 if (!OBO
->hasNoSignedWrap() &&
2408 willNotOverflow((Instruction::BinaryOps
)OBO
->getOpcode(),
2409 /* Signed */ true, LHS
, RHS
, CtxI
)) {
2410 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
2416 return std::nullopt
;
2419 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2420 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
2421 // can't-overflow flags for the operation if possible.
2422 static SCEV::NoWrapFlags
2423 StrengthenNoWrapFlags(ScalarEvolution
*SE
, SCEVTypes Type
,
2424 const ArrayRef
<const SCEV
*> Ops
,
2425 SCEV::NoWrapFlags Flags
) {
2426 using namespace std::placeholders
;
2428 using OBO
= OverflowingBinaryOperator
;
2431 Type
== scAddExpr
|| Type
== scAddRecExpr
|| Type
== scMulExpr
;
2433 assert(CanAnalyze
&& "don't call from other places!");
2435 int SignOrUnsignMask
= SCEV::FlagNUW
| SCEV::FlagNSW
;
2436 SCEV::NoWrapFlags SignOrUnsignWrap
=
2437 ScalarEvolution::maskFlags(Flags
, SignOrUnsignMask
);
2439 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2440 auto IsKnownNonNegative
= [&](const SCEV
*S
) {
2441 return SE
->isKnownNonNegative(S
);
2444 if (SignOrUnsignWrap
== SCEV::FlagNSW
&& all_of(Ops
, IsKnownNonNegative
))
2446 ScalarEvolution::setFlags(Flags
, (SCEV::NoWrapFlags
)SignOrUnsignMask
);
2448 SignOrUnsignWrap
= ScalarEvolution::maskFlags(Flags
, SignOrUnsignMask
);
2450 if (SignOrUnsignWrap
!= SignOrUnsignMask
&&
2451 (Type
== scAddExpr
|| Type
== scMulExpr
) && Ops
.size() == 2 &&
2452 isa
<SCEVConstant
>(Ops
[0])) {
2457 return Instruction::Add
;
2459 return Instruction::Mul
;
2461 llvm_unreachable("Unexpected SCEV op.");
2465 const APInt
&C
= cast
<SCEVConstant
>(Ops
[0])->getAPInt();
2467 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2468 if (!(SignOrUnsignWrap
& SCEV::FlagNSW
)) {
2469 auto NSWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
2470 Opcode
, C
, OBO::NoSignedWrap
);
2471 if (NSWRegion
.contains(SE
->getSignedRange(Ops
[1])))
2472 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
2475 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2476 if (!(SignOrUnsignWrap
& SCEV::FlagNUW
)) {
2477 auto NUWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
2478 Opcode
, C
, OBO::NoUnsignedWrap
);
2479 if (NUWRegion
.contains(SE
->getUnsignedRange(Ops
[1])))
2480 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2484 // <0,+,nonnegative><nw> is also nuw
2485 // TODO: Add corresponding nsw case
2486 if (Type
== scAddRecExpr
&& ScalarEvolution::hasFlags(Flags
, SCEV::FlagNW
) &&
2487 !ScalarEvolution::hasFlags(Flags
, SCEV::FlagNUW
) && Ops
.size() == 2 &&
2488 Ops
[0]->isZero() && IsKnownNonNegative(Ops
[1]))
2489 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2491 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2492 if (Type
== scMulExpr
&& !ScalarEvolution::hasFlags(Flags
, SCEV::FlagNUW
) &&
2494 if (auto *UDiv
= dyn_cast
<SCEVUDivExpr
>(Ops
[0]))
2495 if (UDiv
->getOperand(1) == Ops
[1])
2496 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2497 if (auto *UDiv
= dyn_cast
<SCEVUDivExpr
>(Ops
[1]))
2498 if (UDiv
->getOperand(1) == Ops
[0])
2499 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
2505 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV
*S
, const Loop
*L
) {
2506 return isLoopInvariant(S
, L
) && properlyDominates(S
, L
->getHeader());
2509 /// Get a canonical add expression, or something simpler if possible.
2510 const SCEV
*ScalarEvolution::getAddExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
2511 SCEV::NoWrapFlags OrigFlags
,
2513 assert(!(OrigFlags
& ~(SCEV::FlagNUW
| SCEV::FlagNSW
)) &&
2514 "only nuw or nsw allowed");
2515 assert(!Ops
.empty() && "Cannot get empty add!");
2516 if (Ops
.size() == 1) return Ops
[0];
2518 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
2519 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
2520 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
2521 "SCEVAddExpr operand types don't match!");
2522 unsigned NumPtrs
= count_if(
2523 Ops
, [](const SCEV
*Op
) { return Op
->getType()->isPointerTy(); });
2524 assert(NumPtrs
<= 1 && "add has at most one pointer operand");
2527 // Sort by complexity, this groups all similar expression types together.
2528 GroupByComplexity(Ops
, &LI
, DT
);
2530 // If there are any constants, fold them together.
2532 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
2534 assert(Idx
< Ops
.size());
2535 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
2536 // We found two constants, fold them together!
2537 Ops
[0] = getConstant(LHSC
->getAPInt() + RHSC
->getAPInt());
2538 if (Ops
.size() == 2) return Ops
[0];
2539 Ops
.erase(Ops
.begin()+1); // Erase the folded element
2540 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
2543 // If we are left with a constant zero being added, strip it off.
2544 if (LHSC
->getValue()->isZero()) {
2545 Ops
.erase(Ops
.begin());
2549 if (Ops
.size() == 1) return Ops
[0];
2552 // Delay expensive flag strengthening until necessary.
2553 auto ComputeFlags
= [this, OrigFlags
](const ArrayRef
<const SCEV
*> Ops
) {
2554 return StrengthenNoWrapFlags(this, scAddExpr
, Ops
, OrigFlags
);
2557 // Limit recursion calls depth.
2558 if (Depth
> MaxArithDepth
|| hasHugeExpression(Ops
))
2559 return getOrCreateAddExpr(Ops
, ComputeFlags(Ops
));
2561 if (SCEV
*S
= findExistingSCEVInCache(scAddExpr
, Ops
)) {
2562 // Don't strengthen flags if we have no new information.
2563 SCEVAddExpr
*Add
= static_cast<SCEVAddExpr
*>(S
);
2564 if (Add
->getNoWrapFlags(OrigFlags
) != OrigFlags
)
2565 Add
->setNoWrapFlags(ComputeFlags(Ops
));
2569 // Okay, check to see if the same value occurs in the operand list more than
2570 // once. If so, merge them together into an multiply expression. Since we
2571 // sorted the list, these values are required to be adjacent.
2572 Type
*Ty
= Ops
[0]->getType();
2573 bool FoundMatch
= false;
2574 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
-1; ++i
)
2575 if (Ops
[i
] == Ops
[i
+1]) { // X + Y + Y --> X + Y*2
2576 // Scan ahead to count how many equal operands there are.
2578 while (i
+Count
!= e
&& Ops
[i
+Count
] == Ops
[i
])
2580 // Merge the values into a multiply.
2581 const SCEV
*Scale
= getConstant(Ty
, Count
);
2582 const SCEV
*Mul
= getMulExpr(Scale
, Ops
[i
], SCEV::FlagAnyWrap
, Depth
+ 1);
2583 if (Ops
.size() == Count
)
2586 Ops
.erase(Ops
.begin()+i
+1, Ops
.begin()+i
+Count
);
2587 --i
; e
-= Count
- 1;
2591 return getAddExpr(Ops
, OrigFlags
, Depth
+ 1);
2593 // Check for truncates. If all the operands are truncated from the same
2594 // type, see if factoring out the truncate would permit the result to be
2595 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2596 // if the contents of the resulting outer trunc fold to something simple.
2597 auto FindTruncSrcType
= [&]() -> Type
* {
2598 // We're ultimately looking to fold an addrec of truncs and muls of only
2599 // constants and truncs, so if we find any other types of SCEV
2600 // as operands of the addrec then we bail and return nullptr here.
2601 // Otherwise, we return the type of the operand of a trunc that we find.
2602 if (auto *T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[Idx
]))
2603 return T
->getOperand()->getType();
2604 if (const auto *Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
2605 const auto *LastOp
= Mul
->getOperand(Mul
->getNumOperands() - 1);
2606 if (const auto *T
= dyn_cast
<SCEVTruncateExpr
>(LastOp
))
2607 return T
->getOperand()->getType();
2611 if (auto *SrcType
= FindTruncSrcType()) {
2612 SmallVector
<const SCEV
*, 8> LargeOps
;
2614 // Check all the operands to see if they can be represented in the
2615 // source type of the truncate.
2616 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
2617 if (const SCEVTruncateExpr
*T
= dyn_cast
<SCEVTruncateExpr
>(Ops
[i
])) {
2618 if (T
->getOperand()->getType() != SrcType
) {
2622 LargeOps
.push_back(T
->getOperand());
2623 } else if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(Ops
[i
])) {
2624 LargeOps
.push_back(getAnyExtendExpr(C
, SrcType
));
2625 } else if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(Ops
[i
])) {
2626 SmallVector
<const SCEV
*, 8> LargeMulOps
;
2627 for (unsigned j
= 0, f
= M
->getNumOperands(); j
!= f
&& Ok
; ++j
) {
2628 if (const SCEVTruncateExpr
*T
=
2629 dyn_cast
<SCEVTruncateExpr
>(M
->getOperand(j
))) {
2630 if (T
->getOperand()->getType() != SrcType
) {
2634 LargeMulOps
.push_back(T
->getOperand());
2635 } else if (const auto *C
= dyn_cast
<SCEVConstant
>(M
->getOperand(j
))) {
2636 LargeMulOps
.push_back(getAnyExtendExpr(C
, SrcType
));
2643 LargeOps
.push_back(getMulExpr(LargeMulOps
, SCEV::FlagAnyWrap
, Depth
+ 1));
2650 // Evaluate the expression in the larger type.
2651 const SCEV
*Fold
= getAddExpr(LargeOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2652 // If it folds to something simple, use it. Otherwise, don't.
2653 if (isa
<SCEVConstant
>(Fold
) || isa
<SCEVUnknown
>(Fold
))
2654 return getTruncateExpr(Fold
, Ty
);
2658 if (Ops
.size() == 2) {
2659 // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2660 // C2 can be folded in a way that allows retaining wrapping flags of (X +
2662 const SCEV
*A
= Ops
[0];
2663 const SCEV
*B
= Ops
[1];
2664 auto *AddExpr
= dyn_cast
<SCEVAddExpr
>(B
);
2665 auto *C
= dyn_cast
<SCEVConstant
>(A
);
2666 if (AddExpr
&& C
&& isa
<SCEVConstant
>(AddExpr
->getOperand(0))) {
2667 auto C1
= cast
<SCEVConstant
>(AddExpr
->getOperand(0))->getAPInt();
2668 auto C2
= C
->getAPInt();
2669 SCEV::NoWrapFlags PreservedFlags
= SCEV::FlagAnyWrap
;
2671 APInt ConstAdd
= C1
+ C2
;
2672 auto AddFlags
= AddExpr
->getNoWrapFlags();
2673 // Adding a smaller constant is NUW if the original AddExpr was NUW.
2674 if (ScalarEvolution::hasFlags(AddFlags
, SCEV::FlagNUW
) &&
2677 ScalarEvolution::setFlags(PreservedFlags
, SCEV::FlagNUW
);
2680 // Adding a constant with the same sign and small magnitude is NSW, if the
2681 // original AddExpr was NSW.
2682 if (ScalarEvolution::hasFlags(AddFlags
, SCEV::FlagNSW
) &&
2683 C1
.isSignBitSet() == ConstAdd
.isSignBitSet() &&
2684 ConstAdd
.abs().ule(C1
.abs())) {
2686 ScalarEvolution::setFlags(PreservedFlags
, SCEV::FlagNSW
);
2689 if (PreservedFlags
!= SCEV::FlagAnyWrap
) {
2690 SmallVector
<const SCEV
*, 4> NewOps(AddExpr
->operands());
2691 NewOps
[0] = getConstant(ConstAdd
);
2692 return getAddExpr(NewOps
, PreservedFlags
);
2697 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2698 if (Ops
.size() == 2) {
2699 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[0]);
2700 if (Mul
&& Mul
->getNumOperands() == 2 &&
2701 Mul
->getOperand(0)->isAllOnesValue()) {
2704 if (matchURem(Mul
->getOperand(1), X
, Y
) && X
== Ops
[1]) {
2705 return getMulExpr(Y
, getUDivExpr(X
, Y
));
2710 // Skip past any other cast SCEVs.
2711 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddExpr
)
2714 // If there are add operands they would be next.
2715 if (Idx
< Ops
.size()) {
2716 bool DeletedAdd
= false;
2717 // If the original flags and all inlined SCEVAddExprs are NUW, use the
2718 // common NUW flag for expression after inlining. Other flags cannot be
2719 // preserved, because they may depend on the original order of operations.
2720 SCEV::NoWrapFlags CommonFlags
= maskFlags(OrigFlags
, SCEV::FlagNUW
);
2721 while (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[Idx
])) {
2722 if (Ops
.size() > AddOpsInlineThreshold
||
2723 Add
->getNumOperands() > AddOpsInlineThreshold
)
2725 // If we have an add, expand the add operands onto the end of the operands
2727 Ops
.erase(Ops
.begin()+Idx
);
2728 append_range(Ops
, Add
->operands());
2730 CommonFlags
= maskFlags(CommonFlags
, Add
->getNoWrapFlags());
2733 // If we deleted at least one add, we added operands to the end of the list,
2734 // and they are not necessarily sorted. Recurse to resort and resimplify
2735 // any operands we just acquired.
2737 return getAddExpr(Ops
, CommonFlags
, Depth
+ 1);
2740 // Skip over the add expression until we get to a multiply.
2741 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
2744 // Check to see if there are any folding opportunities present with
2745 // operands multiplied by constant values.
2746 if (Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
])) {
2747 uint64_t BitWidth
= getTypeSizeInBits(Ty
);
2748 DenseMap
<const SCEV
*, APInt
> M
;
2749 SmallVector
<const SCEV
*, 8> NewOps
;
2750 APInt
AccumulatedConstant(BitWidth
, 0);
2751 if (CollectAddOperandsWithScales(M
, NewOps
, AccumulatedConstant
,
2752 Ops
, APInt(BitWidth
, 1), *this)) {
2753 struct APIntCompare
{
2754 bool operator()(const APInt
&LHS
, const APInt
&RHS
) const {
2755 return LHS
.ult(RHS
);
2759 // Some interesting folding opportunity is present, so its worthwhile to
2760 // re-generate the operands list. Group the operands by constant scale,
2761 // to avoid multiplying by the same constant scale multiple times.
2762 std::map
<APInt
, SmallVector
<const SCEV
*, 4>, APIntCompare
> MulOpLists
;
2763 for (const SCEV
*NewOp
: NewOps
)
2764 MulOpLists
[M
.find(NewOp
)->second
].push_back(NewOp
);
2765 // Re-generate the operands list.
2767 if (AccumulatedConstant
!= 0)
2768 Ops
.push_back(getConstant(AccumulatedConstant
));
2769 for (auto &MulOp
: MulOpLists
) {
2770 if (MulOp
.first
== 1) {
2771 Ops
.push_back(getAddExpr(MulOp
.second
, SCEV::FlagAnyWrap
, Depth
+ 1));
2772 } else if (MulOp
.first
!= 0) {
2773 Ops
.push_back(getMulExpr(
2774 getConstant(MulOp
.first
),
2775 getAddExpr(MulOp
.second
, SCEV::FlagAnyWrap
, Depth
+ 1),
2776 SCEV::FlagAnyWrap
, Depth
+ 1));
2781 if (Ops
.size() == 1)
2783 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2787 // If we are adding something to a multiply expression, make sure the
2788 // something is not already an operand of the multiply. If so, merge it into
2790 for (; Idx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[Idx
]); ++Idx
) {
2791 const SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(Ops
[Idx
]);
2792 for (unsigned MulOp
= 0, e
= Mul
->getNumOperands(); MulOp
!= e
; ++MulOp
) {
2793 const SCEV
*MulOpSCEV
= Mul
->getOperand(MulOp
);
2794 if (isa
<SCEVConstant
>(MulOpSCEV
))
2796 for (unsigned AddOp
= 0, e
= Ops
.size(); AddOp
!= e
; ++AddOp
)
2797 if (MulOpSCEV
== Ops
[AddOp
]) {
2798 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2799 const SCEV
*InnerMul
= Mul
->getOperand(MulOp
== 0);
2800 if (Mul
->getNumOperands() != 2) {
2801 // If the multiply has more than two operands, we must get the
2803 SmallVector
<const SCEV
*, 4> MulOps(
2804 Mul
->operands().take_front(MulOp
));
2805 append_range(MulOps
, Mul
->operands().drop_front(MulOp
+ 1));
2806 InnerMul
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2808 SmallVector
<const SCEV
*, 2> TwoOps
= {getOne(Ty
), InnerMul
};
2809 const SCEV
*AddOne
= getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2810 const SCEV
*OuterMul
= getMulExpr(AddOne
, MulOpSCEV
,
2811 SCEV::FlagAnyWrap
, Depth
+ 1);
2812 if (Ops
.size() == 2) return OuterMul
;
2814 Ops
.erase(Ops
.begin()+AddOp
);
2815 Ops
.erase(Ops
.begin()+Idx
-1);
2817 Ops
.erase(Ops
.begin()+Idx
);
2818 Ops
.erase(Ops
.begin()+AddOp
-1);
2820 Ops
.push_back(OuterMul
);
2821 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2824 // Check this multiply against other multiplies being added together.
2825 for (unsigned OtherMulIdx
= Idx
+1;
2826 OtherMulIdx
< Ops
.size() && isa
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
2828 const SCEVMulExpr
*OtherMul
= cast
<SCEVMulExpr
>(Ops
[OtherMulIdx
]);
2829 // If MulOp occurs in OtherMul, we can fold the two multiplies
2831 for (unsigned OMulOp
= 0, e
= OtherMul
->getNumOperands();
2832 OMulOp
!= e
; ++OMulOp
)
2833 if (OtherMul
->getOperand(OMulOp
) == MulOpSCEV
) {
2834 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2835 const SCEV
*InnerMul1
= Mul
->getOperand(MulOp
== 0);
2836 if (Mul
->getNumOperands() != 2) {
2837 SmallVector
<const SCEV
*, 4> MulOps(
2838 Mul
->operands().take_front(MulOp
));
2839 append_range(MulOps
, Mul
->operands().drop_front(MulOp
+1));
2840 InnerMul1
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2842 const SCEV
*InnerMul2
= OtherMul
->getOperand(OMulOp
== 0);
2843 if (OtherMul
->getNumOperands() != 2) {
2844 SmallVector
<const SCEV
*, 4> MulOps(
2845 OtherMul
->operands().take_front(OMulOp
));
2846 append_range(MulOps
, OtherMul
->operands().drop_front(OMulOp
+1));
2847 InnerMul2
= getMulExpr(MulOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2849 SmallVector
<const SCEV
*, 2> TwoOps
= {InnerMul1
, InnerMul2
};
2850 const SCEV
*InnerMulSum
=
2851 getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2852 const SCEV
*OuterMul
= getMulExpr(MulOpSCEV
, InnerMulSum
,
2853 SCEV::FlagAnyWrap
, Depth
+ 1);
2854 if (Ops
.size() == 2) return OuterMul
;
2855 Ops
.erase(Ops
.begin()+Idx
);
2856 Ops
.erase(Ops
.begin()+OtherMulIdx
-1);
2857 Ops
.push_back(OuterMul
);
2858 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2864 // If there are any add recurrences in the operands list, see if any other
2865 // added values are loop invariant. If so, we can fold them into the
2867 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
2870 // Scan over all recurrences, trying to fold loop invariants into them.
2871 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
2872 // Scan all of the other operands to this add and add them to the vector if
2873 // they are loop invariant w.r.t. the recurrence.
2874 SmallVector
<const SCEV
*, 8> LIOps
;
2875 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
2876 const Loop
*AddRecLoop
= AddRec
->getLoop();
2877 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
2878 if (isAvailableAtLoopEntry(Ops
[i
], AddRecLoop
)) {
2879 LIOps
.push_back(Ops
[i
]);
2880 Ops
.erase(Ops
.begin()+i
);
2884 // If we found some loop invariants, fold them into the recurrence.
2885 if (!LIOps
.empty()) {
2886 // Compute nowrap flags for the addition of the loop-invariant ops and
2887 // the addrec. Temporarily push it as an operand for that purpose. These
2888 // flags are valid in the scope of the addrec only.
2889 LIOps
.push_back(AddRec
);
2890 SCEV::NoWrapFlags Flags
= ComputeFlags(LIOps
);
2893 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2894 LIOps
.push_back(AddRec
->getStart());
2896 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->operands());
2898 // It is not in general safe to propagate flags valid on an add within
2899 // the addrec scope to one outside it. We must prove that the inner
2900 // scope is guaranteed to execute if the outer one does to be able to
2901 // safely propagate. We know the program is undefined if poison is
2902 // produced on the inner scoped addrec. We also know that *for this use*
2903 // the outer scoped add can't overflow (because of the flags we just
2904 // computed for the inner scoped add) without the program being undefined.
2905 // Proving that entry to the outer scope neccesitates entry to the inner
2906 // scope, thus proves the program undefined if the flags would be violated
2907 // in the outer scope.
2908 SCEV::NoWrapFlags AddFlags
= Flags
;
2909 if (AddFlags
!= SCEV::FlagAnyWrap
) {
2910 auto *DefI
= getDefiningScopeBound(LIOps
);
2911 auto *ReachI
= &*AddRecLoop
->getHeader()->begin();
2912 if (!isGuaranteedToTransferExecutionTo(DefI
, ReachI
))
2913 AddFlags
= SCEV::FlagAnyWrap
;
2915 AddRecOps
[0] = getAddExpr(LIOps
, AddFlags
, Depth
+ 1);
2917 // Build the new addrec. Propagate the NUW and NSW flags if both the
2918 // outer add and the inner addrec are guaranteed to have no overflow.
2919 // Always propagate NW.
2920 Flags
= AddRec
->getNoWrapFlags(setFlags(Flags
, SCEV::FlagNW
));
2921 const SCEV
*NewRec
= getAddRecExpr(AddRecOps
, AddRecLoop
, Flags
);
2923 // If all of the other operands were loop invariant, we are done.
2924 if (Ops
.size() == 1) return NewRec
;
2926 // Otherwise, add the folded AddRec by the non-invariant parts.
2927 for (unsigned i
= 0;; ++i
)
2928 if (Ops
[i
] == AddRec
) {
2932 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2935 // Okay, if there weren't any loop invariants to be folded, check to see if
2936 // there are multiple AddRec's with the same loop induction variable being
2937 // added together. If so, we can fold them.
2938 for (unsigned OtherIdx
= Idx
+1;
2939 OtherIdx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2941 // We expect the AddRecExpr's to be sorted in reverse dominance order,
2942 // so that the 1st found AddRecExpr is dominated by all others.
2943 assert(DT
.dominates(
2944 cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
])->getLoop()->getHeader(),
2945 AddRec
->getLoop()->getHeader()) &&
2946 "AddRecExprs are not sorted in reverse dominance order?");
2947 if (AddRecLoop
== cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
])->getLoop()) {
2948 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2949 SmallVector
<const SCEV
*, 4> AddRecOps(AddRec
->operands());
2950 for (; OtherIdx
!= Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2952 const auto *OtherAddRec
= cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
2953 if (OtherAddRec
->getLoop() == AddRecLoop
) {
2954 for (unsigned i
= 0, e
= OtherAddRec
->getNumOperands();
2956 if (i
>= AddRecOps
.size()) {
2957 append_range(AddRecOps
, OtherAddRec
->operands().drop_front(i
));
2960 SmallVector
<const SCEV
*, 2> TwoOps
= {
2961 AddRecOps
[i
], OtherAddRec
->getOperand(i
)};
2962 AddRecOps
[i
] = getAddExpr(TwoOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
2964 Ops
.erase(Ops
.begin() + OtherIdx
); --OtherIdx
;
2967 // Step size has changed, so we cannot guarantee no self-wraparound.
2968 Ops
[Idx
] = getAddRecExpr(AddRecOps
, AddRecLoop
, SCEV::FlagAnyWrap
);
2969 return getAddExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
2973 // Otherwise couldn't fold anything into this recurrence. Move onto the
2977 // Okay, it looks like we really DO need an add expr. Check to see if we
2978 // already have one, otherwise create a new one.
2979 return getOrCreateAddExpr(Ops
, ComputeFlags(Ops
));
2983 ScalarEvolution::getOrCreateAddExpr(ArrayRef
<const SCEV
*> Ops
,
2984 SCEV::NoWrapFlags Flags
) {
2985 FoldingSetNodeID ID
;
2986 ID
.AddInteger(scAddExpr
);
2987 for (const SCEV
*Op
: Ops
)
2991 static_cast<SCEVAddExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
2993 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
2994 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
2995 S
= new (SCEVAllocator
)
2996 SCEVAddExpr(ID
.Intern(SCEVAllocator
), O
, Ops
.size());
2997 UniqueSCEVs
.InsertNode(S
, IP
);
2998 registerUser(S
, Ops
);
3000 S
->setNoWrapFlags(Flags
);
3005 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef
<const SCEV
*> Ops
,
3006 const Loop
*L
, SCEV::NoWrapFlags Flags
) {
3007 FoldingSetNodeID ID
;
3008 ID
.AddInteger(scAddRecExpr
);
3009 for (const SCEV
*Op
: Ops
)
3014 static_cast<SCEVAddRecExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
3016 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
3017 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
3018 S
= new (SCEVAllocator
)
3019 SCEVAddRecExpr(ID
.Intern(SCEVAllocator
), O
, Ops
.size(), L
);
3020 UniqueSCEVs
.InsertNode(S
, IP
);
3021 LoopUsers
[L
].push_back(S
);
3022 registerUser(S
, Ops
);
3024 setNoWrapFlags(S
, Flags
);
3029 ScalarEvolution::getOrCreateMulExpr(ArrayRef
<const SCEV
*> Ops
,
3030 SCEV::NoWrapFlags Flags
) {
3031 FoldingSetNodeID ID
;
3032 ID
.AddInteger(scMulExpr
);
3033 for (const SCEV
*Op
: Ops
)
3037 static_cast<SCEVMulExpr
*>(UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
));
3039 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
3040 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
3041 S
= new (SCEVAllocator
) SCEVMulExpr(ID
.Intern(SCEVAllocator
),
3043 UniqueSCEVs
.InsertNode(S
, IP
);
3044 registerUser(S
, Ops
);
3046 S
->setNoWrapFlags(Flags
);
3050 static uint64_t umul_ov(uint64_t i
, uint64_t j
, bool &Overflow
) {
3052 if (j
> 1 && k
/ j
!= i
) Overflow
= true;
3056 /// Compute the result of "n choose k", the binomial coefficient. If an
3057 /// intermediate computation overflows, Overflow will be set and the return will
3058 /// be garbage. Overflow is not cleared on absence of overflow.
3059 static uint64_t Choose(uint64_t n
, uint64_t k
, bool &Overflow
) {
3060 // We use the multiplicative formula:
3061 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3062 // At each iteration, we take the n-th term of the numeral and divide by the
3063 // (k-n)th term of the denominator. This division will always produce an
3064 // integral result, and helps reduce the chance of overflow in the
3065 // intermediate computations. However, we can still overflow even when the
3066 // final result would fit.
3068 if (n
== 0 || n
== k
) return 1;
3069 if (k
> n
) return 0;
3075 for (uint64_t i
= 1; i
<= k
; ++i
) {
3076 r
= umul_ov(r
, n
-(i
-1), Overflow
);
3082 /// Determine if any of the operands in this SCEV are a constant or if
3083 /// any of the add or multiply expressions in this SCEV contain a constant.
3084 static bool containsConstantInAddMulChain(const SCEV
*StartExpr
) {
3085 struct FindConstantInAddMulChain
{
3086 bool FoundConstant
= false;
3088 bool follow(const SCEV
*S
) {
3089 FoundConstant
|= isa
<SCEVConstant
>(S
);
3090 return isa
<SCEVAddExpr
>(S
) || isa
<SCEVMulExpr
>(S
);
3093 bool isDone() const {
3094 return FoundConstant
;
3098 FindConstantInAddMulChain F
;
3099 SCEVTraversal
<FindConstantInAddMulChain
> ST(F
);
3100 ST
.visitAll(StartExpr
);
3101 return F
.FoundConstant
;
3104 /// Get a canonical multiply expression, or something simpler if possible.
3105 const SCEV
*ScalarEvolution::getMulExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
3106 SCEV::NoWrapFlags OrigFlags
,
3108 assert(OrigFlags
== maskFlags(OrigFlags
, SCEV::FlagNUW
| SCEV::FlagNSW
) &&
3109 "only nuw or nsw allowed");
3110 assert(!Ops
.empty() && "Cannot get empty mul!");
3111 if (Ops
.size() == 1) return Ops
[0];
3113 Type
*ETy
= Ops
[0]->getType();
3114 assert(!ETy
->isPointerTy());
3115 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
)
3116 assert(Ops
[i
]->getType() == ETy
&&
3117 "SCEVMulExpr operand types don't match!");
3120 // Sort by complexity, this groups all similar expression types together.
3121 GroupByComplexity(Ops
, &LI
, DT
);
3123 // If there are any constants, fold them together.
3125 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
3127 assert(Idx
< Ops
.size());
3128 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
3129 // We found two constants, fold them together!
3130 Ops
[0] = getConstant(LHSC
->getAPInt() * RHSC
->getAPInt());
3131 if (Ops
.size() == 2) return Ops
[0];
3132 Ops
.erase(Ops
.begin()+1); // Erase the folded element
3133 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
3136 // If we have a multiply of zero, it will always be zero.
3137 if (LHSC
->getValue()->isZero())
3140 // If we are left with a constant one being multiplied, strip it off.
3141 if (LHSC
->getValue()->isOne()) {
3142 Ops
.erase(Ops
.begin());
3146 if (Ops
.size() == 1)
3150 // Delay expensive flag strengthening until necessary.
3151 auto ComputeFlags
= [this, OrigFlags
](const ArrayRef
<const SCEV
*> Ops
) {
3152 return StrengthenNoWrapFlags(this, scMulExpr
, Ops
, OrigFlags
);
3155 // Limit recursion calls depth.
3156 if (Depth
> MaxArithDepth
|| hasHugeExpression(Ops
))
3157 return getOrCreateMulExpr(Ops
, ComputeFlags(Ops
));
3159 if (SCEV
*S
= findExistingSCEVInCache(scMulExpr
, Ops
)) {
3160 // Don't strengthen flags if we have no new information.
3161 SCEVMulExpr
*Mul
= static_cast<SCEVMulExpr
*>(S
);
3162 if (Mul
->getNoWrapFlags(OrigFlags
) != OrigFlags
)
3163 Mul
->setNoWrapFlags(ComputeFlags(Ops
));
3167 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
3168 if (Ops
.size() == 2) {
3169 // C1*(C2+V) -> C1*C2 + C1*V
3170 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1]))
3171 // If any of Add's ops are Adds or Muls with a constant, apply this
3172 // transformation as well.
3174 // TODO: There are some cases where this transformation is not
3175 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of
3176 // this transformation should be narrowed down.
3177 if (Add
->getNumOperands() == 2 && containsConstantInAddMulChain(Add
)) {
3178 const SCEV
*LHS
= getMulExpr(LHSC
, Add
->getOperand(0),
3179 SCEV::FlagAnyWrap
, Depth
+ 1);
3180 const SCEV
*RHS
= getMulExpr(LHSC
, Add
->getOperand(1),
3181 SCEV::FlagAnyWrap
, Depth
+ 1);
3182 return getAddExpr(LHS
, RHS
, SCEV::FlagAnyWrap
, Depth
+ 1);
3185 if (Ops
[0]->isAllOnesValue()) {
3186 // If we have a mul by -1 of an add, try distributing the -1 among the
3188 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Ops
[1])) {
3189 SmallVector
<const SCEV
*, 4> NewOps
;
3190 bool AnyFolded
= false;
3191 for (const SCEV
*AddOp
: Add
->operands()) {
3192 const SCEV
*Mul
= getMulExpr(Ops
[0], AddOp
, SCEV::FlagAnyWrap
,
3194 if (!isa
<SCEVMulExpr
>(Mul
)) AnyFolded
= true;
3195 NewOps
.push_back(Mul
);
3198 return getAddExpr(NewOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
3199 } else if (const auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(Ops
[1])) {
3200 // Negation preserves a recurrence's no self-wrap property.
3201 SmallVector
<const SCEV
*, 4> Operands
;
3202 for (const SCEV
*AddRecOp
: AddRec
->operands())
3203 Operands
.push_back(getMulExpr(Ops
[0], AddRecOp
, SCEV::FlagAnyWrap
,
3205 // Let M be the minimum representable signed value. AddRec with nsw
3206 // multiplied by -1 can have signed overflow if and only if it takes a
3207 // value of M: M * (-1) would stay M and (M + 1) * (-1) would be the
3208 // maximum signed value. In all other cases signed overflow is
3210 auto FlagsMask
= SCEV::FlagNW
;
3211 if (hasFlags(AddRec
->getNoWrapFlags(), SCEV::FlagNSW
)) {
3213 APInt::getSignedMinValue(getTypeSizeInBits(AddRec
->getType()));
3214 if (getSignedRangeMin(AddRec
) != MinInt
)
3215 FlagsMask
= setFlags(FlagsMask
, SCEV::FlagNSW
);
3217 return getAddRecExpr(Operands
, AddRec
->getLoop(),
3218 AddRec
->getNoWrapFlags(FlagsMask
));
3224 // Skip over the add expression until we get to a multiply.
3225 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scMulExpr
)
3228 // If there are mul operands inline them all into this expression.
3229 if (Idx
< Ops
.size()) {
3230 bool DeletedMul
= false;
3231 while (const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(Ops
[Idx
])) {
3232 if (Ops
.size() > MulOpsInlineThreshold
)
3234 // If we have an mul, expand the mul operands onto the end of the
3236 Ops
.erase(Ops
.begin()+Idx
);
3237 append_range(Ops
, Mul
->operands());
3241 // If we deleted at least one mul, we added operands to the end of the
3242 // list, and they are not necessarily sorted. Recurse to resort and
3243 // resimplify any operands we just acquired.
3245 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3248 // If there are any add recurrences in the operands list, see if any other
3249 // added values are loop invariant. If so, we can fold them into the
3251 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < scAddRecExpr
)
3254 // Scan over all recurrences, trying to fold loop invariants into them.
3255 for (; Idx
< Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[Idx
]); ++Idx
) {
3256 // Scan all of the other operands to this mul and add them to the vector
3257 // if they are loop invariant w.r.t. the recurrence.
3258 SmallVector
<const SCEV
*, 8> LIOps
;
3259 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(Ops
[Idx
]);
3260 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
3261 if (isAvailableAtLoopEntry(Ops
[i
], AddRec
->getLoop())) {
3262 LIOps
.push_back(Ops
[i
]);
3263 Ops
.erase(Ops
.begin()+i
);
3267 // If we found some loop invariants, fold them into the recurrence.
3268 if (!LIOps
.empty()) {
3269 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
3270 SmallVector
<const SCEV
*, 4> NewOps
;
3271 NewOps
.reserve(AddRec
->getNumOperands());
3272 const SCEV
*Scale
= getMulExpr(LIOps
, SCEV::FlagAnyWrap
, Depth
+ 1);
3274 // If both the mul and addrec are nuw, we can preserve nuw.
3275 // If both the mul and addrec are nsw, we can only preserve nsw if either
3276 // a) they are also nuw, or
3277 // b) all multiplications of addrec operands with scale are nsw.
3278 SCEV::NoWrapFlags Flags
=
3279 AddRec
->getNoWrapFlags(ComputeFlags({Scale
, AddRec
}));
3281 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
3282 NewOps
.push_back(getMulExpr(Scale
, AddRec
->getOperand(i
),
3283 SCEV::FlagAnyWrap
, Depth
+ 1));
3285 if (hasFlags(Flags
, SCEV::FlagNSW
) && !hasFlags(Flags
, SCEV::FlagNUW
)) {
3286 ConstantRange NSWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
3287 Instruction::Mul
, getSignedRange(Scale
),
3288 OverflowingBinaryOperator::NoSignedWrap
);
3289 if (!NSWRegion
.contains(getSignedRange(AddRec
->getOperand(i
))))
3290 Flags
= clearFlags(Flags
, SCEV::FlagNSW
);
3294 const SCEV
*NewRec
= getAddRecExpr(NewOps
, AddRec
->getLoop(), Flags
);
3296 // If all of the other operands were loop invariant, we are done.
3297 if (Ops
.size() == 1) return NewRec
;
3299 // Otherwise, multiply the folded AddRec by the non-invariant parts.
3300 for (unsigned i
= 0;; ++i
)
3301 if (Ops
[i
] == AddRec
) {
3305 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3308 // Okay, if there weren't any loop invariants to be folded, check to see
3309 // if there are multiple AddRec's with the same loop induction variable
3310 // being multiplied together. If so, we can fold them.
3312 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3313 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3314 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3315 // ]]],+,...up to x=2n}.
3316 // Note that the arguments to choose() are always integers with values
3317 // known at compile time, never SCEV objects.
3319 // The implementation avoids pointless extra computations when the two
3320 // addrec's are of different length (mathematically, it's equivalent to
3321 // an infinite stream of zeros on the right).
3322 bool OpsModified
= false;
3323 for (unsigned OtherIdx
= Idx
+1;
3324 OtherIdx
!= Ops
.size() && isa
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
3326 const SCEVAddRecExpr
*OtherAddRec
=
3327 dyn_cast
<SCEVAddRecExpr
>(Ops
[OtherIdx
]);
3328 if (!OtherAddRec
|| OtherAddRec
->getLoop() != AddRec
->getLoop())
3331 // Limit max number of arguments to avoid creation of unreasonably big
3332 // SCEVAddRecs with very complex operands.
3333 if (AddRec
->getNumOperands() + OtherAddRec
->getNumOperands() - 1 >
3334 MaxAddRecSize
|| hasHugeExpression({AddRec
, OtherAddRec
}))
3337 bool Overflow
= false;
3338 Type
*Ty
= AddRec
->getType();
3339 bool LargerThan64Bits
= getTypeSizeInBits(Ty
) > 64;
3340 SmallVector
<const SCEV
*, 7> AddRecOps
;
3341 for (int x
= 0, xe
= AddRec
->getNumOperands() +
3342 OtherAddRec
->getNumOperands() - 1; x
!= xe
&& !Overflow
; ++x
) {
3343 SmallVector
<const SCEV
*, 7> SumOps
;
3344 for (int y
= x
, ye
= 2*x
+1; y
!= ye
&& !Overflow
; ++y
) {
3345 uint64_t Coeff1
= Choose(x
, 2*x
- y
, Overflow
);
3346 for (int z
= std::max(y
-x
, y
-(int)AddRec
->getNumOperands()+1),
3347 ze
= std::min(x
+1, (int)OtherAddRec
->getNumOperands());
3348 z
< ze
&& !Overflow
; ++z
) {
3349 uint64_t Coeff2
= Choose(2*x
- y
, x
-z
, Overflow
);
3351 if (LargerThan64Bits
)
3352 Coeff
= umul_ov(Coeff1
, Coeff2
, Overflow
);
3354 Coeff
= Coeff1
*Coeff2
;
3355 const SCEV
*CoeffTerm
= getConstant(Ty
, Coeff
);
3356 const SCEV
*Term1
= AddRec
->getOperand(y
-z
);
3357 const SCEV
*Term2
= OtherAddRec
->getOperand(z
);
3358 SumOps
.push_back(getMulExpr(CoeffTerm
, Term1
, Term2
,
3359 SCEV::FlagAnyWrap
, Depth
+ 1));
3363 SumOps
.push_back(getZero(Ty
));
3364 AddRecOps
.push_back(getAddExpr(SumOps
, SCEV::FlagAnyWrap
, Depth
+ 1));
3367 const SCEV
*NewAddRec
= getAddRecExpr(AddRecOps
, AddRec
->getLoop(),
3369 if (Ops
.size() == 2) return NewAddRec
;
3370 Ops
[Idx
] = NewAddRec
;
3371 Ops
.erase(Ops
.begin() + OtherIdx
); --OtherIdx
;
3373 AddRec
= dyn_cast
<SCEVAddRecExpr
>(NewAddRec
);
3379 return getMulExpr(Ops
, SCEV::FlagAnyWrap
, Depth
+ 1);
3381 // Otherwise couldn't fold anything into this recurrence. Move onto the
3385 // Okay, it looks like we really DO need an mul expr. Check to see if we
3386 // already have one, otherwise create a new one.
3387 return getOrCreateMulExpr(Ops
, ComputeFlags(Ops
));
3390 /// Represents an unsigned remainder expression based on unsigned division.
3391 const SCEV
*ScalarEvolution::getURemExpr(const SCEV
*LHS
,
3393 assert(getEffectiveSCEVType(LHS
->getType()) ==
3394 getEffectiveSCEVType(RHS
->getType()) &&
3395 "SCEVURemExpr operand types don't match!");
3397 // Short-circuit easy cases
3398 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
3399 // If constant is one, the result is trivial
3400 if (RHSC
->getValue()->isOne())
3401 return getZero(LHS
->getType()); // X urem 1 --> 0
3403 // If constant is a power of two, fold into a zext(trunc(LHS)).
3404 if (RHSC
->getAPInt().isPowerOf2()) {
3405 Type
*FullTy
= LHS
->getType();
3407 IntegerType::get(getContext(), RHSC
->getAPInt().logBase2());
3408 return getZeroExtendExpr(getTruncateExpr(LHS
, TruncTy
), FullTy
);
3412 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3413 const SCEV
*UDiv
= getUDivExpr(LHS
, RHS
);
3414 const SCEV
*Mult
= getMulExpr(UDiv
, RHS
, SCEV::FlagNUW
);
3415 return getMinusSCEV(LHS
, Mult
, SCEV::FlagNUW
);
3418 /// Get a canonical unsigned division expression, or something simpler if
3420 const SCEV
*ScalarEvolution::getUDivExpr(const SCEV
*LHS
,
3422 assert(!LHS
->getType()->isPointerTy() &&
3423 "SCEVUDivExpr operand can't be pointer!");
3424 assert(LHS
->getType() == RHS
->getType() &&
3425 "SCEVUDivExpr operand types don't match!");
3427 FoldingSetNodeID ID
;
3428 ID
.AddInteger(scUDivExpr
);
3432 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
3436 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
))
3437 if (LHSC
->getValue()->isZero())
3440 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
3441 if (RHSC
->getValue()->isOne())
3442 return LHS
; // X udiv 1 --> x
3443 // If the denominator is zero, the result of the udiv is undefined. Don't
3444 // try to analyze it, because the resolution chosen here may differ from
3445 // the resolution chosen in other parts of the compiler.
3446 if (!RHSC
->getValue()->isZero()) {
3447 // Determine if the division can be folded into the operands of
3449 // TODO: Generalize this to non-constants by using known-bits information.
3450 Type
*Ty
= LHS
->getType();
3451 unsigned LZ
= RHSC
->getAPInt().countl_zero();
3452 unsigned MaxShiftAmt
= getTypeSizeInBits(Ty
) - LZ
- 1;
3453 // For non-power-of-two values, effectively round the value up to the
3454 // nearest power of two.
3455 if (!RHSC
->getAPInt().isPowerOf2())
3457 IntegerType
*ExtTy
=
3458 IntegerType::get(getContext(), getTypeSizeInBits(Ty
) + MaxShiftAmt
);
3459 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
3460 if (const SCEVConstant
*Step
=
3461 dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*this))) {
3462 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3463 const APInt
&StepInt
= Step
->getAPInt();
3464 const APInt
&DivInt
= RHSC
->getAPInt();
3465 if (!StepInt
.urem(DivInt
) &&
3466 getZeroExtendExpr(AR
, ExtTy
) ==
3467 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
3468 getZeroExtendExpr(Step
, ExtTy
),
3469 AR
->getLoop(), SCEV::FlagAnyWrap
)) {
3470 SmallVector
<const SCEV
*, 4> Operands
;
3471 for (const SCEV
*Op
: AR
->operands())
3472 Operands
.push_back(getUDivExpr(Op
, RHS
));
3473 return getAddRecExpr(Operands
, AR
->getLoop(), SCEV::FlagNW
);
3475 /// Get a canonical UDivExpr for a recurrence.
3476 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3477 // We can currently only fold X%N if X is constant.
3478 const SCEVConstant
*StartC
= dyn_cast
<SCEVConstant
>(AR
->getStart());
3479 if (StartC
&& !DivInt
.urem(StepInt
) &&
3480 getZeroExtendExpr(AR
, ExtTy
) ==
3481 getAddRecExpr(getZeroExtendExpr(AR
->getStart(), ExtTy
),
3482 getZeroExtendExpr(Step
, ExtTy
),
3483 AR
->getLoop(), SCEV::FlagAnyWrap
)) {
3484 const APInt
&StartInt
= StartC
->getAPInt();
3485 const APInt
&StartRem
= StartInt
.urem(StepInt
);
3486 if (StartRem
!= 0) {
3487 const SCEV
*NewLHS
=
3488 getAddRecExpr(getConstant(StartInt
- StartRem
), Step
,
3489 AR
->getLoop(), SCEV::FlagNW
);
3490 if (LHS
!= NewLHS
) {
3493 // Reset the ID to include the new LHS, and check if it is
3496 ID
.AddInteger(scUDivExpr
);
3500 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
))
3506 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3507 if (const SCEVMulExpr
*M
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
3508 SmallVector
<const SCEV
*, 4> Operands
;
3509 for (const SCEV
*Op
: M
->operands())
3510 Operands
.push_back(getZeroExtendExpr(Op
, ExtTy
));
3511 if (getZeroExtendExpr(M
, ExtTy
) == getMulExpr(Operands
))
3512 // Find an operand that's safely divisible.
3513 for (unsigned i
= 0, e
= M
->getNumOperands(); i
!= e
; ++i
) {
3514 const SCEV
*Op
= M
->getOperand(i
);
3515 const SCEV
*Div
= getUDivExpr(Op
, RHSC
);
3516 if (!isa
<SCEVUDivExpr
>(Div
) && getMulExpr(Div
, RHSC
) == Op
) {
3517 Operands
= SmallVector
<const SCEV
*, 4>(M
->operands());
3519 return getMulExpr(Operands
);
3524 // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3525 if (const SCEVUDivExpr
*OtherDiv
= dyn_cast
<SCEVUDivExpr
>(LHS
)) {
3526 if (auto *DivisorConstant
=
3527 dyn_cast
<SCEVConstant
>(OtherDiv
->getRHS())) {
3528 bool Overflow
= false;
3530 DivisorConstant
->getAPInt().umul_ov(RHSC
->getAPInt(), Overflow
);
3532 return getConstant(RHSC
->getType(), 0, false);
3534 return getUDivExpr(OtherDiv
->getLHS(), getConstant(NewRHS
));
3538 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3539 if (const SCEVAddExpr
*A
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
3540 SmallVector
<const SCEV
*, 4> Operands
;
3541 for (const SCEV
*Op
: A
->operands())
3542 Operands
.push_back(getZeroExtendExpr(Op
, ExtTy
));
3543 if (getZeroExtendExpr(A
, ExtTy
) == getAddExpr(Operands
)) {
3545 for (unsigned i
= 0, e
= A
->getNumOperands(); i
!= e
; ++i
) {
3546 const SCEV
*Op
= getUDivExpr(A
->getOperand(i
), RHS
);
3547 if (isa
<SCEVUDivExpr
>(Op
) ||
3548 getMulExpr(Op
, RHS
) != A
->getOperand(i
))
3550 Operands
.push_back(Op
);
3552 if (Operands
.size() == A
->getNumOperands())
3553 return getAddExpr(Operands
);
3557 // Fold if both operands are constant.
3558 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
))
3559 return getConstant(LHSC
->getAPInt().udiv(RHSC
->getAPInt()));
3563 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3564 // changes). Make sure we get a new one.
3566 if (const SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) return S
;
3567 SCEV
*S
= new (SCEVAllocator
) SCEVUDivExpr(ID
.Intern(SCEVAllocator
),
3569 UniqueSCEVs
.InsertNode(S
, IP
);
3570 registerUser(S
, {LHS
, RHS
});
3574 APInt
gcd(const SCEVConstant
*C1
, const SCEVConstant
*C2
) {
3575 APInt A
= C1
->getAPInt().abs();
3576 APInt B
= C2
->getAPInt().abs();
3577 uint32_t ABW
= A
.getBitWidth();
3578 uint32_t BBW
= B
.getBitWidth();
3585 return APIntOps::GreatestCommonDivisor(std::move(A
), std::move(B
));
3588 /// Get a canonical unsigned division expression, or something simpler if
3589 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3590 /// can attempt to remove factors from the LHS and RHS. We can't do this when
3591 /// it's not exact because the udiv may be clearing bits.
3592 const SCEV
*ScalarEvolution::getUDivExactExpr(const SCEV
*LHS
,
3594 // TODO: we could try to find factors in all sorts of things, but for now we
3595 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3596 // end of this file for inspiration.
3598 const SCEVMulExpr
*Mul
= dyn_cast
<SCEVMulExpr
>(LHS
);
3599 if (!Mul
|| !Mul
->hasNoUnsignedWrap())
3600 return getUDivExpr(LHS
, RHS
);
3602 if (const SCEVConstant
*RHSCst
= dyn_cast
<SCEVConstant
>(RHS
)) {
3603 // If the mulexpr multiplies by a constant, then that constant must be the
3604 // first element of the mulexpr.
3605 if (const auto *LHSCst
= dyn_cast
<SCEVConstant
>(Mul
->getOperand(0))) {
3606 if (LHSCst
== RHSCst
) {
3607 SmallVector
<const SCEV
*, 2> Operands(drop_begin(Mul
->operands()));
3608 return getMulExpr(Operands
);
3611 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3612 // that there's a factor provided by one of the other terms. We need to
3614 APInt Factor
= gcd(LHSCst
, RHSCst
);
3615 if (!Factor
.isIntN(1)) {
3617 cast
<SCEVConstant
>(getConstant(LHSCst
->getAPInt().udiv(Factor
)));
3619 cast
<SCEVConstant
>(getConstant(RHSCst
->getAPInt().udiv(Factor
)));
3620 SmallVector
<const SCEV
*, 2> Operands
;
3621 Operands
.push_back(LHSCst
);
3622 append_range(Operands
, Mul
->operands().drop_front());
3623 LHS
= getMulExpr(Operands
);
3625 Mul
= dyn_cast
<SCEVMulExpr
>(LHS
);
3627 return getUDivExactExpr(LHS
, RHS
);
3632 for (int i
= 0, e
= Mul
->getNumOperands(); i
!= e
; ++i
) {
3633 if (Mul
->getOperand(i
) == RHS
) {
3634 SmallVector
<const SCEV
*, 2> Operands
;
3635 append_range(Operands
, Mul
->operands().take_front(i
));
3636 append_range(Operands
, Mul
->operands().drop_front(i
+ 1));
3637 return getMulExpr(Operands
);
3641 return getUDivExpr(LHS
, RHS
);
3644 /// Get an add recurrence expression for the specified loop. Simplify the
3645 /// expression as much as possible.
3646 const SCEV
*ScalarEvolution::getAddRecExpr(const SCEV
*Start
, const SCEV
*Step
,
3648 SCEV::NoWrapFlags Flags
) {
3649 SmallVector
<const SCEV
*, 4> Operands
;
3650 Operands
.push_back(Start
);
3651 if (const SCEVAddRecExpr
*StepChrec
= dyn_cast
<SCEVAddRecExpr
>(Step
))
3652 if (StepChrec
->getLoop() == L
) {
3653 append_range(Operands
, StepChrec
->operands());
3654 return getAddRecExpr(Operands
, L
, maskFlags(Flags
, SCEV::FlagNW
));
3657 Operands
.push_back(Step
);
3658 return getAddRecExpr(Operands
, L
, Flags
);
3661 /// Get an add recurrence expression for the specified loop. Simplify the
3662 /// expression as much as possible.
3664 ScalarEvolution::getAddRecExpr(SmallVectorImpl
<const SCEV
*> &Operands
,
3665 const Loop
*L
, SCEV::NoWrapFlags Flags
) {
3666 if (Operands
.size() == 1) return Operands
[0];
3668 Type
*ETy
= getEffectiveSCEVType(Operands
[0]->getType());
3669 for (unsigned i
= 1, e
= Operands
.size(); i
!= e
; ++i
) {
3670 assert(getEffectiveSCEVType(Operands
[i
]->getType()) == ETy
&&
3671 "SCEVAddRecExpr operand types don't match!");
3672 assert(!Operands
[i
]->getType()->isPointerTy() && "Step must be integer");
3674 for (unsigned i
= 0, e
= Operands
.size(); i
!= e
; ++i
)
3675 assert(isAvailableAtLoopEntry(Operands
[i
], L
) &&
3676 "SCEVAddRecExpr operand is not available at loop entry!");
3679 if (Operands
.back()->isZero()) {
3680 Operands
.pop_back();
3681 return getAddRecExpr(Operands
, L
, SCEV::FlagAnyWrap
); // {X,+,0} --> X
3684 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3685 // use that information to infer NUW and NSW flags. However, computing a
3686 // BE count requires calling getAddRecExpr, so we may not yet have a
3687 // meaningful BE count at this point (and if we don't, we'd be stuck
3688 // with a SCEVCouldNotCompute as the cached BE count).
3690 Flags
= StrengthenNoWrapFlags(this, scAddRecExpr
, Operands
, Flags
);
3692 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3693 if (const SCEVAddRecExpr
*NestedAR
= dyn_cast
<SCEVAddRecExpr
>(Operands
[0])) {
3694 const Loop
*NestedLoop
= NestedAR
->getLoop();
3695 if (L
->contains(NestedLoop
)
3696 ? (L
->getLoopDepth() < NestedLoop
->getLoopDepth())
3697 : (!NestedLoop
->contains(L
) &&
3698 DT
.dominates(L
->getHeader(), NestedLoop
->getHeader()))) {
3699 SmallVector
<const SCEV
*, 4> NestedOperands(NestedAR
->operands());
3700 Operands
[0] = NestedAR
->getStart();
3701 // AddRecs require their operands be loop-invariant with respect to their
3702 // loops. Don't perform this transformation if it would break this
3704 bool AllInvariant
= all_of(
3705 Operands
, [&](const SCEV
*Op
) { return isLoopInvariant(Op
, L
); });
3708 // Create a recurrence for the outer loop with the same step size.
3710 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3711 // inner recurrence has the same property.
3712 SCEV::NoWrapFlags OuterFlags
=
3713 maskFlags(Flags
, SCEV::FlagNW
| NestedAR
->getNoWrapFlags());
3715 NestedOperands
[0] = getAddRecExpr(Operands
, L
, OuterFlags
);
3716 AllInvariant
= all_of(NestedOperands
, [&](const SCEV
*Op
) {
3717 return isLoopInvariant(Op
, NestedLoop
);
3721 // Ok, both add recurrences are valid after the transformation.
3723 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3724 // the outer recurrence has the same property.
3725 SCEV::NoWrapFlags InnerFlags
=
3726 maskFlags(NestedAR
->getNoWrapFlags(), SCEV::FlagNW
| Flags
);
3727 return getAddRecExpr(NestedOperands
, NestedLoop
, InnerFlags
);
3730 // Reset Operands to its original state.
3731 Operands
[0] = NestedAR
;
3735 // Okay, it looks like we really DO need an addrec expr. Check to see if we
3736 // already have one, otherwise create a new one.
3737 return getOrCreateAddRecExpr(Operands
, L
, Flags
);
3741 ScalarEvolution::getGEPExpr(GEPOperator
*GEP
,
3742 const SmallVectorImpl
<const SCEV
*> &IndexExprs
) {
3743 const SCEV
*BaseExpr
= getSCEV(GEP
->getPointerOperand());
3744 // getSCEV(Base)->getType() has the same address space as Base->getType()
3745 // because SCEV::getType() preserves the address space.
3746 Type
*IntIdxTy
= getEffectiveSCEVType(BaseExpr
->getType());
3747 const bool AssumeInBoundsFlags
= [&]() {
3748 if (!GEP
->isInBounds())
3751 // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3752 // but to do that, we have to ensure that said flag is valid in the entire
3753 // defined scope of the SCEV.
3754 auto *GEPI
= dyn_cast
<Instruction
>(GEP
);
3755 // TODO: non-instructions have global scope. We might be able to prove
3756 // some global scope cases
3757 return GEPI
&& isSCEVExprNeverPoison(GEPI
);
3760 SCEV::NoWrapFlags OffsetWrap
=
3761 AssumeInBoundsFlags
? SCEV::FlagNSW
: SCEV::FlagAnyWrap
;
3763 Type
*CurTy
= GEP
->getType();
3764 bool FirstIter
= true;
3765 SmallVector
<const SCEV
*, 4> Offsets
;
3766 for (const SCEV
*IndexExpr
: IndexExprs
) {
3767 // Compute the (potentially symbolic) offset in bytes for this index.
3768 if (StructType
*STy
= dyn_cast
<StructType
>(CurTy
)) {
3769 // For a struct, add the member offset.
3770 ConstantInt
*Index
= cast
<SCEVConstant
>(IndexExpr
)->getValue();
3771 unsigned FieldNo
= Index
->getZExtValue();
3772 const SCEV
*FieldOffset
= getOffsetOfExpr(IntIdxTy
, STy
, FieldNo
);
3773 Offsets
.push_back(FieldOffset
);
3775 // Update CurTy to the type of the field at Index.
3776 CurTy
= STy
->getTypeAtIndex(Index
);
3778 // Update CurTy to its element type.
3780 assert(isa
<PointerType
>(CurTy
) &&
3781 "The first index of a GEP indexes a pointer");
3782 CurTy
= GEP
->getSourceElementType();
3785 CurTy
= GetElementPtrInst::getTypeAtIndex(CurTy
, (uint64_t)0);
3787 // For an array, add the element offset, explicitly scaled.
3788 const SCEV
*ElementSize
= getSizeOfExpr(IntIdxTy
, CurTy
);
3789 // Getelementptr indices are signed.
3790 IndexExpr
= getTruncateOrSignExtend(IndexExpr
, IntIdxTy
);
3792 // Multiply the index by the element size to compute the element offset.
3793 const SCEV
*LocalOffset
= getMulExpr(IndexExpr
, ElementSize
, OffsetWrap
);
3794 Offsets
.push_back(LocalOffset
);
3798 // Handle degenerate case of GEP without offsets.
3799 if (Offsets
.empty())
3802 // Add the offsets together, assuming nsw if inbounds.
3803 const SCEV
*Offset
= getAddExpr(Offsets
, OffsetWrap
);
3804 // Add the base address and the offset. We cannot use the nsw flag, as the
3805 // base address is unsigned. However, if we know that the offset is
3806 // non-negative, we can use nuw.
3807 SCEV::NoWrapFlags BaseWrap
= AssumeInBoundsFlags
&& isKnownNonNegative(Offset
)
3808 ? SCEV::FlagNUW
: SCEV::FlagAnyWrap
;
3809 auto *GEPExpr
= getAddExpr(BaseExpr
, Offset
, BaseWrap
);
3810 assert(BaseExpr
->getType() == GEPExpr
->getType() &&
3811 "GEP should not change type mid-flight.");
3815 SCEV
*ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType
,
3816 ArrayRef
<const SCEV
*> Ops
) {
3817 FoldingSetNodeID ID
;
3818 ID
.AddInteger(SCEVType
);
3819 for (const SCEV
*Op
: Ops
)
3822 return UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
);
3825 const SCEV
*ScalarEvolution::getAbsExpr(const SCEV
*Op
, bool IsNSW
) {
3826 SCEV::NoWrapFlags Flags
= IsNSW
? SCEV::FlagNSW
: SCEV::FlagAnyWrap
;
3827 return getSMaxExpr(Op
, getNegativeSCEV(Op
, Flags
));
3830 const SCEV
*ScalarEvolution::getMinMaxExpr(SCEVTypes Kind
,
3831 SmallVectorImpl
<const SCEV
*> &Ops
) {
3832 assert(SCEVMinMaxExpr::isMinMaxType(Kind
) && "Not a SCEVMinMaxExpr!");
3833 assert(!Ops
.empty() && "Cannot get empty (u|s)(min|max)!");
3834 if (Ops
.size() == 1) return Ops
[0];
3836 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
3837 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
3838 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
3839 "Operand types don't match!");
3840 assert(Ops
[0]->getType()->isPointerTy() ==
3841 Ops
[i
]->getType()->isPointerTy() &&
3842 "min/max should be consistently pointerish");
3846 bool IsSigned
= Kind
== scSMaxExpr
|| Kind
== scSMinExpr
;
3847 bool IsMax
= Kind
== scSMaxExpr
|| Kind
== scUMaxExpr
;
3849 // Sort by complexity, this groups all similar expression types together.
3850 GroupByComplexity(Ops
, &LI
, DT
);
3852 // Check if we have created the same expression before.
3853 if (const SCEV
*S
= findExistingSCEVInCache(Kind
, Ops
)) {
3857 // If there are any constants, fold them together.
3859 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(Ops
[0])) {
3861 assert(Idx
< Ops
.size());
3862 auto FoldOp
= [&](const APInt
&LHS
, const APInt
&RHS
) {
3865 return APIntOps::smax(LHS
, RHS
);
3867 return APIntOps::smin(LHS
, RHS
);
3869 return APIntOps::umax(LHS
, RHS
);
3871 return APIntOps::umin(LHS
, RHS
);
3873 llvm_unreachable("Unknown SCEV min/max opcode");
3877 while (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(Ops
[Idx
])) {
3878 // We found two constants, fold them together!
3879 ConstantInt
*Fold
= ConstantInt::get(
3880 getContext(), FoldOp(LHSC
->getAPInt(), RHSC
->getAPInt()));
3881 Ops
[0] = getConstant(Fold
);
3882 Ops
.erase(Ops
.begin()+1); // Erase the folded element
3883 if (Ops
.size() == 1) return Ops
[0];
3884 LHSC
= cast
<SCEVConstant
>(Ops
[0]);
3887 bool IsMinV
= LHSC
->getValue()->isMinValue(IsSigned
);
3888 bool IsMaxV
= LHSC
->getValue()->isMaxValue(IsSigned
);
3890 if (IsMax
? IsMinV
: IsMaxV
) {
3891 // If we are left with a constant minimum(/maximum)-int, strip it off.
3892 Ops
.erase(Ops
.begin());
3894 } else if (IsMax
? IsMaxV
: IsMinV
) {
3895 // If we have a max(/min) with a constant maximum(/minimum)-int,
3896 // it will always be the extremum.
3900 if (Ops
.size() == 1) return Ops
[0];
3903 // Find the first operation of the same kind
3904 while (Idx
< Ops
.size() && Ops
[Idx
]->getSCEVType() < Kind
)
3907 // Check to see if one of the operands is of the same kind. If so, expand its
3908 // operands onto our operand list, and recurse to simplify.
3909 if (Idx
< Ops
.size()) {
3910 bool DeletedAny
= false;
3911 while (Ops
[Idx
]->getSCEVType() == Kind
) {
3912 const SCEVMinMaxExpr
*SMME
= cast
<SCEVMinMaxExpr
>(Ops
[Idx
]);
3913 Ops
.erase(Ops
.begin()+Idx
);
3914 append_range(Ops
, SMME
->operands());
3919 return getMinMaxExpr(Kind
, Ops
);
3922 // Okay, check to see if the same value occurs in the operand list twice. If
3923 // so, delete one. Since we sorted the list, these values are required to
3925 llvm::CmpInst::Predicate GEPred
=
3926 IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
3927 llvm::CmpInst::Predicate LEPred
=
3928 IsSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
3929 llvm::CmpInst::Predicate FirstPred
= IsMax
? GEPred
: LEPred
;
3930 llvm::CmpInst::Predicate SecondPred
= IsMax
? LEPred
: GEPred
;
3931 for (unsigned i
= 0, e
= Ops
.size() - 1; i
!= e
; ++i
) {
3932 if (Ops
[i
] == Ops
[i
+ 1] ||
3933 isKnownViaNonRecursiveReasoning(FirstPred
, Ops
[i
], Ops
[i
+ 1])) {
3934 // X op Y op Y --> X op Y
3935 // X op Y --> X, if we know X, Y are ordered appropriately
3936 Ops
.erase(Ops
.begin() + i
+ 1, Ops
.begin() + i
+ 2);
3939 } else if (isKnownViaNonRecursiveReasoning(SecondPred
, Ops
[i
],
3941 // X op Y --> Y, if we know X, Y are ordered appropriately
3942 Ops
.erase(Ops
.begin() + i
, Ops
.begin() + i
+ 1);
3948 if (Ops
.size() == 1) return Ops
[0];
3950 assert(!Ops
.empty() && "Reduced smax down to nothing!");
3952 // Okay, it looks like we really DO need an expr. Check to see if we
3953 // already have one, otherwise create a new one.
3954 FoldingSetNodeID ID
;
3955 ID
.AddInteger(Kind
);
3956 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
3957 ID
.AddPointer(Ops
[i
]);
3959 const SCEV
*ExistingSCEV
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
);
3961 return ExistingSCEV
;
3962 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
3963 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
3964 SCEV
*S
= new (SCEVAllocator
)
3965 SCEVMinMaxExpr(ID
.Intern(SCEVAllocator
), Kind
, O
, Ops
.size());
3967 UniqueSCEVs
.InsertNode(S
, IP
);
3968 registerUser(S
, Ops
);
3974 class SCEVSequentialMinMaxDeduplicatingVisitor final
3975 : public SCEVVisitor
<SCEVSequentialMinMaxDeduplicatingVisitor
,
3976 std::optional
<const SCEV
*>> {
3977 using RetVal
= std::optional
<const SCEV
*>;
3978 using Base
= SCEVVisitor
<SCEVSequentialMinMaxDeduplicatingVisitor
, RetVal
>;
3980 ScalarEvolution
&SE
;
3981 const SCEVTypes RootKind
; // Must be a sequential min/max expression.
3982 const SCEVTypes NonSequentialRootKind
; // Non-sequential variant of RootKind.
3983 SmallPtrSet
<const SCEV
*, 16> SeenOps
;
3985 bool canRecurseInto(SCEVTypes Kind
) const {
3986 // We can only recurse into the SCEV expression of the same effective type
3987 // as the type of our root SCEV expression.
3988 return RootKind
== Kind
|| NonSequentialRootKind
== Kind
;
3991 RetVal
visitAnyMinMaxExpr(const SCEV
*S
) {
3992 assert((isa
<SCEVMinMaxExpr
>(S
) || isa
<SCEVSequentialMinMaxExpr
>(S
)) &&
3993 "Only for min/max expressions.");
3994 SCEVTypes Kind
= S
->getSCEVType();
3996 if (!canRecurseInto(Kind
))
3999 auto *NAry
= cast
<SCEVNAryExpr
>(S
);
4000 SmallVector
<const SCEV
*> NewOps
;
4001 bool Changed
= visit(Kind
, NAry
->operands(), NewOps
);
4006 return std::nullopt
;
4008 return isa
<SCEVSequentialMinMaxExpr
>(S
)
4009 ? SE
.getSequentialMinMaxExpr(Kind
, NewOps
)
4010 : SE
.getMinMaxExpr(Kind
, NewOps
);
4013 RetVal
visit(const SCEV
*S
) {
4014 // Has the whole operand been seen already?
4015 if (!SeenOps
.insert(S
).second
)
4016 return std::nullopt
;
4017 return Base::visit(S
);
4021 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution
&SE
,
4023 : SE(SE
), RootKind(RootKind
),
4024 NonSequentialRootKind(
4025 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
4028 bool /*Changed*/ visit(SCEVTypes Kind
, ArrayRef
<const SCEV
*> OrigOps
,
4029 SmallVectorImpl
<const SCEV
*> &NewOps
) {
4030 bool Changed
= false;
4031 SmallVector
<const SCEV
*> Ops
;
4032 Ops
.reserve(OrigOps
.size());
4034 for (const SCEV
*Op
: OrigOps
) {
4035 RetVal NewOp
= visit(Op
);
4039 Ops
.emplace_back(*NewOp
);
4043 NewOps
= std::move(Ops
);
4047 RetVal
visitConstant(const SCEVConstant
*Constant
) { return Constant
; }
4049 RetVal
visitVScale(const SCEVVScale
*VScale
) { return VScale
; }
4051 RetVal
visitPtrToIntExpr(const SCEVPtrToIntExpr
*Expr
) { return Expr
; }
4053 RetVal
visitTruncateExpr(const SCEVTruncateExpr
*Expr
) { return Expr
; }
4055 RetVal
visitZeroExtendExpr(const SCEVZeroExtendExpr
*Expr
) { return Expr
; }
4057 RetVal
visitSignExtendExpr(const SCEVSignExtendExpr
*Expr
) { return Expr
; }
4059 RetVal
visitAddExpr(const SCEVAddExpr
*Expr
) { return Expr
; }
4061 RetVal
visitMulExpr(const SCEVMulExpr
*Expr
) { return Expr
; }
4063 RetVal
visitUDivExpr(const SCEVUDivExpr
*Expr
) { return Expr
; }
4065 RetVal
visitAddRecExpr(const SCEVAddRecExpr
*Expr
) { return Expr
; }
4067 RetVal
visitSMaxExpr(const SCEVSMaxExpr
*Expr
) {
4068 return visitAnyMinMaxExpr(Expr
);
4071 RetVal
visitUMaxExpr(const SCEVUMaxExpr
*Expr
) {
4072 return visitAnyMinMaxExpr(Expr
);
4075 RetVal
visitSMinExpr(const SCEVSMinExpr
*Expr
) {
4076 return visitAnyMinMaxExpr(Expr
);
4079 RetVal
visitUMinExpr(const SCEVUMinExpr
*Expr
) {
4080 return visitAnyMinMaxExpr(Expr
);
4083 RetVal
visitSequentialUMinExpr(const SCEVSequentialUMinExpr
*Expr
) {
4084 return visitAnyMinMaxExpr(Expr
);
4087 RetVal
visitUnknown(const SCEVUnknown
*Expr
) { return Expr
; }
4089 RetVal
visitCouldNotCompute(const SCEVCouldNotCompute
*Expr
) { return Expr
; }
4094 static bool scevUnconditionallyPropagatesPoisonFromOperands(SCEVTypes Kind
) {
4111 // If any operand is poison, the whole expression is poison.
4113 case scSequentialUMinExpr
:
4114 // FIXME: if the *first* operand is poison, the whole expression is poison.
4115 return false; // Pessimistically, say that it does not propagate poison.
4116 case scCouldNotCompute
:
4117 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
4119 llvm_unreachable("Unknown SCEV kind!");
4123 // The only way poison may be introduced in a SCEV expression is from a
4124 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown,
4125 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not*
4126 // introduce poison -- they encode guaranteed, non-speculated knowledge.
4128 // Additionally, all SCEV nodes propagate poison from inputs to outputs,
4129 // with the notable exception of umin_seq, where only poison from the first
4130 // operand is (unconditionally) propagated.
4131 struct SCEVPoisonCollector
{
4132 bool LookThroughMaybePoisonBlocking
;
4133 SmallPtrSet
<const SCEVUnknown
*, 4> MaybePoison
;
4134 SCEVPoisonCollector(bool LookThroughMaybePoisonBlocking
)
4135 : LookThroughMaybePoisonBlocking(LookThroughMaybePoisonBlocking
) {}
4137 bool follow(const SCEV
*S
) {
4138 if (!LookThroughMaybePoisonBlocking
&&
4139 !scevUnconditionallyPropagatesPoisonFromOperands(S
->getSCEVType()))
4142 if (auto *SU
= dyn_cast
<SCEVUnknown
>(S
)) {
4143 if (!isGuaranteedNotToBePoison(SU
->getValue()))
4144 MaybePoison
.insert(SU
);
4148 bool isDone() const { return false; }
4152 /// Return true if V is poison given that AssumedPoison is already poison.
4153 static bool impliesPoison(const SCEV
*AssumedPoison
, const SCEV
*S
) {
4154 // First collect all SCEVs that might result in AssumedPoison to be poison.
4155 // We need to look through potentially poison-blocking operations here,
4156 // because we want to find all SCEVs that *might* result in poison, not only
4157 // those that are *required* to.
4158 SCEVPoisonCollector
PC1(/* LookThroughMaybePoisonBlocking */ true);
4159 visitAll(AssumedPoison
, PC1
);
4161 // AssumedPoison is never poison. As the assumption is false, the implication
4162 // is true. Don't bother walking the other SCEV in this case.
4163 if (PC1
.MaybePoison
.empty())
4166 // Collect all SCEVs in S that, if poison, *will* result in S being poison
4167 // as well. We cannot look through potentially poison-blocking operations
4168 // here, as their arguments only *may* make the result poison.
4169 SCEVPoisonCollector
PC2(/* LookThroughMaybePoisonBlocking */ false);
4172 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison,
4173 // it will also make S poison by being part of PC2.MaybePoison.
4174 return all_of(PC1
.MaybePoison
, [&](const SCEVUnknown
*S
) {
4175 return PC2
.MaybePoison
.contains(S
);
4179 void ScalarEvolution::getPoisonGeneratingValues(
4180 SmallPtrSetImpl
<const Value
*> &Result
, const SCEV
*S
) {
4181 SCEVPoisonCollector
PC(/* LookThroughMaybePoisonBlocking */ false);
4183 for (const SCEVUnknown
*SU
: PC
.MaybePoison
)
4184 Result
.insert(SU
->getValue());
4188 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind
,
4189 SmallVectorImpl
<const SCEV
*> &Ops
) {
4190 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind
) &&
4191 "Not a SCEVSequentialMinMaxExpr!");
4192 assert(!Ops
.empty() && "Cannot get empty (u|s)(min|max)!");
4193 if (Ops
.size() == 1)
4196 Type
*ETy
= getEffectiveSCEVType(Ops
[0]->getType());
4197 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
4198 assert(getEffectiveSCEVType(Ops
[i
]->getType()) == ETy
&&
4199 "Operand types don't match!");
4200 assert(Ops
[0]->getType()->isPointerTy() ==
4201 Ops
[i
]->getType()->isPointerTy() &&
4202 "min/max should be consistently pointerish");
4206 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4207 // so we can *NOT* do any kind of sorting of the expressions!
4209 // Check if we have created the same expression before.
4210 if (const SCEV
*S
= findExistingSCEVInCache(Kind
, Ops
))
4213 // FIXME: there are *some* simplifications that we can do here.
4215 // Keep only the first instance of an operand.
4217 SCEVSequentialMinMaxDeduplicatingVisitor
Deduplicator(*this, Kind
);
4218 bool Changed
= Deduplicator
.visit(Kind
, Ops
, Ops
);
4220 return getSequentialMinMaxExpr(Kind
, Ops
);
4223 // Check to see if one of the operands is of the same kind. If so, expand its
4224 // operands onto our operand list, and recurse to simplify.
4227 bool DeletedAny
= false;
4228 while (Idx
< Ops
.size()) {
4229 if (Ops
[Idx
]->getSCEVType() != Kind
) {
4233 const auto *SMME
= cast
<SCEVSequentialMinMaxExpr
>(Ops
[Idx
]);
4234 Ops
.erase(Ops
.begin() + Idx
);
4235 Ops
.insert(Ops
.begin() + Idx
, SMME
->operands().begin(),
4236 SMME
->operands().end());
4241 return getSequentialMinMaxExpr(Kind
, Ops
);
4244 const SCEV
*SaturationPoint
;
4245 ICmpInst::Predicate Pred
;
4247 case scSequentialUMinExpr
:
4248 SaturationPoint
= getZero(Ops
[0]->getType());
4249 Pred
= ICmpInst::ICMP_ULE
;
4252 llvm_unreachable("Not a sequential min/max type.");
4255 for (unsigned i
= 1, e
= Ops
.size(); i
!= e
; ++i
) {
4256 // We can replace %x umin_seq %y with %x umin %y if either:
4257 // * %y being poison implies %x is also poison.
4258 // * %x cannot be the saturating value (e.g. zero for umin).
4259 if (::impliesPoison(Ops
[i
], Ops
[i
- 1]) ||
4260 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE
, Ops
[i
- 1],
4262 SmallVector
<const SCEV
*> SeqOps
= {Ops
[i
- 1], Ops
[i
]};
4263 Ops
[i
- 1] = getMinMaxExpr(
4264 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind
),
4266 Ops
.erase(Ops
.begin() + i
);
4267 return getSequentialMinMaxExpr(Kind
, Ops
);
4269 // Fold %x umin_seq %y to %x if %x ule %y.
4270 // TODO: We might be able to prove the predicate for a later operand.
4271 if (isKnownViaNonRecursiveReasoning(Pred
, Ops
[i
- 1], Ops
[i
])) {
4272 Ops
.erase(Ops
.begin() + i
);
4273 return getSequentialMinMaxExpr(Kind
, Ops
);
4277 // Okay, it looks like we really DO need an expr. Check to see if we
4278 // already have one, otherwise create a new one.
4279 FoldingSetNodeID ID
;
4280 ID
.AddInteger(Kind
);
4281 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
)
4282 ID
.AddPointer(Ops
[i
]);
4284 const SCEV
*ExistingSCEV
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
);
4286 return ExistingSCEV
;
4288 const SCEV
**O
= SCEVAllocator
.Allocate
<const SCEV
*>(Ops
.size());
4289 std::uninitialized_copy(Ops
.begin(), Ops
.end(), O
);
4290 SCEV
*S
= new (SCEVAllocator
)
4291 SCEVSequentialMinMaxExpr(ID
.Intern(SCEVAllocator
), Kind
, O
, Ops
.size());
4293 UniqueSCEVs
.InsertNode(S
, IP
);
4294 registerUser(S
, Ops
);
4298 const SCEV
*ScalarEvolution::getSMaxExpr(const SCEV
*LHS
, const SCEV
*RHS
) {
4299 SmallVector
<const SCEV
*, 2> Ops
= {LHS
, RHS
};
4300 return getSMaxExpr(Ops
);
4303 const SCEV
*ScalarEvolution::getSMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
4304 return getMinMaxExpr(scSMaxExpr
, Ops
);
4307 const SCEV
*ScalarEvolution::getUMaxExpr(const SCEV
*LHS
, const SCEV
*RHS
) {
4308 SmallVector
<const SCEV
*, 2> Ops
= {LHS
, RHS
};
4309 return getUMaxExpr(Ops
);
4312 const SCEV
*ScalarEvolution::getUMaxExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
4313 return getMinMaxExpr(scUMaxExpr
, Ops
);
4316 const SCEV
*ScalarEvolution::getSMinExpr(const SCEV
*LHS
,
4318 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
4319 return getSMinExpr(Ops
);
4322 const SCEV
*ScalarEvolution::getSMinExpr(SmallVectorImpl
<const SCEV
*> &Ops
) {
4323 return getMinMaxExpr(scSMinExpr
, Ops
);
4326 const SCEV
*ScalarEvolution::getUMinExpr(const SCEV
*LHS
, const SCEV
*RHS
,
4328 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
4329 return getUMinExpr(Ops
, Sequential
);
4332 const SCEV
*ScalarEvolution::getUMinExpr(SmallVectorImpl
<const SCEV
*> &Ops
,
4334 return Sequential
? getSequentialMinMaxExpr(scSequentialUMinExpr
, Ops
)
4335 : getMinMaxExpr(scUMinExpr
, Ops
);
4339 ScalarEvolution::getSizeOfExpr(Type
*IntTy
, TypeSize Size
) {
4340 const SCEV
*Res
= getConstant(IntTy
, Size
.getKnownMinValue());
4341 if (Size
.isScalable())
4342 Res
= getMulExpr(Res
, getVScale(IntTy
));
4346 const SCEV
*ScalarEvolution::getSizeOfExpr(Type
*IntTy
, Type
*AllocTy
) {
4347 return getSizeOfExpr(IntTy
, getDataLayout().getTypeAllocSize(AllocTy
));
4350 const SCEV
*ScalarEvolution::getStoreSizeOfExpr(Type
*IntTy
, Type
*StoreTy
) {
4351 return getSizeOfExpr(IntTy
, getDataLayout().getTypeStoreSize(StoreTy
));
4354 const SCEV
*ScalarEvolution::getOffsetOfExpr(Type
*IntTy
,
4357 // We can bypass creating a target-independent constant expression and then
4358 // folding it back into a ConstantInt. This is just a compile-time
4360 const StructLayout
*SL
= getDataLayout().getStructLayout(STy
);
4361 assert(!SL
->getSizeInBits().isScalable() &&
4362 "Cannot get offset for structure containing scalable vector types");
4363 return getConstant(IntTy
, SL
->getElementOffset(FieldNo
));
4366 const SCEV
*ScalarEvolution::getUnknown(Value
*V
) {
4367 // Don't attempt to do anything other than create a SCEVUnknown object
4368 // here. createSCEV only calls getUnknown after checking for all other
4369 // interesting possibilities, and any other code that calls getUnknown
4370 // is doing so in order to hide a value from SCEV canonicalization.
4372 FoldingSetNodeID ID
;
4373 ID
.AddInteger(scUnknown
);
4376 if (SCEV
*S
= UniqueSCEVs
.FindNodeOrInsertPos(ID
, IP
)) {
4377 assert(cast
<SCEVUnknown
>(S
)->getValue() == V
&&
4378 "Stale SCEVUnknown in uniquing map!");
4381 SCEV
*S
= new (SCEVAllocator
) SCEVUnknown(ID
.Intern(SCEVAllocator
), V
, this,
4383 FirstUnknown
= cast
<SCEVUnknown
>(S
);
4384 UniqueSCEVs
.InsertNode(S
, IP
);
4388 //===----------------------------------------------------------------------===//
4389 // Basic SCEV Analysis and PHI Idiom Recognition Code
4392 /// Test if values of the given type are analyzable within the SCEV
4393 /// framework. This primarily includes integer types, and it can optionally
4394 /// include pointer types if the ScalarEvolution class has access to
4395 /// target-specific information.
4396 bool ScalarEvolution::isSCEVable(Type
*Ty
) const {
4397 // Integers and pointers are always SCEVable.
4398 return Ty
->isIntOrPtrTy();
4401 /// Return the size in bits of the specified type, for which isSCEVable must
4403 uint64_t ScalarEvolution::getTypeSizeInBits(Type
*Ty
) const {
4404 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
4405 if (Ty
->isPointerTy())
4406 return getDataLayout().getIndexTypeSizeInBits(Ty
);
4407 return getDataLayout().getTypeSizeInBits(Ty
);
4410 /// Return a type with the same bitwidth as the given type and which represents
4411 /// how SCEV will treat the given type, for which isSCEVable must return
4412 /// true. For pointer types, this is the pointer index sized integer type.
4413 Type
*ScalarEvolution::getEffectiveSCEVType(Type
*Ty
) const {
4414 assert(isSCEVable(Ty
) && "Type is not SCEVable!");
4416 if (Ty
->isIntegerTy())
4419 // The only other support type is pointer.
4420 assert(Ty
->isPointerTy() && "Unexpected non-pointer non-integer type!");
4421 return getDataLayout().getIndexType(Ty
);
4424 Type
*ScalarEvolution::getWiderType(Type
*T1
, Type
*T2
) const {
4425 return getTypeSizeInBits(T1
) >= getTypeSizeInBits(T2
) ? T1
: T2
;
4428 bool ScalarEvolution::instructionCouldExistWithOperands(const SCEV
*A
,
4430 /// For a valid use point to exist, the defining scope of one operand
4431 /// must dominate the other.
4432 bool PreciseA
, PreciseB
;
4433 auto *ScopeA
= getDefiningScopeBound({A
}, PreciseA
);
4434 auto *ScopeB
= getDefiningScopeBound({B
}, PreciseB
);
4435 if (!PreciseA
|| !PreciseB
)
4438 return (ScopeA
== ScopeB
) || DT
.dominates(ScopeA
, ScopeB
) ||
4439 DT
.dominates(ScopeB
, ScopeA
);
4442 const SCEV
*ScalarEvolution::getCouldNotCompute() {
4443 return CouldNotCompute
.get();
4446 bool ScalarEvolution::checkValidity(const SCEV
*S
) const {
4447 bool ContainsNulls
= SCEVExprContains(S
, [](const SCEV
*S
) {
4448 auto *SU
= dyn_cast
<SCEVUnknown
>(S
);
4449 return SU
&& SU
->getValue() == nullptr;
4452 return !ContainsNulls
;
4455 bool ScalarEvolution::containsAddRecurrence(const SCEV
*S
) {
4456 HasRecMapType::iterator I
= HasRecMap
.find(S
);
4457 if (I
!= HasRecMap
.end())
4461 SCEVExprContains(S
, [](const SCEV
*S
) { return isa
<SCEVAddRecExpr
>(S
); });
4462 HasRecMap
.insert({S
, FoundAddRec
});
4466 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4467 /// by the value and offset from any ValueOffsetPair in the set.
4468 ArrayRef
<Value
*> ScalarEvolution::getSCEVValues(const SCEV
*S
) {
4469 ExprValueMapType::iterator SI
= ExprValueMap
.find_as(S
);
4470 if (SI
== ExprValueMap
.end())
4471 return std::nullopt
;
4472 return SI
->second
.getArrayRef();
4475 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4476 /// cannot be used separately. eraseValueFromMap should be used to remove
4477 /// V from ValueExprMap and ExprValueMap at the same time.
4478 void ScalarEvolution::eraseValueFromMap(Value
*V
) {
4479 ValueExprMapType::iterator I
= ValueExprMap
.find_as(V
);
4480 if (I
!= ValueExprMap
.end()) {
4481 auto EVIt
= ExprValueMap
.find(I
->second
);
4482 bool Removed
= EVIt
->second
.remove(V
);
4484 assert(Removed
&& "Value not in ExprValueMap?");
4485 ValueExprMap
.erase(I
);
4489 void ScalarEvolution::insertValueToMap(Value
*V
, const SCEV
*S
) {
4490 // A recursive query may have already computed the SCEV. It should be
4491 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4492 // inferred nowrap flags.
4493 auto It
= ValueExprMap
.find_as(V
);
4494 if (It
== ValueExprMap
.end()) {
4495 ValueExprMap
.insert({SCEVCallbackVH(V
, this), S
});
4496 ExprValueMap
[S
].insert(V
);
4500 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4501 /// create a new one.
4502 const SCEV
*ScalarEvolution::getSCEV(Value
*V
) {
4503 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
4505 if (const SCEV
*S
= getExistingSCEV(V
))
4507 return createSCEVIter(V
);
4510 const SCEV
*ScalarEvolution::getExistingSCEV(Value
*V
) {
4511 assert(isSCEVable(V
->getType()) && "Value is not SCEVable!");
4513 ValueExprMapType::iterator I
= ValueExprMap
.find_as(V
);
4514 if (I
!= ValueExprMap
.end()) {
4515 const SCEV
*S
= I
->second
;
4516 assert(checkValidity(S
) &&
4517 "existing SCEV has not been properly invalidated");
4523 /// Return a SCEV corresponding to -V = -1*V
4524 const SCEV
*ScalarEvolution::getNegativeSCEV(const SCEV
*V
,
4525 SCEV::NoWrapFlags Flags
) {
4526 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
4528 cast
<ConstantInt
>(ConstantExpr::getNeg(VC
->getValue())));
4530 Type
*Ty
= V
->getType();
4531 Ty
= getEffectiveSCEVType(Ty
);
4532 return getMulExpr(V
, getMinusOne(Ty
), Flags
);
4535 /// If Expr computes ~A, return A else return nullptr
4536 static const SCEV
*MatchNotExpr(const SCEV
*Expr
) {
4537 const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(Expr
);
4538 if (!Add
|| Add
->getNumOperands() != 2 ||
4539 !Add
->getOperand(0)->isAllOnesValue())
4542 const SCEVMulExpr
*AddRHS
= dyn_cast
<SCEVMulExpr
>(Add
->getOperand(1));
4543 if (!AddRHS
|| AddRHS
->getNumOperands() != 2 ||
4544 !AddRHS
->getOperand(0)->isAllOnesValue())
4547 return AddRHS
->getOperand(1);
4550 /// Return a SCEV corresponding to ~V = -1-V
4551 const SCEV
*ScalarEvolution::getNotSCEV(const SCEV
*V
) {
4552 assert(!V
->getType()->isPointerTy() && "Can't negate pointer");
4554 if (const SCEVConstant
*VC
= dyn_cast
<SCEVConstant
>(V
))
4556 cast
<ConstantInt
>(ConstantExpr::getNot(VC
->getValue())));
4558 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4559 if (const SCEVMinMaxExpr
*MME
= dyn_cast
<SCEVMinMaxExpr
>(V
)) {
4560 auto MatchMinMaxNegation
= [&](const SCEVMinMaxExpr
*MME
) {
4561 SmallVector
<const SCEV
*, 2> MatchedOperands
;
4562 for (const SCEV
*Operand
: MME
->operands()) {
4563 const SCEV
*Matched
= MatchNotExpr(Operand
);
4565 return (const SCEV
*)nullptr;
4566 MatchedOperands
.push_back(Matched
);
4568 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME
->getSCEVType()),
4571 if (const SCEV
*Replaced
= MatchMinMaxNegation(MME
))
4575 Type
*Ty
= V
->getType();
4576 Ty
= getEffectiveSCEVType(Ty
);
4577 return getMinusSCEV(getMinusOne(Ty
), V
);
4580 const SCEV
*ScalarEvolution::removePointerBase(const SCEV
*P
) {
4581 assert(P
->getType()->isPointerTy());
4583 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(P
)) {
4584 // The base of an AddRec is the first operand.
4585 SmallVector
<const SCEV
*> Ops
{AddRec
->operands()};
4586 Ops
[0] = removePointerBase(Ops
[0]);
4587 // Don't try to transfer nowrap flags for now. We could in some cases
4588 // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4589 return getAddRecExpr(Ops
, AddRec
->getLoop(), SCEV::FlagAnyWrap
);
4591 if (auto *Add
= dyn_cast
<SCEVAddExpr
>(P
)) {
4592 // The base of an Add is the pointer operand.
4593 SmallVector
<const SCEV
*> Ops
{Add
->operands()};
4594 const SCEV
**PtrOp
= nullptr;
4595 for (const SCEV
*&AddOp
: Ops
) {
4596 if (AddOp
->getType()->isPointerTy()) {
4597 assert(!PtrOp
&& "Cannot have multiple pointer ops");
4601 *PtrOp
= removePointerBase(*PtrOp
);
4602 // Don't try to transfer nowrap flags for now. We could in some cases
4603 // (for example, if the pointer operand of the Add is a SCEVUnknown).
4604 return getAddExpr(Ops
);
4606 // Any other expression must be a pointer base.
4607 return getZero(P
->getType());
4610 const SCEV
*ScalarEvolution::getMinusSCEV(const SCEV
*LHS
, const SCEV
*RHS
,
4611 SCEV::NoWrapFlags Flags
,
4613 // Fast path: X - X --> 0.
4615 return getZero(LHS
->getType());
4617 // If we subtract two pointers with different pointer bases, bail.
4618 // Eventually, we're going to add an assertion to getMulExpr that we
4619 // can't multiply by a pointer.
4620 if (RHS
->getType()->isPointerTy()) {
4621 if (!LHS
->getType()->isPointerTy() ||
4622 getPointerBase(LHS
) != getPointerBase(RHS
))
4623 return getCouldNotCompute();
4624 LHS
= removePointerBase(LHS
);
4625 RHS
= removePointerBase(RHS
);
4628 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4629 // makes it so that we cannot make much use of NUW.
4630 auto AddFlags
= SCEV::FlagAnyWrap
;
4631 const bool RHSIsNotMinSigned
=
4632 !getSignedRangeMin(RHS
).isMinSignedValue();
4633 if (hasFlags(Flags
, SCEV::FlagNSW
)) {
4634 // Let M be the minimum representable signed value. Then (-1)*RHS
4635 // signed-wraps if and only if RHS is M. That can happen even for
4636 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4637 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4638 // (-1)*RHS, we need to prove that RHS != M.
4640 // If LHS is non-negative and we know that LHS - RHS does not
4641 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4642 // either by proving that RHS > M or that LHS >= 0.
4643 if (RHSIsNotMinSigned
|| isKnownNonNegative(LHS
)) {
4644 AddFlags
= SCEV::FlagNSW
;
4648 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4649 // RHS is NSW and LHS >= 0.
4651 // The difficulty here is that the NSW flag may have been proven
4652 // relative to a loop that is to be found in a recurrence in LHS and
4653 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4654 // larger scope than intended.
4655 auto NegFlags
= RHSIsNotMinSigned
? SCEV::FlagNSW
: SCEV::FlagAnyWrap
;
4657 return getAddExpr(LHS
, getNegativeSCEV(RHS
, NegFlags
), AddFlags
, Depth
);
4660 const SCEV
*ScalarEvolution::getTruncateOrZeroExtend(const SCEV
*V
, Type
*Ty
,
4662 Type
*SrcTy
= V
->getType();
4663 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4664 "Cannot truncate or zero extend with non-integer arguments!");
4665 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4666 return V
; // No conversion
4667 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
4668 return getTruncateExpr(V
, Ty
, Depth
);
4669 return getZeroExtendExpr(V
, Ty
, Depth
);
4672 const SCEV
*ScalarEvolution::getTruncateOrSignExtend(const SCEV
*V
, Type
*Ty
,
4674 Type
*SrcTy
= V
->getType();
4675 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4676 "Cannot truncate or zero extend with non-integer arguments!");
4677 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4678 return V
; // No conversion
4679 if (getTypeSizeInBits(SrcTy
) > getTypeSizeInBits(Ty
))
4680 return getTruncateExpr(V
, Ty
, Depth
);
4681 return getSignExtendExpr(V
, Ty
, Depth
);
4685 ScalarEvolution::getNoopOrZeroExtend(const SCEV
*V
, Type
*Ty
) {
4686 Type
*SrcTy
= V
->getType();
4687 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4688 "Cannot noop or zero extend with non-integer arguments!");
4689 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4690 "getNoopOrZeroExtend cannot truncate!");
4691 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4692 return V
; // No conversion
4693 return getZeroExtendExpr(V
, Ty
);
4697 ScalarEvolution::getNoopOrSignExtend(const SCEV
*V
, Type
*Ty
) {
4698 Type
*SrcTy
= V
->getType();
4699 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4700 "Cannot noop or sign extend with non-integer arguments!");
4701 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4702 "getNoopOrSignExtend cannot truncate!");
4703 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4704 return V
; // No conversion
4705 return getSignExtendExpr(V
, Ty
);
4709 ScalarEvolution::getNoopOrAnyExtend(const SCEV
*V
, Type
*Ty
) {
4710 Type
*SrcTy
= V
->getType();
4711 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4712 "Cannot noop or any extend with non-integer arguments!");
4713 assert(getTypeSizeInBits(SrcTy
) <= getTypeSizeInBits(Ty
) &&
4714 "getNoopOrAnyExtend cannot truncate!");
4715 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4716 return V
; // No conversion
4717 return getAnyExtendExpr(V
, Ty
);
4721 ScalarEvolution::getTruncateOrNoop(const SCEV
*V
, Type
*Ty
) {
4722 Type
*SrcTy
= V
->getType();
4723 assert(SrcTy
->isIntOrPtrTy() && Ty
->isIntOrPtrTy() &&
4724 "Cannot truncate or noop with non-integer arguments!");
4725 assert(getTypeSizeInBits(SrcTy
) >= getTypeSizeInBits(Ty
) &&
4726 "getTruncateOrNoop cannot extend!");
4727 if (getTypeSizeInBits(SrcTy
) == getTypeSizeInBits(Ty
))
4728 return V
; // No conversion
4729 return getTruncateExpr(V
, Ty
);
4732 const SCEV
*ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV
*LHS
,
4734 const SCEV
*PromotedLHS
= LHS
;
4735 const SCEV
*PromotedRHS
= RHS
;
4737 if (getTypeSizeInBits(LHS
->getType()) > getTypeSizeInBits(RHS
->getType()))
4738 PromotedRHS
= getZeroExtendExpr(RHS
, LHS
->getType());
4740 PromotedLHS
= getNoopOrZeroExtend(LHS
, RHS
->getType());
4742 return getUMaxExpr(PromotedLHS
, PromotedRHS
);
4745 const SCEV
*ScalarEvolution::getUMinFromMismatchedTypes(const SCEV
*LHS
,
4748 SmallVector
<const SCEV
*, 2> Ops
= { LHS
, RHS
};
4749 return getUMinFromMismatchedTypes(Ops
, Sequential
);
4753 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl
<const SCEV
*> &Ops
,
4755 assert(!Ops
.empty() && "At least one operand must be!");
4757 if (Ops
.size() == 1)
4760 // Find the max type first.
4761 Type
*MaxType
= nullptr;
4762 for (const auto *S
: Ops
)
4764 MaxType
= getWiderType(MaxType
, S
->getType());
4766 MaxType
= S
->getType();
4767 assert(MaxType
&& "Failed to find maximum type!");
4769 // Extend all ops to max type.
4770 SmallVector
<const SCEV
*, 2> PromotedOps
;
4771 for (const auto *S
: Ops
)
4772 PromotedOps
.push_back(getNoopOrZeroExtend(S
, MaxType
));
4775 return getUMinExpr(PromotedOps
, Sequential
);
4778 const SCEV
*ScalarEvolution::getPointerBase(const SCEV
*V
) {
4779 // A pointer operand may evaluate to a nonpointer expression, such as null.
4780 if (!V
->getType()->isPointerTy())
4784 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(V
)) {
4785 V
= AddRec
->getStart();
4786 } else if (auto *Add
= dyn_cast
<SCEVAddExpr
>(V
)) {
4787 const SCEV
*PtrOp
= nullptr;
4788 for (const SCEV
*AddOp
: Add
->operands()) {
4789 if (AddOp
->getType()->isPointerTy()) {
4790 assert(!PtrOp
&& "Cannot have multiple pointer ops");
4794 assert(PtrOp
&& "Must have pointer op");
4796 } else // Not something we can look further into.
4801 /// Push users of the given Instruction onto the given Worklist.
4802 static void PushDefUseChildren(Instruction
*I
,
4803 SmallVectorImpl
<Instruction
*> &Worklist
,
4804 SmallPtrSetImpl
<Instruction
*> &Visited
) {
4805 // Push the def-use children onto the Worklist stack.
4806 for (User
*U
: I
->users()) {
4807 auto *UserInsn
= cast
<Instruction
>(U
);
4808 if (Visited
.insert(UserInsn
).second
)
4809 Worklist
.push_back(UserInsn
);
4815 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4816 /// expression in case its Loop is L. If it is not L then
4817 /// if IgnoreOtherLoops is true then use AddRec itself
4818 /// otherwise rewrite cannot be done.
4819 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4820 class SCEVInitRewriter
: public SCEVRewriteVisitor
<SCEVInitRewriter
> {
4822 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
4823 bool IgnoreOtherLoops
= true) {
4824 SCEVInitRewriter
Rewriter(L
, SE
);
4825 const SCEV
*Result
= Rewriter
.visit(S
);
4826 if (Rewriter
.hasSeenLoopVariantSCEVUnknown())
4827 return SE
.getCouldNotCompute();
4828 return Rewriter
.hasSeenOtherLoops() && !IgnoreOtherLoops
4829 ? SE
.getCouldNotCompute()
4833 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4834 if (!SE
.isLoopInvariant(Expr
, L
))
4835 SeenLoopVariantSCEVUnknown
= true;
4839 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4840 // Only re-write AddRecExprs for this loop.
4841 if (Expr
->getLoop() == L
)
4842 return Expr
->getStart();
4843 SeenOtherLoops
= true;
4847 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown
; }
4849 bool hasSeenOtherLoops() { return SeenOtherLoops
; }
4852 explicit SCEVInitRewriter(const Loop
*L
, ScalarEvolution
&SE
)
4853 : SCEVRewriteVisitor(SE
), L(L
) {}
4856 bool SeenLoopVariantSCEVUnknown
= false;
4857 bool SeenOtherLoops
= false;
4860 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4861 /// increment expression in case its Loop is L. If it is not L then
4862 /// use AddRec itself.
4863 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4864 class SCEVPostIncRewriter
: public SCEVRewriteVisitor
<SCEVPostIncRewriter
> {
4866 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
) {
4867 SCEVPostIncRewriter
Rewriter(L
, SE
);
4868 const SCEV
*Result
= Rewriter
.visit(S
);
4869 return Rewriter
.hasSeenLoopVariantSCEVUnknown()
4870 ? SE
.getCouldNotCompute()
4874 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4875 if (!SE
.isLoopInvariant(Expr
, L
))
4876 SeenLoopVariantSCEVUnknown
= true;
4880 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4881 // Only re-write AddRecExprs for this loop.
4882 if (Expr
->getLoop() == L
)
4883 return Expr
->getPostIncExpr(SE
);
4884 SeenOtherLoops
= true;
4888 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown
; }
4890 bool hasSeenOtherLoops() { return SeenOtherLoops
; }
4893 explicit SCEVPostIncRewriter(const Loop
*L
, ScalarEvolution
&SE
)
4894 : SCEVRewriteVisitor(SE
), L(L
) {}
4897 bool SeenLoopVariantSCEVUnknown
= false;
4898 bool SeenOtherLoops
= false;
4901 /// This class evaluates the compare condition by matching it against the
4902 /// condition of loop latch. If there is a match we assume a true value
4903 /// for the condition while building SCEV nodes.
4904 class SCEVBackedgeConditionFolder
4905 : public SCEVRewriteVisitor
<SCEVBackedgeConditionFolder
> {
4907 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
,
4908 ScalarEvolution
&SE
) {
4909 bool IsPosBECond
= false;
4910 Value
*BECond
= nullptr;
4911 if (BasicBlock
*Latch
= L
->getLoopLatch()) {
4912 BranchInst
*BI
= dyn_cast
<BranchInst
>(Latch
->getTerminator());
4913 if (BI
&& BI
->isConditional()) {
4914 assert(BI
->getSuccessor(0) != BI
->getSuccessor(1) &&
4915 "Both outgoing branches should not target same header!");
4916 BECond
= BI
->getCondition();
4917 IsPosBECond
= BI
->getSuccessor(0) == L
->getHeader();
4922 SCEVBackedgeConditionFolder
Rewriter(L
, BECond
, IsPosBECond
, SE
);
4923 return Rewriter
.visit(S
);
4926 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4927 const SCEV
*Result
= Expr
;
4928 bool InvariantF
= SE
.isLoopInvariant(Expr
, L
);
4931 Instruction
*I
= cast
<Instruction
>(Expr
->getValue());
4932 switch (I
->getOpcode()) {
4933 case Instruction::Select
: {
4934 SelectInst
*SI
= cast
<SelectInst
>(I
);
4935 std::optional
<const SCEV
*> Res
=
4936 compareWithBackedgeCondition(SI
->getCondition());
4938 bool IsOne
= cast
<SCEVConstant
>(*Res
)->getValue()->isOne();
4939 Result
= SE
.getSCEV(IsOne
? SI
->getTrueValue() : SI
->getFalseValue());
4944 std::optional
<const SCEV
*> Res
= compareWithBackedgeCondition(I
);
4955 explicit SCEVBackedgeConditionFolder(const Loop
*L
, Value
*BECond
,
4956 bool IsPosBECond
, ScalarEvolution
&SE
)
4957 : SCEVRewriteVisitor(SE
), L(L
), BackedgeCond(BECond
),
4958 IsPositiveBECond(IsPosBECond
) {}
4960 std::optional
<const SCEV
*> compareWithBackedgeCondition(Value
*IC
);
4963 /// Loop back condition.
4964 Value
*BackedgeCond
= nullptr;
4965 /// Set to true if loop back is on positive branch condition.
4966 bool IsPositiveBECond
;
4969 std::optional
<const SCEV
*>
4970 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value
*IC
) {
4972 // If value matches the backedge condition for loop latch,
4973 // then return a constant evolution node based on loopback
4975 if (BackedgeCond
== IC
)
4976 return IsPositiveBECond
? SE
.getOne(Type::getInt1Ty(SE
.getContext()))
4977 : SE
.getZero(Type::getInt1Ty(SE
.getContext()));
4978 return std::nullopt
;
4981 class SCEVShiftRewriter
: public SCEVRewriteVisitor
<SCEVShiftRewriter
> {
4983 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
,
4984 ScalarEvolution
&SE
) {
4985 SCEVShiftRewriter
Rewriter(L
, SE
);
4986 const SCEV
*Result
= Rewriter
.visit(S
);
4987 return Rewriter
.isValid() ? Result
: SE
.getCouldNotCompute();
4990 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
4991 // Only allow AddRecExprs for this loop.
4992 if (!SE
.isLoopInvariant(Expr
, L
))
4997 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) {
4998 if (Expr
->getLoop() == L
&& Expr
->isAffine())
4999 return SE
.getMinusSCEV(Expr
, Expr
->getStepRecurrence(SE
));
5004 bool isValid() { return Valid
; }
5007 explicit SCEVShiftRewriter(const Loop
*L
, ScalarEvolution
&SE
)
5008 : SCEVRewriteVisitor(SE
), L(L
) {}
5014 } // end anonymous namespace
5017 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr
*AR
) {
5018 if (!AR
->isAffine())
5019 return SCEV::FlagAnyWrap
;
5021 using OBO
= OverflowingBinaryOperator
;
5023 SCEV::NoWrapFlags Result
= SCEV::FlagAnyWrap
;
5025 if (!AR
->hasNoSelfWrap()) {
5026 const SCEV
*BECount
= getConstantMaxBackedgeTakenCount(AR
->getLoop());
5027 if (const SCEVConstant
*BECountMax
= dyn_cast
<SCEVConstant
>(BECount
)) {
5028 ConstantRange StepCR
= getSignedRange(AR
->getStepRecurrence(*this));
5029 const APInt
&BECountAP
= BECountMax
->getAPInt();
5030 unsigned NoOverflowBitWidth
=
5031 BECountAP
.getActiveBits() + StepCR
.getMinSignedBits();
5032 if (NoOverflowBitWidth
<= getTypeSizeInBits(AR
->getType()))
5033 Result
= ScalarEvolution::setFlags(Result
, SCEV::FlagNW
);
5037 if (!AR
->hasNoSignedWrap()) {
5038 ConstantRange AddRecRange
= getSignedRange(AR
);
5039 ConstantRange IncRange
= getSignedRange(AR
->getStepRecurrence(*this));
5041 auto NSWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
5042 Instruction::Add
, IncRange
, OBO::NoSignedWrap
);
5043 if (NSWRegion
.contains(AddRecRange
))
5044 Result
= ScalarEvolution::setFlags(Result
, SCEV::FlagNSW
);
5047 if (!AR
->hasNoUnsignedWrap()) {
5048 ConstantRange AddRecRange
= getUnsignedRange(AR
);
5049 ConstantRange IncRange
= getUnsignedRange(AR
->getStepRecurrence(*this));
5051 auto NUWRegion
= ConstantRange::makeGuaranteedNoWrapRegion(
5052 Instruction::Add
, IncRange
, OBO::NoUnsignedWrap
);
5053 if (NUWRegion
.contains(AddRecRange
))
5054 Result
= ScalarEvolution::setFlags(Result
, SCEV::FlagNUW
);
5061 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr
*AR
) {
5062 SCEV::NoWrapFlags Result
= AR
->getNoWrapFlags();
5064 if (AR
->hasNoSignedWrap())
5067 if (!AR
->isAffine())
5070 // This function can be expensive, only try to prove NSW once per AddRec.
5071 if (!SignedWrapViaInductionTried
.insert(AR
).second
)
5074 const SCEV
*Step
= AR
->getStepRecurrence(*this);
5075 const Loop
*L
= AR
->getLoop();
5077 // Check whether the backedge-taken count is SCEVCouldNotCompute.
5078 // Note that this serves two purposes: It filters out loops that are
5079 // simply not analyzable, and it covers the case where this code is
5080 // being called from within backedge-taken count analysis, such that
5081 // attempting to ask for the backedge-taken count would likely result
5082 // in infinite recursion. In the later case, the analysis code will
5083 // cope with a conservative value, and it will take care to purge
5084 // that value once it has finished.
5085 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
5087 // Normally, in the cases we can prove no-overflow via a
5088 // backedge guarding condition, we can also compute a backedge
5089 // taken count for the loop. The exceptions are assumptions and
5090 // guards present in the loop -- SCEV is not great at exploiting
5091 // these to compute max backedge taken counts, but can still use
5092 // these to prove lack of overflow. Use this fact to avoid
5093 // doing extra work that may not pay off.
5095 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) && !HasGuards
&&
5096 AC
.assumptions().empty())
5099 // If the backedge is guarded by a comparison with the pre-inc value the
5100 // addrec is safe. Also, if the entry is guarded by a comparison with the
5101 // start value and the backedge is guarded by a comparison with the post-inc
5102 // value, the addrec is safe.
5103 ICmpInst::Predicate Pred
;
5104 const SCEV
*OverflowLimit
=
5105 getSignedOverflowLimitForStep(Step
, &Pred
, this);
5106 if (OverflowLimit
&&
5107 (isLoopBackedgeGuardedByCond(L
, Pred
, AR
, OverflowLimit
) ||
5108 isKnownOnEveryIteration(Pred
, AR
, OverflowLimit
))) {
5109 Result
= setFlags(Result
, SCEV::FlagNSW
);
5114 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr
*AR
) {
5115 SCEV::NoWrapFlags Result
= AR
->getNoWrapFlags();
5117 if (AR
->hasNoUnsignedWrap())
5120 if (!AR
->isAffine())
5123 // This function can be expensive, only try to prove NUW once per AddRec.
5124 if (!UnsignedWrapViaInductionTried
.insert(AR
).second
)
5127 const SCEV
*Step
= AR
->getStepRecurrence(*this);
5128 unsigned BitWidth
= getTypeSizeInBits(AR
->getType());
5129 const Loop
*L
= AR
->getLoop();
5131 // Check whether the backedge-taken count is SCEVCouldNotCompute.
5132 // Note that this serves two purposes: It filters out loops that are
5133 // simply not analyzable, and it covers the case where this code is
5134 // being called from within backedge-taken count analysis, such that
5135 // attempting to ask for the backedge-taken count would likely result
5136 // in infinite recursion. In the later case, the analysis code will
5137 // cope with a conservative value, and it will take care to purge
5138 // that value once it has finished.
5139 const SCEV
*MaxBECount
= getConstantMaxBackedgeTakenCount(L
);
5141 // Normally, in the cases we can prove no-overflow via a
5142 // backedge guarding condition, we can also compute a backedge
5143 // taken count for the loop. The exceptions are assumptions and
5144 // guards present in the loop -- SCEV is not great at exploiting
5145 // these to compute max backedge taken counts, but can still use
5146 // these to prove lack of overflow. Use this fact to avoid
5147 // doing extra work that may not pay off.
5149 if (isa
<SCEVCouldNotCompute
>(MaxBECount
) && !HasGuards
&&
5150 AC
.assumptions().empty())
5153 // If the backedge is guarded by a comparison with the pre-inc value the
5154 // addrec is safe. Also, if the entry is guarded by a comparison with the
5155 // start value and the backedge is guarded by a comparison with the post-inc
5156 // value, the addrec is safe.
5157 if (isKnownPositive(Step
)) {
5158 const SCEV
*N
= getConstant(APInt::getMinValue(BitWidth
) -
5159 getUnsignedRangeMax(Step
));
5160 if (isLoopBackedgeGuardedByCond(L
, ICmpInst::ICMP_ULT
, AR
, N
) ||
5161 isKnownOnEveryIteration(ICmpInst::ICMP_ULT
, AR
, N
)) {
5162 Result
= setFlags(Result
, SCEV::FlagNUW
);
5171 /// Represents an abstract binary operation. This may exist as a
5172 /// normal instruction or constant expression, or may have been
5173 /// derived from an expression tree.
5181 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5182 /// constant expression.
5183 Operator
*Op
= nullptr;
5185 explicit BinaryOp(Operator
*Op
)
5186 : Opcode(Op
->getOpcode()), LHS(Op
->getOperand(0)), RHS(Op
->getOperand(1)),
5188 if (auto *OBO
= dyn_cast
<OverflowingBinaryOperator
>(Op
)) {
5189 IsNSW
= OBO
->hasNoSignedWrap();
5190 IsNUW
= OBO
->hasNoUnsignedWrap();
5194 explicit BinaryOp(unsigned Opcode
, Value
*LHS
, Value
*RHS
, bool IsNSW
= false,
5196 : Opcode(Opcode
), LHS(LHS
), RHS(RHS
), IsNSW(IsNSW
), IsNUW(IsNUW
) {}
5199 } // end anonymous namespace
5201 /// Try to map \p V into a BinaryOp, and return \c std::nullopt on failure.
5202 static std::optional
<BinaryOp
> MatchBinaryOp(Value
*V
, const DataLayout
&DL
,
5203 AssumptionCache
&AC
,
5204 const DominatorTree
&DT
,
5205 const Instruction
*CxtI
) {
5206 auto *Op
= dyn_cast
<Operator
>(V
);
5208 return std::nullopt
;
5210 // Implementation detail: all the cleverness here should happen without
5211 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5212 // SCEV expressions when possible, and we should not break that.
5214 switch (Op
->getOpcode()) {
5215 case Instruction::Add
:
5216 case Instruction::Sub
:
5217 case Instruction::Mul
:
5218 case Instruction::UDiv
:
5219 case Instruction::URem
:
5220 case Instruction::And
:
5221 case Instruction::AShr
:
5222 case Instruction::Shl
:
5223 return BinaryOp(Op
);
5225 case Instruction::Or
: {
5226 // LLVM loves to convert `add` of operands with no common bits
5227 // into an `or`. But SCEV really doesn't deal with `or` that well,
5228 // so try extra hard to recognize this `or` as an `add`.
5229 if (haveNoCommonBitsSet(Op
->getOperand(0), Op
->getOperand(1),
5230 SimplifyQuery(DL
, &DT
, &AC
, CxtI
)))
5231 return BinaryOp(Instruction::Add
, Op
->getOperand(0), Op
->getOperand(1),
5232 /*IsNSW=*/true, /*IsNUW=*/true);
5233 return BinaryOp(Op
);
5236 case Instruction::Xor
:
5237 if (auto *RHSC
= dyn_cast
<ConstantInt
>(Op
->getOperand(1)))
5238 // If the RHS of the xor is a signmask, then this is just an add.
5239 // Instcombine turns add of signmask into xor as a strength reduction step.
5240 if (RHSC
->getValue().isSignMask())
5241 return BinaryOp(Instruction::Add
, Op
->getOperand(0), Op
->getOperand(1));
5242 // Binary `xor` is a bit-wise `add`.
5243 if (V
->getType()->isIntegerTy(1))
5244 return BinaryOp(Instruction::Add
, Op
->getOperand(0), Op
->getOperand(1));
5245 return BinaryOp(Op
);
5247 case Instruction::LShr
:
5248 // Turn logical shift right of a constant into a unsigned divide.
5249 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(Op
->getOperand(1))) {
5250 uint32_t BitWidth
= cast
<IntegerType
>(Op
->getType())->getBitWidth();
5252 // If the shift count is not less than the bitwidth, the result of
5253 // the shift is undefined. Don't try to analyze it, because the
5254 // resolution chosen here may differ from the resolution chosen in
5255 // other parts of the compiler.
5256 if (SA
->getValue().ult(BitWidth
)) {
5258 ConstantInt::get(SA
->getContext(),
5259 APInt::getOneBitSet(BitWidth
, SA
->getZExtValue()));
5260 return BinaryOp(Instruction::UDiv
, Op
->getOperand(0), X
);
5263 return BinaryOp(Op
);
5265 case Instruction::ExtractValue
: {
5266 auto *EVI
= cast
<ExtractValueInst
>(Op
);
5267 if (EVI
->getNumIndices() != 1 || EVI
->getIndices()[0] != 0)
5270 auto *WO
= dyn_cast
<WithOverflowInst
>(EVI
->getAggregateOperand());
5274 Instruction::BinaryOps BinOp
= WO
->getBinaryOp();
5275 bool Signed
= WO
->isSigned();
5276 // TODO: Should add nuw/nsw flags for mul as well.
5277 if (BinOp
== Instruction::Mul
|| !isOverflowIntrinsicNoWrap(WO
, DT
))
5278 return BinaryOp(BinOp
, WO
->getLHS(), WO
->getRHS());
5280 // Now that we know that all uses of the arithmetic-result component of
5281 // CI are guarded by the overflow check, we can go ahead and pretend
5282 // that the arithmetic is non-overflowing.
5283 return BinaryOp(BinOp
, WO
->getLHS(), WO
->getRHS(),
5284 /* IsNSW = */ Signed
, /* IsNUW = */ !Signed
);
5291 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5292 // semantics as a Sub, return a binary sub expression.
5293 if (auto *II
= dyn_cast
<IntrinsicInst
>(V
))
5294 if (II
->getIntrinsicID() == Intrinsic::loop_decrement_reg
)
5295 return BinaryOp(Instruction::Sub
, II
->getOperand(0), II
->getOperand(1));
5297 return std::nullopt
;
5300 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5301 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5302 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5303 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5304 /// follows one of the following patterns:
5305 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5306 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5307 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5308 /// we return the type of the truncation operation, and indicate whether the
5309 /// truncated type should be treated as signed/unsigned by setting
5310 /// \p Signed to true/false, respectively.
5311 static Type
*isSimpleCastedPHI(const SCEV
*Op
, const SCEVUnknown
*SymbolicPHI
,
5312 bool &Signed
, ScalarEvolution
&SE
) {
5313 // The case where Op == SymbolicPHI (that is, with no type conversions on
5314 // the way) is handled by the regular add recurrence creating logic and
5315 // would have already been triggered in createAddRecForPHI. Reaching it here
5316 // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5317 // because one of the other operands of the SCEVAddExpr updating this PHI is
5320 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5321 // this case predicates that allow us to prove that Op == SymbolicPHI will
5323 if (Op
== SymbolicPHI
)
5326 unsigned SourceBits
= SE
.getTypeSizeInBits(SymbolicPHI
->getType());
5327 unsigned NewBits
= SE
.getTypeSizeInBits(Op
->getType());
5328 if (SourceBits
!= NewBits
)
5331 const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(Op
);
5332 const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(Op
);
5335 const SCEVTruncateExpr
*Trunc
=
5336 SExt
? dyn_cast
<SCEVTruncateExpr
>(SExt
->getOperand())
5337 : dyn_cast
<SCEVTruncateExpr
>(ZExt
->getOperand());
5340 const SCEV
*X
= Trunc
->getOperand();
5341 if (X
!= SymbolicPHI
)
5343 Signed
= SExt
!= nullptr;
5344 return Trunc
->getType();
5347 static const Loop
*isIntegerLoopHeaderPHI(const PHINode
*PN
, LoopInfo
&LI
) {
5348 if (!PN
->getType()->isIntegerTy())
5350 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5351 if (!L
|| L
->getHeader() != PN
->getParent())
5356 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5357 // computation that updates the phi follows the following pattern:
5358 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5359 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5360 // If so, try to see if it can be rewritten as an AddRecExpr under some
5361 // Predicates. If successful, return them as a pair. Also cache the results
5364 // Example usage scenario:
5365 // Say the Rewriter is called for the following SCEV:
5366 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5368 // %X = phi i64 (%Start, %BEValue)
5369 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5370 // and call this function with %SymbolicPHI = %X.
5372 // The analysis will find that the value coming around the backedge has
5373 // the following SCEV:
5374 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5375 // Upon concluding that this matches the desired pattern, the function
5376 // will return the pair {NewAddRec, SmallPredsVec} where:
5377 // NewAddRec = {%Start,+,%Step}
5378 // SmallPredsVec = {P1, P2, P3} as follows:
5379 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5380 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5381 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5382 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5383 // under the predicates {P1,P2,P3}.
5384 // This predicated rewrite will be cached in PredicatedSCEVRewrites:
5385 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5389 // 1) Extend the Induction descriptor to also support inductions that involve
5390 // casts: When needed (namely, when we are called in the context of the
5391 // vectorizer induction analysis), a Set of cast instructions will be
5392 // populated by this method, and provided back to isInductionPHI. This is
5393 // needed to allow the vectorizer to properly record them to be ignored by
5394 // the cost model and to avoid vectorizing them (otherwise these casts,
5395 // which are redundant under the runtime overflow checks, will be
5396 // vectorized, which can be costly).
5398 // 2) Support additional induction/PHISCEV patterns: We also want to support
5399 // inductions where the sext-trunc / zext-trunc operations (partly) occur
5400 // after the induction update operation (the induction increment):
5402 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5403 // which correspond to a phi->add->trunc->sext/zext->phi update chain.
5405 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5406 // which correspond to a phi->trunc->add->sext/zext->phi update chain.
5408 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5409 std::optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
5410 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown
*SymbolicPHI
) {
5411 SmallVector
<const SCEVPredicate
*, 3> Predicates
;
5413 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5414 // return an AddRec expression under some predicate.
5416 auto *PN
= cast
<PHINode
>(SymbolicPHI
->getValue());
5417 const Loop
*L
= isIntegerLoopHeaderPHI(PN
, LI
);
5418 assert(L
&& "Expecting an integer loop header phi");
5420 // The loop may have multiple entrances or multiple exits; we can analyze
5421 // this phi as an addrec if it has a unique entry value and a unique
5423 Value
*BEValueV
= nullptr, *StartValueV
= nullptr;
5424 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
5425 Value
*V
= PN
->getIncomingValue(i
);
5426 if (L
->contains(PN
->getIncomingBlock(i
))) {
5429 } else if (BEValueV
!= V
) {
5433 } else if (!StartValueV
) {
5435 } else if (StartValueV
!= V
) {
5436 StartValueV
= nullptr;
5440 if (!BEValueV
|| !StartValueV
)
5441 return std::nullopt
;
5443 const SCEV
*BEValue
= getSCEV(BEValueV
);
5445 // If the value coming around the backedge is an add with the symbolic
5446 // value we just inserted, possibly with casts that we can ignore under
5447 // an appropriate runtime guard, then we found a simple induction variable!
5448 const auto *Add
= dyn_cast
<SCEVAddExpr
>(BEValue
);
5450 return std::nullopt
;
5452 // If there is a single occurrence of the symbolic value, possibly
5453 // casted, replace it with a recurrence.
5454 unsigned FoundIndex
= Add
->getNumOperands();
5455 Type
*TruncTy
= nullptr;
5457 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5459 isSimpleCastedPHI(Add
->getOperand(i
), SymbolicPHI
, Signed
, *this)))
5460 if (FoundIndex
== e
) {
5465 if (FoundIndex
== Add
->getNumOperands())
5466 return std::nullopt
;
5468 // Create an add with everything but the specified operand.
5469 SmallVector
<const SCEV
*, 8> Ops
;
5470 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5471 if (i
!= FoundIndex
)
5472 Ops
.push_back(Add
->getOperand(i
));
5473 const SCEV
*Accum
= getAddExpr(Ops
);
5475 // The runtime checks will not be valid if the step amount is
5476 // varying inside the loop.
5477 if (!isLoopInvariant(Accum
, L
))
5478 return std::nullopt
;
5480 // *** Part2: Create the predicates
5482 // Analysis was successful: we have a phi-with-cast pattern for which we
5483 // can return an AddRec expression under the following predicates:
5485 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5486 // fits within the truncated type (does not overflow) for i = 0 to n-1.
5487 // P2: An Equal predicate that guarantees that
5488 // Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5489 // P3: An Equal predicate that guarantees that
5490 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5492 // As we next prove, the above predicates guarantee that:
5493 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5496 // More formally, we want to prove that:
5497 // Expr(i+1) = Start + (i+1) * Accum
5498 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5501 // 1) Expr(0) = Start
5502 // 2) Expr(1) = Start + Accum
5503 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5504 // 3) Induction hypothesis (step i):
5505 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5509 // = Start + (i+1)*Accum
5510 // = (Start + i*Accum) + Accum
5511 // = Expr(i) + Accum
5512 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5515 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5517 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5518 // + (Ext ix (Trunc iy (Accum) to ix) to iy)
5519 // + Accum :: from P3
5521 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5522 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5524 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5525 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5527 // By induction, the same applies to all iterations 1<=i<n:
5530 // Create a truncated addrec for which we will add a no overflow check (P1).
5531 const SCEV
*StartVal
= getSCEV(StartValueV
);
5532 const SCEV
*PHISCEV
=
5533 getAddRecExpr(getTruncateExpr(StartVal
, TruncTy
),
5534 getTruncateExpr(Accum
, TruncTy
), L
, SCEV::FlagAnyWrap
);
5536 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5537 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5538 // will be constant.
5540 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5542 if (const auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PHISCEV
)) {
5543 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
=
5544 Signed
? SCEVWrapPredicate::IncrementNSSW
5545 : SCEVWrapPredicate::IncrementNUSW
;
5546 const SCEVPredicate
*AddRecPred
= getWrapPredicate(AR
, AddedFlags
);
5547 Predicates
.push_back(AddRecPred
);
5550 // Create the Equal Predicates P2,P3:
5552 // It is possible that the predicates P2 and/or P3 are computable at
5553 // compile time due to StartVal and/or Accum being constants.
5554 // If either one is, then we can check that now and escape if either P2
5557 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5558 // for each of StartVal and Accum
5559 auto getExtendedExpr
= [&](const SCEV
*Expr
,
5560 bool CreateSignExtend
) -> const SCEV
* {
5561 assert(isLoopInvariant(Expr
, L
) && "Expr is expected to be invariant");
5562 const SCEV
*TruncatedExpr
= getTruncateExpr(Expr
, TruncTy
);
5563 const SCEV
*ExtendedExpr
=
5564 CreateSignExtend
? getSignExtendExpr(TruncatedExpr
, Expr
->getType())
5565 : getZeroExtendExpr(TruncatedExpr
, Expr
->getType());
5566 return ExtendedExpr
;
5570 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5571 // = getExtendedExpr(Expr)
5572 // Determine whether the predicate P: Expr == ExtendedExpr
5573 // is known to be false at compile time
5574 auto PredIsKnownFalse
= [&](const SCEV
*Expr
,
5575 const SCEV
*ExtendedExpr
) -> bool {
5576 return Expr
!= ExtendedExpr
&&
5577 isKnownPredicate(ICmpInst::ICMP_NE
, Expr
, ExtendedExpr
);
5580 const SCEV
*StartExtended
= getExtendedExpr(StartVal
, Signed
);
5581 if (PredIsKnownFalse(StartVal
, StartExtended
)) {
5582 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5583 return std::nullopt
;
5586 // The Step is always Signed (because the overflow checks are either
5588 const SCEV
*AccumExtended
= getExtendedExpr(Accum
, /*CreateSignExtend=*/true);
5589 if (PredIsKnownFalse(Accum
, AccumExtended
)) {
5590 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5591 return std::nullopt
;
5594 auto AppendPredicate
= [&](const SCEV
*Expr
,
5595 const SCEV
*ExtendedExpr
) -> void {
5596 if (Expr
!= ExtendedExpr
&&
5597 !isKnownPredicate(ICmpInst::ICMP_EQ
, Expr
, ExtendedExpr
)) {
5598 const SCEVPredicate
*Pred
= getEqualPredicate(Expr
, ExtendedExpr
);
5599 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred
);
5600 Predicates
.push_back(Pred
);
5604 AppendPredicate(StartVal
, StartExtended
);
5605 AppendPredicate(Accum
, AccumExtended
);
5607 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5608 // which the casts had been folded away. The caller can rewrite SymbolicPHI
5609 // into NewAR if it will also add the runtime overflow checks specified in
5611 auto *NewAR
= getAddRecExpr(StartVal
, Accum
, L
, SCEV::FlagAnyWrap
);
5613 std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>> PredRewrite
=
5614 std::make_pair(NewAR
, Predicates
);
5615 // Remember the result of the analysis for this SCEV at this locayyytion.
5616 PredicatedSCEVRewrites
[{SymbolicPHI
, L
}] = PredRewrite
;
5620 std::optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
5621 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown
*SymbolicPHI
) {
5622 auto *PN
= cast
<PHINode
>(SymbolicPHI
->getValue());
5623 const Loop
*L
= isIntegerLoopHeaderPHI(PN
, LI
);
5625 return std::nullopt
;
5627 // Check to see if we already analyzed this PHI.
5628 auto I
= PredicatedSCEVRewrites
.find({SymbolicPHI
, L
});
5629 if (I
!= PredicatedSCEVRewrites
.end()) {
5630 std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>> Rewrite
=
5632 // Analysis was done before and failed to create an AddRec:
5633 if (Rewrite
.first
== SymbolicPHI
)
5634 return std::nullopt
;
5635 // Analysis was done before and succeeded to create an AddRec under
5637 assert(isa
<SCEVAddRecExpr
>(Rewrite
.first
) && "Expected an AddRec");
5638 assert(!(Rewrite
.second
).empty() && "Expected to find Predicates");
5642 std::optional
<std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
5643 Rewrite
= createAddRecFromPHIWithCastsImpl(SymbolicPHI
);
5645 // Record in the cache that the analysis failed
5647 SmallVector
<const SCEVPredicate
*, 3> Predicates
;
5648 PredicatedSCEVRewrites
[{SymbolicPHI
, L
}] = {SymbolicPHI
, Predicates
};
5649 return std::nullopt
;
5655 // FIXME: This utility is currently required because the Rewriter currently
5656 // does not rewrite this expression:
5657 // {0, +, (sext ix (trunc iy to ix) to iy)}
5658 // into {0, +, %step},
5659 // even when the following Equal predicate exists:
5660 // "%step == (sext ix (trunc iy to ix) to iy)".
5661 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5662 const SCEVAddRecExpr
*AR1
, const SCEVAddRecExpr
*AR2
) const {
5666 auto areExprsEqual
= [&](const SCEV
*Expr1
, const SCEV
*Expr2
) -> bool {
5667 if (Expr1
!= Expr2
&& !Preds
->implies(SE
.getEqualPredicate(Expr1
, Expr2
)) &&
5668 !Preds
->implies(SE
.getEqualPredicate(Expr2
, Expr1
)))
5673 if (!areExprsEqual(AR1
->getStart(), AR2
->getStart()) ||
5674 !areExprsEqual(AR1
->getStepRecurrence(SE
), AR2
->getStepRecurrence(SE
)))
5679 /// A helper function for createAddRecFromPHI to handle simple cases.
5681 /// This function tries to find an AddRec expression for the simplest (yet most
5682 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5683 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5684 /// technique for finding the AddRec expression.
5685 const SCEV
*ScalarEvolution::createSimpleAffineAddRec(PHINode
*PN
,
5687 Value
*StartValueV
) {
5688 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5689 assert(L
&& L
->getHeader() == PN
->getParent());
5690 assert(BEValueV
&& StartValueV
);
5692 auto BO
= MatchBinaryOp(BEValueV
, getDataLayout(), AC
, DT
, PN
);
5696 if (BO
->Opcode
!= Instruction::Add
)
5699 const SCEV
*Accum
= nullptr;
5700 if (BO
->LHS
== PN
&& L
->isLoopInvariant(BO
->RHS
))
5701 Accum
= getSCEV(BO
->RHS
);
5702 else if (BO
->RHS
== PN
&& L
->isLoopInvariant(BO
->LHS
))
5703 Accum
= getSCEV(BO
->LHS
);
5708 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
5710 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5712 Flags
= setFlags(Flags
, SCEV::FlagNSW
);
5714 const SCEV
*StartVal
= getSCEV(StartValueV
);
5715 const SCEV
*PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
, Flags
);
5716 insertValueToMap(PN
, PHISCEV
);
5718 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PHISCEV
)) {
5719 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
),
5720 (SCEV::NoWrapFlags
)(AR
->getNoWrapFlags() |
5721 proveNoWrapViaConstantRanges(AR
)));
5724 // We can add Flags to the post-inc expression only if we
5725 // know that it is *undefined behavior* for BEValueV to
5727 if (auto *BEInst
= dyn_cast
<Instruction
>(BEValueV
)) {
5728 assert(isLoopInvariant(Accum
, L
) &&
5729 "Accum is defined outside L, but is not invariant?");
5730 if (isAddRecNeverPoison(BEInst
, L
))
5731 (void)getAddRecExpr(getAddExpr(StartVal
, Accum
), Accum
, L
, Flags
);
5737 const SCEV
*ScalarEvolution::createAddRecFromPHI(PHINode
*PN
) {
5738 const Loop
*L
= LI
.getLoopFor(PN
->getParent());
5739 if (!L
|| L
->getHeader() != PN
->getParent())
5742 // The loop may have multiple entrances or multiple exits; we can analyze
5743 // this phi as an addrec if it has a unique entry value and a unique
5745 Value
*BEValueV
= nullptr, *StartValueV
= nullptr;
5746 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
5747 Value
*V
= PN
->getIncomingValue(i
);
5748 if (L
->contains(PN
->getIncomingBlock(i
))) {
5751 } else if (BEValueV
!= V
) {
5755 } else if (!StartValueV
) {
5757 } else if (StartValueV
!= V
) {
5758 StartValueV
= nullptr;
5762 if (!BEValueV
|| !StartValueV
)
5765 assert(ValueExprMap
.find_as(PN
) == ValueExprMap
.end() &&
5766 "PHI node already processed?");
5768 // First, try to find AddRec expression without creating a fictituos symbolic
5770 if (auto *S
= createSimpleAffineAddRec(PN
, BEValueV
, StartValueV
))
5773 // Handle PHI node value symbolically.
5774 const SCEV
*SymbolicName
= getUnknown(PN
);
5775 insertValueToMap(PN
, SymbolicName
);
5777 // Using this symbolic name for the PHI, analyze the value coming around
5779 const SCEV
*BEValue
= getSCEV(BEValueV
);
5781 // NOTE: If BEValue is loop invariant, we know that the PHI node just
5782 // has a special value for the first iteration of the loop.
5784 // If the value coming around the backedge is an add with the symbolic
5785 // value we just inserted, then we found a simple induction variable!
5786 if (const SCEVAddExpr
*Add
= dyn_cast
<SCEVAddExpr
>(BEValue
)) {
5787 // If there is a single occurrence of the symbolic value, replace it
5788 // with a recurrence.
5789 unsigned FoundIndex
= Add
->getNumOperands();
5790 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5791 if (Add
->getOperand(i
) == SymbolicName
)
5792 if (FoundIndex
== e
) {
5797 if (FoundIndex
!= Add
->getNumOperands()) {
5798 // Create an add with everything but the specified operand.
5799 SmallVector
<const SCEV
*, 8> Ops
;
5800 for (unsigned i
= 0, e
= Add
->getNumOperands(); i
!= e
; ++i
)
5801 if (i
!= FoundIndex
)
5802 Ops
.push_back(SCEVBackedgeConditionFolder::rewrite(Add
->getOperand(i
),
5804 const SCEV
*Accum
= getAddExpr(Ops
);
5806 // This is not a valid addrec if the step amount is varying each
5807 // loop iteration, but is not itself an addrec in this loop.
5808 if (isLoopInvariant(Accum
, L
) ||
5809 (isa
<SCEVAddRecExpr
>(Accum
) &&
5810 cast
<SCEVAddRecExpr
>(Accum
)->getLoop() == L
)) {
5811 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
5813 if (auto BO
= MatchBinaryOp(BEValueV
, getDataLayout(), AC
, DT
, PN
)) {
5814 if (BO
->Opcode
== Instruction::Add
&& BO
->LHS
== PN
) {
5816 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5818 Flags
= setFlags(Flags
, SCEV::FlagNSW
);
5820 } else if (GEPOperator
*GEP
= dyn_cast
<GEPOperator
>(BEValueV
)) {
5821 // If the increment is an inbounds GEP, then we know the address
5822 // space cannot be wrapped around. We cannot make any guarantee
5823 // about signed or unsigned overflow because pointers are
5824 // unsigned but we may have a negative index from the base
5825 // pointer. We can guarantee that no unsigned wrap occurs if the
5826 // indices form a positive value.
5827 if (GEP
->isInBounds() && GEP
->getOperand(0) == PN
) {
5828 Flags
= setFlags(Flags
, SCEV::FlagNW
);
5829 if (isKnownPositive(Accum
))
5830 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
5833 // We cannot transfer nuw and nsw flags from subtraction
5834 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5838 const SCEV
*StartVal
= getSCEV(StartValueV
);
5839 const SCEV
*PHISCEV
= getAddRecExpr(StartVal
, Accum
, L
, Flags
);
5841 // Okay, for the entire analysis of this edge we assumed the PHI
5842 // to be symbolic. We now need to go back and purge all of the
5843 // entries for the scalars that use the symbolic expression.
5844 forgetMemoizedResults(SymbolicName
);
5845 insertValueToMap(PN
, PHISCEV
);
5847 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(PHISCEV
)) {
5848 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
),
5849 (SCEV::NoWrapFlags
)(AR
->getNoWrapFlags() |
5850 proveNoWrapViaConstantRanges(AR
)));
5853 // We can add Flags to the post-inc expression only if we
5854 // know that it is *undefined behavior* for BEValueV to
5856 if (auto *BEInst
= dyn_cast
<Instruction
>(BEValueV
))
5857 if (isLoopInvariant(Accum
, L
) && isAddRecNeverPoison(BEInst
, L
))
5858 (void)getAddRecExpr(getAddExpr(StartVal
, Accum
), Accum
, L
, Flags
);
5864 // Otherwise, this could be a loop like this:
5865 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
5866 // In this case, j = {1,+,1} and BEValue is j.
5867 // Because the other in-value of i (0) fits the evolution of BEValue
5868 // i really is an addrec evolution.
5870 // We can generalize this saying that i is the shifted value of BEValue
5871 // by one iteration:
5872 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
5873 const SCEV
*Shifted
= SCEVShiftRewriter::rewrite(BEValue
, L
, *this);
5874 const SCEV
*Start
= SCEVInitRewriter::rewrite(Shifted
, L
, *this, false);
5875 if (Shifted
!= getCouldNotCompute() &&
5876 Start
!= getCouldNotCompute()) {
5877 const SCEV
*StartVal
= getSCEV(StartValueV
);
5878 if (Start
== StartVal
) {
5879 // Okay, for the entire analysis of this edge we assumed the PHI
5880 // to be symbolic. We now need to go back and purge all of the
5881 // entries for the scalars that use the symbolic expression.
5882 forgetMemoizedResults(SymbolicName
);
5883 insertValueToMap(PN
, Shifted
);
5889 // Remove the temporary PHI node SCEV that has been inserted while intending
5890 // to create an AddRecExpr for this PHI node. We can not keep this temporary
5891 // as it will prevent later (possibly simpler) SCEV expressions to be added
5892 // to the ValueExprMap.
5893 eraseValueFromMap(PN
);
5898 // Try to match a control flow sequence that branches out at BI and merges back
5899 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
5901 static bool BrPHIToSelect(DominatorTree
&DT
, BranchInst
*BI
, PHINode
*Merge
,
5902 Value
*&C
, Value
*&LHS
, Value
*&RHS
) {
5903 C
= BI
->getCondition();
5905 BasicBlockEdge
LeftEdge(BI
->getParent(), BI
->getSuccessor(0));
5906 BasicBlockEdge
RightEdge(BI
->getParent(), BI
->getSuccessor(1));
5908 if (!LeftEdge
.isSingleEdge())
5911 assert(RightEdge
.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5913 Use
&LeftUse
= Merge
->getOperandUse(0);
5914 Use
&RightUse
= Merge
->getOperandUse(1);
5916 if (DT
.dominates(LeftEdge
, LeftUse
) && DT
.dominates(RightEdge
, RightUse
)) {
5922 if (DT
.dominates(LeftEdge
, RightUse
) && DT
.dominates(RightEdge
, LeftUse
)) {
5931 const SCEV
*ScalarEvolution::createNodeFromSelectLikePHI(PHINode
*PN
) {
5933 [&](BasicBlock
*BB
) { return DT
.isReachableFromEntry(BB
); };
5934 if (PN
->getNumIncomingValues() == 2 && all_of(PN
->blocks(), IsReachable
)) {
5937 // br %cond, label %left, label %right
5943 // V = phi [ %x, %left ], [ %y, %right ]
5945 // as "select %cond, %x, %y"
5947 BasicBlock
*IDom
= DT
[PN
->getParent()]->getIDom()->getBlock();
5948 assert(IDom
&& "At least the entry block should dominate PN");
5950 auto *BI
= dyn_cast
<BranchInst
>(IDom
->getTerminator());
5951 Value
*Cond
= nullptr, *LHS
= nullptr, *RHS
= nullptr;
5953 if (BI
&& BI
->isConditional() &&
5954 BrPHIToSelect(DT
, BI
, PN
, Cond
, LHS
, RHS
) &&
5955 properlyDominates(getSCEV(LHS
), PN
->getParent()) &&
5956 properlyDominates(getSCEV(RHS
), PN
->getParent()))
5957 return createNodeForSelectOrPHI(PN
, Cond
, LHS
, RHS
);
5963 const SCEV
*ScalarEvolution::createNodeForPHI(PHINode
*PN
) {
5964 if (const SCEV
*S
= createAddRecFromPHI(PN
))
5967 if (Value
*V
= simplifyInstruction(PN
, {getDataLayout(), &TLI
, &DT
, &AC
}))
5970 if (const SCEV
*S
= createNodeFromSelectLikePHI(PN
))
5973 // If it's not a loop phi, we can't handle it yet.
5974 return getUnknown(PN
);
5977 bool SCEVMinMaxExprContains(const SCEV
*Root
, const SCEV
*OperandToFind
,
5978 SCEVTypes RootKind
) {
5979 struct FindClosure
{
5980 const SCEV
*OperandToFind
;
5981 const SCEVTypes RootKind
; // Must be a sequential min/max expression.
5982 const SCEVTypes NonSequentialRootKind
; // Non-seq variant of RootKind.
5986 bool canRecurseInto(SCEVTypes Kind
) const {
5987 // We can only recurse into the SCEV expression of the same effective type
5988 // as the type of our root SCEV expression, and into zero-extensions.
5989 return RootKind
== Kind
|| NonSequentialRootKind
== Kind
||
5990 scZeroExtend
== Kind
;
5993 FindClosure(const SCEV
*OperandToFind
, SCEVTypes RootKind
)
5994 : OperandToFind(OperandToFind
), RootKind(RootKind
),
5995 NonSequentialRootKind(
5996 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
5999 bool follow(const SCEV
*S
) {
6000 Found
= S
== OperandToFind
;
6002 return !isDone() && canRecurseInto(S
->getSCEVType());
6005 bool isDone() const { return Found
; }
6008 FindClosure
FC(OperandToFind
, RootKind
);
6013 std::optional
<const SCEV
*>
6014 ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(Type
*Ty
,
6018 // Try to match some simple smax or umax patterns.
6021 Value
*LHS
= ICI
->getOperand(0);
6022 Value
*RHS
= ICI
->getOperand(1);
6024 switch (ICI
->getPredicate()) {
6025 case ICmpInst::ICMP_SLT
:
6026 case ICmpInst::ICMP_SLE
:
6027 case ICmpInst::ICMP_ULT
:
6028 case ICmpInst::ICMP_ULE
:
6029 std::swap(LHS
, RHS
);
6031 case ICmpInst::ICMP_SGT
:
6032 case ICmpInst::ICMP_SGE
:
6033 case ICmpInst::ICMP_UGT
:
6034 case ICmpInst::ICMP_UGE
:
6035 // a > b ? a+x : b+x -> max(a, b)+x
6036 // a > b ? b+x : a+x -> min(a, b)+x
6037 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(Ty
)) {
6038 bool Signed
= ICI
->isSigned();
6039 const SCEV
*LA
= getSCEV(TrueVal
);
6040 const SCEV
*RA
= getSCEV(FalseVal
);
6041 const SCEV
*LS
= getSCEV(LHS
);
6042 const SCEV
*RS
= getSCEV(RHS
);
6043 if (LA
->getType()->isPointerTy()) {
6044 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
6045 // Need to make sure we can't produce weird expressions involving
6046 // negated pointers.
6047 if (LA
== LS
&& RA
== RS
)
6048 return Signed
? getSMaxExpr(LS
, RS
) : getUMaxExpr(LS
, RS
);
6049 if (LA
== RS
&& RA
== LS
)
6050 return Signed
? getSMinExpr(LS
, RS
) : getUMinExpr(LS
, RS
);
6052 auto CoerceOperand
= [&](const SCEV
*Op
) -> const SCEV
* {
6053 if (Op
->getType()->isPointerTy()) {
6054 Op
= getLosslessPtrToIntExpr(Op
);
6055 if (isa
<SCEVCouldNotCompute
>(Op
))
6059 Op
= getNoopOrSignExtend(Op
, Ty
);
6061 Op
= getNoopOrZeroExtend(Op
, Ty
);
6064 LS
= CoerceOperand(LS
);
6065 RS
= CoerceOperand(RS
);
6066 if (isa
<SCEVCouldNotCompute
>(LS
) || isa
<SCEVCouldNotCompute
>(RS
))
6068 const SCEV
*LDiff
= getMinusSCEV(LA
, LS
);
6069 const SCEV
*RDiff
= getMinusSCEV(RA
, RS
);
6071 return getAddExpr(Signed
? getSMaxExpr(LS
, RS
) : getUMaxExpr(LS
, RS
),
6073 LDiff
= getMinusSCEV(LA
, RS
);
6074 RDiff
= getMinusSCEV(RA
, LS
);
6076 return getAddExpr(Signed
? getSMinExpr(LS
, RS
) : getUMinExpr(LS
, RS
),
6080 case ICmpInst::ICMP_NE
:
6081 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y
6082 std::swap(TrueVal
, FalseVal
);
6084 case ICmpInst::ICMP_EQ
:
6085 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1
6086 if (getTypeSizeInBits(LHS
->getType()) <= getTypeSizeInBits(Ty
) &&
6087 isa
<ConstantInt
>(RHS
) && cast
<ConstantInt
>(RHS
)->isZero()) {
6088 const SCEV
*X
= getNoopOrZeroExtend(getSCEV(LHS
), Ty
);
6089 const SCEV
*TrueValExpr
= getSCEV(TrueVal
); // C+y
6090 const SCEV
*FalseValExpr
= getSCEV(FalseVal
); // x+y
6091 const SCEV
*Y
= getMinusSCEV(FalseValExpr
, X
); // y = (x+y)-x
6092 const SCEV
*C
= getMinusSCEV(TrueValExpr
, Y
); // C = (C+y)-y
6093 if (isa
<SCEVConstant
>(C
) && cast
<SCEVConstant
>(C
)->getAPInt().ule(1))
6094 return getAddExpr(getUMaxExpr(X
, C
), Y
);
6096 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...))
6097 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...))
6098 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...)
6099 // -> umin_seq(x, umin (..., umin_seq(...), ...))
6100 if (isa
<ConstantInt
>(RHS
) && cast
<ConstantInt
>(RHS
)->isZero() &&
6101 isa
<ConstantInt
>(TrueVal
) && cast
<ConstantInt
>(TrueVal
)->isZero()) {
6102 const SCEV
*X
= getSCEV(LHS
);
6103 while (auto *ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(X
))
6104 X
= ZExt
->getOperand();
6105 if (getTypeSizeInBits(X
->getType()) <= getTypeSizeInBits(Ty
)) {
6106 const SCEV
*FalseValExpr
= getSCEV(FalseVal
);
6107 if (SCEVMinMaxExprContains(FalseValExpr
, X
, scSequentialUMinExpr
))
6108 return getUMinExpr(getNoopOrZeroExtend(X
, Ty
), FalseValExpr
,
6109 /*Sequential=*/true);
6117 return std::nullopt
;
6120 static std::optional
<const SCEV
*>
6121 createNodeForSelectViaUMinSeq(ScalarEvolution
*SE
, const SCEV
*CondExpr
,
6122 const SCEV
*TrueExpr
, const SCEV
*FalseExpr
) {
6123 assert(CondExpr
->getType()->isIntegerTy(1) &&
6124 TrueExpr
->getType() == FalseExpr
->getType() &&
6125 TrueExpr
->getType()->isIntegerTy(1) &&
6126 "Unexpected operands of a select.");
6128 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0)
6129 // --> C + (umin_seq cond, x - C)
6131 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C))
6132 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6133 // --> C + (umin_seq ~cond, x - C)
6135 // FIXME: while we can't legally model the case where both of the hands
6136 // are fully variable, we only require that the *difference* is constant.
6137 if (!isa
<SCEVConstant
>(TrueExpr
) && !isa
<SCEVConstant
>(FalseExpr
))
6138 return std::nullopt
;
6141 if (isa
<SCEVConstant
>(TrueExpr
)) {
6142 CondExpr
= SE
->getNotSCEV(CondExpr
);
6149 return SE
->getAddExpr(C
, SE
->getUMinExpr(CondExpr
, SE
->getMinusSCEV(X
, C
),
6150 /*Sequential=*/true));
6153 static std::optional
<const SCEV
*>
6154 createNodeForSelectViaUMinSeq(ScalarEvolution
*SE
, Value
*Cond
, Value
*TrueVal
,
6156 if (!isa
<ConstantInt
>(TrueVal
) && !isa
<ConstantInt
>(FalseVal
))
6157 return std::nullopt
;
6159 const auto *SECond
= SE
->getSCEV(Cond
);
6160 const auto *SETrue
= SE
->getSCEV(TrueVal
);
6161 const auto *SEFalse
= SE
->getSCEV(FalseVal
);
6162 return createNodeForSelectViaUMinSeq(SE
, SECond
, SETrue
, SEFalse
);
6165 const SCEV
*ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6166 Value
*V
, Value
*Cond
, Value
*TrueVal
, Value
*FalseVal
) {
6167 assert(Cond
->getType()->isIntegerTy(1) && "Select condition is not an i1?");
6168 assert(TrueVal
->getType() == FalseVal
->getType() &&
6169 V
->getType() == TrueVal
->getType() &&
6170 "Types of select hands and of the result must match.");
6172 // For now, only deal with i1-typed `select`s.
6173 if (!V
->getType()->isIntegerTy(1))
6174 return getUnknown(V
);
6176 if (std::optional
<const SCEV
*> S
=
6177 createNodeForSelectViaUMinSeq(this, Cond
, TrueVal
, FalseVal
))
6180 return getUnknown(V
);
6183 const SCEV
*ScalarEvolution::createNodeForSelectOrPHI(Value
*V
, Value
*Cond
,
6186 // Handle "constant" branch or select. This can occur for instance when a
6187 // loop pass transforms an inner loop and moves on to process the outer loop.
6188 if (auto *CI
= dyn_cast
<ConstantInt
>(Cond
))
6189 return getSCEV(CI
->isOne() ? TrueVal
: FalseVal
);
6191 if (auto *I
= dyn_cast
<Instruction
>(V
)) {
6192 if (auto *ICI
= dyn_cast
<ICmpInst
>(Cond
)) {
6193 if (std::optional
<const SCEV
*> S
=
6194 createNodeForSelectOrPHIInstWithICmpInstCond(I
->getType(), ICI
,
6200 return createNodeForSelectOrPHIViaUMinSeq(V
, Cond
, TrueVal
, FalseVal
);
6203 /// Expand GEP instructions into add and multiply operations. This allows them
6204 /// to be analyzed by regular SCEV code.
6205 const SCEV
*ScalarEvolution::createNodeForGEP(GEPOperator
*GEP
) {
6206 assert(GEP
->getSourceElementType()->isSized() &&
6207 "GEP source element type must be sized");
6209 SmallVector
<const SCEV
*, 4> IndexExprs
;
6210 for (Value
*Index
: GEP
->indices())
6211 IndexExprs
.push_back(getSCEV(Index
));
6212 return getGEPExpr(GEP
, IndexExprs
);
6215 APInt
ScalarEvolution::getConstantMultipleImpl(const SCEV
*S
) {
6216 uint64_t BitWidth
= getTypeSizeInBits(S
->getType());
6217 auto GetShiftedByZeros
= [BitWidth
](uint32_t TrailingZeros
) {
6218 return TrailingZeros
>= BitWidth
6219 ? APInt::getZero(BitWidth
)
6220 : APInt::getOneBitSet(BitWidth
, TrailingZeros
);
6222 auto GetGCDMultiple
= [this](const SCEVNAryExpr
*N
) {
6223 // The result is GCD of all operands results.
6224 APInt Res
= getConstantMultiple(N
->getOperand(0));
6225 for (unsigned I
= 1, E
= N
->getNumOperands(); I
< E
&& Res
!= 1; ++I
)
6226 Res
= APIntOps::GreatestCommonDivisor(
6227 Res
, getConstantMultiple(N
->getOperand(I
)));
6231 switch (S
->getSCEVType()) {
6233 return cast
<SCEVConstant
>(S
)->getAPInt();
6235 return getConstantMultiple(cast
<SCEVPtrToIntExpr
>(S
)->getOperand());
6238 return APInt(BitWidth
, 1);
6240 // Only multiples that are a power of 2 will hold after truncation.
6241 const SCEVTruncateExpr
*T
= cast
<SCEVTruncateExpr
>(S
);
6242 uint32_t TZ
= getMinTrailingZeros(T
->getOperand());
6243 return GetShiftedByZeros(TZ
);
6245 case scZeroExtend
: {
6246 const SCEVZeroExtendExpr
*Z
= cast
<SCEVZeroExtendExpr
>(S
);
6247 return getConstantMultiple(Z
->getOperand()).zext(BitWidth
);
6249 case scSignExtend
: {
6250 const SCEVSignExtendExpr
*E
= cast
<SCEVSignExtendExpr
>(S
);
6251 return getConstantMultiple(E
->getOperand()).sext(BitWidth
);
6254 const SCEVMulExpr
*M
= cast
<SCEVMulExpr
>(S
);
6255 if (M
->hasNoUnsignedWrap()) {
6256 // The result is the product of all operand results.
6257 APInt Res
= getConstantMultiple(M
->getOperand(0));
6258 for (const SCEV
*Operand
: M
->operands().drop_front())
6259 Res
= Res
* getConstantMultiple(Operand
);
6263 // If there are no wrap guarentees, find the trailing zeros, which is the
6264 // sum of trailing zeros for all its operands.
6266 for (const SCEV
*Operand
: M
->operands())
6267 TZ
+= getMinTrailingZeros(Operand
);
6268 return GetShiftedByZeros(TZ
);
6271 case scAddRecExpr
: {
6272 const SCEVNAryExpr
*N
= cast
<SCEVNAryExpr
>(S
);
6273 if (N
->hasNoUnsignedWrap())
6274 return GetGCDMultiple(N
);
6275 // Find the trailing bits, which is the minimum of its operands.
6276 uint32_t TZ
= getMinTrailingZeros(N
->getOperand(0));
6277 for (const SCEV
*Operand
: N
->operands().drop_front())
6278 TZ
= std::min(TZ
, getMinTrailingZeros(Operand
));
6279 return GetShiftedByZeros(TZ
);
6285 case scSequentialUMinExpr
:
6286 return GetGCDMultiple(cast
<SCEVNAryExpr
>(S
));
6288 // ask ValueTracking for known bits
6289 const SCEVUnknown
*U
= cast
<SCEVUnknown
>(S
);
6291 computeKnownBits(U
->getValue(), getDataLayout(), 0, &AC
, nullptr, &DT
)
6292 .countMinTrailingZeros();
6293 return GetShiftedByZeros(Known
);
6295 case scCouldNotCompute
:
6296 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6298 llvm_unreachable("Unknown SCEV kind!");
6301 APInt
ScalarEvolution::getConstantMultiple(const SCEV
*S
) {
6302 auto I
= ConstantMultipleCache
.find(S
);
6303 if (I
!= ConstantMultipleCache
.end())
6306 APInt Result
= getConstantMultipleImpl(S
);
6307 auto InsertPair
= ConstantMultipleCache
.insert({S
, Result
});
6308 assert(InsertPair
.second
&& "Should insert a new key");
6309 return InsertPair
.first
->second
;
6312 APInt
ScalarEvolution::getNonZeroConstantMultiple(const SCEV
*S
) {
6313 APInt Multiple
= getConstantMultiple(S
);
6314 return Multiple
== 0 ? APInt(Multiple
.getBitWidth(), 1) : Multiple
;
6317 uint32_t ScalarEvolution::getMinTrailingZeros(const SCEV
*S
) {
6318 return std::min(getConstantMultiple(S
).countTrailingZeros(),
6319 (unsigned)getTypeSizeInBits(S
->getType()));
6322 /// Helper method to assign a range to V from metadata present in the IR.
6323 static std::optional
<ConstantRange
> GetRangeFromMetadata(Value
*V
) {
6324 if (Instruction
*I
= dyn_cast
<Instruction
>(V
))
6325 if (MDNode
*MD
= I
->getMetadata(LLVMContext::MD_range
))
6326 return getConstantRangeFromMetadata(*MD
);
6328 return std::nullopt
;
6331 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr
*AddRec
,
6332 SCEV::NoWrapFlags Flags
) {
6333 if (AddRec
->getNoWrapFlags(Flags
) != Flags
) {
6334 AddRec
->setNoWrapFlags(Flags
);
6335 UnsignedRanges
.erase(AddRec
);
6336 SignedRanges
.erase(AddRec
);
6337 ConstantMultipleCache
.erase(AddRec
);
6341 ConstantRange
ScalarEvolution::
6342 getRangeForUnknownRecurrence(const SCEVUnknown
*U
) {
6343 const DataLayout
&DL
= getDataLayout();
6345 unsigned BitWidth
= getTypeSizeInBits(U
->getType());
6346 const ConstantRange
FullSet(BitWidth
, /*isFullSet=*/true);
6348 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6349 // use information about the trip count to improve our available range. Note
6350 // that the trip count independent cases are already handled by known bits.
6351 // WARNING: The definition of recurrence used here is subtly different than
6352 // the one used by AddRec (and thus most of this file). Step is allowed to
6353 // be arbitrarily loop varying here, where AddRec allows only loop invariant
6354 // and other addrecs in the same loop (for non-affine addrecs). The code
6355 // below intentionally handles the case where step is not loop invariant.
6356 auto *P
= dyn_cast
<PHINode
>(U
->getValue());
6360 // Make sure that no Phi input comes from an unreachable block. Otherwise,
6361 // even the values that are not available in these blocks may come from them,
6362 // and this leads to false-positive recurrence test.
6363 for (auto *Pred
: predecessors(P
->getParent()))
6364 if (!DT
.isReachableFromEntry(Pred
))
6368 Value
*Start
, *Step
;
6369 if (!matchSimpleRecurrence(P
, BO
, Start
, Step
))
6372 // If we found a recurrence in reachable code, we must be in a loop. Note
6373 // that BO might be in some subloop of L, and that's completely okay.
6374 auto *L
= LI
.getLoopFor(P
->getParent());
6375 assert(L
&& L
->getHeader() == P
->getParent());
6376 if (!L
->contains(BO
->getParent()))
6377 // NOTE: This bailout should be an assert instead. However, asserting
6378 // the condition here exposes a case where LoopFusion is querying SCEV
6379 // with malformed loop information during the midst of the transform.
6380 // There doesn't appear to be an obvious fix, so for the moment bailout
6381 // until the caller issue can be fixed. PR49566 tracks the bug.
6384 // TODO: Extend to other opcodes such as mul, and div
6385 switch (BO
->getOpcode()) {
6388 case Instruction::AShr
:
6389 case Instruction::LShr
:
6390 case Instruction::Shl
:
6394 if (BO
->getOperand(0) != P
)
6395 // TODO: Handle the power function forms some day.
6398 unsigned TC
= getSmallConstantMaxTripCount(L
);
6399 if (!TC
|| TC
>= BitWidth
)
6402 auto KnownStart
= computeKnownBits(Start
, DL
, 0, &AC
, nullptr, &DT
);
6403 auto KnownStep
= computeKnownBits(Step
, DL
, 0, &AC
, nullptr, &DT
);
6404 assert(KnownStart
.getBitWidth() == BitWidth
&&
6405 KnownStep
.getBitWidth() == BitWidth
);
6407 // Compute total shift amount, being careful of overflow and bitwidths.
6408 auto MaxShiftAmt
= KnownStep
.getMaxValue();
6409 APInt
TCAP(BitWidth
, TC
-1);
6410 bool Overflow
= false;
6411 auto TotalShift
= MaxShiftAmt
.umul_ov(TCAP
, Overflow
);
6415 switch (BO
->getOpcode()) {
6417 llvm_unreachable("filtered out above");
6418 case Instruction::AShr
: {
6419 // For each ashr, three cases:
6420 // shift = 0 => unchanged value
6421 // saturation => 0 or -1
6422 // other => a value closer to zero (of the same sign)
6423 // Thus, the end value is closer to zero than the start.
6424 auto KnownEnd
= KnownBits::ashr(KnownStart
,
6425 KnownBits::makeConstant(TotalShift
));
6426 if (KnownStart
.isNonNegative())
6427 // Analogous to lshr (simply not yet canonicalized)
6428 return ConstantRange::getNonEmpty(KnownEnd
.getMinValue(),
6429 KnownStart
.getMaxValue() + 1);
6430 if (KnownStart
.isNegative())
6431 // End >=u Start && End <=s Start
6432 return ConstantRange::getNonEmpty(KnownStart
.getMinValue(),
6433 KnownEnd
.getMaxValue() + 1);
6436 case Instruction::LShr
: {
6437 // For each lshr, three cases:
6438 // shift = 0 => unchanged value
6440 // other => a smaller positive number
6441 // Thus, the low end of the unsigned range is the last value produced.
6442 auto KnownEnd
= KnownBits::lshr(KnownStart
,
6443 KnownBits::makeConstant(TotalShift
));
6444 return ConstantRange::getNonEmpty(KnownEnd
.getMinValue(),
6445 KnownStart
.getMaxValue() + 1);
6447 case Instruction::Shl
: {
6448 // Iff no bits are shifted out, value increases on every shift.
6449 auto KnownEnd
= KnownBits::shl(KnownStart
,
6450 KnownBits::makeConstant(TotalShift
));
6451 if (TotalShift
.ult(KnownStart
.countMinLeadingZeros()))
6452 return ConstantRange(KnownStart
.getMinValue(),
6453 KnownEnd
.getMaxValue() + 1);
6460 const ConstantRange
&
6461 ScalarEvolution::getRangeRefIter(const SCEV
*S
,
6462 ScalarEvolution::RangeSignHint SignHint
) {
6463 DenseMap
<const SCEV
*, ConstantRange
> &Cache
=
6464 SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
? UnsignedRanges
6466 SmallVector
<const SCEV
*> WorkList
;
6467 SmallPtrSet
<const SCEV
*, 8> Seen
;
6469 // Add Expr to the worklist, if Expr is either an N-ary expression or a
6470 // SCEVUnknown PHI node.
6471 auto AddToWorklist
= [&WorkList
, &Seen
, &Cache
](const SCEV
*Expr
) {
6472 if (!Seen
.insert(Expr
).second
)
6474 if (Cache
.contains(Expr
))
6476 switch (Expr
->getSCEVType()) {
6478 if (!isa
<PHINode
>(cast
<SCEVUnknown
>(Expr
)->getValue()))
6495 case scSequentialUMinExpr
:
6496 WorkList
.push_back(Expr
);
6498 case scCouldNotCompute
:
6499 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6504 // Build worklist by queuing operands of N-ary expressions and phi nodes.
6505 for (unsigned I
= 0; I
!= WorkList
.size(); ++I
) {
6506 const SCEV
*P
= WorkList
[I
];
6507 auto *UnknownS
= dyn_cast
<SCEVUnknown
>(P
);
6508 // If it is not a `SCEVUnknown`, just recurse into operands.
6510 for (const SCEV
*Op
: P
->operands())
6514 // `SCEVUnknown`'s require special treatment.
6515 if (const PHINode
*P
= dyn_cast
<PHINode
>(UnknownS
->getValue())) {
6516 if (!PendingPhiRangesIter
.insert(P
).second
)
6518 for (auto &Op
: reverse(P
->operands()))
6519 AddToWorklist(getSCEV(Op
));
6523 if (!WorkList
.empty()) {
6524 // Use getRangeRef to compute ranges for items in the worklist in reverse
6525 // order. This will force ranges for earlier operands to be computed before
6526 // their users in most cases.
6527 for (const SCEV
*P
: reverse(drop_begin(WorkList
))) {
6528 getRangeRef(P
, SignHint
);
6530 if (auto *UnknownS
= dyn_cast
<SCEVUnknown
>(P
))
6531 if (const PHINode
*P
= dyn_cast
<PHINode
>(UnknownS
->getValue()))
6532 PendingPhiRangesIter
.erase(P
);
6536 return getRangeRef(S
, SignHint
, 0);
6539 /// Determine the range for a particular SCEV. If SignHint is
6540 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6541 /// with a "cleaner" unsigned (resp. signed) representation.
6542 const ConstantRange
&ScalarEvolution::getRangeRef(
6543 const SCEV
*S
, ScalarEvolution::RangeSignHint SignHint
, unsigned Depth
) {
6544 DenseMap
<const SCEV
*, ConstantRange
> &Cache
=
6545 SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
? UnsignedRanges
6547 ConstantRange::PreferredRangeType RangeType
=
6548 SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
? ConstantRange::Unsigned
6549 : ConstantRange::Signed
;
6551 // See if we've computed this range already.
6552 DenseMap
<const SCEV
*, ConstantRange
>::iterator I
= Cache
.find(S
);
6553 if (I
!= Cache
.end())
6556 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(S
))
6557 return setRange(C
, SignHint
, ConstantRange(C
->getAPInt()));
6559 // Switch to iteratively computing the range for S, if it is part of a deeply
6560 // nested expression.
6561 if (Depth
> RangeIterThreshold
)
6562 return getRangeRefIter(S
, SignHint
);
6564 unsigned BitWidth
= getTypeSizeInBits(S
->getType());
6565 ConstantRange
ConservativeResult(BitWidth
, /*isFullSet=*/true);
6566 using OBO
= OverflowingBinaryOperator
;
6568 // If the value has known zeros, the maximum value will have those known zeros
6570 if (SignHint
== ScalarEvolution::HINT_RANGE_UNSIGNED
) {
6571 APInt Multiple
= getNonZeroConstantMultiple(S
);
6572 APInt Remainder
= APInt::getMaxValue(BitWidth
).urem(Multiple
);
6573 if (!Remainder
.isZero())
6574 ConservativeResult
=
6575 ConstantRange(APInt::getMinValue(BitWidth
),
6576 APInt::getMaxValue(BitWidth
) - Remainder
+ 1);
6579 uint32_t TZ
= getMinTrailingZeros(S
);
6581 ConservativeResult
= ConstantRange(
6582 APInt::getSignedMinValue(BitWidth
),
6583 APInt::getSignedMaxValue(BitWidth
).ashr(TZ
).shl(TZ
) + 1);
6587 switch (S
->getSCEVType()) {
6589 llvm_unreachable("Already handled above.");
6591 return setRange(S
, SignHint
, getVScaleRange(&F
, BitWidth
));
6593 const SCEVTruncateExpr
*Trunc
= cast
<SCEVTruncateExpr
>(S
);
6594 ConstantRange X
= getRangeRef(Trunc
->getOperand(), SignHint
, Depth
+ 1);
6597 ConservativeResult
.intersectWith(X
.truncate(BitWidth
), RangeType
));
6599 case scZeroExtend
: {
6600 const SCEVZeroExtendExpr
*ZExt
= cast
<SCEVZeroExtendExpr
>(S
);
6601 ConstantRange X
= getRangeRef(ZExt
->getOperand(), SignHint
, Depth
+ 1);
6604 ConservativeResult
.intersectWith(X
.zeroExtend(BitWidth
), RangeType
));
6606 case scSignExtend
: {
6607 const SCEVSignExtendExpr
*SExt
= cast
<SCEVSignExtendExpr
>(S
);
6608 ConstantRange X
= getRangeRef(SExt
->getOperand(), SignHint
, Depth
+ 1);
6611 ConservativeResult
.intersectWith(X
.signExtend(BitWidth
), RangeType
));
6614 const SCEVPtrToIntExpr
*PtrToInt
= cast
<SCEVPtrToIntExpr
>(S
);
6615 ConstantRange X
= getRangeRef(PtrToInt
->getOperand(), SignHint
, Depth
+ 1);
6616 return setRange(PtrToInt
, SignHint
, X
);
6619 const SCEVAddExpr
*Add
= cast
<SCEVAddExpr
>(S
);
6620 ConstantRange X
= getRangeRef(Add
->getOperand(0), SignHint
, Depth
+ 1);
6621 unsigned WrapType
= OBO::AnyWrap
;
6622 if (Add
->hasNoSignedWrap())
6623 WrapType
|= OBO::NoSignedWrap
;
6624 if (Add
->hasNoUnsignedWrap())
6625 WrapType
|= OBO::NoUnsignedWrap
;
6626 for (unsigned i
= 1, e
= Add
->getNumOperands(); i
!= e
; ++i
)
6627 X
= X
.addWithNoWrap(getRangeRef(Add
->getOperand(i
), SignHint
, Depth
+ 1),
6628 WrapType
, RangeType
);
6629 return setRange(Add
, SignHint
,
6630 ConservativeResult
.intersectWith(X
, RangeType
));
6633 const SCEVMulExpr
*Mul
= cast
<SCEVMulExpr
>(S
);
6634 ConstantRange X
= getRangeRef(Mul
->getOperand(0), SignHint
, Depth
+ 1);
6635 for (unsigned i
= 1, e
= Mul
->getNumOperands(); i
!= e
; ++i
)
6636 X
= X
.multiply(getRangeRef(Mul
->getOperand(i
), SignHint
, Depth
+ 1));
6637 return setRange(Mul
, SignHint
,
6638 ConservativeResult
.intersectWith(X
, RangeType
));
6641 const SCEVUDivExpr
*UDiv
= cast
<SCEVUDivExpr
>(S
);
6642 ConstantRange X
= getRangeRef(UDiv
->getLHS(), SignHint
, Depth
+ 1);
6643 ConstantRange Y
= getRangeRef(UDiv
->getRHS(), SignHint
, Depth
+ 1);
6644 return setRange(UDiv
, SignHint
,
6645 ConservativeResult
.intersectWith(X
.udiv(Y
), RangeType
));
6647 case scAddRecExpr
: {
6648 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(S
);
6649 // If there's no unsigned wrap, the value will never be less than its
6651 if (AddRec
->hasNoUnsignedWrap()) {
6652 APInt UnsignedMinValue
= getUnsignedRangeMin(AddRec
->getStart());
6653 if (!UnsignedMinValue
.isZero())
6654 ConservativeResult
= ConservativeResult
.intersectWith(
6655 ConstantRange(UnsignedMinValue
, APInt(BitWidth
, 0)), RangeType
);
6658 // If there's no signed wrap, and all the operands except initial value have
6659 // the same sign or zero, the value won't ever be:
6660 // 1: smaller than initial value if operands are non negative,
6661 // 2: bigger than initial value if operands are non positive.
6662 // For both cases, value can not cross signed min/max boundary.
6663 if (AddRec
->hasNoSignedWrap()) {
6664 bool AllNonNeg
= true;
6665 bool AllNonPos
= true;
6666 for (unsigned i
= 1, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
6667 if (!isKnownNonNegative(AddRec
->getOperand(i
)))
6669 if (!isKnownNonPositive(AddRec
->getOperand(i
)))
6673 ConservativeResult
= ConservativeResult
.intersectWith(
6674 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec
->getStart()),
6675 APInt::getSignedMinValue(BitWidth
)),
6678 ConservativeResult
= ConservativeResult
.intersectWith(
6679 ConstantRange::getNonEmpty(APInt::getSignedMinValue(BitWidth
),
6680 getSignedRangeMax(AddRec
->getStart()) +
6685 // TODO: non-affine addrec
6686 if (AddRec
->isAffine()) {
6687 const SCEV
*MaxBEScev
=
6688 getConstantMaxBackedgeTakenCount(AddRec
->getLoop());
6689 if (!isa
<SCEVCouldNotCompute
>(MaxBEScev
)) {
6690 APInt MaxBECount
= cast
<SCEVConstant
>(MaxBEScev
)->getAPInt();
6692 // Adjust MaxBECount to the same bitwidth as AddRec. We can truncate if
6693 // MaxBECount's active bits are all <= AddRec's bit width.
6694 if (MaxBECount
.getBitWidth() > BitWidth
&&
6695 MaxBECount
.getActiveBits() <= BitWidth
)
6696 MaxBECount
= MaxBECount
.trunc(BitWidth
);
6697 else if (MaxBECount
.getBitWidth() < BitWidth
)
6698 MaxBECount
= MaxBECount
.zext(BitWidth
);
6700 if (MaxBECount
.getBitWidth() == BitWidth
) {
6701 auto RangeFromAffine
= getRangeForAffineAR(
6702 AddRec
->getStart(), AddRec
->getStepRecurrence(*this), MaxBECount
);
6703 ConservativeResult
=
6704 ConservativeResult
.intersectWith(RangeFromAffine
, RangeType
);
6706 auto RangeFromFactoring
= getRangeViaFactoring(
6707 AddRec
->getStart(), AddRec
->getStepRecurrence(*this), MaxBECount
);
6708 ConservativeResult
=
6709 ConservativeResult
.intersectWith(RangeFromFactoring
, RangeType
);
6713 // Now try symbolic BE count and more powerful methods.
6714 if (UseExpensiveRangeSharpening
) {
6715 const SCEV
*SymbolicMaxBECount
=
6716 getSymbolicMaxBackedgeTakenCount(AddRec
->getLoop());
6717 if (!isa
<SCEVCouldNotCompute
>(SymbolicMaxBECount
) &&
6718 getTypeSizeInBits(MaxBEScev
->getType()) <= BitWidth
&&
6719 AddRec
->hasNoSelfWrap()) {
6720 auto RangeFromAffineNew
= getRangeForAffineNoSelfWrappingAR(
6721 AddRec
, SymbolicMaxBECount
, BitWidth
, SignHint
);
6722 ConservativeResult
=
6723 ConservativeResult
.intersectWith(RangeFromAffineNew
, RangeType
);
6728 return setRange(AddRec
, SignHint
, std::move(ConservativeResult
));
6734 case scSequentialUMinExpr
: {
6736 switch (S
->getSCEVType()) {
6738 ID
= Intrinsic::umax
;
6741 ID
= Intrinsic::smax
;
6744 case scSequentialUMinExpr
:
6745 ID
= Intrinsic::umin
;
6748 ID
= Intrinsic::smin
;
6751 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6754 const auto *NAry
= cast
<SCEVNAryExpr
>(S
);
6755 ConstantRange X
= getRangeRef(NAry
->getOperand(0), SignHint
, Depth
+ 1);
6756 for (unsigned i
= 1, e
= NAry
->getNumOperands(); i
!= e
; ++i
)
6758 ID
, {X
, getRangeRef(NAry
->getOperand(i
), SignHint
, Depth
+ 1)});
6759 return setRange(S
, SignHint
,
6760 ConservativeResult
.intersectWith(X
, RangeType
));
6763 const SCEVUnknown
*U
= cast
<SCEVUnknown
>(S
);
6764 Value
*V
= U
->getValue();
6766 // Check if the IR explicitly contains !range metadata.
6767 std::optional
<ConstantRange
> MDRange
= GetRangeFromMetadata(V
);
6769 ConservativeResult
=
6770 ConservativeResult
.intersectWith(*MDRange
, RangeType
);
6772 // Use facts about recurrences in the underlying IR. Note that add
6773 // recurrences are AddRecExprs and thus don't hit this path. This
6774 // primarily handles shift recurrences.
6775 auto CR
= getRangeForUnknownRecurrence(U
);
6776 ConservativeResult
= ConservativeResult
.intersectWith(CR
);
6778 // See if ValueTracking can give us a useful range.
6779 const DataLayout
&DL
= getDataLayout();
6780 KnownBits Known
= computeKnownBits(V
, DL
, 0, &AC
, nullptr, &DT
);
6781 if (Known
.getBitWidth() != BitWidth
)
6782 Known
= Known
.zextOrTrunc(BitWidth
);
6784 // ValueTracking may be able to compute a tighter result for the number of
6785 // sign bits than for the value of those sign bits.
6786 unsigned NS
= ComputeNumSignBits(V
, DL
, 0, &AC
, nullptr, &DT
);
6787 if (U
->getType()->isPointerTy()) {
6788 // If the pointer size is larger than the index size type, this can cause
6789 // NS to be larger than BitWidth. So compensate for this.
6790 unsigned ptrSize
= DL
.getPointerTypeSizeInBits(U
->getType());
6791 int ptrIdxDiff
= ptrSize
- BitWidth
;
6792 if (ptrIdxDiff
> 0 && ptrSize
> BitWidth
&& NS
> (unsigned)ptrIdxDiff
)
6797 // If we know any of the sign bits, we know all of the sign bits.
6798 if (!Known
.Zero
.getHiBits(NS
).isZero())
6799 Known
.Zero
.setHighBits(NS
);
6800 if (!Known
.One
.getHiBits(NS
).isZero())
6801 Known
.One
.setHighBits(NS
);
6804 if (Known
.getMinValue() != Known
.getMaxValue() + 1)
6805 ConservativeResult
= ConservativeResult
.intersectWith(
6806 ConstantRange(Known
.getMinValue(), Known
.getMaxValue() + 1),
6809 ConservativeResult
= ConservativeResult
.intersectWith(
6810 ConstantRange(APInt::getSignedMinValue(BitWidth
).ashr(NS
- 1),
6811 APInt::getSignedMaxValue(BitWidth
).ashr(NS
- 1) + 1),
6814 if (U
->getType()->isPointerTy() && SignHint
== HINT_RANGE_UNSIGNED
) {
6815 // Strengthen the range if the underlying IR value is a
6816 // global/alloca/heap allocation using the size of the object.
6817 ObjectSizeOpts Opts
;
6818 Opts
.RoundToAlign
= false;
6819 Opts
.NullIsUnknownSize
= true;
6821 if ((isa
<GlobalVariable
>(V
) || isa
<AllocaInst
>(V
) ||
6822 isAllocationFn(V
, &TLI
)) &&
6823 getObjectSize(V
, ObjSize
, DL
, &TLI
, Opts
) && ObjSize
> 1) {
6824 // The highest address the object can start is ObjSize bytes before the
6825 // end (unsigned max value). If this value is not a multiple of the
6826 // alignment, the last possible start value is the next lowest multiple
6827 // of the alignment. Note: The computations below cannot overflow,
6828 // because if they would there's no possible start address for the
6830 APInt MaxVal
= APInt::getMaxValue(BitWidth
) - APInt(BitWidth
, ObjSize
);
6831 uint64_t Align
= U
->getValue()->getPointerAlignment(DL
).value();
6832 uint64_t Rem
= MaxVal
.urem(Align
);
6833 MaxVal
-= APInt(BitWidth
, Rem
);
6834 APInt MinVal
= APInt::getZero(BitWidth
);
6835 if (llvm::isKnownNonZero(V
, DL
))
6837 ConservativeResult
= ConservativeResult
.intersectWith(
6838 ConstantRange::getNonEmpty(MinVal
, MaxVal
+ 1), RangeType
);
6842 // A range of Phi is a subset of union of all ranges of its input.
6843 if (PHINode
*Phi
= dyn_cast
<PHINode
>(V
)) {
6844 // Make sure that we do not run over cycled Phis.
6845 if (PendingPhiRanges
.insert(Phi
).second
) {
6846 ConstantRange
RangeFromOps(BitWidth
, /*isFullSet=*/false);
6848 for (const auto &Op
: Phi
->operands()) {
6849 auto OpRange
= getRangeRef(getSCEV(Op
), SignHint
, Depth
+ 1);
6850 RangeFromOps
= RangeFromOps
.unionWith(OpRange
);
6851 // No point to continue if we already have a full set.
6852 if (RangeFromOps
.isFullSet())
6855 ConservativeResult
=
6856 ConservativeResult
.intersectWith(RangeFromOps
, RangeType
);
6857 bool Erased
= PendingPhiRanges
.erase(Phi
);
6858 assert(Erased
&& "Failed to erase Phi properly?");
6863 // vscale can't be equal to zero
6864 if (const auto *II
= dyn_cast
<IntrinsicInst
>(V
))
6865 if (II
->getIntrinsicID() == Intrinsic::vscale
) {
6866 ConstantRange Disallowed
= APInt::getZero(BitWidth
);
6867 ConservativeResult
= ConservativeResult
.difference(Disallowed
);
6870 return setRange(U
, SignHint
, std::move(ConservativeResult
));
6872 case scCouldNotCompute
:
6873 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
6876 return setRange(S
, SignHint
, std::move(ConservativeResult
));
6879 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6880 // values that the expression can take. Initially, the expression has a value
6881 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6882 // argument defines if we treat Step as signed or unsigned.
6883 static ConstantRange
getRangeForAffineARHelper(APInt Step
,
6884 const ConstantRange
&StartRange
,
6885 const APInt
&MaxBECount
,
6887 unsigned BitWidth
= Step
.getBitWidth();
6888 assert(BitWidth
== StartRange
.getBitWidth() &&
6889 BitWidth
== MaxBECount
.getBitWidth() && "mismatched bit widths");
6890 // If either Step or MaxBECount is 0, then the expression won't change, and we
6891 // just need to return the initial range.
6892 if (Step
== 0 || MaxBECount
== 0)
6895 // If we don't know anything about the initial value (i.e. StartRange is
6896 // FullRange), then we don't know anything about the final range either.
6897 // Return FullRange.
6898 if (StartRange
.isFullSet())
6899 return ConstantRange::getFull(BitWidth
);
6901 // If Step is signed and negative, then we use its absolute value, but we also
6902 // note that we're moving in the opposite direction.
6903 bool Descending
= Signed
&& Step
.isNegative();
6906 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6907 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6908 // This equations hold true due to the well-defined wrap-around behavior of
6912 // Check if Offset is more than full span of BitWidth. If it is, the
6913 // expression is guaranteed to overflow.
6914 if (APInt::getMaxValue(StartRange
.getBitWidth()).udiv(Step
).ult(MaxBECount
))
6915 return ConstantRange::getFull(BitWidth
);
6917 // Offset is by how much the expression can change. Checks above guarantee no
6919 APInt Offset
= Step
* MaxBECount
;
6921 // Minimum value of the final range will match the minimal value of StartRange
6922 // if the expression is increasing and will be decreased by Offset otherwise.
6923 // Maximum value of the final range will match the maximal value of StartRange
6924 // if the expression is decreasing and will be increased by Offset otherwise.
6925 APInt StartLower
= StartRange
.getLower();
6926 APInt StartUpper
= StartRange
.getUpper() - 1;
6927 APInt MovedBoundary
= Descending
? (StartLower
- std::move(Offset
))
6928 : (StartUpper
+ std::move(Offset
));
6930 // It's possible that the new minimum/maximum value will fall into the initial
6931 // range (due to wrap around). This means that the expression can take any
6932 // value in this bitwidth, and we have to return full range.
6933 if (StartRange
.contains(MovedBoundary
))
6934 return ConstantRange::getFull(BitWidth
);
6937 Descending
? std::move(MovedBoundary
) : std::move(StartLower
);
6939 Descending
? std::move(StartUpper
) : std::move(MovedBoundary
);
6942 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6943 return ConstantRange::getNonEmpty(std::move(NewLower
), std::move(NewUpper
));
6946 ConstantRange
ScalarEvolution::getRangeForAffineAR(const SCEV
*Start
,
6948 const APInt
&MaxBECount
) {
6949 assert(getTypeSizeInBits(Start
->getType()) ==
6950 getTypeSizeInBits(Step
->getType()) &&
6951 getTypeSizeInBits(Start
->getType()) == MaxBECount
.getBitWidth() &&
6952 "mismatched bit widths");
6954 // First, consider step signed.
6955 ConstantRange StartSRange
= getSignedRange(Start
);
6956 ConstantRange StepSRange
= getSignedRange(Step
);
6958 // If Step can be both positive and negative, we need to find ranges for the
6959 // maximum absolute step values in both directions and union them.
6960 ConstantRange SR
= getRangeForAffineARHelper(
6961 StepSRange
.getSignedMin(), StartSRange
, MaxBECount
, /* Signed = */ true);
6962 SR
= SR
.unionWith(getRangeForAffineARHelper(StepSRange
.getSignedMax(),
6963 StartSRange
, MaxBECount
,
6964 /* Signed = */ true));
6966 // Next, consider step unsigned.
6967 ConstantRange UR
= getRangeForAffineARHelper(
6968 getUnsignedRangeMax(Step
), getUnsignedRange(Start
), MaxBECount
,
6969 /* Signed = */ false);
6971 // Finally, intersect signed and unsigned ranges.
6972 return SR
.intersectWith(UR
, ConstantRange::Smallest
);
6975 ConstantRange
ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6976 const SCEVAddRecExpr
*AddRec
, const SCEV
*MaxBECount
, unsigned BitWidth
,
6977 ScalarEvolution::RangeSignHint SignHint
) {
6978 assert(AddRec
->isAffine() && "Non-affine AddRecs are not suppored!\n");
6979 assert(AddRec
->hasNoSelfWrap() &&
6980 "This only works for non-self-wrapping AddRecs!");
6981 const bool IsSigned
= SignHint
== HINT_RANGE_SIGNED
;
6982 const SCEV
*Step
= AddRec
->getStepRecurrence(*this);
6983 // Only deal with constant step to save compile time.
6984 if (!isa
<SCEVConstant
>(Step
))
6985 return ConstantRange::getFull(BitWidth
);
6986 // Let's make sure that we can prove that we do not self-wrap during
6987 // MaxBECount iterations. We need this because MaxBECount is a maximum
6988 // iteration count estimate, and we might infer nw from some exit for which we
6989 // do not know max exit count (or any other side reasoning).
6990 // TODO: Turn into assert at some point.
6991 if (getTypeSizeInBits(MaxBECount
->getType()) >
6992 getTypeSizeInBits(AddRec
->getType()))
6993 return ConstantRange::getFull(BitWidth
);
6994 MaxBECount
= getNoopOrZeroExtend(MaxBECount
, AddRec
->getType());
6995 const SCEV
*RangeWidth
= getMinusOne(AddRec
->getType());
6996 const SCEV
*StepAbs
= getUMinExpr(Step
, getNegativeSCEV(Step
));
6997 const SCEV
*MaxItersWithoutWrap
= getUDivExpr(RangeWidth
, StepAbs
);
6998 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE
, MaxBECount
,
6999 MaxItersWithoutWrap
))
7000 return ConstantRange::getFull(BitWidth
);
7002 ICmpInst::Predicate LEPred
=
7003 IsSigned
? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
7004 ICmpInst::Predicate GEPred
=
7005 IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
7006 const SCEV
*End
= AddRec
->evaluateAtIteration(MaxBECount
, *this);
7008 // We know that there is no self-wrap. Let's take Start and End values and
7009 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
7010 // the iteration. They either lie inside the range [Min(Start, End),
7011 // Max(Start, End)] or outside it:
7013 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax;
7014 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax;
7016 // No self wrap flag guarantees that the intermediate values cannot be BOTH
7017 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
7018 // knowledge, let's try to prove that we are dealing with Case 1. It is so if
7019 // Start <= End and step is positive, or Start >= End and step is negative.
7020 const SCEV
*Start
= applyLoopGuards(AddRec
->getStart(), AddRec
->getLoop());
7021 ConstantRange StartRange
= getRangeRef(Start
, SignHint
);
7022 ConstantRange EndRange
= getRangeRef(End
, SignHint
);
7023 ConstantRange RangeBetween
= StartRange
.unionWith(EndRange
);
7024 // If they already cover full iteration space, we will know nothing useful
7025 // even if we prove what we want to prove.
7026 if (RangeBetween
.isFullSet())
7027 return RangeBetween
;
7028 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
7029 bool IsWrappedSet
= IsSigned
? RangeBetween
.isSignWrappedSet()
7030 : RangeBetween
.isWrappedSet();
7032 return ConstantRange::getFull(BitWidth
);
7034 if (isKnownPositive(Step
) &&
7035 isKnownPredicateViaConstantRanges(LEPred
, Start
, End
))
7036 return RangeBetween
;
7037 if (isKnownNegative(Step
) &&
7038 isKnownPredicateViaConstantRanges(GEPred
, Start
, End
))
7039 return RangeBetween
;
7040 return ConstantRange::getFull(BitWidth
);
7043 ConstantRange
ScalarEvolution::getRangeViaFactoring(const SCEV
*Start
,
7045 const APInt
&MaxBECount
) {
7046 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
7047 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
7049 unsigned BitWidth
= MaxBECount
.getBitWidth();
7050 assert(getTypeSizeInBits(Start
->getType()) == BitWidth
&&
7051 getTypeSizeInBits(Step
->getType()) == BitWidth
&&
7052 "mismatched bit widths");
7054 struct SelectPattern
{
7055 Value
*Condition
= nullptr;
7059 explicit SelectPattern(ScalarEvolution
&SE
, unsigned BitWidth
,
7061 std::optional
<unsigned> CastOp
;
7062 APInt
Offset(BitWidth
, 0);
7064 assert(SE
.getTypeSizeInBits(S
->getType()) == BitWidth
&&
7067 // Peel off a constant offset:
7068 if (auto *SA
= dyn_cast
<SCEVAddExpr
>(S
)) {
7069 // In the future we could consider being smarter here and handle
7070 // {Start+Step,+,Step} too.
7071 if (SA
->getNumOperands() != 2 || !isa
<SCEVConstant
>(SA
->getOperand(0)))
7074 Offset
= cast
<SCEVConstant
>(SA
->getOperand(0))->getAPInt();
7075 S
= SA
->getOperand(1);
7078 // Peel off a cast operation
7079 if (auto *SCast
= dyn_cast
<SCEVIntegralCastExpr
>(S
)) {
7080 CastOp
= SCast
->getSCEVType();
7081 S
= SCast
->getOperand();
7084 using namespace llvm::PatternMatch
;
7086 auto *SU
= dyn_cast
<SCEVUnknown
>(S
);
7087 const APInt
*TrueVal
, *FalseVal
;
7089 !match(SU
->getValue(), m_Select(m_Value(Condition
), m_APInt(TrueVal
),
7090 m_APInt(FalseVal
)))) {
7091 Condition
= nullptr;
7095 TrueValue
= *TrueVal
;
7096 FalseValue
= *FalseVal
;
7098 // Re-apply the cast we peeled off earlier
7102 llvm_unreachable("Unknown SCEV cast type!");
7105 TrueValue
= TrueValue
.trunc(BitWidth
);
7106 FalseValue
= FalseValue
.trunc(BitWidth
);
7109 TrueValue
= TrueValue
.zext(BitWidth
);
7110 FalseValue
= FalseValue
.zext(BitWidth
);
7113 TrueValue
= TrueValue
.sext(BitWidth
);
7114 FalseValue
= FalseValue
.sext(BitWidth
);
7118 // Re-apply the constant offset we peeled off earlier
7119 TrueValue
+= Offset
;
7120 FalseValue
+= Offset
;
7123 bool isRecognized() { return Condition
!= nullptr; }
7126 SelectPattern
StartPattern(*this, BitWidth
, Start
);
7127 if (!StartPattern
.isRecognized())
7128 return ConstantRange::getFull(BitWidth
);
7130 SelectPattern
StepPattern(*this, BitWidth
, Step
);
7131 if (!StepPattern
.isRecognized())
7132 return ConstantRange::getFull(BitWidth
);
7134 if (StartPattern
.Condition
!= StepPattern
.Condition
) {
7135 // We don't handle this case today; but we could, by considering four
7136 // possibilities below instead of two. I'm not sure if there are cases where
7137 // that will help over what getRange already does, though.
7138 return ConstantRange::getFull(BitWidth
);
7141 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
7142 // construct arbitrary general SCEV expressions here. This function is called
7143 // from deep in the call stack, and calling getSCEV (on a sext instruction,
7144 // say) can end up caching a suboptimal value.
7146 // FIXME: without the explicit `this` receiver below, MSVC errors out with
7147 // C2352 and C2512 (otherwise it isn't needed).
7149 const SCEV
*TrueStart
= this->getConstant(StartPattern
.TrueValue
);
7150 const SCEV
*TrueStep
= this->getConstant(StepPattern
.TrueValue
);
7151 const SCEV
*FalseStart
= this->getConstant(StartPattern
.FalseValue
);
7152 const SCEV
*FalseStep
= this->getConstant(StepPattern
.FalseValue
);
7154 ConstantRange TrueRange
=
7155 this->getRangeForAffineAR(TrueStart
, TrueStep
, MaxBECount
);
7156 ConstantRange FalseRange
=
7157 this->getRangeForAffineAR(FalseStart
, FalseStep
, MaxBECount
);
7159 return TrueRange
.unionWith(FalseRange
);
7162 SCEV::NoWrapFlags
ScalarEvolution::getNoWrapFlagsFromUB(const Value
*V
) {
7163 if (isa
<ConstantExpr
>(V
)) return SCEV::FlagAnyWrap
;
7164 const BinaryOperator
*BinOp
= cast
<BinaryOperator
>(V
);
7166 // Return early if there are no flags to propagate to the SCEV.
7167 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
7168 if (BinOp
->hasNoUnsignedWrap())
7169 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNUW
);
7170 if (BinOp
->hasNoSignedWrap())
7171 Flags
= ScalarEvolution::setFlags(Flags
, SCEV::FlagNSW
);
7172 if (Flags
== SCEV::FlagAnyWrap
)
7173 return SCEV::FlagAnyWrap
;
7175 return isSCEVExprNeverPoison(BinOp
) ? Flags
: SCEV::FlagAnyWrap
;
7179 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV
*S
) {
7180 if (auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
))
7181 return &*AddRec
->getLoop()->getHeader()->begin();
7182 if (auto *U
= dyn_cast
<SCEVUnknown
>(S
))
7183 if (auto *I
= dyn_cast
<Instruction
>(U
->getValue()))
7189 ScalarEvolution::getDefiningScopeBound(ArrayRef
<const SCEV
*> Ops
,
7192 // Do a bounded search of the def relation of the requested SCEVs.
7193 SmallSet
<const SCEV
*, 16> Visited
;
7194 SmallVector
<const SCEV
*> Worklist
;
7195 auto pushOp
= [&](const SCEV
*S
) {
7196 if (!Visited
.insert(S
).second
)
7198 // Threshold of 30 here is arbitrary.
7199 if (Visited
.size() > 30) {
7203 Worklist
.push_back(S
);
7206 for (const auto *S
: Ops
)
7209 const Instruction
*Bound
= nullptr;
7210 while (!Worklist
.empty()) {
7211 auto *S
= Worklist
.pop_back_val();
7212 if (auto *DefI
= getNonTrivialDefiningScopeBound(S
)) {
7213 if (!Bound
|| DT
.dominates(Bound
, DefI
))
7216 for (const auto *Op
: S
->operands())
7220 return Bound
? Bound
: &*F
.getEntryBlock().begin();
7224 ScalarEvolution::getDefiningScopeBound(ArrayRef
<const SCEV
*> Ops
) {
7226 return getDefiningScopeBound(Ops
, Discard
);
7229 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction
*A
,
7230 const Instruction
*B
) {
7231 if (A
->getParent() == B
->getParent() &&
7232 isGuaranteedToTransferExecutionToSuccessor(A
->getIterator(),
7236 auto *BLoop
= LI
.getLoopFor(B
->getParent());
7237 if (BLoop
&& BLoop
->getHeader() == B
->getParent() &&
7238 BLoop
->getLoopPreheader() == A
->getParent() &&
7239 isGuaranteedToTransferExecutionToSuccessor(A
->getIterator(),
7240 A
->getParent()->end()) &&
7241 isGuaranteedToTransferExecutionToSuccessor(B
->getParent()->begin(),
7248 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction
*I
) {
7249 // Only proceed if we can prove that I does not yield poison.
7250 if (!programUndefinedIfPoison(I
))
7253 // At this point we know that if I is executed, then it does not wrap
7254 // according to at least one of NSW or NUW. If I is not executed, then we do
7255 // not know if the calculation that I represents would wrap. Multiple
7256 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7257 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7258 // derived from other instructions that map to the same SCEV. We cannot make
7259 // that guarantee for cases where I is not executed. So we need to find a
7260 // upper bound on the defining scope for the SCEV, and prove that I is
7261 // executed every time we enter that scope. When the bounding scope is a
7262 // loop (the common case), this is equivalent to proving I executes on every
7263 // iteration of that loop.
7264 SmallVector
<const SCEV
*> SCEVOps
;
7265 for (const Use
&Op
: I
->operands()) {
7266 // I could be an extractvalue from a call to an overflow intrinsic.
7267 // TODO: We can do better here in some cases.
7268 if (isSCEVable(Op
->getType()))
7269 SCEVOps
.push_back(getSCEV(Op
));
7271 auto *DefI
= getDefiningScopeBound(SCEVOps
);
7272 return isGuaranteedToTransferExecutionTo(DefI
, I
);
7275 bool ScalarEvolution::isAddRecNeverPoison(const Instruction
*I
, const Loop
*L
) {
7276 // If we know that \c I can never be poison period, then that's enough.
7277 if (isSCEVExprNeverPoison(I
))
7280 // If the loop only has one exit, then we know that, if the loop is entered,
7281 // any instruction dominating that exit will be executed. If any such
7282 // instruction would result in UB, the addrec cannot be poison.
7284 // This is basically the same reasoning as in isSCEVExprNeverPoison(), but
7285 // also handles uses outside the loop header (they just need to dominate the
7288 auto *ExitingBB
= L
->getExitingBlock();
7289 if (!ExitingBB
|| !loopHasNoAbnormalExits(L
))
7292 SmallPtrSet
<const Value
*, 16> KnownPoison
;
7293 SmallVector
<const Instruction
*, 8> Worklist
;
7295 // We start by assuming \c I, the post-inc add recurrence, is poison. Only
7296 // things that are known to be poison under that assumption go on the
7298 KnownPoison
.insert(I
);
7299 Worklist
.push_back(I
);
7301 while (!Worklist
.empty()) {
7302 const Instruction
*Poison
= Worklist
.pop_back_val();
7304 for (const Use
&U
: Poison
->uses()) {
7305 const Instruction
*PoisonUser
= cast
<Instruction
>(U
.getUser());
7306 if (mustTriggerUB(PoisonUser
, KnownPoison
) &&
7307 DT
.dominates(PoisonUser
->getParent(), ExitingBB
))
7310 if (propagatesPoison(U
) && L
->contains(PoisonUser
))
7311 if (KnownPoison
.insert(PoisonUser
).second
)
7312 Worklist
.push_back(PoisonUser
);
7319 ScalarEvolution::LoopProperties
7320 ScalarEvolution::getLoopProperties(const Loop
*L
) {
7321 using LoopProperties
= ScalarEvolution::LoopProperties
;
7323 auto Itr
= LoopPropertiesCache
.find(L
);
7324 if (Itr
== LoopPropertiesCache
.end()) {
7325 auto HasSideEffects
= [](Instruction
*I
) {
7326 if (auto *SI
= dyn_cast
<StoreInst
>(I
))
7327 return !SI
->isSimple();
7329 return I
->mayThrow() || I
->mayWriteToMemory();
7332 LoopProperties LP
= {/* HasNoAbnormalExits */ true,
7333 /*HasNoSideEffects*/ true};
7335 for (auto *BB
: L
->getBlocks())
7336 for (auto &I
: *BB
) {
7337 if (!isGuaranteedToTransferExecutionToSuccessor(&I
))
7338 LP
.HasNoAbnormalExits
= false;
7339 if (HasSideEffects(&I
))
7340 LP
.HasNoSideEffects
= false;
7341 if (!LP
.HasNoAbnormalExits
&& !LP
.HasNoSideEffects
)
7342 break; // We're already as pessimistic as we can get.
7345 auto InsertPair
= LoopPropertiesCache
.insert({L
, LP
});
7346 assert(InsertPair
.second
&& "We just checked!");
7347 Itr
= InsertPair
.first
;
7353 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop
*L
) {
7354 // A mustprogress loop without side effects must be finite.
7355 // TODO: The check used here is very conservative. It's only *specific*
7356 // side effects which are well defined in infinite loops.
7357 return isFinite(L
) || (isMustProgress(L
) && loopHasNoSideEffects(L
));
7360 const SCEV
*ScalarEvolution::createSCEVIter(Value
*V
) {
7361 // Worklist item with a Value and a bool indicating whether all operands have
7362 // been visited already.
7363 using PointerTy
= PointerIntPair
<Value
*, 1, bool>;
7364 SmallVector
<PointerTy
> Stack
;
7366 Stack
.emplace_back(V
, true);
7367 Stack
.emplace_back(V
, false);
7368 while (!Stack
.empty()) {
7369 auto E
= Stack
.pop_back_val();
7370 Value
*CurV
= E
.getPointer();
7372 if (getExistingSCEV(CurV
))
7375 SmallVector
<Value
*> Ops
;
7376 const SCEV
*CreatedSCEV
= nullptr;
7377 // If all operands have been visited already, create the SCEV.
7379 CreatedSCEV
= createSCEV(CurV
);
7381 // Otherwise get the operands we need to create SCEV's for before creating
7382 // the SCEV for CurV. If the SCEV for CurV can be constructed trivially,
7384 CreatedSCEV
= getOperandsToCreate(CurV
, Ops
);
7388 insertValueToMap(CurV
, CreatedSCEV
);
7390 // Queue CurV for SCEV creation, followed by its's operands which need to
7391 // be constructed first.
7392 Stack
.emplace_back(CurV
, true);
7393 for (Value
*Op
: Ops
)
7394 Stack
.emplace_back(Op
, false);
7398 return getExistingSCEV(V
);
7402 ScalarEvolution::getOperandsToCreate(Value
*V
, SmallVectorImpl
<Value
*> &Ops
) {
7403 if (!isSCEVable(V
->getType()))
7404 return getUnknown(V
);
7406 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
7407 // Don't attempt to analyze instructions in blocks that aren't
7408 // reachable. Such instructions don't matter, and they aren't required
7409 // to obey basic rules for definitions dominating uses which this
7410 // analysis depends on.
7411 if (!DT
.isReachableFromEntry(I
->getParent()))
7412 return getUnknown(PoisonValue::get(V
->getType()));
7413 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
7414 return getConstant(CI
);
7415 else if (isa
<GlobalAlias
>(V
))
7416 return getUnknown(V
);
7417 else if (!isa
<ConstantExpr
>(V
))
7418 return getUnknown(V
);
7420 Operator
*U
= cast
<Operator
>(V
);
7422 MatchBinaryOp(U
, getDataLayout(), AC
, DT
, dyn_cast
<Instruction
>(V
))) {
7423 bool IsConstArg
= isa
<ConstantInt
>(BO
->RHS
);
7424 switch (BO
->Opcode
) {
7425 case Instruction::Add
:
7426 case Instruction::Mul
: {
7427 // For additions and multiplications, traverse add/mul chains for which we
7428 // can potentially create a single SCEV, to reduce the number of
7429 // get{Add,Mul}Expr calls.
7432 if (BO
->Op
!= V
&& getExistingSCEV(BO
->Op
)) {
7433 Ops
.push_back(BO
->Op
);
7437 Ops
.push_back(BO
->RHS
);
7438 auto NewBO
= MatchBinaryOp(BO
->LHS
, getDataLayout(), AC
, DT
,
7439 dyn_cast
<Instruction
>(V
));
7441 (BO
->Opcode
== Instruction::Add
&&
7442 (NewBO
->Opcode
!= Instruction::Add
&&
7443 NewBO
->Opcode
!= Instruction::Sub
)) ||
7444 (BO
->Opcode
== Instruction::Mul
&&
7445 NewBO
->Opcode
!= Instruction::Mul
)) {
7446 Ops
.push_back(BO
->LHS
);
7449 // CreateSCEV calls getNoWrapFlagsFromUB, which under certain conditions
7450 // requires a SCEV for the LHS.
7451 if (BO
->Op
&& (BO
->IsNSW
|| BO
->IsNUW
)) {
7452 auto *I
= dyn_cast
<Instruction
>(BO
->Op
);
7453 if (I
&& programUndefinedIfPoison(I
)) {
7454 Ops
.push_back(BO
->LHS
);
7462 case Instruction::Sub
:
7463 case Instruction::UDiv
:
7464 case Instruction::URem
:
7466 case Instruction::AShr
:
7467 case Instruction::Shl
:
7468 case Instruction::Xor
:
7472 case Instruction::And
:
7473 case Instruction::Or
:
7474 if (!IsConstArg
&& !BO
->LHS
->getType()->isIntegerTy(1))
7477 case Instruction::LShr
:
7478 return getUnknown(V
);
7480 llvm_unreachable("Unhandled binop");
7484 Ops
.push_back(BO
->LHS
);
7485 Ops
.push_back(BO
->RHS
);
7489 switch (U
->getOpcode()) {
7490 case Instruction::Trunc
:
7491 case Instruction::ZExt
:
7492 case Instruction::SExt
:
7493 case Instruction::PtrToInt
:
7494 Ops
.push_back(U
->getOperand(0));
7497 case Instruction::BitCast
:
7498 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType())) {
7499 Ops
.push_back(U
->getOperand(0));
7502 return getUnknown(V
);
7504 case Instruction::SDiv
:
7505 case Instruction::SRem
:
7506 Ops
.push_back(U
->getOperand(0));
7507 Ops
.push_back(U
->getOperand(1));
7510 case Instruction::GetElementPtr
:
7511 assert(cast
<GEPOperator
>(U
)->getSourceElementType()->isSized() &&
7512 "GEP source element type must be sized");
7513 for (Value
*Index
: U
->operands())
7514 Ops
.push_back(Index
);
7517 case Instruction::IntToPtr
:
7518 return getUnknown(V
);
7520 case Instruction::PHI
:
7521 // Keep constructing SCEVs' for phis recursively for now.
7524 case Instruction::Select
: {
7525 // Check if U is a select that can be simplified to a SCEVUnknown.
7526 auto CanSimplifyToUnknown
= [this, U
]() {
7527 if (U
->getType()->isIntegerTy(1) || isa
<ConstantInt
>(U
->getOperand(0)))
7530 auto *ICI
= dyn_cast
<ICmpInst
>(U
->getOperand(0));
7533 Value
*LHS
= ICI
->getOperand(0);
7534 Value
*RHS
= ICI
->getOperand(1);
7535 if (ICI
->getPredicate() == CmpInst::ICMP_EQ
||
7536 ICI
->getPredicate() == CmpInst::ICMP_NE
) {
7537 if (!(isa
<ConstantInt
>(RHS
) && cast
<ConstantInt
>(RHS
)->isZero()))
7539 } else if (getTypeSizeInBits(LHS
->getType()) >
7540 getTypeSizeInBits(U
->getType()))
7544 if (CanSimplifyToUnknown())
7545 return getUnknown(U
);
7547 for (Value
*Inc
: U
->operands())
7552 case Instruction::Call
:
7553 case Instruction::Invoke
:
7554 if (Value
*RV
= cast
<CallBase
>(U
)->getReturnedArgOperand()) {
7559 if (auto *II
= dyn_cast
<IntrinsicInst
>(U
)) {
7560 switch (II
->getIntrinsicID()) {
7561 case Intrinsic::abs
:
7562 Ops
.push_back(II
->getArgOperand(0));
7564 case Intrinsic::umax
:
7565 case Intrinsic::umin
:
7566 case Intrinsic::smax
:
7567 case Intrinsic::smin
:
7568 case Intrinsic::usub_sat
:
7569 case Intrinsic::uadd_sat
:
7570 Ops
.push_back(II
->getArgOperand(0));
7571 Ops
.push_back(II
->getArgOperand(1));
7573 case Intrinsic::start_loop_iterations
:
7574 case Intrinsic::annotation
:
7575 case Intrinsic::ptr_annotation
:
7576 Ops
.push_back(II
->getArgOperand(0));
7588 const SCEV
*ScalarEvolution::createSCEV(Value
*V
) {
7589 if (!isSCEVable(V
->getType()))
7590 return getUnknown(V
);
7592 if (Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
7593 // Don't attempt to analyze instructions in blocks that aren't
7594 // reachable. Such instructions don't matter, and they aren't required
7595 // to obey basic rules for definitions dominating uses which this
7596 // analysis depends on.
7597 if (!DT
.isReachableFromEntry(I
->getParent()))
7598 return getUnknown(PoisonValue::get(V
->getType()));
7599 } else if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
7600 return getConstant(CI
);
7601 else if (isa
<GlobalAlias
>(V
))
7602 return getUnknown(V
);
7603 else if (!isa
<ConstantExpr
>(V
))
7604 return getUnknown(V
);
7609 Operator
*U
= cast
<Operator
>(V
);
7611 MatchBinaryOp(U
, getDataLayout(), AC
, DT
, dyn_cast
<Instruction
>(V
))) {
7612 switch (BO
->Opcode
) {
7613 case Instruction::Add
: {
7614 // The simple thing to do would be to just call getSCEV on both operands
7615 // and call getAddExpr with the result. However if we're looking at a
7616 // bunch of things all added together, this can be quite inefficient,
7617 // because it leads to N-1 getAddExpr calls for N ultimate operands.
7618 // Instead, gather up all the operands and make a single getAddExpr call.
7619 // LLVM IR canonical form means we need only traverse the left operands.
7620 SmallVector
<const SCEV
*, 4> AddOps
;
7623 if (auto *OpSCEV
= getExistingSCEV(BO
->Op
)) {
7624 AddOps
.push_back(OpSCEV
);
7628 // If a NUW or NSW flag can be applied to the SCEV for this
7629 // addition, then compute the SCEV for this addition by itself
7630 // with a separate call to getAddExpr. We need to do that
7631 // instead of pushing the operands of the addition onto AddOps,
7632 // since the flags are only known to apply to this particular
7633 // addition - they may not apply to other additions that can be
7634 // formed with operands from AddOps.
7635 const SCEV
*RHS
= getSCEV(BO
->RHS
);
7636 SCEV::NoWrapFlags Flags
= getNoWrapFlagsFromUB(BO
->Op
);
7637 if (Flags
!= SCEV::FlagAnyWrap
) {
7638 const SCEV
*LHS
= getSCEV(BO
->LHS
);
7639 if (BO
->Opcode
== Instruction::Sub
)
7640 AddOps
.push_back(getMinusSCEV(LHS
, RHS
, Flags
));
7642 AddOps
.push_back(getAddExpr(LHS
, RHS
, Flags
));
7647 if (BO
->Opcode
== Instruction::Sub
)
7648 AddOps
.push_back(getNegativeSCEV(getSCEV(BO
->RHS
)));
7650 AddOps
.push_back(getSCEV(BO
->RHS
));
7652 auto NewBO
= MatchBinaryOp(BO
->LHS
, getDataLayout(), AC
, DT
,
7653 dyn_cast
<Instruction
>(V
));
7654 if (!NewBO
|| (NewBO
->Opcode
!= Instruction::Add
&&
7655 NewBO
->Opcode
!= Instruction::Sub
)) {
7656 AddOps
.push_back(getSCEV(BO
->LHS
));
7662 return getAddExpr(AddOps
);
7665 case Instruction::Mul
: {
7666 SmallVector
<const SCEV
*, 4> MulOps
;
7669 if (auto *OpSCEV
= getExistingSCEV(BO
->Op
)) {
7670 MulOps
.push_back(OpSCEV
);
7674 SCEV::NoWrapFlags Flags
= getNoWrapFlagsFromUB(BO
->Op
);
7675 if (Flags
!= SCEV::FlagAnyWrap
) {
7676 LHS
= getSCEV(BO
->LHS
);
7677 RHS
= getSCEV(BO
->RHS
);
7678 MulOps
.push_back(getMulExpr(LHS
, RHS
, Flags
));
7683 MulOps
.push_back(getSCEV(BO
->RHS
));
7684 auto NewBO
= MatchBinaryOp(BO
->LHS
, getDataLayout(), AC
, DT
,
7685 dyn_cast
<Instruction
>(V
));
7686 if (!NewBO
|| NewBO
->Opcode
!= Instruction::Mul
) {
7687 MulOps
.push_back(getSCEV(BO
->LHS
));
7693 return getMulExpr(MulOps
);
7695 case Instruction::UDiv
:
7696 LHS
= getSCEV(BO
->LHS
);
7697 RHS
= getSCEV(BO
->RHS
);
7698 return getUDivExpr(LHS
, RHS
);
7699 case Instruction::URem
:
7700 LHS
= getSCEV(BO
->LHS
);
7701 RHS
= getSCEV(BO
->RHS
);
7702 return getURemExpr(LHS
, RHS
);
7703 case Instruction::Sub
: {
7704 SCEV::NoWrapFlags Flags
= SCEV::FlagAnyWrap
;
7706 Flags
= getNoWrapFlagsFromUB(BO
->Op
);
7707 LHS
= getSCEV(BO
->LHS
);
7708 RHS
= getSCEV(BO
->RHS
);
7709 return getMinusSCEV(LHS
, RHS
, Flags
);
7711 case Instruction::And
:
7712 // For an expression like x&255 that merely masks off the high bits,
7713 // use zext(trunc(x)) as the SCEV expression.
7714 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
7716 return getSCEV(BO
->RHS
);
7717 if (CI
->isMinusOne())
7718 return getSCEV(BO
->LHS
);
7719 const APInt
&A
= CI
->getValue();
7721 // Instcombine's ShrinkDemandedConstant may strip bits out of
7722 // constants, obscuring what would otherwise be a low-bits mask.
7723 // Use computeKnownBits to compute what ShrinkDemandedConstant
7724 // knew about to reconstruct a low-bits mask value.
7725 unsigned LZ
= A
.countl_zero();
7726 unsigned TZ
= A
.countr_zero();
7727 unsigned BitWidth
= A
.getBitWidth();
7728 KnownBits
Known(BitWidth
);
7729 computeKnownBits(BO
->LHS
, Known
, getDataLayout(),
7730 0, &AC
, nullptr, &DT
);
7732 APInt EffectiveMask
=
7733 APInt::getLowBitsSet(BitWidth
, BitWidth
- LZ
- TZ
).shl(TZ
);
7734 if ((LZ
!= 0 || TZ
!= 0) && !((~A
& ~Known
.Zero
) & EffectiveMask
)) {
7735 const SCEV
*MulCount
= getConstant(APInt::getOneBitSet(BitWidth
, TZ
));
7736 const SCEV
*LHS
= getSCEV(BO
->LHS
);
7737 const SCEV
*ShiftedLHS
= nullptr;
7738 if (auto *LHSMul
= dyn_cast
<SCEVMulExpr
>(LHS
)) {
7739 if (auto *OpC
= dyn_cast
<SCEVConstant
>(LHSMul
->getOperand(0))) {
7740 // For an expression like (x * 8) & 8, simplify the multiply.
7741 unsigned MulZeros
= OpC
->getAPInt().countr_zero();
7742 unsigned GCD
= std::min(MulZeros
, TZ
);
7743 APInt DivAmt
= APInt::getOneBitSet(BitWidth
, TZ
- GCD
);
7744 SmallVector
<const SCEV
*, 4> MulOps
;
7745 MulOps
.push_back(getConstant(OpC
->getAPInt().lshr(GCD
)));
7746 append_range(MulOps
, LHSMul
->operands().drop_front());
7747 auto *NewMul
= getMulExpr(MulOps
, LHSMul
->getNoWrapFlags());
7748 ShiftedLHS
= getUDivExpr(NewMul
, getConstant(DivAmt
));
7752 ShiftedLHS
= getUDivExpr(LHS
, MulCount
);
7755 getTruncateExpr(ShiftedLHS
,
7756 IntegerType::get(getContext(), BitWidth
- LZ
- TZ
)),
7757 BO
->LHS
->getType()),
7761 // Binary `and` is a bit-wise `umin`.
7762 if (BO
->LHS
->getType()->isIntegerTy(1)) {
7763 LHS
= getSCEV(BO
->LHS
);
7764 RHS
= getSCEV(BO
->RHS
);
7765 return getUMinExpr(LHS
, RHS
);
7769 case Instruction::Or
:
7770 // Binary `or` is a bit-wise `umax`.
7771 if (BO
->LHS
->getType()->isIntegerTy(1)) {
7772 LHS
= getSCEV(BO
->LHS
);
7773 RHS
= getSCEV(BO
->RHS
);
7774 return getUMaxExpr(LHS
, RHS
);
7778 case Instruction::Xor
:
7779 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
7780 // If the RHS of xor is -1, then this is a not operation.
7781 if (CI
->isMinusOne())
7782 return getNotSCEV(getSCEV(BO
->LHS
));
7784 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7785 // This is a variant of the check for xor with -1, and it handles
7786 // the case where instcombine has trimmed non-demanded bits out
7787 // of an xor with -1.
7788 if (auto *LBO
= dyn_cast
<BinaryOperator
>(BO
->LHS
))
7789 if (ConstantInt
*LCI
= dyn_cast
<ConstantInt
>(LBO
->getOperand(1)))
7790 if (LBO
->getOpcode() == Instruction::And
&&
7791 LCI
->getValue() == CI
->getValue())
7792 if (const SCEVZeroExtendExpr
*Z
=
7793 dyn_cast
<SCEVZeroExtendExpr
>(getSCEV(BO
->LHS
))) {
7794 Type
*UTy
= BO
->LHS
->getType();
7795 const SCEV
*Z0
= Z
->getOperand();
7796 Type
*Z0Ty
= Z0
->getType();
7797 unsigned Z0TySize
= getTypeSizeInBits(Z0Ty
);
7799 // If C is a low-bits mask, the zero extend is serving to
7800 // mask off the high bits. Complement the operand and
7801 // re-apply the zext.
7802 if (CI
->getValue().isMask(Z0TySize
))
7803 return getZeroExtendExpr(getNotSCEV(Z0
), UTy
);
7805 // If C is a single bit, it may be in the sign-bit position
7806 // before the zero-extend. In this case, represent the xor
7807 // using an add, which is equivalent, and re-apply the zext.
7808 APInt Trunc
= CI
->getValue().trunc(Z0TySize
);
7809 if (Trunc
.zext(getTypeSizeInBits(UTy
)) == CI
->getValue() &&
7811 return getZeroExtendExpr(getAddExpr(Z0
, getConstant(Trunc
)),
7817 case Instruction::Shl
:
7818 // Turn shift left of a constant amount into a multiply.
7819 if (ConstantInt
*SA
= dyn_cast
<ConstantInt
>(BO
->RHS
)) {
7820 uint32_t BitWidth
= cast
<IntegerType
>(SA
->getType())->getBitWidth();
7822 // If the shift count is not less than the bitwidth, the result of
7823 // the shift is undefined. Don't try to analyze it, because the
7824 // resolution chosen here may differ from the resolution chosen in
7825 // other parts of the compiler.
7826 if (SA
->getValue().uge(BitWidth
))
7829 // We can safely preserve the nuw flag in all cases. It's also safe to
7830 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7831 // requires special handling. It can be preserved as long as we're not
7832 // left shifting by bitwidth - 1.
7833 auto Flags
= SCEV::FlagAnyWrap
;
7835 auto MulFlags
= getNoWrapFlagsFromUB(BO
->Op
);
7836 if ((MulFlags
& SCEV::FlagNSW
) &&
7837 ((MulFlags
& SCEV::FlagNUW
) || SA
->getValue().ult(BitWidth
- 1)))
7838 Flags
= (SCEV::NoWrapFlags
)(Flags
| SCEV::FlagNSW
);
7839 if (MulFlags
& SCEV::FlagNUW
)
7840 Flags
= (SCEV::NoWrapFlags
)(Flags
| SCEV::FlagNUW
);
7843 ConstantInt
*X
= ConstantInt::get(
7844 getContext(), APInt::getOneBitSet(BitWidth
, SA
->getZExtValue()));
7845 return getMulExpr(getSCEV(BO
->LHS
), getConstant(X
), Flags
);
7849 case Instruction::AShr
:
7850 // AShr X, C, where C is a constant.
7851 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(BO
->RHS
);
7855 Type
*OuterTy
= BO
->LHS
->getType();
7856 uint64_t BitWidth
= getTypeSizeInBits(OuterTy
);
7857 // If the shift count is not less than the bitwidth, the result of
7858 // the shift is undefined. Don't try to analyze it, because the
7859 // resolution chosen here may differ from the resolution chosen in
7860 // other parts of the compiler.
7861 if (CI
->getValue().uge(BitWidth
))
7865 return getSCEV(BO
->LHS
); // shift by zero --> noop
7867 uint64_t AShrAmt
= CI
->getZExtValue();
7868 Type
*TruncTy
= IntegerType::get(getContext(), BitWidth
- AShrAmt
);
7870 Operator
*L
= dyn_cast
<Operator
>(BO
->LHS
);
7871 const SCEV
*AddTruncateExpr
= nullptr;
7872 ConstantInt
*ShlAmtCI
= nullptr;
7873 const SCEV
*AddConstant
= nullptr;
7875 if (L
&& L
->getOpcode() == Instruction::Add
) {
7879 // n, c and m are constants.
7881 Operator
*LShift
= dyn_cast
<Operator
>(L
->getOperand(0));
7882 ConstantInt
*AddOperandCI
= dyn_cast
<ConstantInt
>(L
->getOperand(1));
7883 if (LShift
&& LShift
->getOpcode() == Instruction::Shl
) {
7885 const SCEV
*ShlOp0SCEV
= getSCEV(LShift
->getOperand(0));
7886 ShlAmtCI
= dyn_cast
<ConstantInt
>(LShift
->getOperand(1));
7887 // since we truncate to TruncTy, the AddConstant should be of the
7888 // same type, so create a new Constant with type same as TruncTy.
7889 // Also, the Add constant should be shifted right by AShr amount.
7890 APInt AddOperand
= AddOperandCI
->getValue().ashr(AShrAmt
);
7891 AddConstant
= getConstant(TruncTy
, AddOperand
.getZExtValue(),
7892 AddOperand
.isSignBitSet());
7893 // we model the expression as sext(add(trunc(A), c << n)), since the
7894 // sext(trunc) part is already handled below, we create a
7895 // AddExpr(TruncExp) which will be used later.
7896 AddTruncateExpr
= getTruncateExpr(ShlOp0SCEV
, TruncTy
);
7899 } else if (L
&& L
->getOpcode() == Instruction::Shl
) {
7902 // Both n and m are constant.
7904 const SCEV
*ShlOp0SCEV
= getSCEV(L
->getOperand(0));
7905 ShlAmtCI
= dyn_cast
<ConstantInt
>(L
->getOperand(1));
7906 AddTruncateExpr
= getTruncateExpr(ShlOp0SCEV
, TruncTy
);
7909 if (AddTruncateExpr
&& ShlAmtCI
) {
7910 // We can merge the two given cases into a single SCEV statement,
7911 // incase n = m, the mul expression will be 2^0, so it gets resolved to
7912 // a simpler case. The following code handles the two cases:
7914 // 1) For a two-shift sext-inreg, i.e. n = m,
7915 // use sext(trunc(x)) as the SCEV expression.
7917 // 2) When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7918 // expression. We already checked that ShlAmt < BitWidth, so
7919 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7920 // ShlAmt - AShrAmt < Amt.
7921 uint64_t ShlAmt
= ShlAmtCI
->getZExtValue();
7922 if (ShlAmtCI
->getValue().ult(BitWidth
) && ShlAmt
>= AShrAmt
) {
7923 APInt Mul
= APInt::getOneBitSet(BitWidth
- AShrAmt
, ShlAmt
- AShrAmt
);
7924 const SCEV
*CompositeExpr
=
7925 getMulExpr(AddTruncateExpr
, getConstant(Mul
));
7926 if (L
->getOpcode() != Instruction::Shl
)
7927 CompositeExpr
= getAddExpr(CompositeExpr
, AddConstant
);
7929 return getSignExtendExpr(CompositeExpr
, OuterTy
);
7936 switch (U
->getOpcode()) {
7937 case Instruction::Trunc
:
7938 return getTruncateExpr(getSCEV(U
->getOperand(0)), U
->getType());
7940 case Instruction::ZExt
:
7941 return getZeroExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
7943 case Instruction::SExt
:
7944 if (auto BO
= MatchBinaryOp(U
->getOperand(0), getDataLayout(), AC
, DT
,
7945 dyn_cast
<Instruction
>(V
))) {
7946 // The NSW flag of a subtract does not always survive the conversion to
7947 // A + (-1)*B. By pushing sign extension onto its operands we are much
7948 // more likely to preserve NSW and allow later AddRec optimisations.
7950 // NOTE: This is effectively duplicating this logic from getSignExtend:
7951 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7952 // but by that point the NSW information has potentially been lost.
7953 if (BO
->Opcode
== Instruction::Sub
&& BO
->IsNSW
) {
7954 Type
*Ty
= U
->getType();
7955 auto *V1
= getSignExtendExpr(getSCEV(BO
->LHS
), Ty
);
7956 auto *V2
= getSignExtendExpr(getSCEV(BO
->RHS
), Ty
);
7957 return getMinusSCEV(V1
, V2
, SCEV::FlagNSW
);
7960 return getSignExtendExpr(getSCEV(U
->getOperand(0)), U
->getType());
7962 case Instruction::BitCast
:
7963 // BitCasts are no-op casts so we just eliminate the cast.
7964 if (isSCEVable(U
->getType()) && isSCEVable(U
->getOperand(0)->getType()))
7965 return getSCEV(U
->getOperand(0));
7968 case Instruction::PtrToInt
: {
7969 // Pointer to integer cast is straight-forward, so do model it.
7970 const SCEV
*Op
= getSCEV(U
->getOperand(0));
7971 Type
*DstIntTy
= U
->getType();
7972 // But only if effective SCEV (integer) type is wide enough to represent
7973 // all possible pointer values.
7974 const SCEV
*IntOp
= getPtrToIntExpr(Op
, DstIntTy
);
7975 if (isa
<SCEVCouldNotCompute
>(IntOp
))
7976 return getUnknown(V
);
7979 case Instruction::IntToPtr
:
7980 // Just don't deal with inttoptr casts.
7981 return getUnknown(V
);
7983 case Instruction::SDiv
:
7984 // If both operands are non-negative, this is just an udiv.
7985 if (isKnownNonNegative(getSCEV(U
->getOperand(0))) &&
7986 isKnownNonNegative(getSCEV(U
->getOperand(1))))
7987 return getUDivExpr(getSCEV(U
->getOperand(0)), getSCEV(U
->getOperand(1)));
7990 case Instruction::SRem
:
7991 // If both operands are non-negative, this is just an urem.
7992 if (isKnownNonNegative(getSCEV(U
->getOperand(0))) &&
7993 isKnownNonNegative(getSCEV(U
->getOperand(1))))
7994 return getURemExpr(getSCEV(U
->getOperand(0)), getSCEV(U
->getOperand(1)));
7997 case Instruction::GetElementPtr
:
7998 return createNodeForGEP(cast
<GEPOperator
>(U
));
8000 case Instruction::PHI
:
8001 return createNodeForPHI(cast
<PHINode
>(U
));
8003 case Instruction::Select
:
8004 return createNodeForSelectOrPHI(U
, U
->getOperand(0), U
->getOperand(1),
8007 case Instruction::Call
:
8008 case Instruction::Invoke
:
8009 if (Value
*RV
= cast
<CallBase
>(U
)->getReturnedArgOperand())
8012 if (auto *II
= dyn_cast
<IntrinsicInst
>(U
)) {
8013 switch (II
->getIntrinsicID()) {
8014 case Intrinsic::abs
:
8016 getSCEV(II
->getArgOperand(0)),
8017 /*IsNSW=*/cast
<ConstantInt
>(II
->getArgOperand(1))->isOne());
8018 case Intrinsic::umax
:
8019 LHS
= getSCEV(II
->getArgOperand(0));
8020 RHS
= getSCEV(II
->getArgOperand(1));
8021 return getUMaxExpr(LHS
, RHS
);
8022 case Intrinsic::umin
:
8023 LHS
= getSCEV(II
->getArgOperand(0));
8024 RHS
= getSCEV(II
->getArgOperand(1));
8025 return getUMinExpr(LHS
, RHS
);
8026 case Intrinsic::smax
:
8027 LHS
= getSCEV(II
->getArgOperand(0));
8028 RHS
= getSCEV(II
->getArgOperand(1));
8029 return getSMaxExpr(LHS
, RHS
);
8030 case Intrinsic::smin
:
8031 LHS
= getSCEV(II
->getArgOperand(0));
8032 RHS
= getSCEV(II
->getArgOperand(1));
8033 return getSMinExpr(LHS
, RHS
);
8034 case Intrinsic::usub_sat
: {
8035 const SCEV
*X
= getSCEV(II
->getArgOperand(0));
8036 const SCEV
*Y
= getSCEV(II
->getArgOperand(1));
8037 const SCEV
*ClampedY
= getUMinExpr(X
, Y
);
8038 return getMinusSCEV(X
, ClampedY
, SCEV::FlagNUW
);
8040 case Intrinsic::uadd_sat
: {
8041 const SCEV
*X
= getSCEV(II
->getArgOperand(0));
8042 const SCEV
*Y
= getSCEV(II
->getArgOperand(1));
8043 const SCEV
*ClampedX
= getUMinExpr(X
, getNotSCEV(Y
));
8044 return getAddExpr(ClampedX
, Y
, SCEV::FlagNUW
);
8046 case Intrinsic::start_loop_iterations
:
8047 case Intrinsic::annotation
:
8048 case Intrinsic::ptr_annotation
:
8049 // A start_loop_iterations or llvm.annotation or llvm.prt.annotation is
8050 // just eqivalent to the first operand for SCEV purposes.
8051 return getSCEV(II
->getArgOperand(0));
8052 case Intrinsic::vscale
:
8053 return getVScale(II
->getType());
8061 return getUnknown(V
);
8064 //===----------------------------------------------------------------------===//
8065 // Iteration Count Computation Code
8068 const SCEV
*ScalarEvolution::getTripCountFromExitCount(const SCEV
*ExitCount
) {
8069 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
8070 return getCouldNotCompute();
8072 auto *ExitCountType
= ExitCount
->getType();
8073 assert(ExitCountType
->isIntegerTy());
8074 auto *EvalTy
= Type::getIntNTy(ExitCountType
->getContext(),
8075 1 + ExitCountType
->getScalarSizeInBits());
8076 return getTripCountFromExitCount(ExitCount
, EvalTy
, nullptr);
8079 const SCEV
*ScalarEvolution::getTripCountFromExitCount(const SCEV
*ExitCount
,
8082 if (isa
<SCEVCouldNotCompute
>(ExitCount
))
8083 return getCouldNotCompute();
8085 unsigned ExitCountSize
= getTypeSizeInBits(ExitCount
->getType());
8086 unsigned EvalSize
= EvalTy
->getPrimitiveSizeInBits();
8088 auto CanAddOneWithoutOverflow
= [&]() {
8089 ConstantRange ExitCountRange
=
8090 getRangeRef(ExitCount
, RangeSignHint::HINT_RANGE_UNSIGNED
);
8091 if (!ExitCountRange
.contains(APInt::getMaxValue(ExitCountSize
)))
8094 return L
&& isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_NE
, ExitCount
,
8095 getMinusOne(ExitCount
->getType()));
8098 // If we need to zero extend the backedge count, check if we can add one to
8099 // it prior to zero extending without overflow. Provided this is safe, it
8100 // allows better simplification of the +1.
8101 if (EvalSize
> ExitCountSize
&& CanAddOneWithoutOverflow())
8102 return getZeroExtendExpr(
8103 getAddExpr(ExitCount
, getOne(ExitCount
->getType())), EvalTy
);
8105 // Get the total trip count from the count by adding 1. This may wrap.
8106 return getAddExpr(getTruncateOrZeroExtend(ExitCount
, EvalTy
), getOne(EvalTy
));
8109 static unsigned getConstantTripCount(const SCEVConstant
*ExitCount
) {
8113 ConstantInt
*ExitConst
= ExitCount
->getValue();
8115 // Guard against huge trip counts.
8116 if (ExitConst
->getValue().getActiveBits() > 32)
8119 // In case of integer overflow, this returns 0, which is correct.
8120 return ((unsigned)ExitConst
->getZExtValue()) + 1;
8123 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop
*L
) {
8124 auto *ExitCount
= dyn_cast
<SCEVConstant
>(getBackedgeTakenCount(L
, Exact
));
8125 return getConstantTripCount(ExitCount
);
8129 ScalarEvolution::getSmallConstantTripCount(const Loop
*L
,
8130 const BasicBlock
*ExitingBlock
) {
8131 assert(ExitingBlock
&& "Must pass a non-null exiting block!");
8132 assert(L
->isLoopExiting(ExitingBlock
) &&
8133 "Exiting block must actually branch out of the loop!");
8134 const SCEVConstant
*ExitCount
=
8135 dyn_cast
<SCEVConstant
>(getExitCount(L
, ExitingBlock
));
8136 return getConstantTripCount(ExitCount
);
8139 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop
*L
) {
8140 const auto *MaxExitCount
=
8141 dyn_cast
<SCEVConstant
>(getConstantMaxBackedgeTakenCount(L
));
8142 return getConstantTripCount(MaxExitCount
);
8145 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
) {
8146 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
8147 L
->getExitingBlocks(ExitingBlocks
);
8149 std::optional
<unsigned> Res
;
8150 for (auto *ExitingBB
: ExitingBlocks
) {
8151 unsigned Multiple
= getSmallConstantTripMultiple(L
, ExitingBB
);
8154 Res
= (unsigned)std::gcd(*Res
, Multiple
);
8156 return Res
.value_or(1);
8159 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
,
8160 const SCEV
*ExitCount
) {
8161 if (ExitCount
== getCouldNotCompute())
8164 // Get the trip count
8165 const SCEV
*TCExpr
= getTripCountFromExitCount(applyLoopGuards(ExitCount
, L
));
8167 APInt Multiple
= getNonZeroConstantMultiple(TCExpr
);
8168 // If a trip multiple is huge (>=2^32), the trip count is still divisible by
8169 // the greatest power of 2 divisor less than 2^32.
8170 return Multiple
.getActiveBits() > 32
8171 ? 1U << std::min((unsigned)31, Multiple
.countTrailingZeros())
8172 : (unsigned)Multiple
.zextOrTrunc(32).getZExtValue();
8175 /// Returns the largest constant divisor of the trip count of this loop as a
8176 /// normal unsigned value, if possible. This means that the actual trip count is
8177 /// always a multiple of the returned value (don't forget the trip count could
8178 /// very well be zero as well!).
8180 /// Returns 1 if the trip count is unknown or not guaranteed to be the
8181 /// multiple of a constant (which is also the case if the trip count is simply
8182 /// constant, use getSmallConstantTripCount for that case), Will also return 1
8183 /// if the trip count is very large (>= 2^32).
8185 /// As explained in the comments for getSmallConstantTripCount, this assumes
8186 /// that control exits the loop via ExitingBlock.
8188 ScalarEvolution::getSmallConstantTripMultiple(const Loop
*L
,
8189 const BasicBlock
*ExitingBlock
) {
8190 assert(ExitingBlock
&& "Must pass a non-null exiting block!");
8191 assert(L
->isLoopExiting(ExitingBlock
) &&
8192 "Exiting block must actually branch out of the loop!");
8193 const SCEV
*ExitCount
= getExitCount(L
, ExitingBlock
);
8194 return getSmallConstantTripMultiple(L
, ExitCount
);
8197 const SCEV
*ScalarEvolution::getExitCount(const Loop
*L
,
8198 const BasicBlock
*ExitingBlock
,
8199 ExitCountKind Kind
) {
8202 return getBackedgeTakenInfo(L
).getExact(ExitingBlock
, this);
8203 case SymbolicMaximum
:
8204 return getBackedgeTakenInfo(L
).getSymbolicMax(ExitingBlock
, this);
8205 case ConstantMaximum
:
8206 return getBackedgeTakenInfo(L
).getConstantMax(ExitingBlock
, this);
8208 llvm_unreachable("Invalid ExitCountKind!");
8212 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop
*L
,
8213 SmallVector
<const SCEVPredicate
*, 4> &Preds
) {
8214 return getPredicatedBackedgeTakenInfo(L
).getExact(L
, this, &Preds
);
8217 const SCEV
*ScalarEvolution::getBackedgeTakenCount(const Loop
*L
,
8218 ExitCountKind Kind
) {
8221 return getBackedgeTakenInfo(L
).getExact(L
, this);
8222 case ConstantMaximum
:
8223 return getBackedgeTakenInfo(L
).getConstantMax(this);
8224 case SymbolicMaximum
:
8225 return getBackedgeTakenInfo(L
).getSymbolicMax(L
, this);
8227 llvm_unreachable("Invalid ExitCountKind!");
8230 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop
*L
) {
8231 return getBackedgeTakenInfo(L
).isConstantMaxOrZero(this);
8234 /// Push PHI nodes in the header of the given loop onto the given Worklist.
8235 static void PushLoopPHIs(const Loop
*L
,
8236 SmallVectorImpl
<Instruction
*> &Worklist
,
8237 SmallPtrSetImpl
<Instruction
*> &Visited
) {
8238 BasicBlock
*Header
= L
->getHeader();
8240 // Push all Loop-header PHIs onto the Worklist stack.
8241 for (PHINode
&PN
: Header
->phis())
8242 if (Visited
.insert(&PN
).second
)
8243 Worklist
.push_back(&PN
);
8246 const ScalarEvolution::BackedgeTakenInfo
&
8247 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop
*L
) {
8248 auto &BTI
= getBackedgeTakenInfo(L
);
8249 if (BTI
.hasFullInfo())
8252 auto Pair
= PredicatedBackedgeTakenCounts
.insert({L
, BackedgeTakenInfo()});
8255 return Pair
.first
->second
;
8257 BackedgeTakenInfo Result
=
8258 computeBackedgeTakenCount(L
, /*AllowPredicates=*/true);
8260 return PredicatedBackedgeTakenCounts
.find(L
)->second
= std::move(Result
);
8263 ScalarEvolution::BackedgeTakenInfo
&
8264 ScalarEvolution::getBackedgeTakenInfo(const Loop
*L
) {
8265 // Initially insert an invalid entry for this loop. If the insertion
8266 // succeeds, proceed to actually compute a backedge-taken count and
8267 // update the value. The temporary CouldNotCompute value tells SCEV
8268 // code elsewhere that it shouldn't attempt to request a new
8269 // backedge-taken count, which could result in infinite recursion.
8270 std::pair
<DenseMap
<const Loop
*, BackedgeTakenInfo
>::iterator
, bool> Pair
=
8271 BackedgeTakenCounts
.insert({L
, BackedgeTakenInfo()});
8273 return Pair
.first
->second
;
8275 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
8276 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
8277 // must be cleared in this scope.
8278 BackedgeTakenInfo Result
= computeBackedgeTakenCount(L
);
8280 // Now that we know more about the trip count for this loop, forget any
8281 // existing SCEV values for PHI nodes in this loop since they are only
8282 // conservative estimates made without the benefit of trip count
8283 // information. This invalidation is not necessary for correctness, and is
8284 // only done to produce more precise results.
8285 if (Result
.hasAnyInfo()) {
8286 // Invalidate any expression using an addrec in this loop.
8287 SmallVector
<const SCEV
*, 8> ToForget
;
8288 auto LoopUsersIt
= LoopUsers
.find(L
);
8289 if (LoopUsersIt
!= LoopUsers
.end())
8290 append_range(ToForget
, LoopUsersIt
->second
);
8291 forgetMemoizedResults(ToForget
);
8293 // Invalidate constant-evolved loop header phis.
8294 for (PHINode
&PN
: L
->getHeader()->phis())
8295 ConstantEvolutionLoopExitValue
.erase(&PN
);
8298 // Re-lookup the insert position, since the call to
8299 // computeBackedgeTakenCount above could result in a
8300 // recusive call to getBackedgeTakenInfo (on a different
8301 // loop), which would invalidate the iterator computed
8303 return BackedgeTakenCounts
.find(L
)->second
= std::move(Result
);
8306 void ScalarEvolution::forgetAllLoops() {
8307 // This method is intended to forget all info about loops. It should
8308 // invalidate caches as if the following happened:
8309 // - The trip counts of all loops have changed arbitrarily
8310 // - Every llvm::Value has been updated in place to produce a different
8312 BackedgeTakenCounts
.clear();
8313 PredicatedBackedgeTakenCounts
.clear();
8314 BECountUsers
.clear();
8315 LoopPropertiesCache
.clear();
8316 ConstantEvolutionLoopExitValue
.clear();
8317 ValueExprMap
.clear();
8318 ValuesAtScopes
.clear();
8319 ValuesAtScopesUsers
.clear();
8320 LoopDispositions
.clear();
8321 BlockDispositions
.clear();
8322 UnsignedRanges
.clear();
8323 SignedRanges
.clear();
8324 ExprValueMap
.clear();
8326 ConstantMultipleCache
.clear();
8327 PredicatedSCEVRewrites
.clear();
8329 FoldCacheUser
.clear();
8331 void ScalarEvolution::visitAndClearUsers(
8332 SmallVectorImpl
<Instruction
*> &Worklist
,
8333 SmallPtrSetImpl
<Instruction
*> &Visited
,
8334 SmallVectorImpl
<const SCEV
*> &ToForget
) {
8335 while (!Worklist
.empty()) {
8336 Instruction
*I
= Worklist
.pop_back_val();
8337 if (!isSCEVable(I
->getType()))
8340 ValueExprMapType::iterator It
=
8341 ValueExprMap
.find_as(static_cast<Value
*>(I
));
8342 if (It
!= ValueExprMap
.end()) {
8343 eraseValueFromMap(It
->first
);
8344 ToForget
.push_back(It
->second
);
8345 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
8346 ConstantEvolutionLoopExitValue
.erase(PN
);
8349 PushDefUseChildren(I
, Worklist
, Visited
);
8353 void ScalarEvolution::forgetLoop(const Loop
*L
) {
8354 SmallVector
<const Loop
*, 16> LoopWorklist(1, L
);
8355 SmallVector
<Instruction
*, 32> Worklist
;
8356 SmallPtrSet
<Instruction
*, 16> Visited
;
8357 SmallVector
<const SCEV
*, 16> ToForget
;
8359 // Iterate over all the loops and sub-loops to drop SCEV information.
8360 while (!LoopWorklist
.empty()) {
8361 auto *CurrL
= LoopWorklist
.pop_back_val();
8363 // Drop any stored trip count value.
8364 forgetBackedgeTakenCounts(CurrL
, /* Predicated */ false);
8365 forgetBackedgeTakenCounts(CurrL
, /* Predicated */ true);
8367 // Drop information about predicated SCEV rewrites for this loop.
8368 for (auto I
= PredicatedSCEVRewrites
.begin();
8369 I
!= PredicatedSCEVRewrites
.end();) {
8370 std::pair
<const SCEV
*, const Loop
*> Entry
= I
->first
;
8371 if (Entry
.second
== CurrL
)
8372 PredicatedSCEVRewrites
.erase(I
++);
8377 auto LoopUsersItr
= LoopUsers
.find(CurrL
);
8378 if (LoopUsersItr
!= LoopUsers
.end()) {
8379 ToForget
.insert(ToForget
.end(), LoopUsersItr
->second
.begin(),
8380 LoopUsersItr
->second
.end());
8383 // Drop information about expressions based on loop-header PHIs.
8384 PushLoopPHIs(CurrL
, Worklist
, Visited
);
8385 visitAndClearUsers(Worklist
, Visited
, ToForget
);
8387 LoopPropertiesCache
.erase(CurrL
);
8388 // Forget all contained loops too, to avoid dangling entries in the
8389 // ValuesAtScopes map.
8390 LoopWorklist
.append(CurrL
->begin(), CurrL
->end());
8392 forgetMemoizedResults(ToForget
);
8395 void ScalarEvolution::forgetTopmostLoop(const Loop
*L
) {
8396 forgetLoop(L
->getOutermostLoop());
8399 void ScalarEvolution::forgetValue(Value
*V
) {
8400 Instruction
*I
= dyn_cast
<Instruction
>(V
);
8403 // Drop information about expressions based on loop-header PHIs.
8404 SmallVector
<Instruction
*, 16> Worklist
;
8405 SmallPtrSet
<Instruction
*, 8> Visited
;
8406 SmallVector
<const SCEV
*, 8> ToForget
;
8407 Worklist
.push_back(I
);
8409 visitAndClearUsers(Worklist
, Visited
, ToForget
);
8411 forgetMemoizedResults(ToForget
);
8414 void ScalarEvolution::forgetLoopDispositions() { LoopDispositions
.clear(); }
8416 void ScalarEvolution::forgetBlockAndLoopDispositions(Value
*V
) {
8417 // Unless a specific value is passed to invalidation, completely clear both
8420 BlockDispositions
.clear();
8421 LoopDispositions
.clear();
8425 if (!isSCEVable(V
->getType()))
8428 const SCEV
*S
= getExistingSCEV(V
);
8432 // Invalidate the block and loop dispositions cached for S. Dispositions of
8433 // S's users may change if S's disposition changes (i.e. a user may change to
8434 // loop-invariant, if S changes to loop invariant), so also invalidate
8435 // dispositions of S's users recursively.
8436 SmallVector
<const SCEV
*, 8> Worklist
= {S
};
8437 SmallPtrSet
<const SCEV
*, 8> Seen
= {S
};
8438 while (!Worklist
.empty()) {
8439 const SCEV
*Curr
= Worklist
.pop_back_val();
8440 bool LoopDispoRemoved
= LoopDispositions
.erase(Curr
);
8441 bool BlockDispoRemoved
= BlockDispositions
.erase(Curr
);
8442 if (!LoopDispoRemoved
&& !BlockDispoRemoved
)
8444 auto Users
= SCEVUsers
.find(Curr
);
8445 if (Users
!= SCEVUsers
.end())
8446 for (const auto *User
: Users
->second
)
8447 if (Seen
.insert(User
).second
)
8448 Worklist
.push_back(User
);
8452 /// Get the exact loop backedge taken count considering all loop exits. A
8453 /// computable result can only be returned for loops with all exiting blocks
8454 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8455 /// is never skipped. This is a valid assumption as long as the loop exits via
8456 /// that test. For precise results, it is the caller's responsibility to specify
8457 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8459 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop
*L
, ScalarEvolution
*SE
,
8460 SmallVector
<const SCEVPredicate
*, 4> *Preds
) const {
8461 // If any exits were not computable, the loop is not computable.
8462 if (!isComplete() || ExitNotTaken
.empty())
8463 return SE
->getCouldNotCompute();
8465 const BasicBlock
*Latch
= L
->getLoopLatch();
8466 // All exiting blocks we have collected must dominate the only backedge.
8468 return SE
->getCouldNotCompute();
8470 // All exiting blocks we have gathered dominate loop's latch, so exact trip
8471 // count is simply a minimum out of all these calculated exit counts.
8472 SmallVector
<const SCEV
*, 2> Ops
;
8473 for (const auto &ENT
: ExitNotTaken
) {
8474 const SCEV
*BECount
= ENT
.ExactNotTaken
;
8475 assert(BECount
!= SE
->getCouldNotCompute() && "Bad exit SCEV!");
8476 assert(SE
->DT
.dominates(ENT
.ExitingBlock
, Latch
) &&
8477 "We should only have known counts for exiting blocks that dominate "
8480 Ops
.push_back(BECount
);
8483 for (const auto *P
: ENT
.Predicates
)
8484 Preds
->push_back(P
);
8486 assert((Preds
|| ENT
.hasAlwaysTruePredicate()) &&
8487 "Predicate should be always true!");
8490 // If an earlier exit exits on the first iteration (exit count zero), then
8491 // a later poison exit count should not propagate into the result. This are
8492 // exactly the semantics provided by umin_seq.
8493 return SE
->getUMinFromMismatchedTypes(Ops
, /* Sequential */ true);
8496 /// Get the exact not taken count for this loop exit.
8498 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock
*ExitingBlock
,
8499 ScalarEvolution
*SE
) const {
8500 for (const auto &ENT
: ExitNotTaken
)
8501 if (ENT
.ExitingBlock
== ExitingBlock
&& ENT
.hasAlwaysTruePredicate())
8502 return ENT
.ExactNotTaken
;
8504 return SE
->getCouldNotCompute();
8507 const SCEV
*ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8508 const BasicBlock
*ExitingBlock
, ScalarEvolution
*SE
) const {
8509 for (const auto &ENT
: ExitNotTaken
)
8510 if (ENT
.ExitingBlock
== ExitingBlock
&& ENT
.hasAlwaysTruePredicate())
8511 return ENT
.ConstantMaxNotTaken
;
8513 return SE
->getCouldNotCompute();
8516 const SCEV
*ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(
8517 const BasicBlock
*ExitingBlock
, ScalarEvolution
*SE
) const {
8518 for (const auto &ENT
: ExitNotTaken
)
8519 if (ENT
.ExitingBlock
== ExitingBlock
&& ENT
.hasAlwaysTruePredicate())
8520 return ENT
.SymbolicMaxNotTaken
;
8522 return SE
->getCouldNotCompute();
8525 /// getConstantMax - Get the constant max backedge taken count for the loop.
8527 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution
*SE
) const {
8528 auto PredicateNotAlwaysTrue
= [](const ExitNotTakenInfo
&ENT
) {
8529 return !ENT
.hasAlwaysTruePredicate();
8532 if (!getConstantMax() || any_of(ExitNotTaken
, PredicateNotAlwaysTrue
))
8533 return SE
->getCouldNotCompute();
8535 assert((isa
<SCEVCouldNotCompute
>(getConstantMax()) ||
8536 isa
<SCEVConstant
>(getConstantMax())) &&
8537 "No point in having a non-constant max backedge taken count!");
8538 return getConstantMax();
8542 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop
*L
,
8543 ScalarEvolution
*SE
) {
8545 SymbolicMax
= SE
->computeSymbolicMaxBackedgeTakenCount(L
);
8549 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8550 ScalarEvolution
*SE
) const {
8551 auto PredicateNotAlwaysTrue
= [](const ExitNotTakenInfo
&ENT
) {
8552 return !ENT
.hasAlwaysTruePredicate();
8554 return MaxOrZero
&& !any_of(ExitNotTaken
, PredicateNotAlwaysTrue
);
8557 ScalarEvolution::ExitLimit::ExitLimit(const SCEV
*E
)
8558 : ExitLimit(E
, E
, E
, false, std::nullopt
) {}
8560 ScalarEvolution::ExitLimit::ExitLimit(
8561 const SCEV
*E
, const SCEV
*ConstantMaxNotTaken
,
8562 const SCEV
*SymbolicMaxNotTaken
, bool MaxOrZero
,
8563 ArrayRef
<const SmallPtrSetImpl
<const SCEVPredicate
*> *> PredSetList
)
8564 : ExactNotTaken(E
), ConstantMaxNotTaken(ConstantMaxNotTaken
),
8565 SymbolicMaxNotTaken(SymbolicMaxNotTaken
), MaxOrZero(MaxOrZero
) {
8566 // If we prove the max count is zero, so is the symbolic bound. This happens
8567 // in practice due to differences in a) how context sensitive we've chosen
8568 // to be and b) how we reason about bounds implied by UB.
8569 if (ConstantMaxNotTaken
->isZero()) {
8570 this->ExactNotTaken
= E
= ConstantMaxNotTaken
;
8571 this->SymbolicMaxNotTaken
= SymbolicMaxNotTaken
= ConstantMaxNotTaken
;
8574 assert((isa
<SCEVCouldNotCompute
>(ExactNotTaken
) ||
8575 !isa
<SCEVCouldNotCompute
>(ConstantMaxNotTaken
)) &&
8576 "Exact is not allowed to be less precise than Constant Max");
8577 assert((isa
<SCEVCouldNotCompute
>(ExactNotTaken
) ||
8578 !isa
<SCEVCouldNotCompute
>(SymbolicMaxNotTaken
)) &&
8579 "Exact is not allowed to be less precise than Symbolic Max");
8580 assert((isa
<SCEVCouldNotCompute
>(SymbolicMaxNotTaken
) ||
8581 !isa
<SCEVCouldNotCompute
>(ConstantMaxNotTaken
)) &&
8582 "Symbolic Max is not allowed to be less precise than Constant Max");
8583 assert((isa
<SCEVCouldNotCompute
>(ConstantMaxNotTaken
) ||
8584 isa
<SCEVConstant
>(ConstantMaxNotTaken
)) &&
8585 "No point in having a non-constant max backedge taken count!");
8586 for (const auto *PredSet
: PredSetList
)
8587 for (const auto *P
: *PredSet
)
8589 assert((isa
<SCEVCouldNotCompute
>(E
) || !E
->getType()->isPointerTy()) &&
8590 "Backedge count should be int");
8591 assert((isa
<SCEVCouldNotCompute
>(ConstantMaxNotTaken
) ||
8592 !ConstantMaxNotTaken
->getType()->isPointerTy()) &&
8593 "Max backedge count should be int");
8596 ScalarEvolution::ExitLimit::ExitLimit(
8597 const SCEV
*E
, const SCEV
*ConstantMaxNotTaken
,
8598 const SCEV
*SymbolicMaxNotTaken
, bool MaxOrZero
,
8599 const SmallPtrSetImpl
<const SCEVPredicate
*> &PredSet
)
8600 : ExitLimit(E
, ConstantMaxNotTaken
, SymbolicMaxNotTaken
, MaxOrZero
,
8603 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8604 /// computable exit into a persistent ExitNotTakenInfo array.
8605 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8606 ArrayRef
<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
> ExitCounts
,
8607 bool IsComplete
, const SCEV
*ConstantMax
, bool MaxOrZero
)
8608 : ConstantMax(ConstantMax
), IsComplete(IsComplete
), MaxOrZero(MaxOrZero
) {
8609 using EdgeExitInfo
= ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
;
8611 ExitNotTaken
.reserve(ExitCounts
.size());
8612 std::transform(ExitCounts
.begin(), ExitCounts
.end(),
8613 std::back_inserter(ExitNotTaken
),
8614 [&](const EdgeExitInfo
&EEI
) {
8615 BasicBlock
*ExitBB
= EEI
.first
;
8616 const ExitLimit
&EL
= EEI
.second
;
8617 return ExitNotTakenInfo(ExitBB
, EL
.ExactNotTaken
,
8618 EL
.ConstantMaxNotTaken
, EL
.SymbolicMaxNotTaken
,
8621 assert((isa
<SCEVCouldNotCompute
>(ConstantMax
) ||
8622 isa
<SCEVConstant
>(ConstantMax
)) &&
8623 "No point in having a non-constant max backedge taken count!");
8626 /// Compute the number of times the backedge of the specified loop will execute.
8627 ScalarEvolution::BackedgeTakenInfo
8628 ScalarEvolution::computeBackedgeTakenCount(const Loop
*L
,
8629 bool AllowPredicates
) {
8630 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
8631 L
->getExitingBlocks(ExitingBlocks
);
8633 using EdgeExitInfo
= ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo
;
8635 SmallVector
<EdgeExitInfo
, 4> ExitCounts
;
8636 bool CouldComputeBECount
= true;
8637 BasicBlock
*Latch
= L
->getLoopLatch(); // may be NULL.
8638 const SCEV
*MustExitMaxBECount
= nullptr;
8639 const SCEV
*MayExitMaxBECount
= nullptr;
8640 bool MustExitMaxOrZero
= false;
8642 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8643 // and compute maxBECount.
8644 // Do a union of all the predicates here.
8645 for (unsigned i
= 0, e
= ExitingBlocks
.size(); i
!= e
; ++i
) {
8646 BasicBlock
*ExitBB
= ExitingBlocks
[i
];
8648 // We canonicalize untaken exits to br (constant), ignore them so that
8649 // proving an exit untaken doesn't negatively impact our ability to reason
8650 // about the loop as whole.
8651 if (auto *BI
= dyn_cast
<BranchInst
>(ExitBB
->getTerminator()))
8652 if (auto *CI
= dyn_cast
<ConstantInt
>(BI
->getCondition())) {
8653 bool ExitIfTrue
= !L
->contains(BI
->getSuccessor(0));
8654 if (ExitIfTrue
== CI
->isZero())
8658 ExitLimit EL
= computeExitLimit(L
, ExitBB
, AllowPredicates
);
8660 assert((AllowPredicates
|| EL
.Predicates
.empty()) &&
8661 "Predicated exit limit when predicates are not allowed!");
8663 // 1. For each exit that can be computed, add an entry to ExitCounts.
8664 // CouldComputeBECount is true only if all exits can be computed.
8665 if (EL
.ExactNotTaken
!= getCouldNotCompute())
8666 ++NumExitCountsComputed
;
8668 // We couldn't compute an exact value for this exit, so
8669 // we won't be able to compute an exact value for the loop.
8670 CouldComputeBECount
= false;
8671 // Remember exit count if either exact or symbolic is known. Because
8672 // Exact always implies symbolic, only check symbolic.
8673 if (EL
.SymbolicMaxNotTaken
!= getCouldNotCompute())
8674 ExitCounts
.emplace_back(ExitBB
, EL
);
8676 assert(EL
.ExactNotTaken
== getCouldNotCompute() &&
8677 "Exact is known but symbolic isn't?");
8678 ++NumExitCountsNotComputed
;
8681 // 2. Derive the loop's MaxBECount from each exit's max number of
8682 // non-exiting iterations. Partition the loop exits into two kinds:
8683 // LoopMustExits and LoopMayExits.
8685 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8686 // is a LoopMayExit. If any computable LoopMustExit is found, then
8687 // MaxBECount is the minimum EL.ConstantMaxNotTaken of computable
8688 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8689 // EL.ConstantMaxNotTaken, where CouldNotCompute is considered greater than
8691 // computable EL.ConstantMaxNotTaken.
8692 if (EL
.ConstantMaxNotTaken
!= getCouldNotCompute() && Latch
&&
8693 DT
.dominates(ExitBB
, Latch
)) {
8694 if (!MustExitMaxBECount
) {
8695 MustExitMaxBECount
= EL
.ConstantMaxNotTaken
;
8696 MustExitMaxOrZero
= EL
.MaxOrZero
;
8698 MustExitMaxBECount
= getUMinFromMismatchedTypes(MustExitMaxBECount
,
8699 EL
.ConstantMaxNotTaken
);
8701 } else if (MayExitMaxBECount
!= getCouldNotCompute()) {
8702 if (!MayExitMaxBECount
|| EL
.ConstantMaxNotTaken
== getCouldNotCompute())
8703 MayExitMaxBECount
= EL
.ConstantMaxNotTaken
;
8705 MayExitMaxBECount
= getUMaxFromMismatchedTypes(MayExitMaxBECount
,
8706 EL
.ConstantMaxNotTaken
);
8710 const SCEV
*MaxBECount
= MustExitMaxBECount
? MustExitMaxBECount
:
8711 (MayExitMaxBECount
? MayExitMaxBECount
: getCouldNotCompute());
8712 // The loop backedge will be taken the maximum or zero times if there's
8713 // a single exit that must be taken the maximum or zero times.
8714 bool MaxOrZero
= (MustExitMaxOrZero
&& ExitingBlocks
.size() == 1);
8716 // Remember which SCEVs are used in exit limits for invalidation purposes.
8717 // We only care about non-constant SCEVs here, so we can ignore
8718 // EL.ConstantMaxNotTaken
8719 // and MaxBECount, which must be SCEVConstant.
8720 for (const auto &Pair
: ExitCounts
) {
8721 if (!isa
<SCEVConstant
>(Pair
.second
.ExactNotTaken
))
8722 BECountUsers
[Pair
.second
.ExactNotTaken
].insert({L
, AllowPredicates
});
8723 if (!isa
<SCEVConstant
>(Pair
.second
.SymbolicMaxNotTaken
))
8724 BECountUsers
[Pair
.second
.SymbolicMaxNotTaken
].insert(
8725 {L
, AllowPredicates
});
8727 return BackedgeTakenInfo(std::move(ExitCounts
), CouldComputeBECount
,
8728 MaxBECount
, MaxOrZero
);
8731 ScalarEvolution::ExitLimit
8732 ScalarEvolution::computeExitLimit(const Loop
*L
, BasicBlock
*ExitingBlock
,
8733 bool AllowPredicates
) {
8734 assert(L
->contains(ExitingBlock
) && "Exit count for non-loop block?");
8735 // If our exiting block does not dominate the latch, then its connection with
8736 // loop's exit limit may be far from trivial.
8737 const BasicBlock
*Latch
= L
->getLoopLatch();
8738 if (!Latch
|| !DT
.dominates(ExitingBlock
, Latch
))
8739 return getCouldNotCompute();
8741 bool IsOnlyExit
= (L
->getExitingBlock() != nullptr);
8742 Instruction
*Term
= ExitingBlock
->getTerminator();
8743 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(Term
)) {
8744 assert(BI
->isConditional() && "If unconditional, it can't be in loop!");
8745 bool ExitIfTrue
= !L
->contains(BI
->getSuccessor(0));
8746 assert(ExitIfTrue
== L
->contains(BI
->getSuccessor(1)) &&
8747 "It should have one successor in loop and one exit block!");
8748 // Proceed to the next level to examine the exit condition expression.
8749 return computeExitLimitFromCond(L
, BI
->getCondition(), ExitIfTrue
,
8750 /*ControlsOnlyExit=*/IsOnlyExit
,
8754 if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(Term
)) {
8755 // For switch, make sure that there is a single exit from the loop.
8756 BasicBlock
*Exit
= nullptr;
8757 for (auto *SBB
: successors(ExitingBlock
))
8758 if (!L
->contains(SBB
)) {
8759 if (Exit
) // Multiple exit successors.
8760 return getCouldNotCompute();
8763 assert(Exit
&& "Exiting block must have at least one exit");
8764 return computeExitLimitFromSingleExitSwitch(
8766 /*ControlsOnlyExit=*/IsOnlyExit
);
8769 return getCouldNotCompute();
8772 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCond(
8773 const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
, bool ControlsOnlyExit
,
8774 bool AllowPredicates
) {
8775 ScalarEvolution::ExitLimitCacheTy
Cache(L
, ExitIfTrue
, AllowPredicates
);
8776 return computeExitLimitFromCondCached(Cache
, L
, ExitCond
, ExitIfTrue
,
8777 ControlsOnlyExit
, AllowPredicates
);
8780 std::optional
<ScalarEvolution::ExitLimit
>
8781 ScalarEvolution::ExitLimitCache::find(const Loop
*L
, Value
*ExitCond
,
8782 bool ExitIfTrue
, bool ControlsOnlyExit
,
8783 bool AllowPredicates
) {
8785 (void)this->ExitIfTrue
;
8786 (void)this->AllowPredicates
;
8788 assert(this->L
== L
&& this->ExitIfTrue
== ExitIfTrue
&&
8789 this->AllowPredicates
== AllowPredicates
&&
8790 "Variance in assumed invariant key components!");
8791 auto Itr
= TripCountMap
.find({ExitCond
, ControlsOnlyExit
});
8792 if (Itr
== TripCountMap
.end())
8793 return std::nullopt
;
8797 void ScalarEvolution::ExitLimitCache::insert(const Loop
*L
, Value
*ExitCond
,
8799 bool ControlsOnlyExit
,
8800 bool AllowPredicates
,
8801 const ExitLimit
&EL
) {
8802 assert(this->L
== L
&& this->ExitIfTrue
== ExitIfTrue
&&
8803 this->AllowPredicates
== AllowPredicates
&&
8804 "Variance in assumed invariant key components!");
8806 auto InsertResult
= TripCountMap
.insert({{ExitCond
, ControlsOnlyExit
}, EL
});
8807 assert(InsertResult
.second
&& "Expected successful insertion!");
8812 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCondCached(
8813 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
8814 bool ControlsOnlyExit
, bool AllowPredicates
) {
8816 if (auto MaybeEL
= Cache
.find(L
, ExitCond
, ExitIfTrue
, ControlsOnlyExit
,
8820 ExitLimit EL
= computeExitLimitFromCondImpl(
8821 Cache
, L
, ExitCond
, ExitIfTrue
, ControlsOnlyExit
, AllowPredicates
);
8822 Cache
.insert(L
, ExitCond
, ExitIfTrue
, ControlsOnlyExit
, AllowPredicates
, EL
);
8826 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromCondImpl(
8827 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
8828 bool ControlsOnlyExit
, bool AllowPredicates
) {
8829 // Handle BinOp conditions (And, Or).
8830 if (auto LimitFromBinOp
= computeExitLimitFromCondFromBinOp(
8831 Cache
, L
, ExitCond
, ExitIfTrue
, ControlsOnlyExit
, AllowPredicates
))
8832 return *LimitFromBinOp
;
8834 // With an icmp, it may be feasible to compute an exact backedge-taken count.
8835 // Proceed to the next level to examine the icmp.
8836 if (ICmpInst
*ExitCondICmp
= dyn_cast
<ICmpInst
>(ExitCond
)) {
8838 computeExitLimitFromICmp(L
, ExitCondICmp
, ExitIfTrue
, ControlsOnlyExit
);
8839 if (EL
.hasFullInfo() || !AllowPredicates
)
8842 // Try again, but use SCEV predicates this time.
8843 return computeExitLimitFromICmp(L
, ExitCondICmp
, ExitIfTrue
,
8845 /*AllowPredicates=*/true);
8848 // Check for a constant condition. These are normally stripped out by
8849 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8850 // preserve the CFG and is temporarily leaving constant conditions
8852 if (ConstantInt
*CI
= dyn_cast
<ConstantInt
>(ExitCond
)) {
8853 if (ExitIfTrue
== !CI
->getZExtValue())
8854 // The backedge is always taken.
8855 return getCouldNotCompute();
8856 // The backedge is never taken.
8857 return getZero(CI
->getType());
8860 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8861 // with a constant step, we can form an equivalent icmp predicate and figure
8862 // out how many iterations will be taken before we exit.
8863 const WithOverflowInst
*WO
;
8865 if (match(ExitCond
, m_ExtractValue
<1>(m_WithOverflowInst(WO
))) &&
8866 match(WO
->getRHS(), m_APInt(C
))) {
8868 ConstantRange::makeExactNoWrapRegion(WO
->getBinaryOp(), *C
,
8869 WO
->getNoWrapKind());
8870 CmpInst::Predicate Pred
;
8871 APInt NewRHSC
, Offset
;
8872 NWR
.getEquivalentICmp(Pred
, NewRHSC
, Offset
);
8874 Pred
= ICmpInst::getInversePredicate(Pred
);
8875 auto *LHS
= getSCEV(WO
->getLHS());
8877 LHS
= getAddExpr(LHS
, getConstant(Offset
));
8878 auto EL
= computeExitLimitFromICmp(L
, Pred
, LHS
, getConstant(NewRHSC
),
8879 ControlsOnlyExit
, AllowPredicates
);
8880 if (EL
.hasAnyInfo())
8884 // If it's not an integer or pointer comparison then compute it the hard way.
8885 return computeExitCountExhaustively(L
, ExitCond
, ExitIfTrue
);
8888 std::optional
<ScalarEvolution::ExitLimit
>
8889 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8890 ExitLimitCacheTy
&Cache
, const Loop
*L
, Value
*ExitCond
, bool ExitIfTrue
,
8891 bool ControlsOnlyExit
, bool AllowPredicates
) {
8892 // Check if the controlling expression for this loop is an And or Or.
8895 if (match(ExitCond
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
))))
8897 else if (match(ExitCond
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
))))
8900 return std::nullopt
;
8902 // EitherMayExit is true in these two cases:
8903 // br (and Op0 Op1), loop, exit
8904 // br (or Op0 Op1), exit, loop
8905 bool EitherMayExit
= IsAnd
^ ExitIfTrue
;
8906 ExitLimit EL0
= computeExitLimitFromCondCached(
8907 Cache
, L
, Op0
, ExitIfTrue
, ControlsOnlyExit
&& !EitherMayExit
,
8909 ExitLimit EL1
= computeExitLimitFromCondCached(
8910 Cache
, L
, Op1
, ExitIfTrue
, ControlsOnlyExit
&& !EitherMayExit
,
8913 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8914 const Constant
*NeutralElement
= ConstantInt::get(ExitCond
->getType(), IsAnd
);
8915 if (isa
<ConstantInt
>(Op1
))
8916 return Op1
== NeutralElement
? EL0
: EL1
;
8917 if (isa
<ConstantInt
>(Op0
))
8918 return Op0
== NeutralElement
? EL1
: EL0
;
8920 const SCEV
*BECount
= getCouldNotCompute();
8921 const SCEV
*ConstantMaxBECount
= getCouldNotCompute();
8922 const SCEV
*SymbolicMaxBECount
= getCouldNotCompute();
8923 if (EitherMayExit
) {
8924 bool UseSequentialUMin
= !isa
<BinaryOperator
>(ExitCond
);
8925 // Both conditions must be same for the loop to continue executing.
8926 // Choose the less conservative count.
8927 if (EL0
.ExactNotTaken
!= getCouldNotCompute() &&
8928 EL1
.ExactNotTaken
!= getCouldNotCompute()) {
8929 BECount
= getUMinFromMismatchedTypes(EL0
.ExactNotTaken
, EL1
.ExactNotTaken
,
8932 if (EL0
.ConstantMaxNotTaken
== getCouldNotCompute())
8933 ConstantMaxBECount
= EL1
.ConstantMaxNotTaken
;
8934 else if (EL1
.ConstantMaxNotTaken
== getCouldNotCompute())
8935 ConstantMaxBECount
= EL0
.ConstantMaxNotTaken
;
8937 ConstantMaxBECount
= getUMinFromMismatchedTypes(EL0
.ConstantMaxNotTaken
,
8938 EL1
.ConstantMaxNotTaken
);
8939 if (EL0
.SymbolicMaxNotTaken
== getCouldNotCompute())
8940 SymbolicMaxBECount
= EL1
.SymbolicMaxNotTaken
;
8941 else if (EL1
.SymbolicMaxNotTaken
== getCouldNotCompute())
8942 SymbolicMaxBECount
= EL0
.SymbolicMaxNotTaken
;
8944 SymbolicMaxBECount
= getUMinFromMismatchedTypes(
8945 EL0
.SymbolicMaxNotTaken
, EL1
.SymbolicMaxNotTaken
, UseSequentialUMin
);
8947 // Both conditions must be same at the same time for the loop to exit.
8948 // For now, be conservative.
8949 if (EL0
.ExactNotTaken
== EL1
.ExactNotTaken
)
8950 BECount
= EL0
.ExactNotTaken
;
8953 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8954 // to be more aggressive when computing BECount than when computing
8955 // ConstantMaxBECount. In these cases it is possible for EL0.ExactNotTaken
8957 // EL1.ExactNotTaken to match, but for EL0.ConstantMaxNotTaken and
8958 // EL1.ConstantMaxNotTaken to not.
8959 if (isa
<SCEVCouldNotCompute
>(ConstantMaxBECount
) &&
8960 !isa
<SCEVCouldNotCompute
>(BECount
))
8961 ConstantMaxBECount
= getConstant(getUnsignedRangeMax(BECount
));
8962 if (isa
<SCEVCouldNotCompute
>(SymbolicMaxBECount
))
8963 SymbolicMaxBECount
=
8964 isa
<SCEVCouldNotCompute
>(BECount
) ? ConstantMaxBECount
: BECount
;
8965 return ExitLimit(BECount
, ConstantMaxBECount
, SymbolicMaxBECount
, false,
8966 { &EL0
.Predicates
, &EL1
.Predicates
});
8969 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromICmp(
8970 const Loop
*L
, ICmpInst
*ExitCond
, bool ExitIfTrue
, bool ControlsOnlyExit
,
8971 bool AllowPredicates
) {
8972 // If the condition was exit on true, convert the condition to exit on false
8973 ICmpInst::Predicate Pred
;
8975 Pred
= ExitCond
->getPredicate();
8977 Pred
= ExitCond
->getInversePredicate();
8978 const ICmpInst::Predicate OriginalPred
= Pred
;
8980 const SCEV
*LHS
= getSCEV(ExitCond
->getOperand(0));
8981 const SCEV
*RHS
= getSCEV(ExitCond
->getOperand(1));
8983 ExitLimit EL
= computeExitLimitFromICmp(L
, Pred
, LHS
, RHS
, ControlsOnlyExit
,
8985 if (EL
.hasAnyInfo())
8988 auto *ExhaustiveCount
=
8989 computeExitCountExhaustively(L
, ExitCond
, ExitIfTrue
);
8991 if (!isa
<SCEVCouldNotCompute
>(ExhaustiveCount
))
8992 return ExhaustiveCount
;
8994 return computeShiftCompareExitLimit(ExitCond
->getOperand(0),
8995 ExitCond
->getOperand(1), L
, OriginalPred
);
8997 ScalarEvolution::ExitLimit
ScalarEvolution::computeExitLimitFromICmp(
8998 const Loop
*L
, ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
,
8999 bool ControlsOnlyExit
, bool AllowPredicates
) {
9001 // Try to evaluate any dependencies out of the loop.
9002 LHS
= getSCEVAtScope(LHS
, L
);
9003 RHS
= getSCEVAtScope(RHS
, L
);
9005 // At this point, we would like to compute how many iterations of the
9006 // loop the predicate will return true for these inputs.
9007 if (isLoopInvariant(LHS
, L
) && !isLoopInvariant(RHS
, L
)) {
9008 // If there is a loop-invariant, force it into the RHS.
9009 std::swap(LHS
, RHS
);
9010 Pred
= ICmpInst::getSwappedPredicate(Pred
);
9013 bool ControllingFiniteLoop
= ControlsOnlyExit
&& loopHasNoAbnormalExits(L
) &&
9014 loopIsFiniteByAssumption(L
);
9015 // Simplify the operands before analyzing them.
9016 (void)SimplifyICmpOperands(Pred
, LHS
, RHS
, /*Depth=*/0);
9018 // If we have a comparison of a chrec against a constant, try to use value
9019 // ranges to answer this query.
9020 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
))
9021 if (const SCEVAddRecExpr
*AddRec
= dyn_cast
<SCEVAddRecExpr
>(LHS
))
9022 if (AddRec
->getLoop() == L
) {
9023 // Form the constant range.
9024 ConstantRange CompRange
=
9025 ConstantRange::makeExactICmpRegion(Pred
, RHSC
->getAPInt());
9027 const SCEV
*Ret
= AddRec
->getNumIterationsInRange(CompRange
, *this);
9028 if (!isa
<SCEVCouldNotCompute
>(Ret
)) return Ret
;
9031 // If this loop must exit based on this condition (or execute undefined
9032 // behaviour), and we can prove the test sequence produced must repeat
9033 // the same values on self-wrap of the IV, then we can infer that IV
9034 // doesn't self wrap because if it did, we'd have an infinite (undefined)
9036 if (ControllingFiniteLoop
&& isLoopInvariant(RHS
, L
)) {
9037 // TODO: We can peel off any functions which are invertible *in L*. Loop
9038 // invariant terms are effectively constants for our purposes here.
9039 auto *InnerLHS
= LHS
;
9040 if (auto *ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(LHS
))
9041 InnerLHS
= ZExt
->getOperand();
9042 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(InnerLHS
)) {
9043 auto *StrideC
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*this));
9044 if (!AR
->hasNoSelfWrap() && AR
->getLoop() == L
&& AR
->isAffine() &&
9045 StrideC
&& StrideC
->getAPInt().isPowerOf2()) {
9046 auto Flags
= AR
->getNoWrapFlags();
9047 Flags
= setFlags(Flags
, SCEV::FlagNW
);
9048 SmallVector
<const SCEV
*> Operands
{AR
->operands()};
9049 Flags
= StrengthenNoWrapFlags(this, scAddRecExpr
, Operands
, Flags
);
9050 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), Flags
);
9056 case ICmpInst::ICMP_NE
: { // while (X != Y)
9057 // Convert to: while (X-Y != 0)
9058 if (LHS
->getType()->isPointerTy()) {
9059 LHS
= getLosslessPtrToIntExpr(LHS
);
9060 if (isa
<SCEVCouldNotCompute
>(LHS
))
9063 if (RHS
->getType()->isPointerTy()) {
9064 RHS
= getLosslessPtrToIntExpr(RHS
);
9065 if (isa
<SCEVCouldNotCompute
>(RHS
))
9068 ExitLimit EL
= howFarToZero(getMinusSCEV(LHS
, RHS
), L
, ControlsOnlyExit
,
9070 if (EL
.hasAnyInfo())
9074 case ICmpInst::ICMP_EQ
: { // while (X == Y)
9075 // Convert to: while (X-Y == 0)
9076 if (LHS
->getType()->isPointerTy()) {
9077 LHS
= getLosslessPtrToIntExpr(LHS
);
9078 if (isa
<SCEVCouldNotCompute
>(LHS
))
9081 if (RHS
->getType()->isPointerTy()) {
9082 RHS
= getLosslessPtrToIntExpr(RHS
);
9083 if (isa
<SCEVCouldNotCompute
>(RHS
))
9086 ExitLimit EL
= howFarToNonZero(getMinusSCEV(LHS
, RHS
), L
);
9087 if (EL
.hasAnyInfo()) return EL
;
9090 case ICmpInst::ICMP_SLE
:
9091 case ICmpInst::ICMP_ULE
:
9092 // Since the loop is finite, an invariant RHS cannot include the boundary
9093 // value, otherwise it would loop forever.
9094 if (!EnableFiniteLoopControl
|| !ControllingFiniteLoop
||
9095 !isLoopInvariant(RHS
, L
))
9097 RHS
= getAddExpr(getOne(RHS
->getType()), RHS
);
9099 case ICmpInst::ICMP_SLT
:
9100 case ICmpInst::ICMP_ULT
: { // while (X < Y)
9101 bool IsSigned
= ICmpInst::isSigned(Pred
);
9102 ExitLimit EL
= howManyLessThans(LHS
, RHS
, L
, IsSigned
, ControlsOnlyExit
,
9104 if (EL
.hasAnyInfo())
9108 case ICmpInst::ICMP_SGE
:
9109 case ICmpInst::ICMP_UGE
:
9110 // Since the loop is finite, an invariant RHS cannot include the boundary
9111 // value, otherwise it would loop forever.
9112 if (!EnableFiniteLoopControl
|| !ControllingFiniteLoop
||
9113 !isLoopInvariant(RHS
, L
))
9115 RHS
= getAddExpr(getMinusOne(RHS
->getType()), RHS
);
9117 case ICmpInst::ICMP_SGT
:
9118 case ICmpInst::ICMP_UGT
: { // while (X > Y)
9119 bool IsSigned
= ICmpInst::isSigned(Pred
);
9120 ExitLimit EL
= howManyGreaterThans(LHS
, RHS
, L
, IsSigned
, ControlsOnlyExit
,
9122 if (EL
.hasAnyInfo())
9130 return getCouldNotCompute();
9133 ScalarEvolution::ExitLimit
9134 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop
*L
,
9136 BasicBlock
*ExitingBlock
,
9137 bool ControlsOnlyExit
) {
9138 assert(!L
->contains(ExitingBlock
) && "Not an exiting block!");
9140 // Give up if the exit is the default dest of a switch.
9141 if (Switch
->getDefaultDest() == ExitingBlock
)
9142 return getCouldNotCompute();
9144 assert(L
->contains(Switch
->getDefaultDest()) &&
9145 "Default case must not exit the loop!");
9146 const SCEV
*LHS
= getSCEVAtScope(Switch
->getCondition(), L
);
9147 const SCEV
*RHS
= getConstant(Switch
->findCaseDest(ExitingBlock
));
9149 // while (X != Y) --> while (X-Y != 0)
9150 ExitLimit EL
= howFarToZero(getMinusSCEV(LHS
, RHS
), L
, ControlsOnlyExit
);
9151 if (EL
.hasAnyInfo())
9154 return getCouldNotCompute();
9157 static ConstantInt
*
9158 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr
*AddRec
, ConstantInt
*C
,
9159 ScalarEvolution
&SE
) {
9160 const SCEV
*InVal
= SE
.getConstant(C
);
9161 const SCEV
*Val
= AddRec
->evaluateAtIteration(InVal
, SE
);
9162 assert(isa
<SCEVConstant
>(Val
) &&
9163 "Evaluation of SCEV at constant didn't fold correctly?");
9164 return cast
<SCEVConstant
>(Val
)->getValue();
9167 ScalarEvolution::ExitLimit
ScalarEvolution::computeShiftCompareExitLimit(
9168 Value
*LHS
, Value
*RHSV
, const Loop
*L
, ICmpInst::Predicate Pred
) {
9169 ConstantInt
*RHS
= dyn_cast
<ConstantInt
>(RHSV
);
9171 return getCouldNotCompute();
9173 const BasicBlock
*Latch
= L
->getLoopLatch();
9175 return getCouldNotCompute();
9177 const BasicBlock
*Predecessor
= L
->getLoopPredecessor();
9179 return getCouldNotCompute();
9181 // Return true if V is of the form "LHS `shift_op` <positive constant>".
9182 // Return LHS in OutLHS and shift_opt in OutOpCode.
9183 auto MatchPositiveShift
=
9184 [](Value
*V
, Value
*&OutLHS
, Instruction::BinaryOps
&OutOpCode
) {
9186 using namespace PatternMatch
;
9188 ConstantInt
*ShiftAmt
;
9189 if (match(V
, m_LShr(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
9190 OutOpCode
= Instruction::LShr
;
9191 else if (match(V
, m_AShr(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
9192 OutOpCode
= Instruction::AShr
;
9193 else if (match(V
, m_Shl(m_Value(OutLHS
), m_ConstantInt(ShiftAmt
))))
9194 OutOpCode
= Instruction::Shl
;
9198 return ShiftAmt
->getValue().isStrictlyPositive();
9201 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
9204 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
9205 // %iv.shifted = lshr i32 %iv, <positive constant>
9207 // Return true on a successful match. Return the corresponding PHI node (%iv
9208 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
9209 auto MatchShiftRecurrence
=
9210 [&](Value
*V
, PHINode
*&PNOut
, Instruction::BinaryOps
&OpCodeOut
) {
9211 std::optional
<Instruction::BinaryOps
> PostShiftOpCode
;
9214 Instruction::BinaryOps OpC
;
9217 // If we encounter a shift instruction, "peel off" the shift operation,
9218 // and remember that we did so. Later when we inspect %iv's backedge
9219 // value, we will make sure that the backedge value uses the same
9222 // Note: the peeled shift operation does not have to be the same
9223 // instruction as the one feeding into the PHI's backedge value. We only
9224 // really care about it being the same *kind* of shift instruction --
9225 // that's all that is required for our later inferences to hold.
9226 if (MatchPositiveShift(LHS
, V
, OpC
)) {
9227 PostShiftOpCode
= OpC
;
9232 PNOut
= dyn_cast
<PHINode
>(LHS
);
9233 if (!PNOut
|| PNOut
->getParent() != L
->getHeader())
9236 Value
*BEValue
= PNOut
->getIncomingValueForBlock(Latch
);
9240 // The backedge value for the PHI node must be a shift by a positive
9242 MatchPositiveShift(BEValue
, OpLHS
, OpCodeOut
) &&
9244 // of the PHI node itself
9247 // and the kind of shift should be match the kind of shift we peeled
9249 (!PostShiftOpCode
|| *PostShiftOpCode
== OpCodeOut
);
9253 Instruction::BinaryOps OpCode
;
9254 if (!MatchShiftRecurrence(LHS
, PN
, OpCode
))
9255 return getCouldNotCompute();
9257 const DataLayout
&DL
= getDataLayout();
9259 // The key rationale for this optimization is that for some kinds of shift
9260 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
9261 // within a finite number of iterations. If the condition guarding the
9262 // backedge (in the sense that the backedge is taken if the condition is true)
9263 // is false for the value the shift recurrence stabilizes to, then we know
9264 // that the backedge is taken only a finite number of times.
9266 ConstantInt
*StableValue
= nullptr;
9269 llvm_unreachable("Impossible case!");
9271 case Instruction::AShr
: {
9272 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
9273 // bitwidth(K) iterations.
9274 Value
*FirstValue
= PN
->getIncomingValueForBlock(Predecessor
);
9275 KnownBits Known
= computeKnownBits(FirstValue
, DL
, 0, &AC
,
9276 Predecessor
->getTerminator(), &DT
);
9277 auto *Ty
= cast
<IntegerType
>(RHS
->getType());
9278 if (Known
.isNonNegative())
9279 StableValue
= ConstantInt::get(Ty
, 0);
9280 else if (Known
.isNegative())
9281 StableValue
= ConstantInt::get(Ty
, -1, true);
9283 return getCouldNotCompute();
9287 case Instruction::LShr
:
9288 case Instruction::Shl
:
9289 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
9290 // stabilize to 0 in at most bitwidth(K) iterations.
9291 StableValue
= ConstantInt::get(cast
<IntegerType
>(RHS
->getType()), 0);
9296 ConstantFoldCompareInstOperands(Pred
, StableValue
, RHS
, DL
, &TLI
);
9297 assert(Result
->getType()->isIntegerTy(1) &&
9298 "Otherwise cannot be an operand to a branch instruction");
9300 if (Result
->isZeroValue()) {
9301 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
9302 const SCEV
*UpperBound
=
9303 getConstant(getEffectiveSCEVType(RHS
->getType()), BitWidth
);
9304 return ExitLimit(getCouldNotCompute(), UpperBound
, UpperBound
, false);
9307 return getCouldNotCompute();
9310 /// Return true if we can constant fold an instruction of the specified type,
9311 /// assuming that all operands were constants.
9312 static bool CanConstantFold(const Instruction
*I
) {
9313 if (isa
<BinaryOperator
>(I
) || isa
<CmpInst
>(I
) ||
9314 isa
<SelectInst
>(I
) || isa
<CastInst
>(I
) || isa
<GetElementPtrInst
>(I
) ||
9315 isa
<LoadInst
>(I
) || isa
<ExtractValueInst
>(I
))
9318 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
9319 if (const Function
*F
= CI
->getCalledFunction())
9320 return canConstantFoldCallTo(CI
, F
);
9324 /// Determine whether this instruction can constant evolve within this loop
9325 /// assuming its operands can all constant evolve.
9326 static bool canConstantEvolve(Instruction
*I
, const Loop
*L
) {
9327 // An instruction outside of the loop can't be derived from a loop PHI.
9328 if (!L
->contains(I
)) return false;
9330 if (isa
<PHINode
>(I
)) {
9331 // We don't currently keep track of the control flow needed to evaluate
9332 // PHIs, so we cannot handle PHIs inside of loops.
9333 return L
->getHeader() == I
->getParent();
9336 // If we won't be able to constant fold this expression even if the operands
9337 // are constants, bail early.
9338 return CanConstantFold(I
);
9341 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
9342 /// recursing through each instruction operand until reaching a loop header phi.
9344 getConstantEvolvingPHIOperands(Instruction
*UseInst
, const Loop
*L
,
9345 DenseMap
<Instruction
*, PHINode
*> &PHIMap
,
9347 if (Depth
> MaxConstantEvolvingDepth
)
9350 // Otherwise, we can evaluate this instruction if all of its operands are
9351 // constant or derived from a PHI node themselves.
9352 PHINode
*PHI
= nullptr;
9353 for (Value
*Op
: UseInst
->operands()) {
9354 if (isa
<Constant
>(Op
)) continue;
9356 Instruction
*OpInst
= dyn_cast
<Instruction
>(Op
);
9357 if (!OpInst
|| !canConstantEvolve(OpInst
, L
)) return nullptr;
9359 PHINode
*P
= dyn_cast
<PHINode
>(OpInst
);
9361 // If this operand is already visited, reuse the prior result.
9362 // We may have P != PHI if this is the deepest point at which the
9363 // inconsistent paths meet.
9364 P
= PHIMap
.lookup(OpInst
);
9366 // Recurse and memoize the results, whether a phi is found or not.
9367 // This recursive call invalidates pointers into PHIMap.
9368 P
= getConstantEvolvingPHIOperands(OpInst
, L
, PHIMap
, Depth
+ 1);
9372 return nullptr; // Not evolving from PHI
9373 if (PHI
&& PHI
!= P
)
9374 return nullptr; // Evolving from multiple different PHIs.
9377 // This is a expression evolving from a constant PHI!
9381 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9382 /// in the loop that V is derived from. We allow arbitrary operations along the
9383 /// way, but the operands of an operation must either be constants or a value
9384 /// derived from a constant PHI. If this expression does not fit with these
9385 /// constraints, return null.
9386 static PHINode
*getConstantEvolvingPHI(Value
*V
, const Loop
*L
) {
9387 Instruction
*I
= dyn_cast
<Instruction
>(V
);
9388 if (!I
|| !canConstantEvolve(I
, L
)) return nullptr;
9390 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
))
9393 // Record non-constant instructions contained by the loop.
9394 DenseMap
<Instruction
*, PHINode
*> PHIMap
;
9395 return getConstantEvolvingPHIOperands(I
, L
, PHIMap
, 0);
9398 /// EvaluateExpression - Given an expression that passes the
9399 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9400 /// in the loop has the value PHIVal. If we can't fold this expression for some
9401 /// reason, return null.
9402 static Constant
*EvaluateExpression(Value
*V
, const Loop
*L
,
9403 DenseMap
<Instruction
*, Constant
*> &Vals
,
9404 const DataLayout
&DL
,
9405 const TargetLibraryInfo
*TLI
) {
9406 // Convenient constant check, but redundant for recursive calls.
9407 if (Constant
*C
= dyn_cast
<Constant
>(V
)) return C
;
9408 Instruction
*I
= dyn_cast
<Instruction
>(V
);
9409 if (!I
) return nullptr;
9411 if (Constant
*C
= Vals
.lookup(I
)) return C
;
9413 // An instruction inside the loop depends on a value outside the loop that we
9414 // weren't given a mapping for, or a value such as a call inside the loop.
9415 if (!canConstantEvolve(I
, L
)) return nullptr;
9417 // An unmapped PHI can be due to a branch or another loop inside this loop,
9418 // or due to this not being the initial iteration through a loop where we
9419 // couldn't compute the evolution of this particular PHI last time.
9420 if (isa
<PHINode
>(I
)) return nullptr;
9422 std::vector
<Constant
*> Operands(I
->getNumOperands());
9424 for (unsigned i
= 0, e
= I
->getNumOperands(); i
!= e
; ++i
) {
9425 Instruction
*Operand
= dyn_cast
<Instruction
>(I
->getOperand(i
));
9427 Operands
[i
] = dyn_cast
<Constant
>(I
->getOperand(i
));
9428 if (!Operands
[i
]) return nullptr;
9431 Constant
*C
= EvaluateExpression(Operand
, L
, Vals
, DL
, TLI
);
9433 if (!C
) return nullptr;
9437 return ConstantFoldInstOperands(I
, Operands
, DL
, TLI
);
9441 // If every incoming value to PN except the one for BB is a specific Constant,
9442 // return that, else return nullptr.
9443 static Constant
*getOtherIncomingValue(PHINode
*PN
, BasicBlock
*BB
) {
9444 Constant
*IncomingVal
= nullptr;
9446 for (unsigned i
= 0, e
= PN
->getNumIncomingValues(); i
!= e
; ++i
) {
9447 if (PN
->getIncomingBlock(i
) == BB
)
9450 auto *CurrentVal
= dyn_cast
<Constant
>(PN
->getIncomingValue(i
));
9454 if (IncomingVal
!= CurrentVal
) {
9457 IncomingVal
= CurrentVal
;
9464 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9465 /// in the header of its containing loop, we know the loop executes a
9466 /// constant number of times, and the PHI node is just a recurrence
9467 /// involving constants, fold it.
9469 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode
*PN
,
9472 auto I
= ConstantEvolutionLoopExitValue
.find(PN
);
9473 if (I
!= ConstantEvolutionLoopExitValue
.end())
9476 if (BEs
.ugt(MaxBruteForceIterations
))
9477 return ConstantEvolutionLoopExitValue
[PN
] = nullptr; // Not going to evaluate it.
9479 Constant
*&RetVal
= ConstantEvolutionLoopExitValue
[PN
];
9481 DenseMap
<Instruction
*, Constant
*> CurrentIterVals
;
9482 BasicBlock
*Header
= L
->getHeader();
9483 assert(PN
->getParent() == Header
&& "Can't evaluate PHI not in loop header!");
9485 BasicBlock
*Latch
= L
->getLoopLatch();
9489 for (PHINode
&PHI
: Header
->phis()) {
9490 if (auto *StartCST
= getOtherIncomingValue(&PHI
, Latch
))
9491 CurrentIterVals
[&PHI
] = StartCST
;
9493 if (!CurrentIterVals
.count(PN
))
9494 return RetVal
= nullptr;
9496 Value
*BEValue
= PN
->getIncomingValueForBlock(Latch
);
9498 // Execute the loop symbolically to determine the exit value.
9499 assert(BEs
.getActiveBits() < CHAR_BIT
* sizeof(unsigned) &&
9500 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9502 unsigned NumIterations
= BEs
.getZExtValue(); // must be in range
9503 unsigned IterationNum
= 0;
9504 const DataLayout
&DL
= getDataLayout();
9505 for (; ; ++IterationNum
) {
9506 if (IterationNum
== NumIterations
)
9507 return RetVal
= CurrentIterVals
[PN
]; // Got exit value!
9509 // Compute the value of the PHIs for the next iteration.
9510 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9511 DenseMap
<Instruction
*, Constant
*> NextIterVals
;
9513 EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
9515 return nullptr; // Couldn't evaluate!
9516 NextIterVals
[PN
] = NextPHI
;
9518 bool StoppedEvolving
= NextPHI
== CurrentIterVals
[PN
];
9520 // Also evaluate the other PHI nodes. However, we don't get to stop if we
9521 // cease to be able to evaluate one of them or if they stop evolving,
9522 // because that doesn't necessarily prevent us from computing PN.
9523 SmallVector
<std::pair
<PHINode
*, Constant
*>, 8> PHIsToCompute
;
9524 for (const auto &I
: CurrentIterVals
) {
9525 PHINode
*PHI
= dyn_cast
<PHINode
>(I
.first
);
9526 if (!PHI
|| PHI
== PN
|| PHI
->getParent() != Header
) continue;
9527 PHIsToCompute
.emplace_back(PHI
, I
.second
);
9529 // We use two distinct loops because EvaluateExpression may invalidate any
9530 // iterators into CurrentIterVals.
9531 for (const auto &I
: PHIsToCompute
) {
9532 PHINode
*PHI
= I
.first
;
9533 Constant
*&NextPHI
= NextIterVals
[PHI
];
9534 if (!NextPHI
) { // Not already computed.
9535 Value
*BEValue
= PHI
->getIncomingValueForBlock(Latch
);
9536 NextPHI
= EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
9538 if (NextPHI
!= I
.second
)
9539 StoppedEvolving
= false;
9542 // If all entries in CurrentIterVals == NextIterVals then we can stop
9543 // iterating, the loop can't continue to change.
9544 if (StoppedEvolving
)
9545 return RetVal
= CurrentIterVals
[PN
];
9547 CurrentIterVals
.swap(NextIterVals
);
9551 const SCEV
*ScalarEvolution::computeExitCountExhaustively(const Loop
*L
,
9554 PHINode
*PN
= getConstantEvolvingPHI(Cond
, L
);
9555 if (!PN
) return getCouldNotCompute();
9557 // If the loop is canonicalized, the PHI will have exactly two entries.
9558 // That's the only form we support here.
9559 if (PN
->getNumIncomingValues() != 2) return getCouldNotCompute();
9561 DenseMap
<Instruction
*, Constant
*> CurrentIterVals
;
9562 BasicBlock
*Header
= L
->getHeader();
9563 assert(PN
->getParent() == Header
&& "Can't evaluate PHI not in loop header!");
9565 BasicBlock
*Latch
= L
->getLoopLatch();
9566 assert(Latch
&& "Should follow from NumIncomingValues == 2!");
9568 for (PHINode
&PHI
: Header
->phis()) {
9569 if (auto *StartCST
= getOtherIncomingValue(&PHI
, Latch
))
9570 CurrentIterVals
[&PHI
] = StartCST
;
9572 if (!CurrentIterVals
.count(PN
))
9573 return getCouldNotCompute();
9575 // Okay, we find a PHI node that defines the trip count of this loop. Execute
9576 // the loop symbolically to determine when the condition gets a value of
9578 unsigned MaxIterations
= MaxBruteForceIterations
; // Limit analysis.
9579 const DataLayout
&DL
= getDataLayout();
9580 for (unsigned IterationNum
= 0; IterationNum
!= MaxIterations
;++IterationNum
){
9581 auto *CondVal
= dyn_cast_or_null
<ConstantInt
>(
9582 EvaluateExpression(Cond
, L
, CurrentIterVals
, DL
, &TLI
));
9584 // Couldn't symbolically evaluate.
9585 if (!CondVal
) return getCouldNotCompute();
9587 if (CondVal
->getValue() == uint64_t(ExitWhen
)) {
9588 ++NumBruteForceTripCountsComputed
;
9589 return getConstant(Type::getInt32Ty(getContext()), IterationNum
);
9592 // Update all the PHI nodes for the next iteration.
9593 DenseMap
<Instruction
*, Constant
*> NextIterVals
;
9595 // Create a list of which PHIs we need to compute. We want to do this before
9596 // calling EvaluateExpression on them because that may invalidate iterators
9597 // into CurrentIterVals.
9598 SmallVector
<PHINode
*, 8> PHIsToCompute
;
9599 for (const auto &I
: CurrentIterVals
) {
9600 PHINode
*PHI
= dyn_cast
<PHINode
>(I
.first
);
9601 if (!PHI
|| PHI
->getParent() != Header
) continue;
9602 PHIsToCompute
.push_back(PHI
);
9604 for (PHINode
*PHI
: PHIsToCompute
) {
9605 Constant
*&NextPHI
= NextIterVals
[PHI
];
9606 if (NextPHI
) continue; // Already computed!
9608 Value
*BEValue
= PHI
->getIncomingValueForBlock(Latch
);
9609 NextPHI
= EvaluateExpression(BEValue
, L
, CurrentIterVals
, DL
, &TLI
);
9611 CurrentIterVals
.swap(NextIterVals
);
9614 // Too many iterations were needed to evaluate.
9615 return getCouldNotCompute();
9618 const SCEV
*ScalarEvolution::getSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
9619 SmallVector
<std::pair
<const Loop
*, const SCEV
*>, 2> &Values
=
9621 // Check to see if we've folded this expression at this loop before.
9622 for (auto &LS
: Values
)
9624 return LS
.second
? LS
.second
: V
;
9626 Values
.emplace_back(L
, nullptr);
9628 // Otherwise compute it.
9629 const SCEV
*C
= computeSCEVAtScope(V
, L
);
9630 for (auto &LS
: reverse(ValuesAtScopes
[V
]))
9631 if (LS
.first
== L
) {
9633 if (!isa
<SCEVConstant
>(C
))
9634 ValuesAtScopesUsers
[C
].push_back({L
, V
});
9640 /// This builds up a Constant using the ConstantExpr interface. That way, we
9641 /// will return Constants for objects which aren't represented by a
9642 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9643 /// Returns NULL if the SCEV isn't representable as a Constant.
9644 static Constant
*BuildConstantFromSCEV(const SCEV
*V
) {
9645 switch (V
->getSCEVType()) {
9646 case scCouldNotCompute
:
9651 return cast
<SCEVConstant
>(V
)->getValue();
9653 return dyn_cast
<Constant
>(cast
<SCEVUnknown
>(V
)->getValue());
9655 const SCEVPtrToIntExpr
*P2I
= cast
<SCEVPtrToIntExpr
>(V
);
9656 if (Constant
*CastOp
= BuildConstantFromSCEV(P2I
->getOperand()))
9657 return ConstantExpr::getPtrToInt(CastOp
, P2I
->getType());
9662 const SCEVTruncateExpr
*ST
= cast
<SCEVTruncateExpr
>(V
);
9663 if (Constant
*CastOp
= BuildConstantFromSCEV(ST
->getOperand()))
9664 return ConstantExpr::getTrunc(CastOp
, ST
->getType());
9668 const SCEVAddExpr
*SA
= cast
<SCEVAddExpr
>(V
);
9669 Constant
*C
= nullptr;
9670 for (const SCEV
*Op
: SA
->operands()) {
9671 Constant
*OpC
= BuildConstantFromSCEV(Op
);
9678 assert(!C
->getType()->isPointerTy() &&
9679 "Can only have one pointer, and it must be last");
9680 if (OpC
->getType()->isPointerTy()) {
9681 // The offsets have been converted to bytes. We can add bytes using
9683 C
= ConstantExpr::getGetElementPtr(Type::getInt8Ty(C
->getContext()),
9686 C
= ConstantExpr::getAdd(C
, OpC
);
9692 const SCEVMulExpr
*SM
= cast
<SCEVMulExpr
>(V
);
9693 Constant
*C
= nullptr;
9694 for (const SCEV
*Op
: SM
->operands()) {
9695 assert(!Op
->getType()->isPointerTy() && "Can't multiply pointers");
9696 Constant
*OpC
= BuildConstantFromSCEV(Op
);
9699 C
= C
? ConstantExpr::getMul(C
, OpC
) : OpC
;
9710 case scSequentialUMinExpr
:
9713 llvm_unreachable("Unknown SCEV kind!");
9717 ScalarEvolution::getWithOperands(const SCEV
*S
,
9718 SmallVectorImpl
<const SCEV
*> &NewOps
) {
9719 switch (S
->getSCEVType()) {
9724 return getCastExpr(S
->getSCEVType(), NewOps
[0], S
->getType());
9725 case scAddRecExpr
: {
9726 auto *AddRec
= cast
<SCEVAddRecExpr
>(S
);
9727 return getAddRecExpr(NewOps
, AddRec
->getLoop(), AddRec
->getNoWrapFlags());
9730 return getAddExpr(NewOps
, cast
<SCEVAddExpr
>(S
)->getNoWrapFlags());
9732 return getMulExpr(NewOps
, cast
<SCEVMulExpr
>(S
)->getNoWrapFlags());
9734 return getUDivExpr(NewOps
[0], NewOps
[1]);
9739 return getMinMaxExpr(S
->getSCEVType(), NewOps
);
9740 case scSequentialUMinExpr
:
9741 return getSequentialMinMaxExpr(S
->getSCEVType(), NewOps
);
9746 case scCouldNotCompute
:
9747 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9749 llvm_unreachable("Unknown SCEV kind!");
9752 const SCEV
*ScalarEvolution::computeSCEVAtScope(const SCEV
*V
, const Loop
*L
) {
9753 switch (V
->getSCEVType()) {
9757 case scAddRecExpr
: {
9758 // If this is a loop recurrence for a loop that does not contain L, then we
9759 // are dealing with the final value computed by the loop.
9760 const SCEVAddRecExpr
*AddRec
= cast
<SCEVAddRecExpr
>(V
);
9761 // First, attempt to evaluate each operand.
9762 // Avoid performing the look-up in the common case where the specified
9763 // expression has no loop-variant portions.
9764 for (unsigned i
= 0, e
= AddRec
->getNumOperands(); i
!= e
; ++i
) {
9765 const SCEV
*OpAtScope
= getSCEVAtScope(AddRec
->getOperand(i
), L
);
9766 if (OpAtScope
== AddRec
->getOperand(i
))
9769 // Okay, at least one of these operands is loop variant but might be
9770 // foldable. Build a new instance of the folded commutative expression.
9771 SmallVector
<const SCEV
*, 8> NewOps
;
9772 NewOps
.reserve(AddRec
->getNumOperands());
9773 append_range(NewOps
, AddRec
->operands().take_front(i
));
9774 NewOps
.push_back(OpAtScope
);
9775 for (++i
; i
!= e
; ++i
)
9776 NewOps
.push_back(getSCEVAtScope(AddRec
->getOperand(i
), L
));
9778 const SCEV
*FoldedRec
= getAddRecExpr(
9779 NewOps
, AddRec
->getLoop(), AddRec
->getNoWrapFlags(SCEV::FlagNW
));
9780 AddRec
= dyn_cast
<SCEVAddRecExpr
>(FoldedRec
);
9781 // The addrec may be folded to a nonrecurrence, for example, if the
9782 // induction variable is multiplied by zero after constant folding. Go
9783 // ahead and return the folded value.
9789 // If the scope is outside the addrec's loop, evaluate it by using the
9790 // loop exit value of the addrec.
9791 if (!AddRec
->getLoop()->contains(L
)) {
9792 // To evaluate this recurrence, we need to know how many times the AddRec
9793 // loop iterates. Compute this now.
9794 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(AddRec
->getLoop());
9795 if (BackedgeTakenCount
== getCouldNotCompute())
9798 // Then, evaluate the AddRec.
9799 return AddRec
->evaluateAtIteration(BackedgeTakenCount
, *this);
9815 case scSequentialUMinExpr
: {
9816 ArrayRef
<const SCEV
*> Ops
= V
->operands();
9817 // Avoid performing the look-up in the common case where the specified
9818 // expression has no loop-variant portions.
9819 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
9820 const SCEV
*OpAtScope
= getSCEVAtScope(Ops
[i
], L
);
9821 if (OpAtScope
!= Ops
[i
]) {
9822 // Okay, at least one of these operands is loop variant but might be
9823 // foldable. Build a new instance of the folded commutative expression.
9824 SmallVector
<const SCEV
*, 8> NewOps
;
9825 NewOps
.reserve(Ops
.size());
9826 append_range(NewOps
, Ops
.take_front(i
));
9827 NewOps
.push_back(OpAtScope
);
9829 for (++i
; i
!= e
; ++i
) {
9830 OpAtScope
= getSCEVAtScope(Ops
[i
], L
);
9831 NewOps
.push_back(OpAtScope
);
9834 return getWithOperands(V
, NewOps
);
9837 // If we got here, all operands are loop invariant.
9841 // If this instruction is evolved from a constant-evolving PHI, compute the
9842 // exit value from the loop without using SCEVs.
9843 const SCEVUnknown
*SU
= cast
<SCEVUnknown
>(V
);
9844 Instruction
*I
= dyn_cast
<Instruction
>(SU
->getValue());
9846 return V
; // This is some other type of SCEVUnknown, just return it.
9848 if (PHINode
*PN
= dyn_cast
<PHINode
>(I
)) {
9849 const Loop
*CurrLoop
= this->LI
[I
->getParent()];
9850 // Looking for loop exit value.
9851 if (CurrLoop
&& CurrLoop
->getParentLoop() == L
&&
9852 PN
->getParent() == CurrLoop
->getHeader()) {
9853 // Okay, there is no closed form solution for the PHI node. Check
9854 // to see if the loop that contains it has a known backedge-taken
9855 // count. If so, we may be able to force computation of the exit
9857 const SCEV
*BackedgeTakenCount
= getBackedgeTakenCount(CurrLoop
);
9858 // This trivial case can show up in some degenerate cases where
9859 // the incoming IR has not yet been fully simplified.
9860 if (BackedgeTakenCount
->isZero()) {
9861 Value
*InitValue
= nullptr;
9862 bool MultipleInitValues
= false;
9863 for (unsigned i
= 0; i
< PN
->getNumIncomingValues(); i
++) {
9864 if (!CurrLoop
->contains(PN
->getIncomingBlock(i
))) {
9866 InitValue
= PN
->getIncomingValue(i
);
9867 else if (InitValue
!= PN
->getIncomingValue(i
)) {
9868 MultipleInitValues
= true;
9873 if (!MultipleInitValues
&& InitValue
)
9874 return getSCEV(InitValue
);
9876 // Do we have a loop invariant value flowing around the backedge
9877 // for a loop which must execute the backedge?
9878 if (!isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
) &&
9879 isKnownNonZero(BackedgeTakenCount
) &&
9880 PN
->getNumIncomingValues() == 2) {
9882 unsigned InLoopPred
=
9883 CurrLoop
->contains(PN
->getIncomingBlock(0)) ? 0 : 1;
9884 Value
*BackedgeVal
= PN
->getIncomingValue(InLoopPred
);
9885 if (CurrLoop
->isLoopInvariant(BackedgeVal
))
9886 return getSCEV(BackedgeVal
);
9888 if (auto *BTCC
= dyn_cast
<SCEVConstant
>(BackedgeTakenCount
)) {
9889 // Okay, we know how many times the containing loop executes. If
9890 // this is a constant evolving PHI node, get the final value at
9891 // the specified iteration number.
9893 getConstantEvolutionLoopExitValue(PN
, BTCC
->getAPInt(), CurrLoop
);
9900 // Okay, this is an expression that we cannot symbolically evaluate
9901 // into a SCEV. Check to see if it's possible to symbolically evaluate
9902 // the arguments into constants, and if so, try to constant propagate the
9903 // result. This is particularly useful for computing loop exit values.
9904 if (!CanConstantFold(I
))
9905 return V
; // This is some other type of SCEVUnknown, just return it.
9907 SmallVector
<Constant
*, 4> Operands
;
9908 Operands
.reserve(I
->getNumOperands());
9909 bool MadeImprovement
= false;
9910 for (Value
*Op
: I
->operands()) {
9911 if (Constant
*C
= dyn_cast
<Constant
>(Op
)) {
9912 Operands
.push_back(C
);
9916 // If any of the operands is non-constant and if they are
9917 // non-integer and non-pointer, don't even try to analyze them
9918 // with scev techniques.
9919 if (!isSCEVable(Op
->getType()))
9922 const SCEV
*OrigV
= getSCEV(Op
);
9923 const SCEV
*OpV
= getSCEVAtScope(OrigV
, L
);
9924 MadeImprovement
|= OrigV
!= OpV
;
9926 Constant
*C
= BuildConstantFromSCEV(OpV
);
9929 assert(C
->getType() == Op
->getType() && "Type mismatch");
9930 Operands
.push_back(C
);
9933 // Check to see if getSCEVAtScope actually made an improvement.
9934 if (!MadeImprovement
)
9935 return V
; // This is some other type of SCEVUnknown, just return it.
9937 Constant
*C
= nullptr;
9938 const DataLayout
&DL
= getDataLayout();
9939 C
= ConstantFoldInstOperands(I
, Operands
, DL
, &TLI
);
9944 case scCouldNotCompute
:
9945 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9947 llvm_unreachable("Unknown SCEV type!");
9950 const SCEV
*ScalarEvolution::getSCEVAtScope(Value
*V
, const Loop
*L
) {
9951 return getSCEVAtScope(getSCEV(V
), L
);
9954 const SCEV
*ScalarEvolution::stripInjectiveFunctions(const SCEV
*S
) const {
9955 if (const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(S
))
9956 return stripInjectiveFunctions(ZExt
->getOperand());
9957 if (const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(S
))
9958 return stripInjectiveFunctions(SExt
->getOperand());
9962 /// Finds the minimum unsigned root of the following equation:
9964 /// A * X = B (mod N)
9966 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9967 /// A and B isn't important.
9969 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9970 static const SCEV
*SolveLinEquationWithOverflow(const APInt
&A
, const SCEV
*B
,
9971 ScalarEvolution
&SE
) {
9972 uint32_t BW
= A
.getBitWidth();
9973 assert(BW
== SE
.getTypeSizeInBits(B
->getType()));
9974 assert(A
!= 0 && "A must be non-zero.");
9978 // The gcd of A and N may have only one prime factor: 2. The number of
9979 // trailing zeros in A is its multiplicity
9980 uint32_t Mult2
= A
.countr_zero();
9983 // 2. Check if B is divisible by D.
9985 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9986 // is not less than multiplicity of this prime factor for D.
9987 if (SE
.getMinTrailingZeros(B
) < Mult2
)
9988 return SE
.getCouldNotCompute();
9990 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9993 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9994 // (N / D) in general. The inverse itself always fits into BW bits, though,
9995 // so we immediately truncate it.
9996 APInt AD
= A
.lshr(Mult2
).zext(BW
+ 1); // AD = A / D
9997 APInt
Mod(BW
+ 1, 0);
9998 Mod
.setBit(BW
- Mult2
); // Mod = N / D
9999 APInt I
= AD
.multiplicativeInverse(Mod
).trunc(BW
);
10001 // 4. Compute the minimum unsigned root of the equation:
10002 // I * (B / D) mod (N / D)
10003 // To simplify the computation, we factor out the divide by D:
10004 // (I * B mod N) / D
10005 const SCEV
*D
= SE
.getConstant(APInt::getOneBitSet(BW
, Mult2
));
10006 return SE
.getUDivExactExpr(SE
.getMulExpr(B
, SE
.getConstant(I
)), D
);
10009 /// For a given quadratic addrec, generate coefficients of the corresponding
10010 /// quadratic equation, multiplied by a common value to ensure that they are
10012 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
10013 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
10014 /// were multiplied by, and BitWidth is the bit width of the original addrec
10016 /// This function returns std::nullopt if the addrec coefficients are not
10017 /// compile- time constants.
10018 static std::optional
<std::tuple
<APInt
, APInt
, APInt
, APInt
, unsigned>>
10019 GetQuadraticEquation(const SCEVAddRecExpr
*AddRec
) {
10020 assert(AddRec
->getNumOperands() == 3 && "This is not a quadratic chrec!");
10021 const SCEVConstant
*LC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(0));
10022 const SCEVConstant
*MC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(1));
10023 const SCEVConstant
*NC
= dyn_cast
<SCEVConstant
>(AddRec
->getOperand(2));
10024 LLVM_DEBUG(dbgs() << __func__
<< ": analyzing quadratic addrec: "
10025 << *AddRec
<< '\n');
10027 // We currently can only solve this if the coefficients are constants.
10028 if (!LC
|| !MC
|| !NC
) {
10029 LLVM_DEBUG(dbgs() << __func__
<< ": coefficients are not constant\n");
10030 return std::nullopt
;
10033 APInt L
= LC
->getAPInt();
10034 APInt M
= MC
->getAPInt();
10035 APInt N
= NC
->getAPInt();
10036 assert(!N
.isZero() && "This is not a quadratic addrec");
10038 unsigned BitWidth
= LC
->getAPInt().getBitWidth();
10039 unsigned NewWidth
= BitWidth
+ 1;
10040 LLVM_DEBUG(dbgs() << __func__
<< ": addrec coeff bw: "
10041 << BitWidth
<< '\n');
10042 // The sign-extension (as opposed to a zero-extension) here matches the
10043 // extension used in SolveQuadraticEquationWrap (with the same motivation).
10044 N
= N
.sext(NewWidth
);
10045 M
= M
.sext(NewWidth
);
10046 L
= L
.sext(NewWidth
);
10048 // The increments are M, M+N, M+2N, ..., so the accumulated values are
10049 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
10050 // L+M, L+2M+N, L+3M+3N, ...
10051 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
10053 // The equation Acc = 0 is then
10054 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0.
10055 // In a quadratic form it becomes:
10056 // N n^2 + (2M-N) n + 2L = 0.
10059 APInt B
= 2 * M
- A
;
10061 APInt T
= APInt(NewWidth
, 2);
10062 LLVM_DEBUG(dbgs() << __func__
<< ": equation " << A
<< "x^2 + " << B
10063 << "x + " << C
<< ", coeff bw: " << NewWidth
10064 << ", multiplied by " << T
<< '\n');
10065 return std::make_tuple(A
, B
, C
, T
, BitWidth
);
10068 /// Helper function to compare optional APInts:
10069 /// (a) if X and Y both exist, return min(X, Y),
10070 /// (b) if neither X nor Y exist, return std::nullopt,
10071 /// (c) if exactly one of X and Y exists, return that value.
10072 static std::optional
<APInt
> MinOptional(std::optional
<APInt
> X
,
10073 std::optional
<APInt
> Y
) {
10075 unsigned W
= std::max(X
->getBitWidth(), Y
->getBitWidth());
10076 APInt XW
= X
->sext(W
);
10077 APInt YW
= Y
->sext(W
);
10078 return XW
.slt(YW
) ? *X
: *Y
;
10081 return std::nullopt
;
10082 return X
? *X
: *Y
;
10085 /// Helper function to truncate an optional APInt to a given BitWidth.
10086 /// When solving addrec-related equations, it is preferable to return a value
10087 /// that has the same bit width as the original addrec's coefficients. If the
10088 /// solution fits in the original bit width, truncate it (except for i1).
10089 /// Returning a value of a different bit width may inhibit some optimizations.
10091 /// In general, a solution to a quadratic equation generated from an addrec
10092 /// may require BW+1 bits, where BW is the bit width of the addrec's
10093 /// coefficients. The reason is that the coefficients of the quadratic
10094 /// equation are BW+1 bits wide (to avoid truncation when converting from
10095 /// the addrec to the equation).
10096 static std::optional
<APInt
> TruncIfPossible(std::optional
<APInt
> X
,
10097 unsigned BitWidth
) {
10099 return std::nullopt
;
10100 unsigned W
= X
->getBitWidth();
10101 if (BitWidth
> 1 && BitWidth
< W
&& X
->isIntN(BitWidth
))
10102 return X
->trunc(BitWidth
);
10106 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
10107 /// iterations. The values L, M, N are assumed to be signed, and they
10108 /// should all have the same bit widths.
10109 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
10110 /// where BW is the bit width of the addrec's coefficients.
10111 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
10112 /// returned as such, otherwise the bit width of the returned value may
10113 /// be greater than BW.
10115 /// This function returns std::nullopt if
10116 /// (a) the addrec coefficients are not constant, or
10117 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
10118 /// like x^2 = 5, no integer solutions exist, in other cases an integer
10119 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it.
10120 static std::optional
<APInt
>
10121 SolveQuadraticAddRecExact(const SCEVAddRecExpr
*AddRec
, ScalarEvolution
&SE
) {
10124 auto T
= GetQuadraticEquation(AddRec
);
10126 return std::nullopt
;
10128 std::tie(A
, B
, C
, M
, BitWidth
) = *T
;
10129 LLVM_DEBUG(dbgs() << __func__
<< ": solving for unsigned overflow\n");
10130 std::optional
<APInt
> X
=
10131 APIntOps::SolveQuadraticEquationWrap(A
, B
, C
, BitWidth
+ 1);
10133 return std::nullopt
;
10135 ConstantInt
*CX
= ConstantInt::get(SE
.getContext(), *X
);
10136 ConstantInt
*V
= EvaluateConstantChrecAtConstant(AddRec
, CX
, SE
);
10138 return std::nullopt
;
10140 return TruncIfPossible(X
, BitWidth
);
10143 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
10144 /// iterations. The values M, N are assumed to be signed, and they
10145 /// should all have the same bit widths.
10146 /// Find the least n such that c(n) does not belong to the given range,
10147 /// while c(n-1) does.
10149 /// This function returns std::nullopt if
10150 /// (a) the addrec coefficients are not constant, or
10151 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
10152 /// bounds of the range.
10153 static std::optional
<APInt
>
10154 SolveQuadraticAddRecRange(const SCEVAddRecExpr
*AddRec
,
10155 const ConstantRange
&Range
, ScalarEvolution
&SE
) {
10156 assert(AddRec
->getOperand(0)->isZero() &&
10157 "Starting value of addrec should be 0");
10158 LLVM_DEBUG(dbgs() << __func__
<< ": solving boundary crossing for range "
10159 << Range
<< ", addrec " << *AddRec
<< '\n');
10160 // This case is handled in getNumIterationsInRange. Here we can assume that
10161 // we start in the range.
10162 assert(Range
.contains(APInt(SE
.getTypeSizeInBits(AddRec
->getType()), 0)) &&
10163 "Addrec's initial value should be in range");
10167 auto T
= GetQuadraticEquation(AddRec
);
10169 return std::nullopt
;
10171 // Be careful about the return value: there can be two reasons for not
10172 // returning an actual number. First, if no solutions to the equations
10173 // were found, and second, if the solutions don't leave the given range.
10174 // The first case means that the actual solution is "unknown", the second
10175 // means that it's known, but not valid. If the solution is unknown, we
10176 // cannot make any conclusions.
10177 // Return a pair: the optional solution and a flag indicating if the
10178 // solution was found.
10179 auto SolveForBoundary
=
10180 [&](APInt Bound
) -> std::pair
<std::optional
<APInt
>, bool> {
10181 // Solve for signed overflow and unsigned overflow, pick the lower
10183 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
10184 << Bound
<< " (before multiplying by " << M
<< ")\n");
10185 Bound
*= M
; // The quadratic equation multiplier.
10187 std::optional
<APInt
> SO
;
10188 if (BitWidth
> 1) {
10189 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10190 "signed overflow\n");
10191 SO
= APIntOps::SolveQuadraticEquationWrap(A
, B
, -Bound
, BitWidth
);
10193 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
10194 "unsigned overflow\n");
10195 std::optional
<APInt
> UO
=
10196 APIntOps::SolveQuadraticEquationWrap(A
, B
, -Bound
, BitWidth
+ 1);
10198 auto LeavesRange
= [&] (const APInt
&X
) {
10199 ConstantInt
*C0
= ConstantInt::get(SE
.getContext(), X
);
10200 ConstantInt
*V0
= EvaluateConstantChrecAtConstant(AddRec
, C0
, SE
);
10201 if (Range
.contains(V0
->getValue()))
10203 // X should be at least 1, so X-1 is non-negative.
10204 ConstantInt
*C1
= ConstantInt::get(SE
.getContext(), X
-1);
10205 ConstantInt
*V1
= EvaluateConstantChrecAtConstant(AddRec
, C1
, SE
);
10206 if (Range
.contains(V1
->getValue()))
10211 // If SolveQuadraticEquationWrap returns std::nullopt, it means that there
10212 // can be a solution, but the function failed to find it. We cannot treat it
10213 // as "no solution".
10215 return {std::nullopt
, false};
10217 // Check the smaller value first to see if it leaves the range.
10218 // At this point, both SO and UO must have values.
10219 std::optional
<APInt
> Min
= MinOptional(SO
, UO
);
10220 if (LeavesRange(*Min
))
10221 return { Min
, true };
10222 std::optional
<APInt
> Max
= Min
== SO
? UO
: SO
;
10223 if (LeavesRange(*Max
))
10224 return { Max
, true };
10226 // Solutions were found, but were eliminated, hence the "true".
10227 return {std::nullopt
, true};
10230 std::tie(A
, B
, C
, M
, BitWidth
) = *T
;
10231 // Lower bound is inclusive, subtract 1 to represent the exiting value.
10232 APInt Lower
= Range
.getLower().sext(A
.getBitWidth()) - 1;
10233 APInt Upper
= Range
.getUpper().sext(A
.getBitWidth());
10234 auto SL
= SolveForBoundary(Lower
);
10235 auto SU
= SolveForBoundary(Upper
);
10236 // If any of the solutions was unknown, no meaninigful conclusions can
10238 if (!SL
.second
|| !SU
.second
)
10239 return std::nullopt
;
10241 // Claim: The correct solution is not some value between Min and Max.
10243 // Justification: Assuming that Min and Max are different values, one of
10244 // them is when the first signed overflow happens, the other is when the
10245 // first unsigned overflow happens. Crossing the range boundary is only
10246 // possible via an overflow (treating 0 as a special case of it, modeling
10247 // an overflow as crossing k*2^W for some k).
10249 // The interesting case here is when Min was eliminated as an invalid
10250 // solution, but Max was not. The argument is that if there was another
10251 // overflow between Min and Max, it would also have been eliminated if
10252 // it was considered.
10254 // For a given boundary, it is possible to have two overflows of the same
10255 // type (signed/unsigned) without having the other type in between: this
10256 // can happen when the vertex of the parabola is between the iterations
10257 // corresponding to the overflows. This is only possible when the two
10258 // overflows cross k*2^W for the same k. In such case, if the second one
10259 // left the range (and was the first one to do so), the first overflow
10260 // would have to enter the range, which would mean that either we had left
10261 // the range before or that we started outside of it. Both of these cases
10262 // are contradictions.
10264 // Claim: In the case where SolveForBoundary returns std::nullopt, the correct
10265 // solution is not some value between the Max for this boundary and the
10266 // Min of the other boundary.
10268 // Justification: Assume that we had such Max_A and Min_B corresponding
10269 // to range boundaries A and B and such that Max_A < Min_B. If there was
10270 // a solution between Max_A and Min_B, it would have to be caused by an
10271 // overflow corresponding to either A or B. It cannot correspond to B,
10272 // since Min_B is the first occurrence of such an overflow. If it
10273 // corresponded to A, it would have to be either a signed or an unsigned
10274 // overflow that is larger than both eliminated overflows for A. But
10275 // between the eliminated overflows and this overflow, the values would
10276 // cover the entire value space, thus crossing the other boundary, which
10277 // is a contradiction.
10279 return TruncIfPossible(MinOptional(SL
.first
, SU
.first
), BitWidth
);
10282 ScalarEvolution::ExitLimit
ScalarEvolution::howFarToZero(const SCEV
*V
,
10284 bool ControlsOnlyExit
,
10285 bool AllowPredicates
) {
10287 // This is only used for loops with a "x != y" exit test. The exit condition
10288 // is now expressed as a single expression, V = x-y. So the exit test is
10289 // effectively V != 0. We know and take advantage of the fact that this
10290 // expression only being used in a comparison by zero context.
10292 SmallPtrSet
<const SCEVPredicate
*, 4> Predicates
;
10293 // If the value is a constant
10294 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
10295 // If the value is already zero, the branch will execute zero times.
10296 if (C
->getValue()->isZero()) return C
;
10297 return getCouldNotCompute(); // Otherwise it will loop infinitely.
10300 const SCEVAddRecExpr
*AddRec
=
10301 dyn_cast
<SCEVAddRecExpr
>(stripInjectiveFunctions(V
));
10303 if (!AddRec
&& AllowPredicates
)
10304 // Try to make this an AddRec using runtime tests, in the first X
10305 // iterations of this loop, where X is the SCEV expression found by the
10306 // algorithm below.
10307 AddRec
= convertSCEVToAddRecWithPredicates(V
, L
, Predicates
);
10309 if (!AddRec
|| AddRec
->getLoop() != L
)
10310 return getCouldNotCompute();
10312 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
10313 // the quadratic equation to solve it.
10314 if (AddRec
->isQuadratic() && AddRec
->getType()->isIntegerTy()) {
10315 // We can only use this value if the chrec ends up with an exact zero
10316 // value at this index. When solving for "X*X != 5", for example, we
10317 // should not accept a root of 2.
10318 if (auto S
= SolveQuadraticAddRecExact(AddRec
, *this)) {
10319 const auto *R
= cast
<SCEVConstant
>(getConstant(*S
));
10320 return ExitLimit(R
, R
, R
, false, Predicates
);
10322 return getCouldNotCompute();
10325 // Otherwise we can only handle this if it is affine.
10326 if (!AddRec
->isAffine())
10327 return getCouldNotCompute();
10329 // If this is an affine expression, the execution count of this branch is
10330 // the minimum unsigned root of the following equation:
10332 // Start + Step*N = 0 (mod 2^BW)
10336 // Step*N = -Start (mod 2^BW)
10338 // where BW is the common bit width of Start and Step.
10340 // Get the initial value for the loop.
10341 const SCEV
*Start
= getSCEVAtScope(AddRec
->getStart(), L
->getParentLoop());
10342 const SCEV
*Step
= getSCEVAtScope(AddRec
->getOperand(1), L
->getParentLoop());
10344 // For now we handle only constant steps.
10346 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
10347 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
10348 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
10349 // We have not yet seen any such cases.
10350 const SCEVConstant
*StepC
= dyn_cast
<SCEVConstant
>(Step
);
10351 if (!StepC
|| StepC
->getValue()->isZero())
10352 return getCouldNotCompute();
10354 // For positive steps (counting up until unsigned overflow):
10355 // N = -Start/Step (as unsigned)
10356 // For negative steps (counting down to zero):
10358 // First compute the unsigned distance from zero in the direction of Step.
10359 bool CountDown
= StepC
->getAPInt().isNegative();
10360 const SCEV
*Distance
= CountDown
? Start
: getNegativeSCEV(Start
);
10362 // Handle unitary steps, which cannot wraparound.
10363 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10364 // N = Distance (as unsigned)
10365 if (StepC
->getValue()->isOne() || StepC
->getValue()->isMinusOne()) {
10366 APInt MaxBECount
= getUnsignedRangeMax(applyLoopGuards(Distance
, L
));
10367 MaxBECount
= APIntOps::umin(MaxBECount
, getUnsignedRangeMax(Distance
));
10369 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10370 // we end up with a loop whose backedge-taken count is n - 1. Detect this
10371 // case, and see if we can improve the bound.
10373 // Explicitly handling this here is necessary because getUnsignedRange
10374 // isn't context-sensitive; it doesn't know that we only care about the
10375 // range inside the loop.
10376 const SCEV
*Zero
= getZero(Distance
->getType());
10377 const SCEV
*One
= getOne(Distance
->getType());
10378 const SCEV
*DistancePlusOne
= getAddExpr(Distance
, One
);
10379 if (isLoopEntryGuardedByCond(L
, ICmpInst::ICMP_NE
, DistancePlusOne
, Zero
)) {
10380 // If Distance + 1 doesn't overflow, we can compute the maximum distance
10381 // as "unsigned_max(Distance + 1) - 1".
10382 ConstantRange CR
= getUnsignedRange(DistancePlusOne
);
10383 MaxBECount
= APIntOps::umin(MaxBECount
, CR
.getUnsignedMax() - 1);
10385 return ExitLimit(Distance
, getConstant(MaxBECount
), Distance
, false,
10389 // If the condition controls loop exit (the loop exits only if the expression
10390 // is true) and the addition is no-wrap we can use unsigned divide to
10391 // compute the backedge count. In this case, the step may not divide the
10392 // distance, but we don't care because if the condition is "missed" the loop
10393 // will have undefined behavior due to wrapping.
10394 if (ControlsOnlyExit
&& AddRec
->hasNoSelfWrap() &&
10395 loopHasNoAbnormalExits(AddRec
->getLoop())) {
10396 const SCEV
*Exact
=
10397 getUDivExpr(Distance
, CountDown
? getNegativeSCEV(Step
) : Step
);
10398 const SCEV
*ConstantMax
= getCouldNotCompute();
10399 if (Exact
!= getCouldNotCompute()) {
10400 APInt MaxInt
= getUnsignedRangeMax(applyLoopGuards(Exact
, L
));
10402 getConstant(APIntOps::umin(MaxInt
, getUnsignedRangeMax(Exact
)));
10404 const SCEV
*SymbolicMax
=
10405 isa
<SCEVCouldNotCompute
>(Exact
) ? ConstantMax
: Exact
;
10406 return ExitLimit(Exact
, ConstantMax
, SymbolicMax
, false, Predicates
);
10409 // Solve the general equation.
10410 const SCEV
*E
= SolveLinEquationWithOverflow(StepC
->getAPInt(),
10411 getNegativeSCEV(Start
), *this);
10414 if (E
!= getCouldNotCompute()) {
10415 APInt MaxWithGuards
= getUnsignedRangeMax(applyLoopGuards(E
, L
));
10416 M
= getConstant(APIntOps::umin(MaxWithGuards
, getUnsignedRangeMax(E
)));
10418 auto *S
= isa
<SCEVCouldNotCompute
>(E
) ? M
: E
;
10419 return ExitLimit(E
, M
, S
, false, Predicates
);
10422 ScalarEvolution::ExitLimit
10423 ScalarEvolution::howFarToNonZero(const SCEV
*V
, const Loop
*L
) {
10424 // Loops that look like: while (X == 0) are very strange indeed. We don't
10425 // handle them yet except for the trivial case. This could be expanded in the
10426 // future as needed.
10428 // If the value is a constant, check to see if it is known to be non-zero
10429 // already. If so, the backedge will execute zero times.
10430 if (const SCEVConstant
*C
= dyn_cast
<SCEVConstant
>(V
)) {
10431 if (!C
->getValue()->isZero())
10432 return getZero(C
->getType());
10433 return getCouldNotCompute(); // Otherwise it will loop infinitely.
10436 // We could implement others, but I really doubt anyone writes loops like
10437 // this, and if they did, they would already be constant folded.
10438 return getCouldNotCompute();
10441 std::pair
<const BasicBlock
*, const BasicBlock
*>
10442 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock
*BB
)
10444 // If the block has a unique predecessor, then there is no path from the
10445 // predecessor to the block that does not go through the direct edge
10446 // from the predecessor to the block.
10447 if (const BasicBlock
*Pred
= BB
->getSinglePredecessor())
10450 // A loop's header is defined to be a block that dominates the loop.
10451 // If the header has a unique predecessor outside the loop, it must be
10452 // a block that has exactly one successor that can reach the loop.
10453 if (const Loop
*L
= LI
.getLoopFor(BB
))
10454 return {L
->getLoopPredecessor(), L
->getHeader()};
10456 return {nullptr, nullptr};
10459 /// SCEV structural equivalence is usually sufficient for testing whether two
10460 /// expressions are equal, however for the purposes of looking for a condition
10461 /// guarding a loop, it can be useful to be a little more general, since a
10462 /// front-end may have replicated the controlling expression.
10463 static bool HasSameValue(const SCEV
*A
, const SCEV
*B
) {
10464 // Quick check to see if they are the same SCEV.
10465 if (A
== B
) return true;
10467 auto ComputesEqualValues
= [](const Instruction
*A
, const Instruction
*B
) {
10468 // Not all instructions that are "identical" compute the same value. For
10469 // instance, two distinct alloca instructions allocating the same type are
10470 // identical and do not read memory; but compute distinct values.
10471 return A
->isIdenticalTo(B
) && (isa
<BinaryOperator
>(A
) || isa
<GetElementPtrInst
>(A
));
10474 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10475 // two different instructions with the same value. Check for this case.
10476 if (const SCEVUnknown
*AU
= dyn_cast
<SCEVUnknown
>(A
))
10477 if (const SCEVUnknown
*BU
= dyn_cast
<SCEVUnknown
>(B
))
10478 if (const Instruction
*AI
= dyn_cast
<Instruction
>(AU
->getValue()))
10479 if (const Instruction
*BI
= dyn_cast
<Instruction
>(BU
->getValue()))
10480 if (ComputesEqualValues(AI
, BI
))
10483 // Otherwise assume they may have a different value.
10487 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate
&Pred
,
10488 const SCEV
*&LHS
, const SCEV
*&RHS
,
10490 bool Changed
= false;
10491 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10493 auto TrivialCase
= [&](bool TriviallyTrue
) {
10494 LHS
= RHS
= getConstant(ConstantInt::getFalse(getContext()));
10495 Pred
= TriviallyTrue
? ICmpInst::ICMP_EQ
: ICmpInst::ICMP_NE
;
10498 // If we hit the max recursion limit bail out.
10502 // Canonicalize a constant to the right side.
10503 if (const SCEVConstant
*LHSC
= dyn_cast
<SCEVConstant
>(LHS
)) {
10504 // Check for both operands constant.
10505 if (const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
)) {
10506 if (ConstantExpr::getICmp(Pred
,
10508 RHSC
->getValue())->isNullValue())
10509 return TrivialCase(false);
10510 return TrivialCase(true);
10512 // Otherwise swap the operands to put the constant on the right.
10513 std::swap(LHS
, RHS
);
10514 Pred
= ICmpInst::getSwappedPredicate(Pred
);
10518 // If we're comparing an addrec with a value which is loop-invariant in the
10519 // addrec's loop, put the addrec on the left. Also make a dominance check,
10520 // as both operands could be addrecs loop-invariant in each other's loop.
10521 if (const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(RHS
)) {
10522 const Loop
*L
= AR
->getLoop();
10523 if (isLoopInvariant(LHS
, L
) && properlyDominates(LHS
, L
->getHeader())) {
10524 std::swap(LHS
, RHS
);
10525 Pred
= ICmpInst::getSwappedPredicate(Pred
);
10530 // If there's a constant operand, canonicalize comparisons with boundary
10531 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10532 if (const SCEVConstant
*RC
= dyn_cast
<SCEVConstant
>(RHS
)) {
10533 const APInt
&RA
= RC
->getAPInt();
10535 bool SimplifiedByConstantRange
= false;
10537 if (!ICmpInst::isEquality(Pred
)) {
10538 ConstantRange ExactCR
= ConstantRange::makeExactICmpRegion(Pred
, RA
);
10539 if (ExactCR
.isFullSet())
10540 return TrivialCase(true);
10541 if (ExactCR
.isEmptySet())
10542 return TrivialCase(false);
10545 CmpInst::Predicate NewPred
;
10546 if (ExactCR
.getEquivalentICmp(NewPred
, NewRHS
) &&
10547 ICmpInst::isEquality(NewPred
)) {
10548 // We were able to convert an inequality to an equality.
10550 RHS
= getConstant(NewRHS
);
10551 Changed
= SimplifiedByConstantRange
= true;
10555 if (!SimplifiedByConstantRange
) {
10559 case ICmpInst::ICMP_EQ
:
10560 case ICmpInst::ICMP_NE
:
10561 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10563 if (const SCEVAddExpr
*AE
= dyn_cast
<SCEVAddExpr
>(LHS
))
10564 if (const SCEVMulExpr
*ME
=
10565 dyn_cast
<SCEVMulExpr
>(AE
->getOperand(0)))
10566 if (AE
->getNumOperands() == 2 && ME
->getNumOperands() == 2 &&
10567 ME
->getOperand(0)->isAllOnesValue()) {
10568 RHS
= AE
->getOperand(1);
10569 LHS
= ME
->getOperand(1);
10575 // The "Should have been caught earlier!" messages refer to the fact
10576 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10577 // should have fired on the corresponding cases, and canonicalized the
10578 // check to trivial case.
10580 case ICmpInst::ICMP_UGE
:
10581 assert(!RA
.isMinValue() && "Should have been caught earlier!");
10582 Pred
= ICmpInst::ICMP_UGT
;
10583 RHS
= getConstant(RA
- 1);
10586 case ICmpInst::ICMP_ULE
:
10587 assert(!RA
.isMaxValue() && "Should have been caught earlier!");
10588 Pred
= ICmpInst::ICMP_ULT
;
10589 RHS
= getConstant(RA
+ 1);
10592 case ICmpInst::ICMP_SGE
:
10593 assert(!RA
.isMinSignedValue() && "Should have been caught earlier!");
10594 Pred
= ICmpInst::ICMP_SGT
;
10595 RHS
= getConstant(RA
- 1);
10598 case ICmpInst::ICMP_SLE
:
10599 assert(!RA
.isMaxSignedValue() && "Should have been caught earlier!");
10600 Pred
= ICmpInst::ICMP_SLT
;
10601 RHS
= getConstant(RA
+ 1);
10608 // Check for obvious equality.
10609 if (HasSameValue(LHS
, RHS
)) {
10610 if (ICmpInst::isTrueWhenEqual(Pred
))
10611 return TrivialCase(true);
10612 if (ICmpInst::isFalseWhenEqual(Pred
))
10613 return TrivialCase(false);
10616 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10617 // adding or subtracting 1 from one of the operands.
10619 case ICmpInst::ICMP_SLE
:
10620 if (!getSignedRangeMax(RHS
).isMaxSignedValue()) {
10621 RHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), RHS
,
10623 Pred
= ICmpInst::ICMP_SLT
;
10625 } else if (!getSignedRangeMin(LHS
).isMinSignedValue()) {
10626 LHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), LHS
,
10628 Pred
= ICmpInst::ICMP_SLT
;
10632 case ICmpInst::ICMP_SGE
:
10633 if (!getSignedRangeMin(RHS
).isMinSignedValue()) {
10634 RHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), RHS
,
10636 Pred
= ICmpInst::ICMP_SGT
;
10638 } else if (!getSignedRangeMax(LHS
).isMaxSignedValue()) {
10639 LHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), LHS
,
10641 Pred
= ICmpInst::ICMP_SGT
;
10645 case ICmpInst::ICMP_ULE
:
10646 if (!getUnsignedRangeMax(RHS
).isMaxValue()) {
10647 RHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), RHS
,
10649 Pred
= ICmpInst::ICMP_ULT
;
10651 } else if (!getUnsignedRangeMin(LHS
).isMinValue()) {
10652 LHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), LHS
);
10653 Pred
= ICmpInst::ICMP_ULT
;
10657 case ICmpInst::ICMP_UGE
:
10658 if (!getUnsignedRangeMin(RHS
).isMinValue()) {
10659 RHS
= getAddExpr(getConstant(RHS
->getType(), (uint64_t)-1, true), RHS
);
10660 Pred
= ICmpInst::ICMP_UGT
;
10662 } else if (!getUnsignedRangeMax(LHS
).isMaxValue()) {
10663 LHS
= getAddExpr(getConstant(RHS
->getType(), 1, true), LHS
,
10665 Pred
= ICmpInst::ICMP_UGT
;
10673 // TODO: More simplifications are possible here.
10675 // Recursively simplify until we either hit a recursion limit or nothing
10678 return SimplifyICmpOperands(Pred
, LHS
, RHS
, Depth
+ 1);
10683 bool ScalarEvolution::isKnownNegative(const SCEV
*S
) {
10684 return getSignedRangeMax(S
).isNegative();
10687 bool ScalarEvolution::isKnownPositive(const SCEV
*S
) {
10688 return getSignedRangeMin(S
).isStrictlyPositive();
10691 bool ScalarEvolution::isKnownNonNegative(const SCEV
*S
) {
10692 return !getSignedRangeMin(S
).isNegative();
10695 bool ScalarEvolution::isKnownNonPositive(const SCEV
*S
) {
10696 return !getSignedRangeMax(S
).isStrictlyPositive();
10699 bool ScalarEvolution::isKnownNonZero(const SCEV
*S
) {
10700 return getUnsignedRangeMin(S
) != 0;
10703 std::pair
<const SCEV
*, const SCEV
*>
10704 ScalarEvolution::SplitIntoInitAndPostInc(const Loop
*L
, const SCEV
*S
) {
10705 // Compute SCEV on entry of loop L.
10706 const SCEV
*Start
= SCEVInitRewriter::rewrite(S
, L
, *this);
10707 if (Start
== getCouldNotCompute())
10708 return { Start
, Start
};
10709 // Compute post increment SCEV for loop L.
10710 const SCEV
*PostInc
= SCEVPostIncRewriter::rewrite(S
, L
, *this);
10711 assert(PostInc
!= getCouldNotCompute() && "Unexpected could not compute");
10712 return { Start
, PostInc
};
10715 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred
,
10716 const SCEV
*LHS
, const SCEV
*RHS
) {
10717 // First collect all loops.
10718 SmallPtrSet
<const Loop
*, 8> LoopsUsed
;
10719 getUsedLoops(LHS
, LoopsUsed
);
10720 getUsedLoops(RHS
, LoopsUsed
);
10722 if (LoopsUsed
.empty())
10725 // Domination relationship must be a linear order on collected loops.
10727 for (const auto *L1
: LoopsUsed
)
10728 for (const auto *L2
: LoopsUsed
)
10729 assert((DT
.dominates(L1
->getHeader(), L2
->getHeader()) ||
10730 DT
.dominates(L2
->getHeader(), L1
->getHeader())) &&
10731 "Domination relationship is not a linear order");
10735 *std::max_element(LoopsUsed
.begin(), LoopsUsed
.end(),
10736 [&](const Loop
*L1
, const Loop
*L2
) {
10737 return DT
.properlyDominates(L1
->getHeader(), L2
->getHeader());
10740 // Get init and post increment value for LHS.
10741 auto SplitLHS
= SplitIntoInitAndPostInc(MDL
, LHS
);
10742 // if LHS contains unknown non-invariant SCEV then bail out.
10743 if (SplitLHS
.first
== getCouldNotCompute())
10745 assert (SplitLHS
.second
!= getCouldNotCompute() && "Unexpected CNC");
10746 // Get init and post increment value for RHS.
10747 auto SplitRHS
= SplitIntoInitAndPostInc(MDL
, RHS
);
10748 // if RHS contains unknown non-invariant SCEV then bail out.
10749 if (SplitRHS
.first
== getCouldNotCompute())
10751 assert (SplitRHS
.second
!= getCouldNotCompute() && "Unexpected CNC");
10752 // It is possible that init SCEV contains an invariant load but it does
10753 // not dominate MDL and is not available at MDL loop entry, so we should
10755 if (!isAvailableAtLoopEntry(SplitLHS
.first
, MDL
) ||
10756 !isAvailableAtLoopEntry(SplitRHS
.first
, MDL
))
10759 // It seems backedge guard check is faster than entry one so in some cases
10760 // it can speed up whole estimation by short circuit
10761 return isLoopBackedgeGuardedByCond(MDL
, Pred
, SplitLHS
.second
,
10762 SplitRHS
.second
) &&
10763 isLoopEntryGuardedByCond(MDL
, Pred
, SplitLHS
.first
, SplitRHS
.first
);
10766 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred
,
10767 const SCEV
*LHS
, const SCEV
*RHS
) {
10768 // Canonicalize the inputs first.
10769 (void)SimplifyICmpOperands(Pred
, LHS
, RHS
);
10771 if (isKnownViaInduction(Pred
, LHS
, RHS
))
10774 if (isKnownPredicateViaSplitting(Pred
, LHS
, RHS
))
10777 // Otherwise see what can be done with some simple reasoning.
10778 return isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
);
10781 std::optional
<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred
,
10784 if (isKnownPredicate(Pred
, LHS
, RHS
))
10786 if (isKnownPredicate(ICmpInst::getInversePredicate(Pred
), LHS
, RHS
))
10788 return std::nullopt
;
10791 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred
,
10792 const SCEV
*LHS
, const SCEV
*RHS
,
10793 const Instruction
*CtxI
) {
10794 // TODO: Analyze guards and assumes from Context's block.
10795 return isKnownPredicate(Pred
, LHS
, RHS
) ||
10796 isBasicBlockEntryGuardedByCond(CtxI
->getParent(), Pred
, LHS
, RHS
);
10799 std::optional
<bool>
10800 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred
, const SCEV
*LHS
,
10801 const SCEV
*RHS
, const Instruction
*CtxI
) {
10802 std::optional
<bool> KnownWithoutContext
= evaluatePredicate(Pred
, LHS
, RHS
);
10803 if (KnownWithoutContext
)
10804 return KnownWithoutContext
;
10806 if (isBasicBlockEntryGuardedByCond(CtxI
->getParent(), Pred
, LHS
, RHS
))
10808 if (isBasicBlockEntryGuardedByCond(CtxI
->getParent(),
10809 ICmpInst::getInversePredicate(Pred
),
10812 return std::nullopt
;
10815 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred
,
10816 const SCEVAddRecExpr
*LHS
,
10818 const Loop
*L
= LHS
->getLoop();
10819 return isLoopEntryGuardedByCond(L
, Pred
, LHS
->getStart(), RHS
) &&
10820 isLoopBackedgeGuardedByCond(L
, Pred
, LHS
->getPostIncExpr(*this), RHS
);
10823 std::optional
<ScalarEvolution::MonotonicPredicateType
>
10824 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr
*LHS
,
10825 ICmpInst::Predicate Pred
) {
10826 auto Result
= getMonotonicPredicateTypeImpl(LHS
, Pred
);
10829 // Verify an invariant: inverting the predicate should turn a monotonically
10830 // increasing change to a monotonically decreasing one, and vice versa.
10832 auto ResultSwapped
=
10833 getMonotonicPredicateTypeImpl(LHS
, ICmpInst::getSwappedPredicate(Pred
));
10835 assert(*ResultSwapped
!= *Result
&&
10836 "monotonicity should flip as we flip the predicate");
10843 std::optional
<ScalarEvolution::MonotonicPredicateType
>
10844 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr
*LHS
,
10845 ICmpInst::Predicate Pred
) {
10846 // A zero step value for LHS means the induction variable is essentially a
10847 // loop invariant value. We don't really depend on the predicate actually
10848 // flipping from false to true (for increasing predicates, and the other way
10849 // around for decreasing predicates), all we care about is that *if* the
10850 // predicate changes then it only changes from false to true.
10852 // A zero step value in itself is not very useful, but there may be places
10853 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10854 // as general as possible.
10856 // Only handle LE/LT/GE/GT predicates.
10857 if (!ICmpInst::isRelational(Pred
))
10858 return std::nullopt
;
10860 bool IsGreater
= ICmpInst::isGE(Pred
) || ICmpInst::isGT(Pred
);
10861 assert((IsGreater
|| ICmpInst::isLE(Pred
) || ICmpInst::isLT(Pred
)) &&
10862 "Should be greater or less!");
10864 // Check that AR does not wrap.
10865 if (ICmpInst::isUnsigned(Pred
)) {
10866 if (!LHS
->hasNoUnsignedWrap())
10867 return std::nullopt
;
10868 return IsGreater
? MonotonicallyIncreasing
: MonotonicallyDecreasing
;
10870 assert(ICmpInst::isSigned(Pred
) &&
10871 "Relational predicate is either signed or unsigned!");
10872 if (!LHS
->hasNoSignedWrap())
10873 return std::nullopt
;
10875 const SCEV
*Step
= LHS
->getStepRecurrence(*this);
10877 if (isKnownNonNegative(Step
))
10878 return IsGreater
? MonotonicallyIncreasing
: MonotonicallyDecreasing
;
10880 if (isKnownNonPositive(Step
))
10881 return !IsGreater
? MonotonicallyIncreasing
: MonotonicallyDecreasing
;
10883 return std::nullopt
;
10886 std::optional
<ScalarEvolution::LoopInvariantPredicate
>
10887 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred
,
10888 const SCEV
*LHS
, const SCEV
*RHS
,
10890 const Instruction
*CtxI
) {
10891 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10892 if (!isLoopInvariant(RHS
, L
)) {
10893 if (!isLoopInvariant(LHS
, L
))
10894 return std::nullopt
;
10896 std::swap(LHS
, RHS
);
10897 Pred
= ICmpInst::getSwappedPredicate(Pred
);
10900 const SCEVAddRecExpr
*ArLHS
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
10901 if (!ArLHS
|| ArLHS
->getLoop() != L
)
10902 return std::nullopt
;
10904 auto MonotonicType
= getMonotonicPredicateType(ArLHS
, Pred
);
10905 if (!MonotonicType
)
10906 return std::nullopt
;
10907 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10908 // true as the loop iterates, and the backedge is control dependent on
10909 // "ArLHS `Pred` RHS" == true then we can reason as follows:
10911 // * if the predicate was false in the first iteration then the predicate
10912 // is never evaluated again, since the loop exits without taking the
10914 // * if the predicate was true in the first iteration then it will
10915 // continue to be true for all future iterations since it is
10916 // monotonically increasing.
10918 // For both the above possibilities, we can replace the loop varying
10919 // predicate with its value on the first iteration of the loop (which is
10920 // loop invariant).
10922 // A similar reasoning applies for a monotonically decreasing predicate, by
10923 // replacing true with false and false with true in the above two bullets.
10924 bool Increasing
= *MonotonicType
== ScalarEvolution::MonotonicallyIncreasing
;
10925 auto P
= Increasing
? Pred
: ICmpInst::getInversePredicate(Pred
);
10927 if (isLoopBackedgeGuardedByCond(L
, P
, LHS
, RHS
))
10928 return ScalarEvolution::LoopInvariantPredicate(Pred
, ArLHS
->getStart(),
10932 return std::nullopt
;
10933 // Try to prove via context.
10934 // TODO: Support other cases.
10938 case ICmpInst::ICMP_ULE
:
10939 case ICmpInst::ICMP_ULT
: {
10940 assert(ArLHS
->hasNoUnsignedWrap() && "Is a requirement of monotonicity!");
10941 // Given preconditions
10942 // (1) ArLHS does not cross the border of positive and negative parts of
10943 // range because of:
10944 // - Positive step; (TODO: lift this limitation)
10945 // - nuw - does not cross zero boundary;
10946 // - nsw - does not cross SINT_MAX boundary;
10947 // (2) ArLHS <s RHS
10949 // we can replace the loop variant ArLHS <u RHS condition with loop
10950 // invariant Start(ArLHS) <u RHS.
10952 // Because of (1) there are two options:
10953 // - ArLHS is always negative. It means that ArLHS <u RHS is always false;
10954 // - ArLHS is always non-negative. Because of (3) RHS is also non-negative.
10955 // It means that ArLHS <s RHS <=> ArLHS <u RHS.
10956 // Because of (2) ArLHS <u RHS is trivially true.
10957 // All together it means that ArLHS <u RHS <=> Start(ArLHS) >=s 0.
10958 // We can strengthen this to Start(ArLHS) <u RHS.
10959 auto SignFlippedPred
= ICmpInst::getFlippedSignednessPredicate(Pred
);
10960 if (ArLHS
->hasNoSignedWrap() && ArLHS
->isAffine() &&
10961 isKnownPositive(ArLHS
->getStepRecurrence(*this)) &&
10962 isKnownNonNegative(RHS
) &&
10963 isKnownPredicateAt(SignFlippedPred
, ArLHS
, RHS
, CtxI
))
10964 return ScalarEvolution::LoopInvariantPredicate(Pred
, ArLHS
->getStart(),
10969 return std::nullopt
;
10972 std::optional
<ScalarEvolution::LoopInvariantPredicate
>
10973 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10974 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
, const Loop
*L
,
10975 const Instruction
*CtxI
, const SCEV
*MaxIter
) {
10976 if (auto LIP
= getLoopInvariantExitCondDuringFirstIterationsImpl(
10977 Pred
, LHS
, RHS
, L
, CtxI
, MaxIter
))
10979 if (auto *UMin
= dyn_cast
<SCEVUMinExpr
>(MaxIter
))
10980 // Number of iterations expressed as UMIN isn't always great for expressing
10981 // the value on the last iteration. If the straightforward approach didn't
10982 // work, try the following trick: if the a predicate is invariant for X, it
10983 // is also invariant for umin(X, ...). So try to find something that works
10984 // among subexpressions of MaxIter expressed as umin.
10985 for (auto *Op
: UMin
->operands())
10986 if (auto LIP
= getLoopInvariantExitCondDuringFirstIterationsImpl(
10987 Pred
, LHS
, RHS
, L
, CtxI
, Op
))
10989 return std::nullopt
;
10992 std::optional
<ScalarEvolution::LoopInvariantPredicate
>
10993 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterationsImpl(
10994 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
, const Loop
*L
,
10995 const Instruction
*CtxI
, const SCEV
*MaxIter
) {
10996 // Try to prove the following set of facts:
10997 // - The predicate is monotonic in the iteration space.
10998 // - If the check does not fail on the 1st iteration:
10999 // - No overflow will happen during first MaxIter iterations;
11000 // - It will not fail on the MaxIter'th iteration.
11001 // If the check does fail on the 1st iteration, we leave the loop and no
11002 // other checks matter.
11004 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
11005 if (!isLoopInvariant(RHS
, L
)) {
11006 if (!isLoopInvariant(LHS
, L
))
11007 return std::nullopt
;
11009 std::swap(LHS
, RHS
);
11010 Pred
= ICmpInst::getSwappedPredicate(Pred
);
11013 auto *AR
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
11014 if (!AR
|| AR
->getLoop() != L
)
11015 return std::nullopt
;
11017 // The predicate must be relational (i.e. <, <=, >=, >).
11018 if (!ICmpInst::isRelational(Pred
))
11019 return std::nullopt
;
11021 // TODO: Support steps other than +/- 1.
11022 const SCEV
*Step
= AR
->getStepRecurrence(*this);
11023 auto *One
= getOne(Step
->getType());
11024 auto *MinusOne
= getNegativeSCEV(One
);
11025 if (Step
!= One
&& Step
!= MinusOne
)
11026 return std::nullopt
;
11028 // Type mismatch here means that MaxIter is potentially larger than max
11029 // unsigned value in start type, which mean we cannot prove no wrap for the
11031 if (AR
->getType() != MaxIter
->getType())
11032 return std::nullopt
;
11034 // Value of IV on suggested last iteration.
11035 const SCEV
*Last
= AR
->evaluateAtIteration(MaxIter
, *this);
11036 // Does it still meet the requirement?
11037 if (!isLoopBackedgeGuardedByCond(L
, Pred
, Last
, RHS
))
11038 return std::nullopt
;
11039 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
11040 // not exceed max unsigned value of this type), this effectively proves
11041 // that there is no wrap during the iteration. To prove that there is no
11042 // signed/unsigned wrap, we need to check that
11043 // Start <= Last for step = 1 or Start >= Last for step = -1.
11044 ICmpInst::Predicate NoOverflowPred
=
11045 CmpInst::isSigned(Pred
) ? ICmpInst::ICMP_SLE
: ICmpInst::ICMP_ULE
;
11046 if (Step
== MinusOne
)
11047 NoOverflowPred
= CmpInst::getSwappedPredicate(NoOverflowPred
);
11048 const SCEV
*Start
= AR
->getStart();
11049 if (!isKnownPredicateAt(NoOverflowPred
, Start
, Last
, CtxI
))
11050 return std::nullopt
;
11052 // Everything is fine.
11053 return ScalarEvolution::LoopInvariantPredicate(Pred
, Start
, RHS
);
11056 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
11057 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
) {
11058 if (HasSameValue(LHS
, RHS
))
11059 return ICmpInst::isTrueWhenEqual(Pred
);
11061 // This code is split out from isKnownPredicate because it is called from
11062 // within isLoopEntryGuardedByCond.
11064 auto CheckRanges
= [&](const ConstantRange
&RangeLHS
,
11065 const ConstantRange
&RangeRHS
) {
11066 return RangeLHS
.icmp(Pred
, RangeRHS
);
11069 // The check at the top of the function catches the case where the values are
11070 // known to be equal.
11071 if (Pred
== CmpInst::ICMP_EQ
)
11074 if (Pred
== CmpInst::ICMP_NE
) {
11075 auto SL
= getSignedRange(LHS
);
11076 auto SR
= getSignedRange(RHS
);
11077 if (CheckRanges(SL
, SR
))
11079 auto UL
= getUnsignedRange(LHS
);
11080 auto UR
= getUnsignedRange(RHS
);
11081 if (CheckRanges(UL
, UR
))
11083 auto *Diff
= getMinusSCEV(LHS
, RHS
);
11084 return !isa
<SCEVCouldNotCompute
>(Diff
) && isKnownNonZero(Diff
);
11087 if (CmpInst::isSigned(Pred
)) {
11088 auto SL
= getSignedRange(LHS
);
11089 auto SR
= getSignedRange(RHS
);
11090 return CheckRanges(SL
, SR
);
11093 auto UL
= getUnsignedRange(LHS
);
11094 auto UR
= getUnsignedRange(RHS
);
11095 return CheckRanges(UL
, UR
);
11098 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred
,
11101 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
11102 // C1 and C2 are constant integers. If either X or Y are not add expressions,
11103 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
11104 // OutC1 and OutC2.
11105 auto MatchBinaryAddToConst
= [this](const SCEV
*X
, const SCEV
*Y
,
11106 APInt
&OutC1
, APInt
&OutC2
,
11107 SCEV::NoWrapFlags ExpectedFlags
) {
11108 const SCEV
*XNonConstOp
, *XConstOp
;
11109 const SCEV
*YNonConstOp
, *YConstOp
;
11110 SCEV::NoWrapFlags XFlagsPresent
;
11111 SCEV::NoWrapFlags YFlagsPresent
;
11113 if (!splitBinaryAdd(X
, XConstOp
, XNonConstOp
, XFlagsPresent
)) {
11114 XConstOp
= getZero(X
->getType());
11116 XFlagsPresent
= ExpectedFlags
;
11118 if (!isa
<SCEVConstant
>(XConstOp
) ||
11119 (XFlagsPresent
& ExpectedFlags
) != ExpectedFlags
)
11122 if (!splitBinaryAdd(Y
, YConstOp
, YNonConstOp
, YFlagsPresent
)) {
11123 YConstOp
= getZero(Y
->getType());
11125 YFlagsPresent
= ExpectedFlags
;
11128 if (!isa
<SCEVConstant
>(YConstOp
) ||
11129 (YFlagsPresent
& ExpectedFlags
) != ExpectedFlags
)
11132 if (YNonConstOp
!= XNonConstOp
)
11135 OutC1
= cast
<SCEVConstant
>(XConstOp
)->getAPInt();
11136 OutC2
= cast
<SCEVConstant
>(YConstOp
)->getAPInt();
11148 case ICmpInst::ICMP_SGE
:
11149 std::swap(LHS
, RHS
);
11151 case ICmpInst::ICMP_SLE
:
11152 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
11153 if (MatchBinaryAddToConst(LHS
, RHS
, C1
, C2
, SCEV::FlagNSW
) && C1
.sle(C2
))
11158 case ICmpInst::ICMP_SGT
:
11159 std::swap(LHS
, RHS
);
11161 case ICmpInst::ICMP_SLT
:
11162 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
11163 if (MatchBinaryAddToConst(LHS
, RHS
, C1
, C2
, SCEV::FlagNSW
) && C1
.slt(C2
))
11168 case ICmpInst::ICMP_UGE
:
11169 std::swap(LHS
, RHS
);
11171 case ICmpInst::ICMP_ULE
:
11172 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
11173 if (MatchBinaryAddToConst(RHS
, LHS
, C2
, C1
, SCEV::FlagNUW
) && C1
.ule(C2
))
11178 case ICmpInst::ICMP_UGT
:
11179 std::swap(LHS
, RHS
);
11181 case ICmpInst::ICMP_ULT
:
11182 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
11183 if (MatchBinaryAddToConst(RHS
, LHS
, C2
, C1
, SCEV::FlagNUW
) && C1
.ult(C2
))
11191 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred
,
11194 if (Pred
!= ICmpInst::ICMP_ULT
|| ProvingSplitPredicate
)
11197 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
11198 // the stack can result in exponential time complexity.
11199 SaveAndRestore
Restore(ProvingSplitPredicate
, true);
11201 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
11203 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
11204 // isKnownPredicate. isKnownPredicate is more powerful, but also more
11205 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
11206 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
11207 // use isKnownPredicate later if needed.
11208 return isKnownNonNegative(RHS
) &&
11209 isKnownPredicate(CmpInst::ICMP_SGE
, LHS
, getZero(LHS
->getType())) &&
11210 isKnownPredicate(CmpInst::ICMP_SLT
, LHS
, RHS
);
11213 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock
*BB
,
11214 ICmpInst::Predicate Pred
,
11215 const SCEV
*LHS
, const SCEV
*RHS
) {
11216 // No need to even try if we know the module has no guards.
11220 return any_of(*BB
, [&](const Instruction
&I
) {
11221 using namespace llvm::PatternMatch
;
11224 return match(&I
, m_Intrinsic
<Intrinsic::experimental_guard
>(
11225 m_Value(Condition
))) &&
11226 isImpliedCond(Pred
, LHS
, RHS
, Condition
, false);
11230 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
11231 /// protected by a conditional between LHS and RHS. This is used to
11232 /// to eliminate casts.
11234 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop
*L
,
11235 ICmpInst::Predicate Pred
,
11236 const SCEV
*LHS
, const SCEV
*RHS
) {
11237 // Interpret a null as meaning no loop, where there is obviously no guard
11238 // (interprocedural conditions notwithstanding). Do not bother about
11239 // unreachable loops.
11240 if (!L
|| !DT
.isReachableFromEntry(L
->getHeader()))
11244 assert(!verifyFunction(*L
->getHeader()->getParent(), &dbgs()) &&
11245 "This cannot be done on broken IR!");
11248 if (isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
))
11251 BasicBlock
*Latch
= L
->getLoopLatch();
11255 BranchInst
*LoopContinuePredicate
=
11256 dyn_cast
<BranchInst
>(Latch
->getTerminator());
11257 if (LoopContinuePredicate
&& LoopContinuePredicate
->isConditional() &&
11258 isImpliedCond(Pred
, LHS
, RHS
,
11259 LoopContinuePredicate
->getCondition(),
11260 LoopContinuePredicate
->getSuccessor(0) != L
->getHeader()))
11263 // We don't want more than one activation of the following loops on the stack
11264 // -- that can lead to O(n!) time complexity.
11265 if (WalkingBEDominatingConds
)
11268 SaveAndRestore
ClearOnExit(WalkingBEDominatingConds
, true);
11270 // See if we can exploit a trip count to prove the predicate.
11271 const auto &BETakenInfo
= getBackedgeTakenInfo(L
);
11272 const SCEV
*LatchBECount
= BETakenInfo
.getExact(Latch
, this);
11273 if (LatchBECount
!= getCouldNotCompute()) {
11274 // We know that Latch branches back to the loop header exactly
11275 // LatchBECount times. This means the backdege condition at Latch is
11276 // equivalent to "{0,+,1} u< LatchBECount".
11277 Type
*Ty
= LatchBECount
->getType();
11278 auto NoWrapFlags
= SCEV::NoWrapFlags(SCEV::FlagNUW
| SCEV::FlagNW
);
11279 const SCEV
*LoopCounter
=
11280 getAddRecExpr(getZero(Ty
), getOne(Ty
), L
, NoWrapFlags
);
11281 if (isImpliedCond(Pred
, LHS
, RHS
, ICmpInst::ICMP_ULT
, LoopCounter
,
11286 // Check conditions due to any @llvm.assume intrinsics.
11287 for (auto &AssumeVH
: AC
.assumptions()) {
11290 auto *CI
= cast
<CallInst
>(AssumeVH
);
11291 if (!DT
.dominates(CI
, Latch
->getTerminator()))
11294 if (isImpliedCond(Pred
, LHS
, RHS
, CI
->getArgOperand(0), false))
11298 if (isImpliedViaGuard(Latch
, Pred
, LHS
, RHS
))
11301 for (DomTreeNode
*DTN
= DT
[Latch
], *HeaderDTN
= DT
[L
->getHeader()];
11302 DTN
!= HeaderDTN
; DTN
= DTN
->getIDom()) {
11303 assert(DTN
&& "should reach the loop header before reaching the root!");
11305 BasicBlock
*BB
= DTN
->getBlock();
11306 if (isImpliedViaGuard(BB
, Pred
, LHS
, RHS
))
11309 BasicBlock
*PBB
= BB
->getSinglePredecessor();
11313 BranchInst
*ContinuePredicate
= dyn_cast
<BranchInst
>(PBB
->getTerminator());
11314 if (!ContinuePredicate
|| !ContinuePredicate
->isConditional())
11317 Value
*Condition
= ContinuePredicate
->getCondition();
11319 // If we have an edge `E` within the loop body that dominates the only
11320 // latch, the condition guarding `E` also guards the backedge. This
11321 // reasoning works only for loops with a single latch.
11323 BasicBlockEdge
DominatingEdge(PBB
, BB
);
11324 if (DominatingEdge
.isSingleEdge()) {
11325 // We're constructively (and conservatively) enumerating edges within the
11326 // loop body that dominate the latch. The dominator tree better agree
11327 // with us on this:
11328 assert(DT
.dominates(DominatingEdge
, Latch
) && "should be!");
11330 if (isImpliedCond(Pred
, LHS
, RHS
, Condition
,
11331 BB
!= ContinuePredicate
->getSuccessor(0)))
11339 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock
*BB
,
11340 ICmpInst::Predicate Pred
,
11343 // Do not bother proving facts for unreachable code.
11344 if (!DT
.isReachableFromEntry(BB
))
11347 assert(!verifyFunction(*BB
->getParent(), &dbgs()) &&
11348 "This cannot be done on broken IR!");
11350 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
11351 // the facts (a >= b && a != b) separately. A typical situation is when the
11352 // non-strict comparison is known from ranges and non-equality is known from
11353 // dominating predicates. If we are proving strict comparison, we always try
11354 // to prove non-equality and non-strict comparison separately.
11355 auto NonStrictPredicate
= ICmpInst::getNonStrictPredicate(Pred
);
11356 const bool ProvingStrictComparison
= (Pred
!= NonStrictPredicate
);
11357 bool ProvedNonStrictComparison
= false;
11358 bool ProvedNonEquality
= false;
11360 auto SplitAndProve
=
11361 [&](std::function
<bool(ICmpInst::Predicate
)> Fn
) -> bool {
11362 if (!ProvedNonStrictComparison
)
11363 ProvedNonStrictComparison
= Fn(NonStrictPredicate
);
11364 if (!ProvedNonEquality
)
11365 ProvedNonEquality
= Fn(ICmpInst::ICMP_NE
);
11366 if (ProvedNonStrictComparison
&& ProvedNonEquality
)
11371 if (ProvingStrictComparison
) {
11372 auto ProofFn
= [&](ICmpInst::Predicate P
) {
11373 return isKnownViaNonRecursiveReasoning(P
, LHS
, RHS
);
11375 if (SplitAndProve(ProofFn
))
11379 // Try to prove (Pred, LHS, RHS) using isImpliedCond.
11380 auto ProveViaCond
= [&](const Value
*Condition
, bool Inverse
) {
11381 const Instruction
*CtxI
= &BB
->front();
11382 if (isImpliedCond(Pred
, LHS
, RHS
, Condition
, Inverse
, CtxI
))
11384 if (ProvingStrictComparison
) {
11385 auto ProofFn
= [&](ICmpInst::Predicate P
) {
11386 return isImpliedCond(P
, LHS
, RHS
, Condition
, Inverse
, CtxI
);
11388 if (SplitAndProve(ProofFn
))
11394 // Starting at the block's predecessor, climb up the predecessor chain, as long
11395 // as there are predecessors that can be found that have unique successors
11396 // leading to the original block.
11397 const Loop
*ContainingLoop
= LI
.getLoopFor(BB
);
11398 const BasicBlock
*PredBB
;
11399 if (ContainingLoop
&& ContainingLoop
->getHeader() == BB
)
11400 PredBB
= ContainingLoop
->getLoopPredecessor();
11402 PredBB
= BB
->getSinglePredecessor();
11403 for (std::pair
<const BasicBlock
*, const BasicBlock
*> Pair(PredBB
, BB
);
11404 Pair
.first
; Pair
= getPredecessorWithUniqueSuccessorForBB(Pair
.first
)) {
11405 const BranchInst
*BlockEntryPredicate
=
11406 dyn_cast
<BranchInst
>(Pair
.first
->getTerminator());
11407 if (!BlockEntryPredicate
|| BlockEntryPredicate
->isUnconditional())
11410 if (ProveViaCond(BlockEntryPredicate
->getCondition(),
11411 BlockEntryPredicate
->getSuccessor(0) != Pair
.second
))
11415 // Check conditions due to any @llvm.assume intrinsics.
11416 for (auto &AssumeVH
: AC
.assumptions()) {
11419 auto *CI
= cast
<CallInst
>(AssumeVH
);
11420 if (!DT
.dominates(CI
, BB
))
11423 if (ProveViaCond(CI
->getArgOperand(0), false))
11427 // Check conditions due to any @llvm.experimental.guard intrinsics.
11428 auto *GuardDecl
= F
.getParent()->getFunction(
11429 Intrinsic::getName(Intrinsic::experimental_guard
));
11431 for (const auto *GU
: GuardDecl
->users())
11432 if (const auto *Guard
= dyn_cast
<IntrinsicInst
>(GU
))
11433 if (Guard
->getFunction() == BB
->getParent() && DT
.dominates(Guard
, BB
))
11434 if (ProveViaCond(Guard
->getArgOperand(0), false))
11439 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop
*L
,
11440 ICmpInst::Predicate Pred
,
11443 // Interpret a null as meaning no loop, where there is obviously no guard
11444 // (interprocedural conditions notwithstanding).
11448 // Both LHS and RHS must be available at loop entry.
11449 assert(isAvailableAtLoopEntry(LHS
, L
) &&
11450 "LHS is not available at Loop Entry");
11451 assert(isAvailableAtLoopEntry(RHS
, L
) &&
11452 "RHS is not available at Loop Entry");
11454 if (isKnownViaNonRecursiveReasoning(Pred
, LHS
, RHS
))
11457 return isBasicBlockEntryGuardedByCond(L
->getHeader(), Pred
, LHS
, RHS
);
11460 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred
, const SCEV
*LHS
,
11462 const Value
*FoundCondValue
, bool Inverse
,
11463 const Instruction
*CtxI
) {
11464 // False conditions implies anything. Do not bother analyzing it further.
11465 if (FoundCondValue
==
11466 ConstantInt::getBool(FoundCondValue
->getContext(), Inverse
))
11469 if (!PendingLoopPredicates
.insert(FoundCondValue
).second
)
11473 make_scope_exit([&]() { PendingLoopPredicates
.erase(FoundCondValue
); });
11475 // Recursively handle And and Or conditions.
11476 const Value
*Op0
, *Op1
;
11477 if (match(FoundCondValue
, m_LogicalAnd(m_Value(Op0
), m_Value(Op1
)))) {
11479 return isImpliedCond(Pred
, LHS
, RHS
, Op0
, Inverse
, CtxI
) ||
11480 isImpliedCond(Pred
, LHS
, RHS
, Op1
, Inverse
, CtxI
);
11481 } else if (match(FoundCondValue
, m_LogicalOr(m_Value(Op0
), m_Value(Op1
)))) {
11483 return isImpliedCond(Pred
, LHS
, RHS
, Op0
, Inverse
, CtxI
) ||
11484 isImpliedCond(Pred
, LHS
, RHS
, Op1
, Inverse
, CtxI
);
11487 const ICmpInst
*ICI
= dyn_cast
<ICmpInst
>(FoundCondValue
);
11488 if (!ICI
) return false;
11490 // Now that we found a conditional branch that dominates the loop or controls
11491 // the loop latch. Check to see if it is the comparison we are looking for.
11492 ICmpInst::Predicate FoundPred
;
11494 FoundPred
= ICI
->getInversePredicate();
11496 FoundPred
= ICI
->getPredicate();
11498 const SCEV
*FoundLHS
= getSCEV(ICI
->getOperand(0));
11499 const SCEV
*FoundRHS
= getSCEV(ICI
->getOperand(1));
11501 return isImpliedCond(Pred
, LHS
, RHS
, FoundPred
, FoundLHS
, FoundRHS
, CtxI
);
11504 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred
, const SCEV
*LHS
,
11506 ICmpInst::Predicate FoundPred
,
11507 const SCEV
*FoundLHS
, const SCEV
*FoundRHS
,
11508 const Instruction
*CtxI
) {
11509 // Balance the types.
11510 if (getTypeSizeInBits(LHS
->getType()) <
11511 getTypeSizeInBits(FoundLHS
->getType())) {
11512 // For unsigned and equality predicates, try to prove that both found
11513 // operands fit into narrow unsigned range. If so, try to prove facts in
11515 if (!CmpInst::isSigned(FoundPred
) && !FoundLHS
->getType()->isPointerTy() &&
11516 !FoundRHS
->getType()->isPointerTy()) {
11517 auto *NarrowType
= LHS
->getType();
11518 auto *WideType
= FoundLHS
->getType();
11519 auto BitWidth
= getTypeSizeInBits(NarrowType
);
11520 const SCEV
*MaxValue
= getZeroExtendExpr(
11521 getConstant(APInt::getMaxValue(BitWidth
)), WideType
);
11522 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, FoundLHS
,
11524 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, FoundRHS
,
11526 const SCEV
*TruncFoundLHS
= getTruncateExpr(FoundLHS
, NarrowType
);
11527 const SCEV
*TruncFoundRHS
= getTruncateExpr(FoundRHS
, NarrowType
);
11528 if (isImpliedCondBalancedTypes(Pred
, LHS
, RHS
, FoundPred
, TruncFoundLHS
,
11529 TruncFoundRHS
, CtxI
))
11534 if (LHS
->getType()->isPointerTy() || RHS
->getType()->isPointerTy())
11536 if (CmpInst::isSigned(Pred
)) {
11537 LHS
= getSignExtendExpr(LHS
, FoundLHS
->getType());
11538 RHS
= getSignExtendExpr(RHS
, FoundLHS
->getType());
11540 LHS
= getZeroExtendExpr(LHS
, FoundLHS
->getType());
11541 RHS
= getZeroExtendExpr(RHS
, FoundLHS
->getType());
11543 } else if (getTypeSizeInBits(LHS
->getType()) >
11544 getTypeSizeInBits(FoundLHS
->getType())) {
11545 if (FoundLHS
->getType()->isPointerTy() || FoundRHS
->getType()->isPointerTy())
11547 if (CmpInst::isSigned(FoundPred
)) {
11548 FoundLHS
= getSignExtendExpr(FoundLHS
, LHS
->getType());
11549 FoundRHS
= getSignExtendExpr(FoundRHS
, LHS
->getType());
11551 FoundLHS
= getZeroExtendExpr(FoundLHS
, LHS
->getType());
11552 FoundRHS
= getZeroExtendExpr(FoundRHS
, LHS
->getType());
11555 return isImpliedCondBalancedTypes(Pred
, LHS
, RHS
, FoundPred
, FoundLHS
,
11559 bool ScalarEvolution::isImpliedCondBalancedTypes(
11560 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
,
11561 ICmpInst::Predicate FoundPred
, const SCEV
*FoundLHS
, const SCEV
*FoundRHS
,
11562 const Instruction
*CtxI
) {
11563 assert(getTypeSizeInBits(LHS
->getType()) ==
11564 getTypeSizeInBits(FoundLHS
->getType()) &&
11565 "Types should be balanced!");
11566 // Canonicalize the query to match the way instcombine will have
11567 // canonicalized the comparison.
11568 if (SimplifyICmpOperands(Pred
, LHS
, RHS
))
11570 return CmpInst::isTrueWhenEqual(Pred
);
11571 if (SimplifyICmpOperands(FoundPred
, FoundLHS
, FoundRHS
))
11572 if (FoundLHS
== FoundRHS
)
11573 return CmpInst::isFalseWhenEqual(FoundPred
);
11575 // Check to see if we can make the LHS or RHS match.
11576 if (LHS
== FoundRHS
|| RHS
== FoundLHS
) {
11577 if (isa
<SCEVConstant
>(RHS
)) {
11578 std::swap(FoundLHS
, FoundRHS
);
11579 FoundPred
= ICmpInst::getSwappedPredicate(FoundPred
);
11581 std::swap(LHS
, RHS
);
11582 Pred
= ICmpInst::getSwappedPredicate(Pred
);
11586 // Check whether the found predicate is the same as the desired predicate.
11587 if (FoundPred
== Pred
)
11588 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
, CtxI
);
11590 // Check whether swapping the found predicate makes it the same as the
11591 // desired predicate.
11592 if (ICmpInst::getSwappedPredicate(FoundPred
) == Pred
) {
11593 // We can write the implication
11594 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS
11595 // using one of the following ways:
11596 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS
11597 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS
11598 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS
11599 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS
11600 // Forms 1. and 2. require swapping the operands of one condition. Don't
11601 // do this if it would break canonical constant/addrec ordering.
11602 if (!isa
<SCEVConstant
>(RHS
) && !isa
<SCEVAddRecExpr
>(LHS
))
11603 return isImpliedCondOperands(FoundPred
, RHS
, LHS
, FoundLHS
, FoundRHS
,
11605 if (!isa
<SCEVConstant
>(FoundRHS
) && !isa
<SCEVAddRecExpr
>(FoundLHS
))
11606 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundRHS
, FoundLHS
, CtxI
);
11608 // There's no clear preference between forms 3. and 4., try both. Avoid
11609 // forming getNotSCEV of pointer values as the resulting subtract is
11611 if (!LHS
->getType()->isPointerTy() && !RHS
->getType()->isPointerTy() &&
11612 isImpliedCondOperands(FoundPred
, getNotSCEV(LHS
), getNotSCEV(RHS
),
11613 FoundLHS
, FoundRHS
, CtxI
))
11616 if (!FoundLHS
->getType()->isPointerTy() &&
11617 !FoundRHS
->getType()->isPointerTy() &&
11618 isImpliedCondOperands(Pred
, LHS
, RHS
, getNotSCEV(FoundLHS
),
11619 getNotSCEV(FoundRHS
), CtxI
))
11625 auto IsSignFlippedPredicate
= [](CmpInst::Predicate P1
,
11626 CmpInst::Predicate P2
) {
11627 assert(P1
!= P2
&& "Handled earlier!");
11628 return CmpInst::isRelational(P2
) &&
11629 P1
== CmpInst::getFlippedSignednessPredicate(P2
);
11631 if (IsSignFlippedPredicate(Pred
, FoundPred
)) {
11632 // Unsigned comparison is the same as signed comparison when both the
11633 // operands are non-negative or negative.
11634 if ((isKnownNonNegative(FoundLHS
) && isKnownNonNegative(FoundRHS
)) ||
11635 (isKnownNegative(FoundLHS
) && isKnownNegative(FoundRHS
)))
11636 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
, CtxI
);
11637 // Create local copies that we can freely swap and canonicalize our
11638 // conditions to "le/lt".
11639 ICmpInst::Predicate CanonicalPred
= Pred
, CanonicalFoundPred
= FoundPred
;
11640 const SCEV
*CanonicalLHS
= LHS
, *CanonicalRHS
= RHS
,
11641 *CanonicalFoundLHS
= FoundLHS
, *CanonicalFoundRHS
= FoundRHS
;
11642 if (ICmpInst::isGT(CanonicalPred
) || ICmpInst::isGE(CanonicalPred
)) {
11643 CanonicalPred
= ICmpInst::getSwappedPredicate(CanonicalPred
);
11644 CanonicalFoundPred
= ICmpInst::getSwappedPredicate(CanonicalFoundPred
);
11645 std::swap(CanonicalLHS
, CanonicalRHS
);
11646 std::swap(CanonicalFoundLHS
, CanonicalFoundRHS
);
11648 assert((ICmpInst::isLT(CanonicalPred
) || ICmpInst::isLE(CanonicalPred
)) &&
11650 assert((ICmpInst::isLT(CanonicalFoundPred
) ||
11651 ICmpInst::isLE(CanonicalFoundPred
)) &&
11653 if (ICmpInst::isSigned(CanonicalPred
) && isKnownNonNegative(CanonicalRHS
))
11654 // Use implication:
11655 // x <u y && y >=s 0 --> x <s y.
11656 // If we can prove the left part, the right part is also proven.
11657 return isImpliedCondOperands(CanonicalFoundPred
, CanonicalLHS
,
11658 CanonicalRHS
, CanonicalFoundLHS
,
11659 CanonicalFoundRHS
);
11660 if (ICmpInst::isUnsigned(CanonicalPred
) && isKnownNegative(CanonicalRHS
))
11661 // Use implication:
11662 // x <s y && y <s 0 --> x <u y.
11663 // If we can prove the left part, the right part is also proven.
11664 return isImpliedCondOperands(CanonicalFoundPred
, CanonicalLHS
,
11665 CanonicalRHS
, CanonicalFoundLHS
,
11666 CanonicalFoundRHS
);
11669 // Check if we can make progress by sharpening ranges.
11670 if (FoundPred
== ICmpInst::ICMP_NE
&&
11671 (isa
<SCEVConstant
>(FoundLHS
) || isa
<SCEVConstant
>(FoundRHS
))) {
11673 const SCEVConstant
*C
= nullptr;
11674 const SCEV
*V
= nullptr;
11676 if (isa
<SCEVConstant
>(FoundLHS
)) {
11677 C
= cast
<SCEVConstant
>(FoundLHS
);
11680 C
= cast
<SCEVConstant
>(FoundRHS
);
11684 // The guarding predicate tells us that C != V. If the known range
11685 // of V is [C, t), we can sharpen the range to [C + 1, t). The
11686 // range we consider has to correspond to same signedness as the
11687 // predicate we're interested in folding.
11689 APInt Min
= ICmpInst::isSigned(Pred
) ?
11690 getSignedRangeMin(V
) : getUnsignedRangeMin(V
);
11692 if (Min
== C
->getAPInt()) {
11693 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11694 // This is true even if (Min + 1) wraps around -- in case of
11695 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11697 APInt SharperMin
= Min
+ 1;
11700 case ICmpInst::ICMP_SGE
:
11701 case ICmpInst::ICMP_UGE
:
11702 // We know V `Pred` SharperMin. If this implies LHS `Pred`
11703 // RHS, we're done.
11704 if (isImpliedCondOperands(Pred
, LHS
, RHS
, V
, getConstant(SharperMin
),
11709 case ICmpInst::ICMP_SGT
:
11710 case ICmpInst::ICMP_UGT
:
11711 // We know from the range information that (V `Pred` Min ||
11712 // V == Min). We know from the guarding condition that !(V
11713 // == Min). This gives us
11715 // V `Pred` Min || V == Min && !(V == Min)
11718 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11720 if (isImpliedCondOperands(Pred
, LHS
, RHS
, V
, getConstant(Min
), CtxI
))
11724 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11725 case ICmpInst::ICMP_SLE
:
11726 case ICmpInst::ICMP_ULE
:
11727 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred
), RHS
,
11728 LHS
, V
, getConstant(SharperMin
), CtxI
))
11732 case ICmpInst::ICMP_SLT
:
11733 case ICmpInst::ICMP_ULT
:
11734 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred
), RHS
,
11735 LHS
, V
, getConstant(Min
), CtxI
))
11746 // Check whether the actual condition is beyond sufficient.
11747 if (FoundPred
== ICmpInst::ICMP_EQ
)
11748 if (ICmpInst::isTrueWhenEqual(Pred
))
11749 if (isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
, CtxI
))
11751 if (Pred
== ICmpInst::ICMP_NE
)
11752 if (!ICmpInst::isTrueWhenEqual(FoundPred
))
11753 if (isImpliedCondOperands(FoundPred
, LHS
, RHS
, FoundLHS
, FoundRHS
, CtxI
))
11756 // Otherwise assume the worst.
11760 bool ScalarEvolution::splitBinaryAdd(const SCEV
*Expr
,
11761 const SCEV
*&L
, const SCEV
*&R
,
11762 SCEV::NoWrapFlags
&Flags
) {
11763 const auto *AE
= dyn_cast
<SCEVAddExpr
>(Expr
);
11764 if (!AE
|| AE
->getNumOperands() != 2)
11767 L
= AE
->getOperand(0);
11768 R
= AE
->getOperand(1);
11769 Flags
= AE
->getNoWrapFlags();
11773 std::optional
<APInt
>
11774 ScalarEvolution::computeConstantDifference(const SCEV
*More
, const SCEV
*Less
) {
11775 // We avoid subtracting expressions here because this function is usually
11776 // fairly deep in the call stack (i.e. is called many times).
11780 return APInt(getTypeSizeInBits(More
->getType()), 0);
11782 if (isa
<SCEVAddRecExpr
>(Less
) && isa
<SCEVAddRecExpr
>(More
)) {
11783 const auto *LAR
= cast
<SCEVAddRecExpr
>(Less
);
11784 const auto *MAR
= cast
<SCEVAddRecExpr
>(More
);
11786 if (LAR
->getLoop() != MAR
->getLoop())
11787 return std::nullopt
;
11789 // We look at affine expressions only; not for correctness but to keep
11790 // getStepRecurrence cheap.
11791 if (!LAR
->isAffine() || !MAR
->isAffine())
11792 return std::nullopt
;
11794 if (LAR
->getStepRecurrence(*this) != MAR
->getStepRecurrence(*this))
11795 return std::nullopt
;
11797 Less
= LAR
->getStart();
11798 More
= MAR
->getStart();
11803 if (isa
<SCEVConstant
>(Less
) && isa
<SCEVConstant
>(More
)) {
11804 const auto &M
= cast
<SCEVConstant
>(More
)->getAPInt();
11805 const auto &L
= cast
<SCEVConstant
>(Less
)->getAPInt();
11809 SCEV::NoWrapFlags Flags
;
11810 const SCEV
*LLess
= nullptr, *RLess
= nullptr;
11811 const SCEV
*LMore
= nullptr, *RMore
= nullptr;
11812 const SCEVConstant
*C1
= nullptr, *C2
= nullptr;
11813 // Compare (X + C1) vs X.
11814 if (splitBinaryAdd(Less
, LLess
, RLess
, Flags
))
11815 if ((C1
= dyn_cast
<SCEVConstant
>(LLess
)))
11817 return -(C1
->getAPInt());
11819 // Compare X vs (X + C2).
11820 if (splitBinaryAdd(More
, LMore
, RMore
, Flags
))
11821 if ((C2
= dyn_cast
<SCEVConstant
>(LMore
)))
11823 return C2
->getAPInt();
11825 // Compare (X + C1) vs (X + C2).
11826 if (C1
&& C2
&& RLess
== RMore
)
11827 return C2
->getAPInt() - C1
->getAPInt();
11829 return std::nullopt
;
11832 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11833 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
,
11834 const SCEV
*FoundLHS
, const SCEV
*FoundRHS
, const Instruction
*CtxI
) {
11835 // Try to recognize the following pattern:
11840 // FoundLHS = {Start,+,W}
11841 // context_bb: // Basic block from the same loop
11842 // known(Pred, FoundLHS, FoundRHS)
11844 // If some predicate is known in the context of a loop, it is also known on
11845 // each iteration of this loop, including the first iteration. Therefore, in
11846 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11847 // prove the original pred using this fact.
11850 const BasicBlock
*ContextBB
= CtxI
->getParent();
11851 // Make sure AR varies in the context block.
11852 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(FoundLHS
)) {
11853 const Loop
*L
= AR
->getLoop();
11854 // Make sure that context belongs to the loop and executes on 1st iteration
11855 // (if it ever executes at all).
11856 if (!L
->contains(ContextBB
) || !DT
.dominates(ContextBB
, L
->getLoopLatch()))
11858 if (!isAvailableAtLoopEntry(FoundRHS
, AR
->getLoop()))
11860 return isImpliedCondOperands(Pred
, LHS
, RHS
, AR
->getStart(), FoundRHS
);
11863 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(FoundRHS
)) {
11864 const Loop
*L
= AR
->getLoop();
11865 // Make sure that context belongs to the loop and executes on 1st iteration
11866 // (if it ever executes at all).
11867 if (!L
->contains(ContextBB
) || !DT
.dominates(ContextBB
, L
->getLoopLatch()))
11869 if (!isAvailableAtLoopEntry(FoundLHS
, AR
->getLoop()))
11871 return isImpliedCondOperands(Pred
, LHS
, RHS
, FoundLHS
, AR
->getStart());
11877 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11878 ICmpInst::Predicate Pred
, const SCEV
*LHS
, const SCEV
*RHS
,
11879 const SCEV
*FoundLHS
, const SCEV
*FoundRHS
) {
11880 if (Pred
!= CmpInst::ICMP_SLT
&& Pred
!= CmpInst::ICMP_ULT
)
11883 const auto *AddRecLHS
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
11887 const auto *AddRecFoundLHS
= dyn_cast
<SCEVAddRecExpr
>(FoundLHS
);
11888 if (!AddRecFoundLHS
)
11891 // We'd like to let SCEV reason about control dependencies, so we constrain
11892 // both the inequalities to be about add recurrences on the same loop. This
11893 // way we can use isLoopEntryGuardedByCond later.
11895 const Loop
*L
= AddRecFoundLHS
->getLoop();
11896 if (L
!= AddRecLHS
->getLoop())
11899 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
11901 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11904 // Informal proof for (2), assuming (1) [*]:
11906 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11910 // FoundLHS s< FoundRHS s< INT_MIN - C
11911 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
11912 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11913 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
11914 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11915 // <=> FoundLHS + C s< FoundRHS + C
11917 // [*]: (1) can be proved by ruling out overflow.
11919 // [**]: This can be proved by analyzing all the four possibilities:
11920 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11921 // (A s>= 0, B s>= 0).
11924 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11925 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
11926 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
11927 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
11928 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11931 std::optional
<APInt
> LDiff
= computeConstantDifference(LHS
, FoundLHS
);
11932 std::optional
<APInt
> RDiff
= computeConstantDifference(RHS
, FoundRHS
);
11933 if (!LDiff
|| !RDiff
|| *LDiff
!= *RDiff
)
11936 if (LDiff
->isMinValue())
11939 APInt FoundRHSLimit
;
11941 if (Pred
== CmpInst::ICMP_ULT
) {
11942 FoundRHSLimit
= -(*RDiff
);
11944 assert(Pred
== CmpInst::ICMP_SLT
&& "Checked above!");
11945 FoundRHSLimit
= APInt::getSignedMinValue(getTypeSizeInBits(RHS
->getType())) - *RDiff
;
11948 // Try to prove (1) or (2), as needed.
11949 return isAvailableAtLoopEntry(FoundRHS
, L
) &&
11950 isLoopEntryGuardedByCond(L
, Pred
, FoundRHS
,
11951 getConstant(FoundRHSLimit
));
11954 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred
,
11955 const SCEV
*LHS
, const SCEV
*RHS
,
11956 const SCEV
*FoundLHS
,
11957 const SCEV
*FoundRHS
, unsigned Depth
) {
11958 const PHINode
*LPhi
= nullptr, *RPhi
= nullptr;
11960 auto ClearOnExit
= make_scope_exit([&]() {
11962 bool Erased
= PendingMerges
.erase(LPhi
);
11963 assert(Erased
&& "Failed to erase LPhi!");
11967 bool Erased
= PendingMerges
.erase(RPhi
);
11968 assert(Erased
&& "Failed to erase RPhi!");
11973 // Find respective Phis and check that they are not being pending.
11974 if (const SCEVUnknown
*LU
= dyn_cast
<SCEVUnknown
>(LHS
))
11975 if (auto *Phi
= dyn_cast
<PHINode
>(LU
->getValue())) {
11976 if (!PendingMerges
.insert(Phi
).second
)
11980 if (const SCEVUnknown
*RU
= dyn_cast
<SCEVUnknown
>(RHS
))
11981 if (auto *Phi
= dyn_cast
<PHINode
>(RU
->getValue())) {
11982 // If we detect a loop of Phi nodes being processed by this method, for
11985 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11986 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11988 // we don't want to deal with a case that complex, so return conservative
11990 if (!PendingMerges
.insert(Phi
).second
)
11995 // If none of LHS, RHS is a Phi, nothing to do here.
11996 if (!LPhi
&& !RPhi
)
11999 // If there is a SCEVUnknown Phi we are interested in, make it left.
12001 std::swap(LHS
, RHS
);
12002 std::swap(FoundLHS
, FoundRHS
);
12003 std::swap(LPhi
, RPhi
);
12004 Pred
= ICmpInst::getSwappedPredicate(Pred
);
12007 assert(LPhi
&& "LPhi should definitely be a SCEVUnknown Phi!");
12008 const BasicBlock
*LBB
= LPhi
->getParent();
12009 const SCEVAddRecExpr
*RAR
= dyn_cast
<SCEVAddRecExpr
>(RHS
);
12011 auto ProvedEasily
= [&](const SCEV
*S1
, const SCEV
*S2
) {
12012 return isKnownViaNonRecursiveReasoning(Pred
, S1
, S2
) ||
12013 isImpliedCondOperandsViaRanges(Pred
, S1
, S2
, FoundLHS
, FoundRHS
) ||
12014 isImpliedViaOperations(Pred
, S1
, S2
, FoundLHS
, FoundRHS
, Depth
);
12017 if (RPhi
&& RPhi
->getParent() == LBB
) {
12018 // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
12019 // If we compare two Phis from the same block, and for each entry block
12020 // the predicate is true for incoming values from this block, then the
12021 // predicate is also true for the Phis.
12022 for (const BasicBlock
*IncBB
: predecessors(LBB
)) {
12023 const SCEV
*L
= getSCEV(LPhi
->getIncomingValueForBlock(IncBB
));
12024 const SCEV
*R
= getSCEV(RPhi
->getIncomingValueForBlock(IncBB
));
12025 if (!ProvedEasily(L
, R
))
12028 } else if (RAR
&& RAR
->getLoop()->getHeader() == LBB
) {
12029 // Case two: RHS is also a Phi from the same basic block, and it is an
12030 // AddRec. It means that there is a loop which has both AddRec and Unknown
12031 // PHIs, for it we can compare incoming values of AddRec from above the loop
12032 // and latch with their respective incoming values of LPhi.
12033 // TODO: Generalize to handle loops with many inputs in a header.
12034 if (LPhi
->getNumIncomingValues() != 2) return false;
12036 auto *RLoop
= RAR
->getLoop();
12037 auto *Predecessor
= RLoop
->getLoopPredecessor();
12038 assert(Predecessor
&& "Loop with AddRec with no predecessor?");
12039 const SCEV
*L1
= getSCEV(LPhi
->getIncomingValueForBlock(Predecessor
));
12040 if (!ProvedEasily(L1
, RAR
->getStart()))
12042 auto *Latch
= RLoop
->getLoopLatch();
12043 assert(Latch
&& "Loop with AddRec with no latch?");
12044 const SCEV
*L2
= getSCEV(LPhi
->getIncomingValueForBlock(Latch
));
12045 if (!ProvedEasily(L2
, RAR
->getPostIncExpr(*this)))
12048 // In all other cases go over inputs of LHS and compare each of them to RHS,
12049 // the predicate is true for (LHS, RHS) if it is true for all such pairs.
12050 // At this point RHS is either a non-Phi, or it is a Phi from some block
12051 // different from LBB.
12052 for (const BasicBlock
*IncBB
: predecessors(LBB
)) {
12053 // Check that RHS is available in this block.
12054 if (!dominates(RHS
, IncBB
))
12056 const SCEV
*L
= getSCEV(LPhi
->getIncomingValueForBlock(IncBB
));
12057 // Make sure L does not refer to a value from a potentially previous
12058 // iteration of a loop.
12059 if (!properlyDominates(L
, LBB
))
12061 if (!ProvedEasily(L
, RHS
))
12068 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred
,
12071 const SCEV
*FoundLHS
,
12072 const SCEV
*FoundRHS
) {
12073 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make
12074 // sure that we are dealing with same LHS.
12075 if (RHS
== FoundRHS
) {
12076 std::swap(LHS
, RHS
);
12077 std::swap(FoundLHS
, FoundRHS
);
12078 Pred
= ICmpInst::getSwappedPredicate(Pred
);
12080 if (LHS
!= FoundLHS
)
12083 auto *SUFoundRHS
= dyn_cast
<SCEVUnknown
>(FoundRHS
);
12087 Value
*Shiftee
, *ShiftValue
;
12089 using namespace PatternMatch
;
12090 if (match(SUFoundRHS
->getValue(),
12091 m_LShr(m_Value(Shiftee
), m_Value(ShiftValue
)))) {
12092 auto *ShifteeS
= getSCEV(Shiftee
);
12093 // Prove one of the following:
12094 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
12095 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
12096 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12098 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
12099 // ---> LHS <=s RHS
12100 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_ULE
)
12101 return isKnownPredicate(ICmpInst::ICMP_ULE
, ShifteeS
, RHS
);
12102 if (Pred
== ICmpInst::ICMP_SLT
|| Pred
== ICmpInst::ICMP_SLE
)
12103 if (isKnownNonNegative(ShifteeS
))
12104 return isKnownPredicate(ICmpInst::ICMP_SLE
, ShifteeS
, RHS
);
12110 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred
,
12111 const SCEV
*LHS
, const SCEV
*RHS
,
12112 const SCEV
*FoundLHS
,
12113 const SCEV
*FoundRHS
,
12114 const Instruction
*CtxI
) {
12115 if (isImpliedCondOperandsViaRanges(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
12118 if (isImpliedCondOperandsViaNoOverflow(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
12121 if (isImpliedCondOperandsViaShift(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
12124 if (isImpliedCondOperandsViaAddRecStart(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
,
12128 return isImpliedCondOperandsHelper(Pred
, LHS
, RHS
,
12129 FoundLHS
, FoundRHS
);
12132 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
12133 template <typename MinMaxExprType
>
12134 static bool IsMinMaxConsistingOf(const SCEV
*MaybeMinMaxExpr
,
12135 const SCEV
*Candidate
) {
12136 const MinMaxExprType
*MinMaxExpr
= dyn_cast
<MinMaxExprType
>(MaybeMinMaxExpr
);
12140 return is_contained(MinMaxExpr
->operands(), Candidate
);
12143 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution
&SE
,
12144 ICmpInst::Predicate Pred
,
12145 const SCEV
*LHS
, const SCEV
*RHS
) {
12146 // If both sides are affine addrecs for the same loop, with equal
12147 // steps, and we know the recurrences don't wrap, then we only
12148 // need to check the predicate on the starting values.
12150 if (!ICmpInst::isRelational(Pred
))
12153 const SCEVAddRecExpr
*LAR
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
12156 const SCEVAddRecExpr
*RAR
= dyn_cast
<SCEVAddRecExpr
>(RHS
);
12159 if (LAR
->getLoop() != RAR
->getLoop())
12161 if (!LAR
->isAffine() || !RAR
->isAffine())
12164 if (LAR
->getStepRecurrence(SE
) != RAR
->getStepRecurrence(SE
))
12167 SCEV::NoWrapFlags NW
= ICmpInst::isSigned(Pred
) ?
12168 SCEV::FlagNSW
: SCEV::FlagNUW
;
12169 if (!LAR
->getNoWrapFlags(NW
) || !RAR
->getNoWrapFlags(NW
))
12172 return SE
.isKnownPredicate(Pred
, LAR
->getStart(), RAR
->getStart());
12175 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
12177 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution
&SE
,
12178 ICmpInst::Predicate Pred
,
12179 const SCEV
*LHS
, const SCEV
*RHS
) {
12184 case ICmpInst::ICMP_SGE
:
12185 std::swap(LHS
, RHS
);
12187 case ICmpInst::ICMP_SLE
:
12189 // min(A, ...) <= A
12190 IsMinMaxConsistingOf
<SCEVSMinExpr
>(LHS
, RHS
) ||
12191 // A <= max(A, ...)
12192 IsMinMaxConsistingOf
<SCEVSMaxExpr
>(RHS
, LHS
);
12194 case ICmpInst::ICMP_UGE
:
12195 std::swap(LHS
, RHS
);
12197 case ICmpInst::ICMP_ULE
:
12199 // min(A, ...) <= A
12200 // FIXME: what about umin_seq?
12201 IsMinMaxConsistingOf
<SCEVUMinExpr
>(LHS
, RHS
) ||
12202 // A <= max(A, ...)
12203 IsMinMaxConsistingOf
<SCEVUMaxExpr
>(RHS
, LHS
);
12206 llvm_unreachable("covered switch fell through?!");
12209 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred
,
12210 const SCEV
*LHS
, const SCEV
*RHS
,
12211 const SCEV
*FoundLHS
,
12212 const SCEV
*FoundRHS
,
12214 assert(getTypeSizeInBits(LHS
->getType()) ==
12215 getTypeSizeInBits(RHS
->getType()) &&
12216 "LHS and RHS have different sizes?");
12217 assert(getTypeSizeInBits(FoundLHS
->getType()) ==
12218 getTypeSizeInBits(FoundRHS
->getType()) &&
12219 "FoundLHS and FoundRHS have different sizes?");
12220 // We want to avoid hurting the compile time with analysis of too big trees.
12221 if (Depth
> MaxSCEVOperationsImplicationDepth
)
12224 // We only want to work with GT comparison so far.
12225 if (Pred
== ICmpInst::ICMP_ULT
|| Pred
== ICmpInst::ICMP_SLT
) {
12226 Pred
= CmpInst::getSwappedPredicate(Pred
);
12227 std::swap(LHS
, RHS
);
12228 std::swap(FoundLHS
, FoundRHS
);
12231 // For unsigned, try to reduce it to corresponding signed comparison.
12232 if (Pred
== ICmpInst::ICMP_UGT
)
12233 // We can replace unsigned predicate with its signed counterpart if all
12234 // involved values are non-negative.
12235 // TODO: We could have better support for unsigned.
12236 if (isKnownNonNegative(FoundLHS
) && isKnownNonNegative(FoundRHS
)) {
12237 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
12238 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
12239 // use this fact to prove that LHS and RHS are non-negative.
12240 const SCEV
*MinusOne
= getMinusOne(LHS
->getType());
12241 if (isImpliedCondOperands(ICmpInst::ICMP_SGT
, LHS
, MinusOne
, FoundLHS
,
12243 isImpliedCondOperands(ICmpInst::ICMP_SGT
, RHS
, MinusOne
, FoundLHS
,
12245 Pred
= ICmpInst::ICMP_SGT
;
12248 if (Pred
!= ICmpInst::ICMP_SGT
)
12251 auto GetOpFromSExt
= [&](const SCEV
*S
) {
12252 if (auto *Ext
= dyn_cast
<SCEVSignExtendExpr
>(S
))
12253 return Ext
->getOperand();
12254 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
12255 // the constant in some cases.
12259 // Acquire values from extensions.
12260 auto *OrigLHS
= LHS
;
12261 auto *OrigFoundLHS
= FoundLHS
;
12262 LHS
= GetOpFromSExt(LHS
);
12263 FoundLHS
= GetOpFromSExt(FoundLHS
);
12265 // Is the SGT predicate can be proved trivially or using the found context.
12266 auto IsSGTViaContext
= [&](const SCEV
*S1
, const SCEV
*S2
) {
12267 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT
, S1
, S2
) ||
12268 isImpliedViaOperations(ICmpInst::ICMP_SGT
, S1
, S2
, OrigFoundLHS
,
12269 FoundRHS
, Depth
+ 1);
12272 if (auto *LHSAddExpr
= dyn_cast
<SCEVAddExpr
>(LHS
)) {
12273 // We want to avoid creation of any new non-constant SCEV. Since we are
12274 // going to compare the operands to RHS, we should be certain that we don't
12275 // need any size extensions for this. So let's decline all cases when the
12276 // sizes of types of LHS and RHS do not match.
12277 // TODO: Maybe try to get RHS from sext to catch more cases?
12278 if (getTypeSizeInBits(LHS
->getType()) != getTypeSizeInBits(RHS
->getType()))
12281 // Should not overflow.
12282 if (!LHSAddExpr
->hasNoSignedWrap())
12285 auto *LL
= LHSAddExpr
->getOperand(0);
12286 auto *LR
= LHSAddExpr
->getOperand(1);
12287 auto *MinusOne
= getMinusOne(RHS
->getType());
12289 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
12290 auto IsSumGreaterThanRHS
= [&](const SCEV
*S1
, const SCEV
*S2
) {
12291 return IsSGTViaContext(S1
, MinusOne
) && IsSGTViaContext(S2
, RHS
);
12293 // Try to prove the following rule:
12294 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
12295 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
12296 if (IsSumGreaterThanRHS(LL
, LR
) || IsSumGreaterThanRHS(LR
, LL
))
12298 } else if (auto *LHSUnknownExpr
= dyn_cast
<SCEVUnknown
>(LHS
)) {
12300 // FIXME: Once we have SDiv implemented, we can get rid of this matching.
12302 using namespace llvm::PatternMatch
;
12304 if (match(LHSUnknownExpr
->getValue(), m_SDiv(m_Value(LL
), m_Value(LR
)))) {
12305 // Rules for division.
12306 // We are going to perform some comparisons with Denominator and its
12307 // derivative expressions. In general case, creating a SCEV for it may
12308 // lead to a complex analysis of the entire graph, and in particular it
12309 // can request trip count recalculation for the same loop. This would
12310 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
12311 // this, we only want to create SCEVs that are constants in this section.
12312 // So we bail if Denominator is not a constant.
12313 if (!isa
<ConstantInt
>(LR
))
12316 auto *Denominator
= cast
<SCEVConstant
>(getSCEV(LR
));
12318 // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
12319 // then a SCEV for the numerator already exists and matches with FoundLHS.
12320 auto *Numerator
= getExistingSCEV(LL
);
12321 if (!Numerator
|| Numerator
->getType() != FoundLHS
->getType())
12324 // Make sure that the numerator matches with FoundLHS and the denominator
12326 if (!HasSameValue(Numerator
, FoundLHS
) || !isKnownPositive(Denominator
))
12329 auto *DTy
= Denominator
->getType();
12330 auto *FRHSTy
= FoundRHS
->getType();
12331 if (DTy
->isPointerTy() != FRHSTy
->isPointerTy())
12332 // One of types is a pointer and another one is not. We cannot extend
12333 // them properly to a wider type, so let us just reject this case.
12334 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
12335 // to avoid this check.
12339 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
12340 auto *WTy
= getWiderType(DTy
, FRHSTy
);
12341 auto *DenominatorExt
= getNoopOrSignExtend(Denominator
, WTy
);
12342 auto *FoundRHSExt
= getNoopOrSignExtend(FoundRHS
, WTy
);
12344 // Try to prove the following rule:
12345 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
12346 // For example, given that FoundLHS > 2. It means that FoundLHS is at
12347 // least 3. If we divide it by Denominator < 4, we will have at least 1.
12348 auto *DenomMinusTwo
= getMinusSCEV(DenominatorExt
, getConstant(WTy
, 2));
12349 if (isKnownNonPositive(RHS
) &&
12350 IsSGTViaContext(FoundRHSExt
, DenomMinusTwo
))
12353 // Try to prove the following rule:
12354 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
12355 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
12356 // If we divide it by Denominator > 2, then:
12357 // 1. If FoundLHS is negative, then the result is 0.
12358 // 2. If FoundLHS is non-negative, then the result is non-negative.
12359 // Anyways, the result is non-negative.
12360 auto *MinusOne
= getMinusOne(WTy
);
12361 auto *NegDenomMinusOne
= getMinusSCEV(MinusOne
, DenominatorExt
);
12362 if (isKnownNegative(RHS
) &&
12363 IsSGTViaContext(FoundRHSExt
, NegDenomMinusOne
))
12368 // If our expression contained SCEVUnknown Phis, and we split it down and now
12369 // need to prove something for them, try to prove the predicate for every
12370 // possible incoming values of those Phis.
12371 if (isImpliedViaMerge(Pred
, OrigLHS
, RHS
, OrigFoundLHS
, FoundRHS
, Depth
+ 1))
12377 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred
,
12378 const SCEV
*LHS
, const SCEV
*RHS
) {
12379 // zext x u<= sext x, sext x s<= zext x
12381 case ICmpInst::ICMP_SGE
:
12382 std::swap(LHS
, RHS
);
12384 case ICmpInst::ICMP_SLE
: {
12385 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt.
12386 const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(LHS
);
12387 const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(RHS
);
12388 if (SExt
&& ZExt
&& SExt
->getOperand() == ZExt
->getOperand())
12392 case ICmpInst::ICMP_UGE
:
12393 std::swap(LHS
, RHS
);
12395 case ICmpInst::ICMP_ULE
: {
12396 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt.
12397 const SCEVZeroExtendExpr
*ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(LHS
);
12398 const SCEVSignExtendExpr
*SExt
= dyn_cast
<SCEVSignExtendExpr
>(RHS
);
12399 if (SExt
&& ZExt
&& SExt
->getOperand() == ZExt
->getOperand())
12410 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred
,
12411 const SCEV
*LHS
, const SCEV
*RHS
) {
12412 return isKnownPredicateExtendIdiom(Pred
, LHS
, RHS
) ||
12413 isKnownPredicateViaConstantRanges(Pred
, LHS
, RHS
) ||
12414 IsKnownPredicateViaMinOrMax(*this, Pred
, LHS
, RHS
) ||
12415 IsKnownPredicateViaAddRecStart(*this, Pred
, LHS
, RHS
) ||
12416 isKnownPredicateViaNoOverflow(Pred
, LHS
, RHS
);
12420 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred
,
12421 const SCEV
*LHS
, const SCEV
*RHS
,
12422 const SCEV
*FoundLHS
,
12423 const SCEV
*FoundRHS
) {
12425 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
12426 case ICmpInst::ICMP_EQ
:
12427 case ICmpInst::ICMP_NE
:
12428 if (HasSameValue(LHS
, FoundLHS
) && HasSameValue(RHS
, FoundRHS
))
12431 case ICmpInst::ICMP_SLT
:
12432 case ICmpInst::ICMP_SLE
:
12433 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE
, LHS
, FoundLHS
) &&
12434 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE
, RHS
, FoundRHS
))
12437 case ICmpInst::ICMP_SGT
:
12438 case ICmpInst::ICMP_SGE
:
12439 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE
, LHS
, FoundLHS
) &&
12440 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE
, RHS
, FoundRHS
))
12443 case ICmpInst::ICMP_ULT
:
12444 case ICmpInst::ICMP_ULE
:
12445 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, LHS
, FoundLHS
) &&
12446 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE
, RHS
, FoundRHS
))
12449 case ICmpInst::ICMP_UGT
:
12450 case ICmpInst::ICMP_UGE
:
12451 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE
, LHS
, FoundLHS
) &&
12452 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE
, RHS
, FoundRHS
))
12457 // Maybe it can be proved via operations?
12458 if (isImpliedViaOperations(Pred
, LHS
, RHS
, FoundLHS
, FoundRHS
))
12464 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred
,
12467 const SCEV
*FoundLHS
,
12468 const SCEV
*FoundRHS
) {
12469 if (!isa
<SCEVConstant
>(RHS
) || !isa
<SCEVConstant
>(FoundRHS
))
12470 // The restriction on `FoundRHS` be lifted easily -- it exists only to
12471 // reduce the compile time impact of this optimization.
12474 std::optional
<APInt
> Addend
= computeConstantDifference(LHS
, FoundLHS
);
12478 const APInt
&ConstFoundRHS
= cast
<SCEVConstant
>(FoundRHS
)->getAPInt();
12480 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12481 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
12482 ConstantRange FoundLHSRange
=
12483 ConstantRange::makeExactICmpRegion(Pred
, ConstFoundRHS
);
12485 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12486 ConstantRange LHSRange
= FoundLHSRange
.add(ConstantRange(*Addend
));
12488 // We can also compute the range of values for `LHS` that satisfy the
12489 // consequent, "`LHS` `Pred` `RHS`":
12490 const APInt
&ConstRHS
= cast
<SCEVConstant
>(RHS
)->getAPInt();
12491 // The antecedent implies the consequent if every value of `LHS` that
12492 // satisfies the antecedent also satisfies the consequent.
12493 return LHSRange
.icmp(Pred
, ConstRHS
);
12496 bool ScalarEvolution::canIVOverflowOnLT(const SCEV
*RHS
, const SCEV
*Stride
,
12498 assert(isKnownPositive(Stride
) && "Positive stride expected!");
12500 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
12501 const SCEV
*One
= getOne(Stride
->getType());
12504 APInt MaxRHS
= getSignedRangeMax(RHS
);
12505 APInt MaxValue
= APInt::getSignedMaxValue(BitWidth
);
12506 APInt MaxStrideMinusOne
= getSignedRangeMax(getMinusSCEV(Stride
, One
));
12508 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12509 return (std::move(MaxValue
) - MaxStrideMinusOne
).slt(MaxRHS
);
12512 APInt MaxRHS
= getUnsignedRangeMax(RHS
);
12513 APInt MaxValue
= APInt::getMaxValue(BitWidth
);
12514 APInt MaxStrideMinusOne
= getUnsignedRangeMax(getMinusSCEV(Stride
, One
));
12516 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12517 return (std::move(MaxValue
) - MaxStrideMinusOne
).ult(MaxRHS
);
12520 bool ScalarEvolution::canIVOverflowOnGT(const SCEV
*RHS
, const SCEV
*Stride
,
12523 unsigned BitWidth
= getTypeSizeInBits(RHS
->getType());
12524 const SCEV
*One
= getOne(Stride
->getType());
12527 APInt MinRHS
= getSignedRangeMin(RHS
);
12528 APInt MinValue
= APInt::getSignedMinValue(BitWidth
);
12529 APInt MaxStrideMinusOne
= getSignedRangeMax(getMinusSCEV(Stride
, One
));
12531 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12532 return (std::move(MinValue
) + MaxStrideMinusOne
).sgt(MinRHS
);
12535 APInt MinRHS
= getUnsignedRangeMin(RHS
);
12536 APInt MinValue
= APInt::getMinValue(BitWidth
);
12537 APInt MaxStrideMinusOne
= getUnsignedRangeMax(getMinusSCEV(Stride
, One
));
12539 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12540 return (std::move(MinValue
) + MaxStrideMinusOne
).ugt(MinRHS
);
12543 const SCEV
*ScalarEvolution::getUDivCeilSCEV(const SCEV
*N
, const SCEV
*D
) {
12544 // umin(N, 1) + floor((N - umin(N, 1)) / D)
12545 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12546 // expression fixes the case of N=0.
12547 const SCEV
*MinNOne
= getUMinExpr(N
, getOne(N
->getType()));
12548 const SCEV
*NMinusOne
= getMinusSCEV(N
, MinNOne
);
12549 return getAddExpr(MinNOne
, getUDivExpr(NMinusOne
, D
));
12552 const SCEV
*ScalarEvolution::computeMaxBECountForLT(const SCEV
*Start
,
12553 const SCEV
*Stride
,
12557 // The logic in this function assumes we can represent a positive stride.
12558 // If we can't, the backedge-taken count must be zero.
12559 if (IsSigned
&& BitWidth
== 1)
12560 return getZero(Stride
->getType());
12562 // This code below only been closely audited for negative strides in the
12563 // unsigned comparison case, it may be correct for signed comparison, but
12564 // that needs to be established.
12565 if (IsSigned
&& isKnownNegative(Stride
))
12566 return getCouldNotCompute();
12568 // Calculate the maximum backedge count based on the range of values
12569 // permitted by Start, End, and Stride.
12571 IsSigned
? getSignedRangeMin(Start
) : getUnsignedRangeMin(Start
);
12574 IsSigned
? getSignedRangeMin(Stride
) : getUnsignedRangeMin(Stride
);
12576 // We assume either the stride is positive, or the backedge-taken count
12577 // is zero. So force StrideForMaxBECount to be at least one.
12578 APInt
One(BitWidth
, 1);
12579 APInt StrideForMaxBECount
= IsSigned
? APIntOps::smax(One
, MinStride
)
12580 : APIntOps::umax(One
, MinStride
);
12582 APInt MaxValue
= IsSigned
? APInt::getSignedMaxValue(BitWidth
)
12583 : APInt::getMaxValue(BitWidth
);
12584 APInt Limit
= MaxValue
- (StrideForMaxBECount
- 1);
12586 // Although End can be a MAX expression we estimate MaxEnd considering only
12587 // the case End = RHS of the loop termination condition. This is safe because
12588 // in the other case (End - Start) is zero, leading to a zero maximum backedge
12590 APInt MaxEnd
= IsSigned
? APIntOps::smin(getSignedRangeMax(End
), Limit
)
12591 : APIntOps::umin(getUnsignedRangeMax(End
), Limit
);
12593 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12594 MaxEnd
= IsSigned
? APIntOps::smax(MaxEnd
, MinStart
)
12595 : APIntOps::umax(MaxEnd
, MinStart
);
12597 return getUDivCeilSCEV(getConstant(MaxEnd
- MinStart
) /* Delta */,
12598 getConstant(StrideForMaxBECount
) /* Step */);
12601 ScalarEvolution::ExitLimit
12602 ScalarEvolution::howManyLessThans(const SCEV
*LHS
, const SCEV
*RHS
,
12603 const Loop
*L
, bool IsSigned
,
12604 bool ControlsOnlyExit
, bool AllowPredicates
) {
12605 SmallPtrSet
<const SCEVPredicate
*, 4> Predicates
;
12607 const SCEVAddRecExpr
*IV
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
12608 bool PredicatedIV
= false;
12610 auto canAssumeNoSelfWrap
= [&](const SCEVAddRecExpr
*AR
) {
12611 // Can we prove this loop *must* be UB if overflow of IV occurs?
12612 // Reasoning goes as follows:
12613 // * Suppose the IV did self wrap.
12614 // * If Stride evenly divides the iteration space, then once wrap
12615 // occurs, the loop must revisit the same values.
12616 // * We know that RHS is invariant, and that none of those values
12617 // caused this exit to be taken previously. Thus, this exit is
12618 // dynamically dead.
12619 // * If this is the sole exit, then a dead exit implies the loop
12620 // must be infinite if there are no abnormal exits.
12621 // * If the loop were infinite, then it must either not be mustprogress
12622 // or have side effects. Otherwise, it must be UB.
12623 // * It can't (by assumption), be UB so we have contradicted our
12624 // premise and can conclude the IV did not in fact self-wrap.
12625 if (!isLoopInvariant(RHS
, L
))
12628 auto *StrideC
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(*this));
12629 if (!StrideC
|| !StrideC
->getAPInt().isPowerOf2())
12632 if (!ControlsOnlyExit
|| !loopHasNoAbnormalExits(L
))
12635 return loopIsFiniteByAssumption(L
);
12639 if (auto *ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(LHS
)) {
12640 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(ZExt
->getOperand());
12641 if (AR
&& AR
->getLoop() == L
&& AR
->isAffine()) {
12642 auto canProveNUW
= [&]() {
12643 // We can use the comparison to infer no-wrap flags only if it fully
12644 // controls the loop exit.
12645 if (!ControlsOnlyExit
)
12648 if (!isLoopInvariant(RHS
, L
))
12651 if (!isKnownNonZero(AR
->getStepRecurrence(*this)))
12652 // We need the sequence defined by AR to strictly increase in the
12653 // unsigned integer domain for the logic below to hold.
12656 const unsigned InnerBitWidth
= getTypeSizeInBits(AR
->getType());
12657 const unsigned OuterBitWidth
= getTypeSizeInBits(RHS
->getType());
12658 // If RHS <=u Limit, then there must exist a value V in the sequence
12659 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12660 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned
12661 // overflow occurs. This limit also implies that a signed comparison
12662 // (in the wide bitwidth) is equivalent to an unsigned comparison as
12663 // the high bits on both sides must be zero.
12664 APInt StrideMax
= getUnsignedRangeMax(AR
->getStepRecurrence(*this));
12665 APInt Limit
= APInt::getMaxValue(InnerBitWidth
) - (StrideMax
- 1);
12666 Limit
= Limit
.zext(OuterBitWidth
);
12667 return getUnsignedRangeMax(applyLoopGuards(RHS
, L
)).ule(Limit
);
12669 auto Flags
= AR
->getNoWrapFlags();
12670 if (!hasFlags(Flags
, SCEV::FlagNUW
) && canProveNUW())
12671 Flags
= setFlags(Flags
, SCEV::FlagNUW
);
12673 setNoWrapFlags(const_cast<SCEVAddRecExpr
*>(AR
), Flags
);
12674 if (AR
->hasNoUnsignedWrap()) {
12675 // Emulate what getZeroExtendExpr would have done during construction
12676 // if we'd been able to infer the fact just above at that time.
12677 const SCEV
*Step
= AR
->getStepRecurrence(*this);
12678 Type
*Ty
= ZExt
->getType();
12679 auto *S
= getAddRecExpr(
12680 getExtendAddRecStart
<SCEVZeroExtendExpr
>(AR
, Ty
, this, 0),
12681 getZeroExtendExpr(Step
, Ty
, 0), L
, AR
->getNoWrapFlags());
12682 IV
= dyn_cast
<SCEVAddRecExpr
>(S
);
12689 if (!IV
&& AllowPredicates
) {
12690 // Try to make this an AddRec using runtime tests, in the first X
12691 // iterations of this loop, where X is the SCEV expression found by the
12692 // algorithm below.
12693 IV
= convertSCEVToAddRecWithPredicates(LHS
, L
, Predicates
);
12694 PredicatedIV
= true;
12697 // Avoid weird loops
12698 if (!IV
|| IV
->getLoop() != L
|| !IV
->isAffine())
12699 return getCouldNotCompute();
12701 // A precondition of this method is that the condition being analyzed
12702 // reaches an exiting branch which dominates the latch. Given that, we can
12703 // assume that an increment which violates the nowrap specification and
12704 // produces poison must cause undefined behavior when the resulting poison
12705 // value is branched upon and thus we can conclude that the backedge is
12706 // taken no more often than would be required to produce that poison value.
12707 // Note that a well defined loop can exit on the iteration which violates
12708 // the nowrap specification if there is another exit (either explicit or
12709 // implicit/exceptional) which causes the loop to execute before the
12710 // exiting instruction we're analyzing would trigger UB.
12711 auto WrapType
= IsSigned
? SCEV::FlagNSW
: SCEV::FlagNUW
;
12712 bool NoWrap
= ControlsOnlyExit
&& IV
->getNoWrapFlags(WrapType
);
12713 ICmpInst::Predicate Cond
= IsSigned
? ICmpInst::ICMP_SLT
: ICmpInst::ICMP_ULT
;
12715 const SCEV
*Stride
= IV
->getStepRecurrence(*this);
12717 bool PositiveStride
= isKnownPositive(Stride
);
12719 // Avoid negative or zero stride values.
12720 if (!PositiveStride
) {
12721 // We can compute the correct backedge taken count for loops with unknown
12722 // strides if we can prove that the loop is not an infinite loop with side
12723 // effects. Here's the loop structure we are trying to handle -
12729 // } while (i < end);
12731 // The backedge taken count for such loops is evaluated as -
12732 // (max(end, start + stride) - start - 1) /u stride
12734 // The additional preconditions that we need to check to prove correctness
12735 // of the above formula is as follows -
12737 // a) IV is either nuw or nsw depending upon signedness (indicated by the
12739 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12740 // no side effects within the loop)
12741 // c) loop has a single static exit (with no abnormal exits)
12743 // Precondition a) implies that if the stride is negative, this is a single
12744 // trip loop. The backedge taken count formula reduces to zero in this case.
12746 // Precondition b) and c) combine to imply that if rhs is invariant in L,
12747 // then a zero stride means the backedge can't be taken without executing
12748 // undefined behavior.
12750 // The positive stride case is the same as isKnownPositive(Stride) returning
12751 // true (original behavior of the function).
12753 if (PredicatedIV
|| !NoWrap
|| !loopIsFiniteByAssumption(L
) ||
12754 !loopHasNoAbnormalExits(L
))
12755 return getCouldNotCompute();
12757 if (!isKnownNonZero(Stride
)) {
12758 // If we have a step of zero, and RHS isn't invariant in L, we don't know
12759 // if it might eventually be greater than start and if so, on which
12760 // iteration. We can't even produce a useful upper bound.
12761 if (!isLoopInvariant(RHS
, L
))
12762 return getCouldNotCompute();
12764 // We allow a potentially zero stride, but we need to divide by stride
12765 // below. Since the loop can't be infinite and this check must control
12766 // the sole exit, we can infer the exit must be taken on the first
12767 // iteration (e.g. backedge count = 0) if the stride is zero. Given that,
12768 // we know the numerator in the divides below must be zero, so we can
12769 // pick an arbitrary non-zero value for the denominator (e.g. stride)
12770 // and produce the right result.
12771 // FIXME: Handle the case where Stride is poison?
12772 auto wouldZeroStrideBeUB
= [&]() {
12773 // Proof by contradiction. Suppose the stride were zero. If we can
12774 // prove that the backedge *is* taken on the first iteration, then since
12775 // we know this condition controls the sole exit, we must have an
12776 // infinite loop. We can't have a (well defined) infinite loop per
12777 // check just above.
12778 // Note: The (Start - Stride) term is used to get the start' term from
12779 // (start' + stride,+,stride). Remember that we only care about the
12780 // result of this expression when stride == 0 at runtime.
12781 auto *StartIfZero
= getMinusSCEV(IV
->getStart(), Stride
);
12782 return isLoopEntryGuardedByCond(L
, Cond
, StartIfZero
, RHS
);
12784 if (!wouldZeroStrideBeUB()) {
12785 Stride
= getUMaxExpr(Stride
, getOne(Stride
->getType()));
12788 } else if (!Stride
->isOne() && !NoWrap
) {
12789 auto isUBOnWrap
= [&]() {
12790 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This
12791 // follows trivially from the fact that every (un)signed-wrapped, but
12792 // not self-wrapped value must be LT than the last value before
12793 // (un)signed wrap. Since we know that last value didn't exit, nor
12794 // will any smaller one.
12795 return canAssumeNoSelfWrap(IV
);
12798 // Avoid proven overflow cases: this will ensure that the backedge taken
12799 // count will not generate any unsigned overflow. Relaxed no-overflow
12800 // conditions exploit NoWrapFlags, allowing to optimize in presence of
12801 // undefined behaviors like the case of C language.
12802 if (canIVOverflowOnLT(RHS
, Stride
, IsSigned
) && !isUBOnWrap())
12803 return getCouldNotCompute();
12806 // On all paths just preceeding, we established the following invariant:
12807 // IV can be assumed not to overflow up to and including the exiting
12808 // iteration. We proved this in one of two ways:
12809 // 1) We can show overflow doesn't occur before the exiting iteration
12810 // 1a) canIVOverflowOnLT, and b) step of one
12811 // 2) We can show that if overflow occurs, the loop must execute UB
12812 // before any possible exit.
12813 // Note that we have not yet proved RHS invariant (in general).
12815 const SCEV
*Start
= IV
->getStart();
12817 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12818 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12819 // Use integer-typed versions for actual computation; we can't subtract
12820 // pointers in general.
12821 const SCEV
*OrigStart
= Start
;
12822 const SCEV
*OrigRHS
= RHS
;
12823 if (Start
->getType()->isPointerTy()) {
12824 Start
= getLosslessPtrToIntExpr(Start
);
12825 if (isa
<SCEVCouldNotCompute
>(Start
))
12828 if (RHS
->getType()->isPointerTy()) {
12829 RHS
= getLosslessPtrToIntExpr(RHS
);
12830 if (isa
<SCEVCouldNotCompute
>(RHS
))
12834 // When the RHS is not invariant, we do not know the end bound of the loop and
12835 // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12836 // calculate the MaxBECount, given the start, stride and max value for the end
12837 // bound of the loop (RHS), and the fact that IV does not overflow (which is
12839 if (!isLoopInvariant(RHS
, L
)) {
12840 const SCEV
*MaxBECount
= computeMaxBECountForLT(
12841 Start
, Stride
, RHS
, getTypeSizeInBits(LHS
->getType()), IsSigned
);
12842 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount
,
12843 MaxBECount
, false /*MaxOrZero*/, Predicates
);
12846 // We use the expression (max(End,Start)-Start)/Stride to describe the
12847 // backedge count, as if the backedge is taken at least once max(End,Start)
12848 // is End and so the result is as above, and if not max(End,Start) is Start
12849 // so we get a backedge count of zero.
12850 const SCEV
*BECount
= nullptr;
12851 auto *OrigStartMinusStride
= getMinusSCEV(OrigStart
, Stride
);
12852 assert(isAvailableAtLoopEntry(OrigStartMinusStride
, L
) && "Must be!");
12853 assert(isAvailableAtLoopEntry(OrigStart
, L
) && "Must be!");
12854 assert(isAvailableAtLoopEntry(OrigRHS
, L
) && "Must be!");
12855 // Can we prove (max(RHS,Start) > Start - Stride?
12856 if (isLoopEntryGuardedByCond(L
, Cond
, OrigStartMinusStride
, OrigStart
) &&
12857 isLoopEntryGuardedByCond(L
, Cond
, OrigStartMinusStride
, OrigRHS
)) {
12858 // In this case, we can use a refined formula for computing backedge taken
12859 // count. The general formula remains:
12860 // "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12861 // We want to use the alternate formula:
12862 // "((End - 1) - (Start - Stride)) /u Stride"
12863 // Let's do a quick case analysis to show these are equivalent under
12864 // our precondition that max(RHS,Start) > Start - Stride.
12865 // * For RHS <= Start, the backedge-taken count must be zero.
12866 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
12867 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12868 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12869 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing
12870 // this to the stride of 1 case.
12871 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12872 // "((End - 1) - (Start - Stride)) /u Stride" reduces to
12873 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12874 // "((RHS - (Start - Stride) - 1) /u Stride".
12875 // Our preconditions trivially imply no overflow in that form.
12876 const SCEV
*MinusOne
= getMinusOne(Stride
->getType());
12877 const SCEV
*Numerator
=
12878 getMinusSCEV(getAddExpr(RHS
, MinusOne
), getMinusSCEV(Start
, Stride
));
12879 BECount
= getUDivExpr(Numerator
, Stride
);
12882 const SCEV
*BECountIfBackedgeTaken
= nullptr;
12884 auto canProveRHSGreaterThanEqualStart
= [&]() {
12885 auto CondGE
= IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
;
12886 if (isLoopEntryGuardedByCond(L
, CondGE
, OrigRHS
, OrigStart
))
12889 // (RHS > Start - 1) implies RHS >= Start.
12890 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12891 // "Start - 1" doesn't overflow.
12892 // * For signed comparison, if Start - 1 does overflow, it's equal
12893 // to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12894 // * For unsigned comparison, if Start - 1 does overflow, it's equal
12895 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12897 // FIXME: Should isLoopEntryGuardedByCond do this for us?
12898 auto CondGT
= IsSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
12899 auto *StartMinusOne
= getAddExpr(OrigStart
,
12900 getMinusOne(OrigStart
->getType()));
12901 return isLoopEntryGuardedByCond(L
, CondGT
, OrigRHS
, StartMinusOne
);
12904 // If we know that RHS >= Start in the context of loop, then we know that
12905 // max(RHS, Start) = RHS at this point.
12907 if (canProveRHSGreaterThanEqualStart()) {
12910 // If RHS < Start, the backedge will be taken zero times. So in
12911 // general, we can write the backedge-taken count as:
12913 // RHS >= Start ? ceil(RHS - Start) / Stride : 0
12915 // We convert it to the following to make it more convenient for SCEV:
12917 // ceil(max(RHS, Start) - Start) / Stride
12918 End
= IsSigned
? getSMaxExpr(RHS
, Start
) : getUMaxExpr(RHS
, Start
);
12920 // See what would happen if we assume the backedge is taken. This is
12921 // used to compute MaxBECount.
12922 BECountIfBackedgeTaken
= getUDivCeilSCEV(getMinusSCEV(RHS
, Start
), Stride
);
12925 // At this point, we know:
12927 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
12928 // 2. The index variable doesn't overflow.
12930 // Therefore, we know N exists such that
12931 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
12932 // doesn't overflow.
12934 // Using this information, try to prove whether the addition in
12935 // "(Start - End) + (Stride - 1)" has unsigned overflow.
12936 const SCEV
*One
= getOne(Stride
->getType());
12937 bool MayAddOverflow
= [&] {
12938 if (auto *StrideC
= dyn_cast
<SCEVConstant
>(Stride
)) {
12939 if (StrideC
->getAPInt().isPowerOf2()) {
12940 // Suppose Stride is a power of two, and Start/End are unsigned
12941 // integers. Let UMAX be the largest representable unsigned
12944 // By the preconditions of this function, we know
12945 // "(Start + Stride * N) >= End", and this doesn't overflow.
12948 // End <= (Start + Stride * N) <= UMAX
12950 // Subtracting Start from all the terms:
12952 // End - Start <= Stride * N <= UMAX - Start
12954 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore:
12956 // End - Start <= Stride * N <= UMAX
12958 // Stride * N is a multiple of Stride. Therefore,
12960 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12962 // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12963 // Therefore, UMAX mod Stride == Stride - 1. So we can write:
12965 // End - Start <= Stride * N <= UMAX - Stride - 1
12967 // Dropping the middle term:
12969 // End - Start <= UMAX - Stride - 1
12971 // Adding Stride - 1 to both sides:
12973 // (End - Start) + (Stride - 1) <= UMAX
12975 // In other words, the addition doesn't have unsigned overflow.
12977 // A similar proof works if we treat Start/End as signed values.
12978 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
12979 // use signed max instead of unsigned max. Note that we're trying
12980 // to prove a lack of unsigned overflow in either case.
12984 if (Start
== Stride
|| Start
== getMinusSCEV(Stride
, One
)) {
12985 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
12986 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
12987 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
12989 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
12995 const SCEV
*Delta
= getMinusSCEV(End
, Start
);
12996 if (!MayAddOverflow
) {
12997 // floor((D + (S - 1)) / S)
12998 // We prefer this formulation if it's legal because it's fewer operations.
13000 getUDivExpr(getAddExpr(Delta
, getMinusSCEV(Stride
, One
)), Stride
);
13002 BECount
= getUDivCeilSCEV(Delta
, Stride
);
13006 const SCEV
*ConstantMaxBECount
;
13007 bool MaxOrZero
= false;
13008 if (isa
<SCEVConstant
>(BECount
)) {
13009 ConstantMaxBECount
= BECount
;
13010 } else if (BECountIfBackedgeTaken
&&
13011 isa
<SCEVConstant
>(BECountIfBackedgeTaken
)) {
13012 // If we know exactly how many times the backedge will be taken if it's
13013 // taken at least once, then the backedge count will either be that or
13015 ConstantMaxBECount
= BECountIfBackedgeTaken
;
13018 ConstantMaxBECount
= computeMaxBECountForLT(
13019 Start
, Stride
, RHS
, getTypeSizeInBits(LHS
->getType()), IsSigned
);
13022 if (isa
<SCEVCouldNotCompute
>(ConstantMaxBECount
) &&
13023 !isa
<SCEVCouldNotCompute
>(BECount
))
13024 ConstantMaxBECount
= getConstant(getUnsignedRangeMax(BECount
));
13026 const SCEV
*SymbolicMaxBECount
=
13027 isa
<SCEVCouldNotCompute
>(BECount
) ? ConstantMaxBECount
: BECount
;
13028 return ExitLimit(BECount
, ConstantMaxBECount
, SymbolicMaxBECount
, MaxOrZero
,
13032 ScalarEvolution::ExitLimit
ScalarEvolution::howManyGreaterThans(
13033 const SCEV
*LHS
, const SCEV
*RHS
, const Loop
*L
, bool IsSigned
,
13034 bool ControlsOnlyExit
, bool AllowPredicates
) {
13035 SmallPtrSet
<const SCEVPredicate
*, 4> Predicates
;
13036 // We handle only IV > Invariant
13037 if (!isLoopInvariant(RHS
, L
))
13038 return getCouldNotCompute();
13040 const SCEVAddRecExpr
*IV
= dyn_cast
<SCEVAddRecExpr
>(LHS
);
13041 if (!IV
&& AllowPredicates
)
13042 // Try to make this an AddRec using runtime tests, in the first X
13043 // iterations of this loop, where X is the SCEV expression found by the
13044 // algorithm below.
13045 IV
= convertSCEVToAddRecWithPredicates(LHS
, L
, Predicates
);
13047 // Avoid weird loops
13048 if (!IV
|| IV
->getLoop() != L
|| !IV
->isAffine())
13049 return getCouldNotCompute();
13051 auto WrapType
= IsSigned
? SCEV::FlagNSW
: SCEV::FlagNUW
;
13052 bool NoWrap
= ControlsOnlyExit
&& IV
->getNoWrapFlags(WrapType
);
13053 ICmpInst::Predicate Cond
= IsSigned
? ICmpInst::ICMP_SGT
: ICmpInst::ICMP_UGT
;
13055 const SCEV
*Stride
= getNegativeSCEV(IV
->getStepRecurrence(*this));
13057 // Avoid negative or zero stride values
13058 if (!isKnownPositive(Stride
))
13059 return getCouldNotCompute();
13061 // Avoid proven overflow cases: this will ensure that the backedge taken count
13062 // will not generate any unsigned overflow. Relaxed no-overflow conditions
13063 // exploit NoWrapFlags, allowing to optimize in presence of undefined
13064 // behaviors like the case of C language.
13065 if (!Stride
->isOne() && !NoWrap
)
13066 if (canIVOverflowOnGT(RHS
, Stride
, IsSigned
))
13067 return getCouldNotCompute();
13069 const SCEV
*Start
= IV
->getStart();
13070 const SCEV
*End
= RHS
;
13071 if (!isLoopEntryGuardedByCond(L
, Cond
, getAddExpr(Start
, Stride
), RHS
)) {
13072 // If we know that Start >= RHS in the context of loop, then we know that
13073 // min(RHS, Start) = RHS at this point.
13074 if (isLoopEntryGuardedByCond(
13075 L
, IsSigned
? ICmpInst::ICMP_SGE
: ICmpInst::ICMP_UGE
, Start
, RHS
))
13078 End
= IsSigned
? getSMinExpr(RHS
, Start
) : getUMinExpr(RHS
, Start
);
13081 if (Start
->getType()->isPointerTy()) {
13082 Start
= getLosslessPtrToIntExpr(Start
);
13083 if (isa
<SCEVCouldNotCompute
>(Start
))
13086 if (End
->getType()->isPointerTy()) {
13087 End
= getLosslessPtrToIntExpr(End
);
13088 if (isa
<SCEVCouldNotCompute
>(End
))
13092 // Compute ((Start - End) + (Stride - 1)) / Stride.
13093 // FIXME: This can overflow. Holding off on fixing this for now;
13094 // howManyGreaterThans will hopefully be gone soon.
13095 const SCEV
*One
= getOne(Stride
->getType());
13096 const SCEV
*BECount
= getUDivExpr(
13097 getAddExpr(getMinusSCEV(Start
, End
), getMinusSCEV(Stride
, One
)), Stride
);
13099 APInt MaxStart
= IsSigned
? getSignedRangeMax(Start
)
13100 : getUnsignedRangeMax(Start
);
13102 APInt MinStride
= IsSigned
? getSignedRangeMin(Stride
)
13103 : getUnsignedRangeMin(Stride
);
13105 unsigned BitWidth
= getTypeSizeInBits(LHS
->getType());
13106 APInt Limit
= IsSigned
? APInt::getSignedMinValue(BitWidth
) + (MinStride
- 1)
13107 : APInt::getMinValue(BitWidth
) + (MinStride
- 1);
13109 // Although End can be a MIN expression we estimate MinEnd considering only
13110 // the case End = RHS. This is safe because in the other case (Start - End)
13111 // is zero, leading to a zero maximum backedge taken count.
13113 IsSigned
? APIntOps::smax(getSignedRangeMin(RHS
), Limit
)
13114 : APIntOps::umax(getUnsignedRangeMin(RHS
), Limit
);
13116 const SCEV
*ConstantMaxBECount
=
13117 isa
<SCEVConstant
>(BECount
)
13119 : getUDivCeilSCEV(getConstant(MaxStart
- MinEnd
),
13120 getConstant(MinStride
));
13122 if (isa
<SCEVCouldNotCompute
>(ConstantMaxBECount
))
13123 ConstantMaxBECount
= BECount
;
13124 const SCEV
*SymbolicMaxBECount
=
13125 isa
<SCEVCouldNotCompute
>(BECount
) ? ConstantMaxBECount
: BECount
;
13127 return ExitLimit(BECount
, ConstantMaxBECount
, SymbolicMaxBECount
, false,
13131 const SCEV
*SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange
&Range
,
13132 ScalarEvolution
&SE
) const {
13133 if (Range
.isFullSet()) // Infinite loop.
13134 return SE
.getCouldNotCompute();
13136 // If the start is a non-zero constant, shift the range to simplify things.
13137 if (const SCEVConstant
*SC
= dyn_cast
<SCEVConstant
>(getStart()))
13138 if (!SC
->getValue()->isZero()) {
13139 SmallVector
<const SCEV
*, 4> Operands(operands());
13140 Operands
[0] = SE
.getZero(SC
->getType());
13141 const SCEV
*Shifted
= SE
.getAddRecExpr(Operands
, getLoop(),
13142 getNoWrapFlags(FlagNW
));
13143 if (const auto *ShiftedAddRec
= dyn_cast
<SCEVAddRecExpr
>(Shifted
))
13144 return ShiftedAddRec
->getNumIterationsInRange(
13145 Range
.subtract(SC
->getAPInt()), SE
);
13146 // This is strange and shouldn't happen.
13147 return SE
.getCouldNotCompute();
13150 // The only time we can solve this is when we have all constant indices.
13151 // Otherwise, we cannot determine the overflow conditions.
13152 if (any_of(operands(), [](const SCEV
*Op
) { return !isa
<SCEVConstant
>(Op
); }))
13153 return SE
.getCouldNotCompute();
13155 // Okay at this point we know that all elements of the chrec are constants and
13156 // that the start element is zero.
13158 // First check to see if the range contains zero. If not, the first
13159 // iteration exits.
13160 unsigned BitWidth
= SE
.getTypeSizeInBits(getType());
13161 if (!Range
.contains(APInt(BitWidth
, 0)))
13162 return SE
.getZero(getType());
13165 // If this is an affine expression then we have this situation:
13166 // Solve {0,+,A} in Range === Ax in Range
13168 // We know that zero is in the range. If A is positive then we know that
13169 // the upper value of the range must be the first possible exit value.
13170 // If A is negative then the lower of the range is the last possible loop
13171 // value. Also note that we already checked for a full range.
13172 APInt A
= cast
<SCEVConstant
>(getOperand(1))->getAPInt();
13173 APInt End
= A
.sge(1) ? (Range
.getUpper() - 1) : Range
.getLower();
13175 // The exit value should be (End+A)/A.
13176 APInt ExitVal
= (End
+ A
).udiv(A
);
13177 ConstantInt
*ExitValue
= ConstantInt::get(SE
.getContext(), ExitVal
);
13179 // Evaluate at the exit value. If we really did fall out of the valid
13180 // range, then we computed our trip count, otherwise wrap around or other
13181 // things must have happened.
13182 ConstantInt
*Val
= EvaluateConstantChrecAtConstant(this, ExitValue
, SE
);
13183 if (Range
.contains(Val
->getValue()))
13184 return SE
.getCouldNotCompute(); // Something strange happened
13186 // Ensure that the previous value is in the range.
13187 assert(Range
.contains(
13188 EvaluateConstantChrecAtConstant(this,
13189 ConstantInt::get(SE
.getContext(), ExitVal
- 1), SE
)->getValue()) &&
13190 "Linear scev computation is off in a bad way!");
13191 return SE
.getConstant(ExitValue
);
13194 if (isQuadratic()) {
13195 if (auto S
= SolveQuadraticAddRecRange(this, Range
, SE
))
13196 return SE
.getConstant(*S
);
13199 return SE
.getCouldNotCompute();
13202 const SCEVAddRecExpr
*
13203 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution
&SE
) const {
13204 assert(getNumOperands() > 1 && "AddRec with zero step?");
13205 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
13206 // but in this case we cannot guarantee that the value returned will be an
13207 // AddRec because SCEV does not have a fixed point where it stops
13208 // simplification: it is legal to return ({rec1} + {rec2}). For example, it
13209 // may happen if we reach arithmetic depth limit while simplifying. So we
13210 // construct the returned value explicitly.
13211 SmallVector
<const SCEV
*, 3> Ops
;
13212 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
13213 // (this + Step) is {A+B,+,B+C,+...,+,N}.
13214 for (unsigned i
= 0, e
= getNumOperands() - 1; i
< e
; ++i
)
13215 Ops
.push_back(SE
.getAddExpr(getOperand(i
), getOperand(i
+ 1)));
13216 // We know that the last operand is not a constant zero (otherwise it would
13217 // have been popped out earlier). This guarantees us that if the result has
13218 // the same last operand, then it will also not be popped out, meaning that
13219 // the returned value will be an AddRec.
13220 const SCEV
*Last
= getOperand(getNumOperands() - 1);
13221 assert(!Last
->isZero() && "Recurrency with zero step?");
13222 Ops
.push_back(Last
);
13223 return cast
<SCEVAddRecExpr
>(SE
.getAddRecExpr(Ops
, getLoop(),
13224 SCEV::FlagAnyWrap
));
13227 // Return true when S contains at least an undef value.
13228 bool ScalarEvolution::containsUndefs(const SCEV
*S
) const {
13229 return SCEVExprContains(S
, [](const SCEV
*S
) {
13230 if (const auto *SU
= dyn_cast
<SCEVUnknown
>(S
))
13231 return isa
<UndefValue
>(SU
->getValue());
13236 // Return true when S contains a value that is a nullptr.
13237 bool ScalarEvolution::containsErasedValue(const SCEV
*S
) const {
13238 return SCEVExprContains(S
, [](const SCEV
*S
) {
13239 if (const auto *SU
= dyn_cast
<SCEVUnknown
>(S
))
13240 return SU
->getValue() == nullptr;
13245 /// Return the size of an element read or written by Inst.
13246 const SCEV
*ScalarEvolution::getElementSize(Instruction
*Inst
) {
13248 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(Inst
))
13249 Ty
= Store
->getValueOperand()->getType();
13250 else if (LoadInst
*Load
= dyn_cast
<LoadInst
>(Inst
))
13251 Ty
= Load
->getType();
13255 Type
*ETy
= getEffectiveSCEVType(PointerType::getUnqual(Ty
));
13256 return getSizeOfExpr(ETy
, Ty
);
13259 //===----------------------------------------------------------------------===//
13260 // SCEVCallbackVH Class Implementation
13261 //===----------------------------------------------------------------------===//
13263 void ScalarEvolution::SCEVCallbackVH::deleted() {
13264 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
13265 if (PHINode
*PN
= dyn_cast
<PHINode
>(getValPtr()))
13266 SE
->ConstantEvolutionLoopExitValue
.erase(PN
);
13267 SE
->eraseValueFromMap(getValPtr());
13268 // this now dangles!
13271 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value
*V
) {
13272 assert(SE
&& "SCEVCallbackVH called with a null ScalarEvolution!");
13274 // Forget all the expressions associated with users of the old value,
13275 // so that future queries will recompute the expressions using the new
13277 SE
->forgetValue(getValPtr());
13278 // this now dangles!
13281 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value
*V
, ScalarEvolution
*se
)
13282 : CallbackVH(V
), SE(se
) {}
13284 //===----------------------------------------------------------------------===//
13285 // ScalarEvolution Class Implementation
13286 //===----------------------------------------------------------------------===//
13288 ScalarEvolution::ScalarEvolution(Function
&F
, TargetLibraryInfo
&TLI
,
13289 AssumptionCache
&AC
, DominatorTree
&DT
,
13291 : F(F
), TLI(TLI
), AC(AC
), DT(DT
), LI(LI
),
13292 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
13293 LoopDispositions(64), BlockDispositions(64) {
13294 // To use guards for proving predicates, we need to scan every instruction in
13295 // relevant basic blocks, and not just terminators. Doing this is a waste of
13296 // time if the IR does not actually contain any calls to
13297 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
13299 // This pessimizes the case where a pass that preserves ScalarEvolution wants
13300 // to _add_ guards to the module when there weren't any before, and wants
13301 // ScalarEvolution to optimize based on those guards. For now we prefer to be
13302 // efficient in lieu of being smart in that rather obscure case.
13304 auto *GuardDecl
= F
.getParent()->getFunction(
13305 Intrinsic::getName(Intrinsic::experimental_guard
));
13306 HasGuards
= GuardDecl
&& !GuardDecl
->use_empty();
13309 ScalarEvolution::ScalarEvolution(ScalarEvolution
&&Arg
)
13310 : F(Arg
.F
), HasGuards(Arg
.HasGuards
), TLI(Arg
.TLI
), AC(Arg
.AC
), DT(Arg
.DT
),
13311 LI(Arg
.LI
), CouldNotCompute(std::move(Arg
.CouldNotCompute
)),
13312 ValueExprMap(std::move(Arg
.ValueExprMap
)),
13313 PendingLoopPredicates(std::move(Arg
.PendingLoopPredicates
)),
13314 PendingPhiRanges(std::move(Arg
.PendingPhiRanges
)),
13315 PendingMerges(std::move(Arg
.PendingMerges
)),
13316 ConstantMultipleCache(std::move(Arg
.ConstantMultipleCache
)),
13317 BackedgeTakenCounts(std::move(Arg
.BackedgeTakenCounts
)),
13318 PredicatedBackedgeTakenCounts(
13319 std::move(Arg
.PredicatedBackedgeTakenCounts
)),
13320 BECountUsers(std::move(Arg
.BECountUsers
)),
13321 ConstantEvolutionLoopExitValue(
13322 std::move(Arg
.ConstantEvolutionLoopExitValue
)),
13323 ValuesAtScopes(std::move(Arg
.ValuesAtScopes
)),
13324 ValuesAtScopesUsers(std::move(Arg
.ValuesAtScopesUsers
)),
13325 LoopDispositions(std::move(Arg
.LoopDispositions
)),
13326 LoopPropertiesCache(std::move(Arg
.LoopPropertiesCache
)),
13327 BlockDispositions(std::move(Arg
.BlockDispositions
)),
13328 SCEVUsers(std::move(Arg
.SCEVUsers
)),
13329 UnsignedRanges(std::move(Arg
.UnsignedRanges
)),
13330 SignedRanges(std::move(Arg
.SignedRanges
)),
13331 UniqueSCEVs(std::move(Arg
.UniqueSCEVs
)),
13332 UniquePreds(std::move(Arg
.UniquePreds
)),
13333 SCEVAllocator(std::move(Arg
.SCEVAllocator
)),
13334 LoopUsers(std::move(Arg
.LoopUsers
)),
13335 PredicatedSCEVRewrites(std::move(Arg
.PredicatedSCEVRewrites
)),
13336 FirstUnknown(Arg
.FirstUnknown
) {
13337 Arg
.FirstUnknown
= nullptr;
13340 ScalarEvolution::~ScalarEvolution() {
13341 // Iterate through all the SCEVUnknown instances and call their
13342 // destructors, so that they release their references to their values.
13343 for (SCEVUnknown
*U
= FirstUnknown
; U
;) {
13344 SCEVUnknown
*Tmp
= U
;
13346 Tmp
->~SCEVUnknown();
13348 FirstUnknown
= nullptr;
13350 ExprValueMap
.clear();
13351 ValueExprMap
.clear();
13353 BackedgeTakenCounts
.clear();
13354 PredicatedBackedgeTakenCounts
.clear();
13356 assert(PendingLoopPredicates
.empty() && "isImpliedCond garbage");
13357 assert(PendingPhiRanges
.empty() && "getRangeRef garbage");
13358 assert(PendingMerges
.empty() && "isImpliedViaMerge garbage");
13359 assert(!WalkingBEDominatingConds
&& "isLoopBackedgeGuardedByCond garbage!");
13360 assert(!ProvingSplitPredicate
&& "ProvingSplitPredicate garbage!");
13363 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop
*L
) {
13364 return !isa
<SCEVCouldNotCompute
>(getBackedgeTakenCount(L
));
13367 static void PrintLoopInfo(raw_ostream
&OS
, ScalarEvolution
*SE
,
13369 // Print all inner loops first
13371 PrintLoopInfo(OS
, SE
, I
);
13374 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13377 SmallVector
<BasicBlock
*, 8> ExitingBlocks
;
13378 L
->getExitingBlocks(ExitingBlocks
);
13379 if (ExitingBlocks
.size() != 1)
13380 OS
<< "<multiple exits> ";
13382 if (SE
->hasLoopInvariantBackedgeTakenCount(L
))
13383 OS
<< "backedge-taken count is " << *SE
->getBackedgeTakenCount(L
) << "\n";
13385 OS
<< "Unpredictable backedge-taken count.\n";
13387 if (ExitingBlocks
.size() > 1)
13388 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
13389 OS
<< " exit count for " << ExitingBlock
->getName() << ": "
13390 << *SE
->getExitCount(L
, ExitingBlock
) << "\n";
13394 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13397 auto *ConstantBTC
= SE
->getConstantMaxBackedgeTakenCount(L
);
13398 if (!isa
<SCEVCouldNotCompute
>(ConstantBTC
)) {
13399 OS
<< "constant max backedge-taken count is " << *ConstantBTC
;
13400 if (SE
->isBackedgeTakenCountMaxOrZero(L
))
13401 OS
<< ", actual taken count either this or zero.";
13403 OS
<< "Unpredictable constant max backedge-taken count. ";
13408 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13411 auto *SymbolicBTC
= SE
->getSymbolicMaxBackedgeTakenCount(L
);
13412 if (!isa
<SCEVCouldNotCompute
>(SymbolicBTC
)) {
13413 OS
<< "symbolic max backedge-taken count is " << *SymbolicBTC
;
13414 if (SE
->isBackedgeTakenCountMaxOrZero(L
))
13415 OS
<< ", actual taken count either this or zero.";
13417 OS
<< "Unpredictable symbolic max backedge-taken count. ";
13421 if (ExitingBlocks
.size() > 1)
13422 for (BasicBlock
*ExitingBlock
: ExitingBlocks
) {
13423 OS
<< " symbolic max exit count for " << ExitingBlock
->getName() << ": "
13424 << *SE
->getExitCount(L
, ExitingBlock
, ScalarEvolution::SymbolicMaximum
)
13429 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13432 SmallVector
<const SCEVPredicate
*, 4> Preds
;
13433 auto PBT
= SE
->getPredicatedBackedgeTakenCount(L
, Preds
);
13434 if (!isa
<SCEVCouldNotCompute
>(PBT
)) {
13435 OS
<< "Predicated backedge-taken count is " << *PBT
<< "\n";
13436 OS
<< " Predicates:\n";
13437 for (const auto *P
: Preds
)
13440 OS
<< "Unpredictable predicated backedge-taken count. ";
13444 if (SE
->hasLoopInvariantBackedgeTakenCount(L
)) {
13446 L
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13448 OS
<< "Trip multiple is " << SE
->getSmallConstantTripMultiple(L
) << "\n";
13453 raw_ostream
&operator<<(raw_ostream
&OS
, ScalarEvolution::LoopDisposition LD
) {
13455 case ScalarEvolution::LoopVariant
:
13458 case ScalarEvolution::LoopInvariant
:
13461 case ScalarEvolution::LoopComputable
:
13462 OS
<< "Computable";
13468 raw_ostream
&operator<<(raw_ostream
&OS
, ScalarEvolution::BlockDisposition BD
) {
13470 case ScalarEvolution::DoesNotDominateBlock
:
13471 OS
<< "DoesNotDominate";
13473 case ScalarEvolution::DominatesBlock
:
13476 case ScalarEvolution::ProperlyDominatesBlock
:
13477 OS
<< "ProperlyDominates";
13484 void ScalarEvolution::print(raw_ostream
&OS
) const {
13485 // ScalarEvolution's implementation of the print method is to print
13486 // out SCEV values of all instructions that are interesting. Doing
13487 // this potentially causes it to create new SCEV objects though,
13488 // which technically conflicts with the const qualifier. This isn't
13489 // observable from outside the class though, so casting away the
13490 // const isn't dangerous.
13491 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
13493 if (ClassifyExpressions
) {
13494 OS
<< "Classifying expressions for: ";
13495 F
.printAsOperand(OS
, /*PrintType=*/false);
13497 for (Instruction
&I
: instructions(F
))
13498 if (isSCEVable(I
.getType()) && !isa
<CmpInst
>(I
)) {
13501 const SCEV
*SV
= SE
.getSCEV(&I
);
13503 if (!isa
<SCEVCouldNotCompute
>(SV
)) {
13505 SE
.getUnsignedRange(SV
).print(OS
);
13507 SE
.getSignedRange(SV
).print(OS
);
13510 const Loop
*L
= LI
.getLoopFor(I
.getParent());
13512 const SCEV
*AtUse
= SE
.getSCEVAtScope(SV
, L
);
13516 if (!isa
<SCEVCouldNotCompute
>(AtUse
)) {
13518 SE
.getUnsignedRange(AtUse
).print(OS
);
13520 SE
.getSignedRange(AtUse
).print(OS
);
13525 OS
<< "\t\t" "Exits: ";
13526 const SCEV
*ExitValue
= SE
.getSCEVAtScope(SV
, L
->getParentLoop());
13527 if (!SE
.isLoopInvariant(ExitValue
, L
)) {
13528 OS
<< "<<Unknown>>";
13534 for (const auto *Iter
= L
; Iter
; Iter
= Iter
->getParentLoop()) {
13536 OS
<< "\t\t" "LoopDispositions: { ";
13542 Iter
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13543 OS
<< ": " << SE
.getLoopDisposition(SV
, Iter
);
13546 for (const auto *InnerL
: depth_first(L
)) {
13550 OS
<< "\t\t" "LoopDispositions: { ";
13556 InnerL
->getHeader()->printAsOperand(OS
, /*PrintType=*/false);
13557 OS
<< ": " << SE
.getLoopDisposition(SV
, InnerL
);
13567 OS
<< "Determining loop execution counts for: ";
13568 F
.printAsOperand(OS
, /*PrintType=*/false);
13571 PrintLoopInfo(OS
, &SE
, I
);
13574 ScalarEvolution::LoopDisposition
13575 ScalarEvolution::getLoopDisposition(const SCEV
*S
, const Loop
*L
) {
13576 auto &Values
= LoopDispositions
[S
];
13577 for (auto &V
: Values
) {
13578 if (V
.getPointer() == L
)
13581 Values
.emplace_back(L
, LoopVariant
);
13582 LoopDisposition D
= computeLoopDisposition(S
, L
);
13583 auto &Values2
= LoopDispositions
[S
];
13584 for (auto &V
: llvm::reverse(Values2
)) {
13585 if (V
.getPointer() == L
) {
13593 ScalarEvolution::LoopDisposition
13594 ScalarEvolution::computeLoopDisposition(const SCEV
*S
, const Loop
*L
) {
13595 switch (S
->getSCEVType()) {
13598 return LoopInvariant
;
13599 case scAddRecExpr
: {
13600 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(S
);
13602 // If L is the addrec's loop, it's computable.
13603 if (AR
->getLoop() == L
)
13604 return LoopComputable
;
13606 // Add recurrences are never invariant in the function-body (null loop).
13608 return LoopVariant
;
13610 // Everything that is not defined at loop entry is variant.
13611 if (DT
.dominates(L
->getHeader(), AR
->getLoop()->getHeader()))
13612 return LoopVariant
;
13613 assert(!L
->contains(AR
->getLoop()) && "Containing loop's header does not"
13614 " dominate the contained loop's header?");
13616 // This recurrence is invariant w.r.t. L if AR's loop contains L.
13617 if (AR
->getLoop()->contains(L
))
13618 return LoopInvariant
;
13620 // This recurrence is variant w.r.t. L if any of its operands
13622 for (const auto *Op
: AR
->operands())
13623 if (!isLoopInvariant(Op
, L
))
13624 return LoopVariant
;
13626 // Otherwise it's loop-invariant.
13627 return LoopInvariant
;
13640 case scSequentialUMinExpr
: {
13641 bool HasVarying
= false;
13642 for (const auto *Op
: S
->operands()) {
13643 LoopDisposition D
= getLoopDisposition(Op
, L
);
13644 if (D
== LoopVariant
)
13645 return LoopVariant
;
13646 if (D
== LoopComputable
)
13649 return HasVarying
? LoopComputable
: LoopInvariant
;
13652 // All non-instruction values are loop invariant. All instructions are loop
13653 // invariant if they are not contained in the specified loop.
13654 // Instructions are never considered invariant in the function body
13655 // (null loop) because they are defined within the "loop".
13656 if (auto *I
= dyn_cast
<Instruction
>(cast
<SCEVUnknown
>(S
)->getValue()))
13657 return (L
&& !L
->contains(I
)) ? LoopInvariant
: LoopVariant
;
13658 return LoopInvariant
;
13659 case scCouldNotCompute
:
13660 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13662 llvm_unreachable("Unknown SCEV kind!");
13665 bool ScalarEvolution::isLoopInvariant(const SCEV
*S
, const Loop
*L
) {
13666 return getLoopDisposition(S
, L
) == LoopInvariant
;
13669 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV
*S
, const Loop
*L
) {
13670 return getLoopDisposition(S
, L
) == LoopComputable
;
13673 ScalarEvolution::BlockDisposition
13674 ScalarEvolution::getBlockDisposition(const SCEV
*S
, const BasicBlock
*BB
) {
13675 auto &Values
= BlockDispositions
[S
];
13676 for (auto &V
: Values
) {
13677 if (V
.getPointer() == BB
)
13680 Values
.emplace_back(BB
, DoesNotDominateBlock
);
13681 BlockDisposition D
= computeBlockDisposition(S
, BB
);
13682 auto &Values2
= BlockDispositions
[S
];
13683 for (auto &V
: llvm::reverse(Values2
)) {
13684 if (V
.getPointer() == BB
) {
13692 ScalarEvolution::BlockDisposition
13693 ScalarEvolution::computeBlockDisposition(const SCEV
*S
, const BasicBlock
*BB
) {
13694 switch (S
->getSCEVType()) {
13697 return ProperlyDominatesBlock
;
13698 case scAddRecExpr
: {
13699 // This uses a "dominates" query instead of "properly dominates" query
13700 // to test for proper dominance too, because the instruction which
13701 // produces the addrec's value is a PHI, and a PHI effectively properly
13702 // dominates its entire containing block.
13703 const SCEVAddRecExpr
*AR
= cast
<SCEVAddRecExpr
>(S
);
13704 if (!DT
.dominates(AR
->getLoop()->getHeader(), BB
))
13705 return DoesNotDominateBlock
;
13707 // Fall through into SCEVNAryExpr handling.
13721 case scSequentialUMinExpr
: {
13722 bool Proper
= true;
13723 for (const SCEV
*NAryOp
: S
->operands()) {
13724 BlockDisposition D
= getBlockDisposition(NAryOp
, BB
);
13725 if (D
== DoesNotDominateBlock
)
13726 return DoesNotDominateBlock
;
13727 if (D
== DominatesBlock
)
13730 return Proper
? ProperlyDominatesBlock
: DominatesBlock
;
13733 if (Instruction
*I
=
13734 dyn_cast
<Instruction
>(cast
<SCEVUnknown
>(S
)->getValue())) {
13735 if (I
->getParent() == BB
)
13736 return DominatesBlock
;
13737 if (DT
.properlyDominates(I
->getParent(), BB
))
13738 return ProperlyDominatesBlock
;
13739 return DoesNotDominateBlock
;
13741 return ProperlyDominatesBlock
;
13742 case scCouldNotCompute
:
13743 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13745 llvm_unreachable("Unknown SCEV kind!");
13748 bool ScalarEvolution::dominates(const SCEV
*S
, const BasicBlock
*BB
) {
13749 return getBlockDisposition(S
, BB
) >= DominatesBlock
;
13752 bool ScalarEvolution::properlyDominates(const SCEV
*S
, const BasicBlock
*BB
) {
13753 return getBlockDisposition(S
, BB
) == ProperlyDominatesBlock
;
13756 bool ScalarEvolution::hasOperand(const SCEV
*S
, const SCEV
*Op
) const {
13757 return SCEVExprContains(S
, [&](const SCEV
*Expr
) { return Expr
== Op
; });
13760 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop
*L
,
13763 Predicated
? PredicatedBackedgeTakenCounts
: BackedgeTakenCounts
;
13764 auto It
= BECounts
.find(L
);
13765 if (It
!= BECounts
.end()) {
13766 for (const ExitNotTakenInfo
&ENT
: It
->second
.ExitNotTaken
) {
13767 for (const SCEV
*S
: {ENT
.ExactNotTaken
, ENT
.SymbolicMaxNotTaken
}) {
13768 if (!isa
<SCEVConstant
>(S
)) {
13769 auto UserIt
= BECountUsers
.find(S
);
13770 assert(UserIt
!= BECountUsers
.end());
13771 UserIt
->second
.erase({L
, Predicated
});
13775 BECounts
.erase(It
);
13779 void ScalarEvolution::forgetMemoizedResults(ArrayRef
<const SCEV
*> SCEVs
) {
13780 SmallPtrSet
<const SCEV
*, 8> ToForget(SCEVs
.begin(), SCEVs
.end());
13781 SmallVector
<const SCEV
*, 8> Worklist(ToForget
.begin(), ToForget
.end());
13783 while (!Worklist
.empty()) {
13784 const SCEV
*Curr
= Worklist
.pop_back_val();
13785 auto Users
= SCEVUsers
.find(Curr
);
13786 if (Users
!= SCEVUsers
.end())
13787 for (const auto *User
: Users
->second
)
13788 if (ToForget
.insert(User
).second
)
13789 Worklist
.push_back(User
);
13792 for (const auto *S
: ToForget
)
13793 forgetMemoizedResultsImpl(S
);
13795 for (auto I
= PredicatedSCEVRewrites
.begin();
13796 I
!= PredicatedSCEVRewrites
.end();) {
13797 std::pair
<const SCEV
*, const Loop
*> Entry
= I
->first
;
13798 if (ToForget
.count(Entry
.first
))
13799 PredicatedSCEVRewrites
.erase(I
++);
13805 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV
*S
) {
13806 LoopDispositions
.erase(S
);
13807 BlockDispositions
.erase(S
);
13808 UnsignedRanges
.erase(S
);
13809 SignedRanges
.erase(S
);
13810 HasRecMap
.erase(S
);
13811 ConstantMultipleCache
.erase(S
);
13813 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(S
)) {
13814 UnsignedWrapViaInductionTried
.erase(AR
);
13815 SignedWrapViaInductionTried
.erase(AR
);
13818 auto ExprIt
= ExprValueMap
.find(S
);
13819 if (ExprIt
!= ExprValueMap
.end()) {
13820 for (Value
*V
: ExprIt
->second
) {
13821 auto ValueIt
= ValueExprMap
.find_as(V
);
13822 if (ValueIt
!= ValueExprMap
.end())
13823 ValueExprMap
.erase(ValueIt
);
13825 ExprValueMap
.erase(ExprIt
);
13828 auto ScopeIt
= ValuesAtScopes
.find(S
);
13829 if (ScopeIt
!= ValuesAtScopes
.end()) {
13830 for (const auto &Pair
: ScopeIt
->second
)
13831 if (!isa_and_nonnull
<SCEVConstant
>(Pair
.second
))
13832 llvm::erase(ValuesAtScopesUsers
[Pair
.second
],
13833 std::make_pair(Pair
.first
, S
));
13834 ValuesAtScopes
.erase(ScopeIt
);
13837 auto ScopeUserIt
= ValuesAtScopesUsers
.find(S
);
13838 if (ScopeUserIt
!= ValuesAtScopesUsers
.end()) {
13839 for (const auto &Pair
: ScopeUserIt
->second
)
13840 llvm::erase(ValuesAtScopes
[Pair
.second
], std::make_pair(Pair
.first
, S
));
13841 ValuesAtScopesUsers
.erase(ScopeUserIt
);
13844 auto BEUsersIt
= BECountUsers
.find(S
);
13845 if (BEUsersIt
!= BECountUsers
.end()) {
13846 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13847 auto Copy
= BEUsersIt
->second
;
13848 for (const auto &Pair
: Copy
)
13849 forgetBackedgeTakenCounts(Pair
.getPointer(), Pair
.getInt());
13850 BECountUsers
.erase(BEUsersIt
);
13853 auto FoldUser
= FoldCacheUser
.find(S
);
13854 if (FoldUser
!= FoldCacheUser
.end())
13855 for (auto &KV
: FoldUser
->second
)
13856 FoldCache
.erase(KV
);
13857 FoldCacheUser
.erase(S
);
13861 ScalarEvolution::getUsedLoops(const SCEV
*S
,
13862 SmallPtrSetImpl
<const Loop
*> &LoopsUsed
) {
13863 struct FindUsedLoops
{
13864 FindUsedLoops(SmallPtrSetImpl
<const Loop
*> &LoopsUsed
)
13865 : LoopsUsed(LoopsUsed
) {}
13866 SmallPtrSetImpl
<const Loop
*> &LoopsUsed
;
13867 bool follow(const SCEV
*S
) {
13868 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(S
))
13869 LoopsUsed
.insert(AR
->getLoop());
13873 bool isDone() const { return false; }
13876 FindUsedLoops
F(LoopsUsed
);
13877 SCEVTraversal
<FindUsedLoops
>(F
).visitAll(S
);
13880 void ScalarEvolution::getReachableBlocks(
13881 SmallPtrSetImpl
<BasicBlock
*> &Reachable
, Function
&F
) {
13882 SmallVector
<BasicBlock
*> Worklist
;
13883 Worklist
.push_back(&F
.getEntryBlock());
13884 while (!Worklist
.empty()) {
13885 BasicBlock
*BB
= Worklist
.pop_back_val();
13886 if (!Reachable
.insert(BB
).second
)
13890 BasicBlock
*TrueBB
, *FalseBB
;
13891 if (match(BB
->getTerminator(), m_Br(m_Value(Cond
), m_BasicBlock(TrueBB
),
13892 m_BasicBlock(FalseBB
)))) {
13893 if (auto *C
= dyn_cast
<ConstantInt
>(Cond
)) {
13894 Worklist
.push_back(C
->isOne() ? TrueBB
: FalseBB
);
13898 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Cond
)) {
13899 const SCEV
*L
= getSCEV(Cmp
->getOperand(0));
13900 const SCEV
*R
= getSCEV(Cmp
->getOperand(1));
13901 if (isKnownPredicateViaConstantRanges(Cmp
->getPredicate(), L
, R
)) {
13902 Worklist
.push_back(TrueBB
);
13905 if (isKnownPredicateViaConstantRanges(Cmp
->getInversePredicate(), L
,
13907 Worklist
.push_back(FalseBB
);
13913 append_range(Worklist
, successors(BB
));
13917 void ScalarEvolution::verify() const {
13918 ScalarEvolution
&SE
= *const_cast<ScalarEvolution
*>(this);
13919 ScalarEvolution
SE2(F
, TLI
, AC
, DT
, LI
);
13921 SmallVector
<Loop
*, 8> LoopStack(LI
.begin(), LI
.end());
13923 // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13924 struct SCEVMapper
: public SCEVRewriteVisitor
<SCEVMapper
> {
13925 SCEVMapper(ScalarEvolution
&SE
) : SCEVRewriteVisitor
<SCEVMapper
>(SE
) {}
13927 const SCEV
*visitConstant(const SCEVConstant
*Constant
) {
13928 return SE
.getConstant(Constant
->getAPInt());
13931 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
13932 return SE
.getUnknown(Expr
->getValue());
13935 const SCEV
*visitCouldNotCompute(const SCEVCouldNotCompute
*Expr
) {
13936 return SE
.getCouldNotCompute();
13940 SCEVMapper
SCM(SE2
);
13941 SmallPtrSet
<BasicBlock
*, 16> ReachableBlocks
;
13942 SE2
.getReachableBlocks(ReachableBlocks
, F
);
13944 auto GetDelta
= [&](const SCEV
*Old
, const SCEV
*New
) -> const SCEV
* {
13945 if (containsUndefs(Old
) || containsUndefs(New
)) {
13946 // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13947 // not propagate undef aggressively). This means we can (and do) fail
13948 // verification in cases where a transform makes a value go from "undef"
13949 // to "undef+1" (say). The transform is fine, since in both cases the
13950 // result is "undef", but SCEV thinks the value increased by 1.
13954 // Unless VerifySCEVStrict is set, we only compare constant deltas.
13955 const SCEV
*Delta
= SE2
.getMinusSCEV(Old
, New
);
13956 if (!VerifySCEVStrict
&& !isa
<SCEVConstant
>(Delta
))
13962 while (!LoopStack
.empty()) {
13963 auto *L
= LoopStack
.pop_back_val();
13964 llvm::append_range(LoopStack
, *L
);
13966 // Only verify BECounts in reachable loops. For an unreachable loop,
13967 // any BECount is legal.
13968 if (!ReachableBlocks
.contains(L
->getHeader()))
13971 // Only verify cached BECounts. Computing new BECounts may change the
13972 // results of subsequent SCEV uses.
13973 auto It
= BackedgeTakenCounts
.find(L
);
13974 if (It
== BackedgeTakenCounts
.end())
13978 SCM
.visit(It
->second
.getExact(L
, const_cast<ScalarEvolution
*>(this)));
13979 auto *NewBECount
= SE2
.getBackedgeTakenCount(L
);
13981 if (CurBECount
== SE2
.getCouldNotCompute() ||
13982 NewBECount
== SE2
.getCouldNotCompute()) {
13983 // NB! This situation is legal, but is very suspicious -- whatever pass
13984 // change the loop to make a trip count go from could not compute to
13985 // computable or vice-versa *should have* invalidated SCEV. However, we
13986 // choose not to assert here (for now) since we don't want false
13991 if (SE
.getTypeSizeInBits(CurBECount
->getType()) >
13992 SE
.getTypeSizeInBits(NewBECount
->getType()))
13993 NewBECount
= SE2
.getZeroExtendExpr(NewBECount
, CurBECount
->getType());
13994 else if (SE
.getTypeSizeInBits(CurBECount
->getType()) <
13995 SE
.getTypeSizeInBits(NewBECount
->getType()))
13996 CurBECount
= SE2
.getZeroExtendExpr(CurBECount
, NewBECount
->getType());
13998 const SCEV
*Delta
= GetDelta(CurBECount
, NewBECount
);
13999 if (Delta
&& !Delta
->isZero()) {
14000 dbgs() << "Trip Count for " << *L
<< " Changed!\n";
14001 dbgs() << "Old: " << *CurBECount
<< "\n";
14002 dbgs() << "New: " << *NewBECount
<< "\n";
14003 dbgs() << "Delta: " << *Delta
<< "\n";
14008 // Collect all valid loops currently in LoopInfo.
14009 SmallPtrSet
<Loop
*, 32> ValidLoops
;
14010 SmallVector
<Loop
*, 32> Worklist(LI
.begin(), LI
.end());
14011 while (!Worklist
.empty()) {
14012 Loop
*L
= Worklist
.pop_back_val();
14013 if (ValidLoops
.insert(L
).second
)
14014 Worklist
.append(L
->begin(), L
->end());
14016 for (const auto &KV
: ValueExprMap
) {
14018 // Check for SCEV expressions referencing invalid/deleted loops.
14019 if (auto *AR
= dyn_cast
<SCEVAddRecExpr
>(KV
.second
)) {
14020 assert(ValidLoops
.contains(AR
->getLoop()) &&
14021 "AddRec references invalid loop");
14025 // Check that the value is also part of the reverse map.
14026 auto It
= ExprValueMap
.find(KV
.second
);
14027 if (It
== ExprValueMap
.end() || !It
->second
.contains(KV
.first
)) {
14028 dbgs() << "Value " << *KV
.first
14029 << " is in ValueExprMap but not in ExprValueMap\n";
14033 if (auto *I
= dyn_cast
<Instruction
>(&*KV
.first
)) {
14034 if (!ReachableBlocks
.contains(I
->getParent()))
14036 const SCEV
*OldSCEV
= SCM
.visit(KV
.second
);
14037 const SCEV
*NewSCEV
= SE2
.getSCEV(I
);
14038 const SCEV
*Delta
= GetDelta(OldSCEV
, NewSCEV
);
14039 if (Delta
&& !Delta
->isZero()) {
14040 dbgs() << "SCEV for value " << *I
<< " changed!\n"
14041 << "Old: " << *OldSCEV
<< "\n"
14042 << "New: " << *NewSCEV
<< "\n"
14043 << "Delta: " << *Delta
<< "\n";
14049 for (const auto &KV
: ExprValueMap
) {
14050 for (Value
*V
: KV
.second
) {
14051 auto It
= ValueExprMap
.find_as(V
);
14052 if (It
== ValueExprMap
.end()) {
14053 dbgs() << "Value " << *V
14054 << " is in ExprValueMap but not in ValueExprMap\n";
14057 if (It
->second
!= KV
.first
) {
14058 dbgs() << "Value " << *V
<< " mapped to " << *It
->second
14059 << " rather than " << *KV
.first
<< "\n";
14065 // Verify integrity of SCEV users.
14066 for (const auto &S
: UniqueSCEVs
) {
14067 for (const auto *Op
: S
.operands()) {
14068 // We do not store dependencies of constants.
14069 if (isa
<SCEVConstant
>(Op
))
14071 auto It
= SCEVUsers
.find(Op
);
14072 if (It
!= SCEVUsers
.end() && It
->second
.count(&S
))
14074 dbgs() << "Use of operand " << *Op
<< " by user " << S
14075 << " is not being tracked!\n";
14080 // Verify integrity of ValuesAtScopes users.
14081 for (const auto &ValueAndVec
: ValuesAtScopes
) {
14082 const SCEV
*Value
= ValueAndVec
.first
;
14083 for (const auto &LoopAndValueAtScope
: ValueAndVec
.second
) {
14084 const Loop
*L
= LoopAndValueAtScope
.first
;
14085 const SCEV
*ValueAtScope
= LoopAndValueAtScope
.second
;
14086 if (!isa
<SCEVConstant
>(ValueAtScope
)) {
14087 auto It
= ValuesAtScopesUsers
.find(ValueAtScope
);
14088 if (It
!= ValuesAtScopesUsers
.end() &&
14089 is_contained(It
->second
, std::make_pair(L
, Value
)))
14091 dbgs() << "Value: " << *Value
<< ", Loop: " << *L
<< ", ValueAtScope: "
14092 << *ValueAtScope
<< " missing in ValuesAtScopesUsers\n";
14098 for (const auto &ValueAtScopeAndVec
: ValuesAtScopesUsers
) {
14099 const SCEV
*ValueAtScope
= ValueAtScopeAndVec
.first
;
14100 for (const auto &LoopAndValue
: ValueAtScopeAndVec
.second
) {
14101 const Loop
*L
= LoopAndValue
.first
;
14102 const SCEV
*Value
= LoopAndValue
.second
;
14103 assert(!isa
<SCEVConstant
>(Value
));
14104 auto It
= ValuesAtScopes
.find(Value
);
14105 if (It
!= ValuesAtScopes
.end() &&
14106 is_contained(It
->second
, std::make_pair(L
, ValueAtScope
)))
14108 dbgs() << "Value: " << *Value
<< ", Loop: " << *L
<< ", ValueAtScope: "
14109 << *ValueAtScope
<< " missing in ValuesAtScopes\n";
14114 // Verify integrity of BECountUsers.
14115 auto VerifyBECountUsers
= [&](bool Predicated
) {
14117 Predicated
? PredicatedBackedgeTakenCounts
: BackedgeTakenCounts
;
14118 for (const auto &LoopAndBEInfo
: BECounts
) {
14119 for (const ExitNotTakenInfo
&ENT
: LoopAndBEInfo
.second
.ExitNotTaken
) {
14120 for (const SCEV
*S
: {ENT
.ExactNotTaken
, ENT
.SymbolicMaxNotTaken
}) {
14121 if (!isa
<SCEVConstant
>(S
)) {
14122 auto UserIt
= BECountUsers
.find(S
);
14123 if (UserIt
!= BECountUsers
.end() &&
14124 UserIt
->second
.contains({ LoopAndBEInfo
.first
, Predicated
}))
14126 dbgs() << "Value " << *S
<< " for loop " << *LoopAndBEInfo
.first
14127 << " missing from BECountUsers\n";
14134 VerifyBECountUsers(/* Predicated */ false);
14135 VerifyBECountUsers(/* Predicated */ true);
14137 // Verify intergity of loop disposition cache.
14138 for (auto &[S
, Values
] : LoopDispositions
) {
14139 for (auto [Loop
, CachedDisposition
] : Values
) {
14140 const auto RecomputedDisposition
= SE2
.getLoopDisposition(S
, Loop
);
14141 if (CachedDisposition
!= RecomputedDisposition
) {
14142 dbgs() << "Cached disposition of " << *S
<< " for loop " << *Loop
14143 << " is incorrect: cached " << CachedDisposition
<< ", actual "
14144 << RecomputedDisposition
<< "\n";
14150 // Verify integrity of the block disposition cache.
14151 for (auto &[S
, Values
] : BlockDispositions
) {
14152 for (auto [BB
, CachedDisposition
] : Values
) {
14153 const auto RecomputedDisposition
= SE2
.getBlockDisposition(S
, BB
);
14154 if (CachedDisposition
!= RecomputedDisposition
) {
14155 dbgs() << "Cached disposition of " << *S
<< " for block %"
14156 << BB
->getName() << " is incorrect: cached " << CachedDisposition
14157 << ", actual " << RecomputedDisposition
<< "\n";
14163 // Verify FoldCache/FoldCacheUser caches.
14164 for (auto [FoldID
, Expr
] : FoldCache
) {
14165 auto I
= FoldCacheUser
.find(Expr
);
14166 if (I
== FoldCacheUser
.end()) {
14167 dbgs() << "Missing entry in FoldCacheUser for cached expression " << *Expr
14171 if (!is_contained(I
->second
, FoldID
)) {
14172 dbgs() << "Missing FoldID in cached users of " << *Expr
<< "!\n";
14176 for (auto [Expr
, IDs
] : FoldCacheUser
) {
14177 for (auto &FoldID
: IDs
) {
14178 auto I
= FoldCache
.find(FoldID
);
14179 if (I
== FoldCache
.end()) {
14180 dbgs() << "Missing entry in FoldCache for expression " << *Expr
14184 if (I
->second
!= Expr
) {
14185 dbgs() << "Entry in FoldCache doesn't match FoldCacheUser: "
14186 << *I
->second
<< " != " << *Expr
<< "!\n";
14192 // Verify that ConstantMultipleCache computations are correct. We check that
14193 // cached multiples and recomputed multiples are multiples of each other to
14194 // verify correctness. It is possible that a recomputed multiple is different
14195 // from the cached multiple due to strengthened no wrap flags or changes in
14196 // KnownBits computations.
14197 for (auto [S
, Multiple
] : ConstantMultipleCache
) {
14198 APInt RecomputedMultiple
= SE2
.getConstantMultiple(S
);
14199 if ((Multiple
!= 0 && RecomputedMultiple
!= 0 &&
14200 Multiple
.urem(RecomputedMultiple
) != 0 &&
14201 RecomputedMultiple
.urem(Multiple
) != 0)) {
14202 dbgs() << "Incorrect cached computation in ConstantMultipleCache for "
14203 << *S
<< " : Computed " << RecomputedMultiple
14204 << " but cache contains " << Multiple
<< "!\n";
14210 bool ScalarEvolution::invalidate(
14211 Function
&F
, const PreservedAnalyses
&PA
,
14212 FunctionAnalysisManager::Invalidator
&Inv
) {
14213 // Invalidate the ScalarEvolution object whenever it isn't preserved or one
14214 // of its dependencies is invalidated.
14215 auto PAC
= PA
.getChecker
<ScalarEvolutionAnalysis
>();
14216 return !(PAC
.preserved() || PAC
.preservedSet
<AllAnalysesOn
<Function
>>()) ||
14217 Inv
.invalidate
<AssumptionAnalysis
>(F
, PA
) ||
14218 Inv
.invalidate
<DominatorTreeAnalysis
>(F
, PA
) ||
14219 Inv
.invalidate
<LoopAnalysis
>(F
, PA
);
14222 AnalysisKey
ScalarEvolutionAnalysis::Key
;
14224 ScalarEvolution
ScalarEvolutionAnalysis::run(Function
&F
,
14225 FunctionAnalysisManager
&AM
) {
14226 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
14227 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
14228 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
14229 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
14230 return ScalarEvolution(F
, TLI
, AC
, DT
, LI
);
14234 ScalarEvolutionVerifierPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
14235 AM
.getResult
<ScalarEvolutionAnalysis
>(F
).verify();
14236 return PreservedAnalyses::all();
14240 ScalarEvolutionPrinterPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
14241 // For compatibility with opt's -analyze feature under legacy pass manager
14242 // which was not ported to NPM. This keeps tests using
14243 // update_analyze_test_checks.py working.
14244 OS
<< "Printing analysis 'Scalar Evolution Analysis' for function '"
14245 << F
.getName() << "':\n";
14246 AM
.getResult
<ScalarEvolutionAnalysis
>(F
).print(OS
);
14247 return PreservedAnalyses::all();
14250 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass
, "scalar-evolution",
14251 "Scalar Evolution Analysis", false, true)
14252 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
14253 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
14254 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
14255 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
14256 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass
, "scalar-evolution",
14257 "Scalar Evolution Analysis", false, true)
14259 char ScalarEvolutionWrapperPass::ID
= 0;
14261 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID
) {
14262 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
14265 bool ScalarEvolutionWrapperPass::runOnFunction(Function
&F
) {
14266 SE
.reset(new ScalarEvolution(
14267 F
, getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
),
14268 getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
),
14269 getAnalysis
<DominatorTreeWrapperPass
>().getDomTree(),
14270 getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo()));
14274 void ScalarEvolutionWrapperPass::releaseMemory() { SE
.reset(); }
14276 void ScalarEvolutionWrapperPass::print(raw_ostream
&OS
, const Module
*) const {
14280 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
14287 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
14288 AU
.setPreservesAll();
14289 AU
.addRequiredTransitive
<AssumptionCacheTracker
>();
14290 AU
.addRequiredTransitive
<LoopInfoWrapperPass
>();
14291 AU
.addRequiredTransitive
<DominatorTreeWrapperPass
>();
14292 AU
.addRequiredTransitive
<TargetLibraryInfoWrapperPass
>();
14295 const SCEVPredicate
*ScalarEvolution::getEqualPredicate(const SCEV
*LHS
,
14297 return getComparePredicate(ICmpInst::ICMP_EQ
, LHS
, RHS
);
14300 const SCEVPredicate
*
14301 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred
,
14302 const SCEV
*LHS
, const SCEV
*RHS
) {
14303 FoldingSetNodeID ID
;
14304 assert(LHS
->getType() == RHS
->getType() &&
14305 "Type mismatch between LHS and RHS");
14306 // Unique this node based on the arguments
14307 ID
.AddInteger(SCEVPredicate::P_Compare
);
14308 ID
.AddInteger(Pred
);
14309 ID
.AddPointer(LHS
);
14310 ID
.AddPointer(RHS
);
14311 void *IP
= nullptr;
14312 if (const auto *S
= UniquePreds
.FindNodeOrInsertPos(ID
, IP
))
14314 SCEVComparePredicate
*Eq
= new (SCEVAllocator
)
14315 SCEVComparePredicate(ID
.Intern(SCEVAllocator
), Pred
, LHS
, RHS
);
14316 UniquePreds
.InsertNode(Eq
, IP
);
14320 const SCEVPredicate
*ScalarEvolution::getWrapPredicate(
14321 const SCEVAddRecExpr
*AR
,
14322 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
) {
14323 FoldingSetNodeID ID
;
14324 // Unique this node based on the arguments
14325 ID
.AddInteger(SCEVPredicate::P_Wrap
);
14327 ID
.AddInteger(AddedFlags
);
14328 void *IP
= nullptr;
14329 if (const auto *S
= UniquePreds
.FindNodeOrInsertPos(ID
, IP
))
14331 auto *OF
= new (SCEVAllocator
)
14332 SCEVWrapPredicate(ID
.Intern(SCEVAllocator
), AR
, AddedFlags
);
14333 UniquePreds
.InsertNode(OF
, IP
);
14339 class SCEVPredicateRewriter
: public SCEVRewriteVisitor
<SCEVPredicateRewriter
> {
14342 /// Rewrites \p S in the context of a loop L and the SCEV predication
14343 /// infrastructure.
14345 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
14346 /// equivalences present in \p Pred.
14348 /// If \p NewPreds is non-null, rewrite is free to add further predicates to
14349 /// \p NewPreds such that the result will be an AddRecExpr.
14350 static const SCEV
*rewrite(const SCEV
*S
, const Loop
*L
, ScalarEvolution
&SE
,
14351 SmallPtrSetImpl
<const SCEVPredicate
*> *NewPreds
,
14352 const SCEVPredicate
*Pred
) {
14353 SCEVPredicateRewriter
Rewriter(L
, SE
, NewPreds
, Pred
);
14354 return Rewriter
.visit(S
);
14357 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
14359 if (auto *U
= dyn_cast
<SCEVUnionPredicate
>(Pred
)) {
14360 for (const auto *Pred
: U
->getPredicates())
14361 if (const auto *IPred
= dyn_cast
<SCEVComparePredicate
>(Pred
))
14362 if (IPred
->getLHS() == Expr
&&
14363 IPred
->getPredicate() == ICmpInst::ICMP_EQ
)
14364 return IPred
->getRHS();
14365 } else if (const auto *IPred
= dyn_cast
<SCEVComparePredicate
>(Pred
)) {
14366 if (IPred
->getLHS() == Expr
&&
14367 IPred
->getPredicate() == ICmpInst::ICMP_EQ
)
14368 return IPred
->getRHS();
14371 return convertToAddRecWithPreds(Expr
);
14374 const SCEV
*visitZeroExtendExpr(const SCEVZeroExtendExpr
*Expr
) {
14375 const SCEV
*Operand
= visit(Expr
->getOperand());
14376 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Operand
);
14377 if (AR
&& AR
->getLoop() == L
&& AR
->isAffine()) {
14378 // This couldn't be folded because the operand didn't have the nuw
14379 // flag. Add the nusw flag as an assumption that we could make.
14380 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
14381 Type
*Ty
= Expr
->getType();
14382 if (addOverflowAssumption(AR
, SCEVWrapPredicate::IncrementNUSW
))
14383 return SE
.getAddRecExpr(SE
.getZeroExtendExpr(AR
->getStart(), Ty
),
14384 SE
.getSignExtendExpr(Step
, Ty
), L
,
14385 AR
->getNoWrapFlags());
14387 return SE
.getZeroExtendExpr(Operand
, Expr
->getType());
14390 const SCEV
*visitSignExtendExpr(const SCEVSignExtendExpr
*Expr
) {
14391 const SCEV
*Operand
= visit(Expr
->getOperand());
14392 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(Operand
);
14393 if (AR
&& AR
->getLoop() == L
&& AR
->isAffine()) {
14394 // This couldn't be folded because the operand didn't have the nsw
14395 // flag. Add the nssw flag as an assumption that we could make.
14396 const SCEV
*Step
= AR
->getStepRecurrence(SE
);
14397 Type
*Ty
= Expr
->getType();
14398 if (addOverflowAssumption(AR
, SCEVWrapPredicate::IncrementNSSW
))
14399 return SE
.getAddRecExpr(SE
.getSignExtendExpr(AR
->getStart(), Ty
),
14400 SE
.getSignExtendExpr(Step
, Ty
), L
,
14401 AR
->getNoWrapFlags());
14403 return SE
.getSignExtendExpr(Operand
, Expr
->getType());
14407 explicit SCEVPredicateRewriter(const Loop
*L
, ScalarEvolution
&SE
,
14408 SmallPtrSetImpl
<const SCEVPredicate
*> *NewPreds
,
14409 const SCEVPredicate
*Pred
)
14410 : SCEVRewriteVisitor(SE
), NewPreds(NewPreds
), Pred(Pred
), L(L
) {}
14412 bool addOverflowAssumption(const SCEVPredicate
*P
) {
14414 // Check if we've already made this assumption.
14415 return Pred
&& Pred
->implies(P
);
14417 NewPreds
->insert(P
);
14421 bool addOverflowAssumption(const SCEVAddRecExpr
*AR
,
14422 SCEVWrapPredicate::IncrementWrapFlags AddedFlags
) {
14423 auto *A
= SE
.getWrapPredicate(AR
, AddedFlags
);
14424 return addOverflowAssumption(A
);
14427 // If \p Expr represents a PHINode, we try to see if it can be represented
14428 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
14429 // to add this predicate as a runtime overflow check, we return the AddRec.
14430 // If \p Expr does not meet these conditions (is not a PHI node, or we
14431 // couldn't create an AddRec for it, or couldn't add the predicate), we just
14433 const SCEV
*convertToAddRecWithPreds(const SCEVUnknown
*Expr
) {
14434 if (!isa
<PHINode
>(Expr
->getValue()))
14437 std::pair
<const SCEV
*, SmallVector
<const SCEVPredicate
*, 3>>>
14438 PredicatedRewrite
= SE
.createAddRecFromPHIWithCasts(Expr
);
14439 if (!PredicatedRewrite
)
14441 for (const auto *P
: PredicatedRewrite
->second
){
14442 // Wrap predicates from outer loops are not supported.
14443 if (auto *WP
= dyn_cast
<const SCEVWrapPredicate
>(P
)) {
14444 if (L
!= WP
->getExpr()->getLoop())
14447 if (!addOverflowAssumption(P
))
14450 return PredicatedRewrite
->first
;
14453 SmallPtrSetImpl
<const SCEVPredicate
*> *NewPreds
;
14454 const SCEVPredicate
*Pred
;
14458 } // end anonymous namespace
14461 ScalarEvolution::rewriteUsingPredicate(const SCEV
*S
, const Loop
*L
,
14462 const SCEVPredicate
&Preds
) {
14463 return SCEVPredicateRewriter::rewrite(S
, L
, *this, nullptr, &Preds
);
14466 const SCEVAddRecExpr
*ScalarEvolution::convertSCEVToAddRecWithPredicates(
14467 const SCEV
*S
, const Loop
*L
,
14468 SmallPtrSetImpl
<const SCEVPredicate
*> &Preds
) {
14469 SmallPtrSet
<const SCEVPredicate
*, 4> TransformPreds
;
14470 S
= SCEVPredicateRewriter::rewrite(S
, L
, *this, &TransformPreds
, nullptr);
14471 auto *AddRec
= dyn_cast
<SCEVAddRecExpr
>(S
);
14476 // Since the transformation was successful, we can now transfer the SCEV
14478 for (const auto *P
: TransformPreds
)
14484 /// SCEV predicates
14485 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID
,
14486 SCEVPredicateKind Kind
)
14487 : FastID(ID
), Kind(Kind
) {}
14489 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID
,
14490 const ICmpInst::Predicate Pred
,
14491 const SCEV
*LHS
, const SCEV
*RHS
)
14492 : SCEVPredicate(ID
, P_Compare
), Pred(Pred
), LHS(LHS
), RHS(RHS
) {
14493 assert(LHS
->getType() == RHS
->getType() && "LHS and RHS types don't match");
14494 assert(LHS
!= RHS
&& "LHS and RHS are the same SCEV");
14497 bool SCEVComparePredicate::implies(const SCEVPredicate
*N
) const {
14498 const auto *Op
= dyn_cast
<SCEVComparePredicate
>(N
);
14503 if (Pred
!= ICmpInst::ICMP_EQ
)
14506 return Op
->LHS
== LHS
&& Op
->RHS
== RHS
;
14509 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
14511 void SCEVComparePredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
14512 if (Pred
== ICmpInst::ICMP_EQ
)
14513 OS
.indent(Depth
) << "Equal predicate: " << *LHS
<< " == " << *RHS
<< "\n";
14515 OS
.indent(Depth
) << "Compare predicate: " << *LHS
<< " " << Pred
<< ") "
14520 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID
,
14521 const SCEVAddRecExpr
*AR
,
14522 IncrementWrapFlags Flags
)
14523 : SCEVPredicate(ID
, P_Wrap
), AR(AR
), Flags(Flags
) {}
14525 const SCEVAddRecExpr
*SCEVWrapPredicate::getExpr() const { return AR
; }
14527 bool SCEVWrapPredicate::implies(const SCEVPredicate
*N
) const {
14528 const auto *Op
= dyn_cast
<SCEVWrapPredicate
>(N
);
14530 return Op
&& Op
->AR
== AR
&& setFlags(Flags
, Op
->Flags
) == Flags
;
14533 bool SCEVWrapPredicate::isAlwaysTrue() const {
14534 SCEV::NoWrapFlags ScevFlags
= AR
->getNoWrapFlags();
14535 IncrementWrapFlags IFlags
= Flags
;
14537 if (ScalarEvolution::setFlags(ScevFlags
, SCEV::FlagNSW
) == ScevFlags
)
14538 IFlags
= clearFlags(IFlags
, IncrementNSSW
);
14540 return IFlags
== IncrementAnyWrap
;
14543 void SCEVWrapPredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
14544 OS
.indent(Depth
) << *getExpr() << " Added Flags: ";
14545 if (SCEVWrapPredicate::IncrementNUSW
& getFlags())
14547 if (SCEVWrapPredicate::IncrementNSSW
& getFlags())
14552 SCEVWrapPredicate::IncrementWrapFlags
14553 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr
*AR
,
14554 ScalarEvolution
&SE
) {
14555 IncrementWrapFlags ImpliedFlags
= IncrementAnyWrap
;
14556 SCEV::NoWrapFlags StaticFlags
= AR
->getNoWrapFlags();
14558 // We can safely transfer the NSW flag as NSSW.
14559 if (ScalarEvolution::setFlags(StaticFlags
, SCEV::FlagNSW
) == StaticFlags
)
14560 ImpliedFlags
= IncrementNSSW
;
14562 if (ScalarEvolution::setFlags(StaticFlags
, SCEV::FlagNUW
) == StaticFlags
) {
14563 // If the increment is positive, the SCEV NUW flag will also imply the
14564 // WrapPredicate NUSW flag.
14565 if (const auto *Step
= dyn_cast
<SCEVConstant
>(AR
->getStepRecurrence(SE
)))
14566 if (Step
->getValue()->getValue().isNonNegative())
14567 ImpliedFlags
= setFlags(ImpliedFlags
, IncrementNUSW
);
14570 return ImpliedFlags
;
14573 /// Union predicates don't get cached so create a dummy set ID for it.
14574 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef
<const SCEVPredicate
*> Preds
)
14575 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union
) {
14576 for (const auto *P
: Preds
)
14580 bool SCEVUnionPredicate::isAlwaysTrue() const {
14581 return all_of(Preds
,
14582 [](const SCEVPredicate
*I
) { return I
->isAlwaysTrue(); });
14585 bool SCEVUnionPredicate::implies(const SCEVPredicate
*N
) const {
14586 if (const auto *Set
= dyn_cast
<SCEVUnionPredicate
>(N
))
14587 return all_of(Set
->Preds
,
14588 [this](const SCEVPredicate
*I
) { return this->implies(I
); });
14590 return any_of(Preds
,
14591 [N
](const SCEVPredicate
*I
) { return I
->implies(N
); });
14594 void SCEVUnionPredicate::print(raw_ostream
&OS
, unsigned Depth
) const {
14595 for (const auto *Pred
: Preds
)
14596 Pred
->print(OS
, Depth
);
14599 void SCEVUnionPredicate::add(const SCEVPredicate
*N
) {
14600 if (const auto *Set
= dyn_cast
<SCEVUnionPredicate
>(N
)) {
14601 for (const auto *Pred
: Set
->Preds
)
14606 Preds
.push_back(N
);
14609 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution
&SE
,
14612 SmallVector
<const SCEVPredicate
*, 4> Empty
;
14613 Preds
= std::make_unique
<SCEVUnionPredicate
>(Empty
);
14616 void ScalarEvolution::registerUser(const SCEV
*User
,
14617 ArrayRef
<const SCEV
*> Ops
) {
14618 for (const auto *Op
: Ops
)
14619 // We do not expect that forgetting cached data for SCEVConstants will ever
14620 // open any prospects for sharpening or introduce any correctness issues,
14621 // so we don't bother storing their dependencies.
14622 if (!isa
<SCEVConstant
>(Op
))
14623 SCEVUsers
[Op
].insert(User
);
14626 const SCEV
*PredicatedScalarEvolution::getSCEV(Value
*V
) {
14627 const SCEV
*Expr
= SE
.getSCEV(V
);
14628 RewriteEntry
&Entry
= RewriteMap
[Expr
];
14630 // If we already have an entry and the version matches, return it.
14631 if (Entry
.second
&& Generation
== Entry
.first
)
14632 return Entry
.second
;
14634 // We found an entry but it's stale. Rewrite the stale entry
14635 // according to the current predicate.
14637 Expr
= Entry
.second
;
14639 const SCEV
*NewSCEV
= SE
.rewriteUsingPredicate(Expr
, &L
, *Preds
);
14640 Entry
= {Generation
, NewSCEV
};
14645 const SCEV
*PredicatedScalarEvolution::getBackedgeTakenCount() {
14646 if (!BackedgeCount
) {
14647 SmallVector
<const SCEVPredicate
*, 4> Preds
;
14648 BackedgeCount
= SE
.getPredicatedBackedgeTakenCount(&L
, Preds
);
14649 for (const auto *P
: Preds
)
14652 return BackedgeCount
;
14655 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate
&Pred
) {
14656 if (Preds
->implies(&Pred
))
14659 auto &OldPreds
= Preds
->getPredicates();
14660 SmallVector
<const SCEVPredicate
*, 4> NewPreds(OldPreds
.begin(), OldPreds
.end());
14661 NewPreds
.push_back(&Pred
);
14662 Preds
= std::make_unique
<SCEVUnionPredicate
>(NewPreds
);
14663 updateGeneration();
14666 const SCEVPredicate
&PredicatedScalarEvolution::getPredicate() const {
14670 void PredicatedScalarEvolution::updateGeneration() {
14671 // If the generation number wrapped recompute everything.
14672 if (++Generation
== 0) {
14673 for (auto &II
: RewriteMap
) {
14674 const SCEV
*Rewritten
= II
.second
.second
;
14675 II
.second
= {Generation
, SE
.rewriteUsingPredicate(Rewritten
, &L
, *Preds
)};
14680 void PredicatedScalarEvolution::setNoOverflow(
14681 Value
*V
, SCEVWrapPredicate::IncrementWrapFlags Flags
) {
14682 const SCEV
*Expr
= getSCEV(V
);
14683 const auto *AR
= cast
<SCEVAddRecExpr
>(Expr
);
14685 auto ImpliedFlags
= SCEVWrapPredicate::getImpliedFlags(AR
, SE
);
14687 // Clear the statically implied flags.
14688 Flags
= SCEVWrapPredicate::clearFlags(Flags
, ImpliedFlags
);
14689 addPredicate(*SE
.getWrapPredicate(AR
, Flags
));
14691 auto II
= FlagsMap
.insert({V
, Flags
});
14693 II
.first
->second
= SCEVWrapPredicate::setFlags(Flags
, II
.first
->second
);
14696 bool PredicatedScalarEvolution::hasNoOverflow(
14697 Value
*V
, SCEVWrapPredicate::IncrementWrapFlags Flags
) {
14698 const SCEV
*Expr
= getSCEV(V
);
14699 const auto *AR
= cast
<SCEVAddRecExpr
>(Expr
);
14701 Flags
= SCEVWrapPredicate::clearFlags(
14702 Flags
, SCEVWrapPredicate::getImpliedFlags(AR
, SE
));
14704 auto II
= FlagsMap
.find(V
);
14706 if (II
!= FlagsMap
.end())
14707 Flags
= SCEVWrapPredicate::clearFlags(Flags
, II
->second
);
14709 return Flags
== SCEVWrapPredicate::IncrementAnyWrap
;
14712 const SCEVAddRecExpr
*PredicatedScalarEvolution::getAsAddRec(Value
*V
) {
14713 const SCEV
*Expr
= this->getSCEV(V
);
14714 SmallPtrSet
<const SCEVPredicate
*, 4> NewPreds
;
14715 auto *New
= SE
.convertSCEVToAddRecWithPredicates(Expr
, &L
, NewPreds
);
14720 for (const auto *P
: NewPreds
)
14723 RewriteMap
[SE
.getSCEV(V
)] = {Generation
, New
};
14727 PredicatedScalarEvolution::PredicatedScalarEvolution(
14728 const PredicatedScalarEvolution
&Init
)
14729 : RewriteMap(Init
.RewriteMap
), SE(Init
.SE
), L(Init
.L
),
14730 Preds(std::make_unique
<SCEVUnionPredicate
>(Init
.Preds
->getPredicates())),
14731 Generation(Init
.Generation
), BackedgeCount(Init
.BackedgeCount
) {
14732 for (auto I
: Init
.FlagsMap
)
14733 FlagsMap
.insert(I
);
14736 void PredicatedScalarEvolution::print(raw_ostream
&OS
, unsigned Depth
) const {
14738 for (auto *BB
: L
.getBlocks())
14739 for (auto &I
: *BB
) {
14740 if (!SE
.isSCEVable(I
.getType()))
14743 auto *Expr
= SE
.getSCEV(&I
);
14744 auto II
= RewriteMap
.find(Expr
);
14746 if (II
== RewriteMap
.end())
14749 // Don't print things that are not interesting.
14750 if (II
->second
.second
== Expr
)
14753 OS
.indent(Depth
) << "[PSE]" << I
<< ":\n";
14754 OS
.indent(Depth
+ 2) << *Expr
<< "\n";
14755 OS
.indent(Depth
+ 2) << "--> " << *II
->second
.second
<< "\n";
14759 // Match the mathematical pattern A - (A / B) * B, where A and B can be
14760 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
14761 // for URem with constant power-of-2 second operands.
14762 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
14763 // 4, A / B becomes X / 8).
14764 bool ScalarEvolution::matchURem(const SCEV
*Expr
, const SCEV
*&LHS
,
14765 const SCEV
*&RHS
) {
14766 // Try to match 'zext (trunc A to iB) to iY', which is used
14767 // for URem with constant power-of-2 second operands. Make sure the size of
14768 // the operand A matches the size of the whole expressions.
14769 if (const auto *ZExt
= dyn_cast
<SCEVZeroExtendExpr
>(Expr
))
14770 if (const auto *Trunc
= dyn_cast
<SCEVTruncateExpr
>(ZExt
->getOperand(0))) {
14771 LHS
= Trunc
->getOperand();
14772 // Bail out if the type of the LHS is larger than the type of the
14773 // expression for now.
14774 if (getTypeSizeInBits(LHS
->getType()) >
14775 getTypeSizeInBits(Expr
->getType()))
14777 if (LHS
->getType() != Expr
->getType())
14778 LHS
= getZeroExtendExpr(LHS
, Expr
->getType());
14779 RHS
= getConstant(APInt(getTypeSizeInBits(Expr
->getType()), 1)
14780 << getTypeSizeInBits(Trunc
->getType()));
14783 const auto *Add
= dyn_cast
<SCEVAddExpr
>(Expr
);
14784 if (Add
== nullptr || Add
->getNumOperands() != 2)
14787 const SCEV
*A
= Add
->getOperand(1);
14788 const auto *Mul
= dyn_cast
<SCEVMulExpr
>(Add
->getOperand(0));
14790 if (Mul
== nullptr)
14793 const auto MatchURemWithDivisor
= [&](const SCEV
*B
) {
14794 // (SomeExpr + (-(SomeExpr / B) * B)).
14795 if (Expr
== getURemExpr(A
, B
)) {
14803 // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14804 if (Mul
->getNumOperands() == 3 && isa
<SCEVConstant
>(Mul
->getOperand(0)))
14805 return MatchURemWithDivisor(Mul
->getOperand(1)) ||
14806 MatchURemWithDivisor(Mul
->getOperand(2));
14808 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14809 if (Mul
->getNumOperands() == 2)
14810 return MatchURemWithDivisor(Mul
->getOperand(1)) ||
14811 MatchURemWithDivisor(Mul
->getOperand(0)) ||
14812 MatchURemWithDivisor(getNegativeSCEV(Mul
->getOperand(1))) ||
14813 MatchURemWithDivisor(getNegativeSCEV(Mul
->getOperand(0)));
14818 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop
*L
) {
14819 SmallVector
<BasicBlock
*, 16> ExitingBlocks
;
14820 L
->getExitingBlocks(ExitingBlocks
);
14822 // Form an expression for the maximum exit count possible for this loop. We
14823 // merge the max and exact information to approximate a version of
14824 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14825 SmallVector
<const SCEV
*, 4> ExitCounts
;
14826 for (BasicBlock
*ExitingBB
: ExitingBlocks
) {
14827 const SCEV
*ExitCount
=
14828 getExitCount(L
, ExitingBB
, ScalarEvolution::SymbolicMaximum
);
14829 if (!isa
<SCEVCouldNotCompute
>(ExitCount
)) {
14830 assert(DT
.dominates(ExitingBB
, L
->getLoopLatch()) &&
14831 "We should only have known counts for exiting blocks that "
14832 "dominate latch!");
14833 ExitCounts
.push_back(ExitCount
);
14836 if (ExitCounts
.empty())
14837 return getCouldNotCompute();
14838 return getUMinFromMismatchedTypes(ExitCounts
, /*Sequential*/ true);
14841 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
14842 /// in the map. It skips AddRecExpr because we cannot guarantee that the
14843 /// replacement is loop invariant in the loop of the AddRec.
14844 class SCEVLoopGuardRewriter
: public SCEVRewriteVisitor
<SCEVLoopGuardRewriter
> {
14845 const DenseMap
<const SCEV
*, const SCEV
*> &Map
;
14848 SCEVLoopGuardRewriter(ScalarEvolution
&SE
,
14849 DenseMap
<const SCEV
*, const SCEV
*> &M
)
14850 : SCEVRewriteVisitor(SE
), Map(M
) {}
14852 const SCEV
*visitAddRecExpr(const SCEVAddRecExpr
*Expr
) { return Expr
; }
14854 const SCEV
*visitUnknown(const SCEVUnknown
*Expr
) {
14855 auto I
= Map
.find(Expr
);
14856 if (I
== Map
.end())
14861 const SCEV
*visitZeroExtendExpr(const SCEVZeroExtendExpr
*Expr
) {
14862 auto I
= Map
.find(Expr
);
14863 if (I
== Map
.end()) {
14864 // If we didn't find the extact ZExt expr in the map, check if there's an
14865 // entry for a smaller ZExt we can use instead.
14866 Type
*Ty
= Expr
->getType();
14867 const SCEV
*Op
= Expr
->getOperand(0);
14868 unsigned Bitwidth
= Ty
->getScalarSizeInBits() / 2;
14869 while (Bitwidth
% 8 == 0 && Bitwidth
>= 8 &&
14870 Bitwidth
> Op
->getType()->getScalarSizeInBits()) {
14871 Type
*NarrowTy
= IntegerType::get(SE
.getContext(), Bitwidth
);
14872 auto *NarrowExt
= SE
.getZeroExtendExpr(Op
, NarrowTy
);
14873 auto I
= Map
.find(NarrowExt
);
14874 if (I
!= Map
.end())
14875 return SE
.getZeroExtendExpr(I
->second
, Ty
);
14876 Bitwidth
= Bitwidth
/ 2;
14879 return SCEVRewriteVisitor
<SCEVLoopGuardRewriter
>::visitZeroExtendExpr(
14885 const SCEV
*visitSignExtendExpr(const SCEVSignExtendExpr
*Expr
) {
14886 auto I
= Map
.find(Expr
);
14887 if (I
== Map
.end())
14888 return SCEVRewriteVisitor
<SCEVLoopGuardRewriter
>::visitSignExtendExpr(
14893 const SCEV
*visitUMinExpr(const SCEVUMinExpr
*Expr
) {
14894 auto I
= Map
.find(Expr
);
14895 if (I
== Map
.end())
14896 return SCEVRewriteVisitor
<SCEVLoopGuardRewriter
>::visitUMinExpr(Expr
);
14900 const SCEV
*visitSMinExpr(const SCEVSMinExpr
*Expr
) {
14901 auto I
= Map
.find(Expr
);
14902 if (I
== Map
.end())
14903 return SCEVRewriteVisitor
<SCEVLoopGuardRewriter
>::visitSMinExpr(Expr
);
14908 const SCEV
*ScalarEvolution::applyLoopGuards(const SCEV
*Expr
, const Loop
*L
) {
14909 SmallVector
<const SCEV
*> ExprsToRewrite
;
14910 auto CollectCondition
= [&](ICmpInst::Predicate Predicate
, const SCEV
*LHS
,
14912 DenseMap
<const SCEV
*, const SCEV
*>
14914 // WARNING: It is generally unsound to apply any wrap flags to the proposed
14915 // replacement SCEV which isn't directly implied by the structure of that
14916 // SCEV. In particular, using contextual facts to imply flags is *NOT*
14917 // legal. See the scoping rules for flags in the header to understand why.
14919 // If LHS is a constant, apply information to the other expression.
14920 if (isa
<SCEVConstant
>(LHS
)) {
14921 std::swap(LHS
, RHS
);
14922 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
14925 // Check for a condition of the form (-C1 + X < C2). InstCombine will
14926 // create this form when combining two checks of the form (X u< C2 + C1) and
14928 auto MatchRangeCheckIdiom
= [this, Predicate
, LHS
, RHS
, &RewriteMap
,
14929 &ExprsToRewrite
]() {
14930 auto *AddExpr
= dyn_cast
<SCEVAddExpr
>(LHS
);
14931 if (!AddExpr
|| AddExpr
->getNumOperands() != 2)
14934 auto *C1
= dyn_cast
<SCEVConstant
>(AddExpr
->getOperand(0));
14935 auto *LHSUnknown
= dyn_cast
<SCEVUnknown
>(AddExpr
->getOperand(1));
14936 auto *C2
= dyn_cast
<SCEVConstant
>(RHS
);
14937 if (!C1
|| !C2
|| !LHSUnknown
)
14941 ConstantRange::makeExactICmpRegion(Predicate
, C2
->getAPInt())
14942 .sub(C1
->getAPInt());
14944 // Bail out, unless we have a non-wrapping, monotonic range.
14945 if (ExactRegion
.isWrappedSet() || ExactRegion
.isFullSet())
14947 auto I
= RewriteMap
.find(LHSUnknown
);
14948 const SCEV
*RewrittenLHS
= I
!= RewriteMap
.end() ? I
->second
: LHSUnknown
;
14949 RewriteMap
[LHSUnknown
] = getUMaxExpr(
14950 getConstant(ExactRegion
.getUnsignedMin()),
14951 getUMinExpr(RewrittenLHS
, getConstant(ExactRegion
.getUnsignedMax())));
14952 ExprsToRewrite
.push_back(LHSUnknown
);
14955 if (MatchRangeCheckIdiom())
14958 // Return true if \p Expr is a MinMax SCEV expression with a non-negative
14959 // constant operand. If so, return in \p SCTy the SCEV type and in \p RHS
14960 // the non-constant operand and in \p LHS the constant operand.
14961 auto IsMinMaxSCEVWithNonNegativeConstant
=
14962 [&](const SCEV
*Expr
, SCEVTypes
&SCTy
, const SCEV
*&LHS
,
14963 const SCEV
*&RHS
) {
14964 if (auto *MinMax
= dyn_cast
<SCEVMinMaxExpr
>(Expr
)) {
14965 if (MinMax
->getNumOperands() != 2)
14967 if (auto *C
= dyn_cast
<SCEVConstant
>(MinMax
->getOperand(0))) {
14968 if (C
->getAPInt().isNegative())
14970 SCTy
= MinMax
->getSCEVType();
14971 LHS
= MinMax
->getOperand(0);
14972 RHS
= MinMax
->getOperand(1);
14979 // Checks whether Expr is a non-negative constant, and Divisor is a positive
14980 // constant, and returns their APInt in ExprVal and in DivisorVal.
14981 auto GetNonNegExprAndPosDivisor
= [&](const SCEV
*Expr
, const SCEV
*Divisor
,
14982 APInt
&ExprVal
, APInt
&DivisorVal
) {
14983 auto *ConstExpr
= dyn_cast
<SCEVConstant
>(Expr
);
14984 auto *ConstDivisor
= dyn_cast
<SCEVConstant
>(Divisor
);
14985 if (!ConstExpr
|| !ConstDivisor
)
14987 ExprVal
= ConstExpr
->getAPInt();
14988 DivisorVal
= ConstDivisor
->getAPInt();
14989 return ExprVal
.isNonNegative() && !DivisorVal
.isNonPositive();
14992 // Return a new SCEV that modifies \p Expr to the closest number divides by
14993 // \p Divisor and greater or equal than Expr.
14994 // For now, only handle constant Expr and Divisor.
14995 auto GetNextSCEVDividesByDivisor
= [&](const SCEV
*Expr
,
14996 const SCEV
*Divisor
) {
14999 if (!GetNonNegExprAndPosDivisor(Expr
, Divisor
, ExprVal
, DivisorVal
))
15001 APInt Rem
= ExprVal
.urem(DivisorVal
);
15003 // return the SCEV: Expr + Divisor - Expr % Divisor
15004 return getConstant(ExprVal
+ DivisorVal
- Rem
);
15008 // Return a new SCEV that modifies \p Expr to the closest number divides by
15009 // \p Divisor and less or equal than Expr.
15010 // For now, only handle constant Expr and Divisor.
15011 auto GetPreviousSCEVDividesByDivisor
= [&](const SCEV
*Expr
,
15012 const SCEV
*Divisor
) {
15015 if (!GetNonNegExprAndPosDivisor(Expr
, Divisor
, ExprVal
, DivisorVal
))
15017 APInt Rem
= ExprVal
.urem(DivisorVal
);
15018 // return the SCEV: Expr - Expr % Divisor
15019 return getConstant(ExprVal
- Rem
);
15022 // Apply divisibilty by \p Divisor on MinMaxExpr with constant values,
15023 // recursively. This is done by aligning up/down the constant value to the
15025 std::function
<const SCEV
*(const SCEV
*, const SCEV
*)>
15026 ApplyDivisibiltyOnMinMaxExpr
= [&](const SCEV
*MinMaxExpr
,
15027 const SCEV
*Divisor
) {
15028 const SCEV
*MinMaxLHS
= nullptr, *MinMaxRHS
= nullptr;
15030 if (!IsMinMaxSCEVWithNonNegativeConstant(MinMaxExpr
, SCTy
, MinMaxLHS
,
15034 isa
<SCEVSMinExpr
>(MinMaxExpr
) || isa
<SCEVUMinExpr
>(MinMaxExpr
);
15035 assert(isKnownNonNegative(MinMaxLHS
) &&
15036 "Expected non-negative operand!");
15037 auto *DivisibleExpr
=
15038 IsMin
? GetPreviousSCEVDividesByDivisor(MinMaxLHS
, Divisor
)
15039 : GetNextSCEVDividesByDivisor(MinMaxLHS
, Divisor
);
15040 SmallVector
<const SCEV
*> Ops
= {
15041 ApplyDivisibiltyOnMinMaxExpr(MinMaxRHS
, Divisor
), DivisibleExpr
};
15042 return getMinMaxExpr(SCTy
, Ops
);
15045 // If we have LHS == 0, check if LHS is computing a property of some unknown
15046 // SCEV %v which we can rewrite %v to express explicitly.
15047 const SCEVConstant
*RHSC
= dyn_cast
<SCEVConstant
>(RHS
);
15048 if (Predicate
== CmpInst::ICMP_EQ
&& RHSC
&&
15049 RHSC
->getValue()->isNullValue()) {
15050 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
15051 // explicitly express that.
15052 const SCEV
*URemLHS
= nullptr;
15053 const SCEV
*URemRHS
= nullptr;
15054 if (matchURem(LHS
, URemLHS
, URemRHS
)) {
15055 if (const SCEVUnknown
*LHSUnknown
= dyn_cast
<SCEVUnknown
>(URemLHS
)) {
15056 auto I
= RewriteMap
.find(LHSUnknown
);
15057 const SCEV
*RewrittenLHS
=
15058 I
!= RewriteMap
.end() ? I
->second
: LHSUnknown
;
15059 RewrittenLHS
= ApplyDivisibiltyOnMinMaxExpr(RewrittenLHS
, URemRHS
);
15060 const auto *Multiple
=
15061 getMulExpr(getUDivExpr(RewrittenLHS
, URemRHS
), URemRHS
);
15062 RewriteMap
[LHSUnknown
] = Multiple
;
15063 ExprsToRewrite
.push_back(LHSUnknown
);
15069 // Do not apply information for constants or if RHS contains an AddRec.
15070 if (isa
<SCEVConstant
>(LHS
) || containsAddRecurrence(RHS
))
15073 // If RHS is SCEVUnknown, make sure the information is applied to it.
15074 if (!isa
<SCEVUnknown
>(LHS
) && isa
<SCEVUnknown
>(RHS
)) {
15075 std::swap(LHS
, RHS
);
15076 Predicate
= CmpInst::getSwappedPredicate(Predicate
);
15079 // Puts rewrite rule \p From -> \p To into the rewrite map. Also if \p From
15080 // and \p FromRewritten are the same (i.e. there has been no rewrite
15081 // registered for \p From), then puts this value in the list of rewritten
15083 auto AddRewrite
= [&](const SCEV
*From
, const SCEV
*FromRewritten
,
15085 if (From
== FromRewritten
)
15086 ExprsToRewrite
.push_back(From
);
15087 RewriteMap
[From
] = To
;
15090 // Checks whether \p S has already been rewritten. In that case returns the
15091 // existing rewrite because we want to chain further rewrites onto the
15092 // already rewritten value. Otherwise returns \p S.
15093 auto GetMaybeRewritten
= [&](const SCEV
*S
) {
15094 auto I
= RewriteMap
.find(S
);
15095 return I
!= RewriteMap
.end() ? I
->second
: S
;
15098 // Check for the SCEV expression (A /u B) * B while B is a constant, inside
15099 // \p Expr. The check is done recuresively on \p Expr, which is assumed to
15100 // be a composition of Min/Max SCEVs. Return whether the SCEV expression (A
15101 // /u B) * B was found, and return the divisor B in \p DividesBy. For
15102 // example, if Expr = umin (umax ((A /u 8) * 8, 16), 64), return true since
15103 // (A /u 8) * 8 matched the pattern, and return the constant SCEV 8 in \p
15105 std::function
<bool(const SCEV
*, const SCEV
*&)> HasDivisibiltyInfo
=
15106 [&](const SCEV
*Expr
, const SCEV
*&DividesBy
) {
15107 if (auto *Mul
= dyn_cast
<SCEVMulExpr
>(Expr
)) {
15108 if (Mul
->getNumOperands() != 2)
15110 auto *MulLHS
= Mul
->getOperand(0);
15111 auto *MulRHS
= Mul
->getOperand(1);
15112 if (isa
<SCEVConstant
>(MulLHS
))
15113 std::swap(MulLHS
, MulRHS
);
15114 if (auto *Div
= dyn_cast
<SCEVUDivExpr
>(MulLHS
))
15115 if (Div
->getOperand(1) == MulRHS
) {
15116 DividesBy
= MulRHS
;
15120 if (auto *MinMax
= dyn_cast
<SCEVMinMaxExpr
>(Expr
))
15121 return HasDivisibiltyInfo(MinMax
->getOperand(0), DividesBy
) ||
15122 HasDivisibiltyInfo(MinMax
->getOperand(1), DividesBy
);
15126 // Return true if Expr known to divide by \p DividesBy.
15127 std::function
<bool(const SCEV
*, const SCEV
*&)> IsKnownToDivideBy
=
15128 [&](const SCEV
*Expr
, const SCEV
*DividesBy
) {
15129 if (getURemExpr(Expr
, DividesBy
)->isZero())
15131 if (auto *MinMax
= dyn_cast
<SCEVMinMaxExpr
>(Expr
))
15132 return IsKnownToDivideBy(MinMax
->getOperand(0), DividesBy
) &&
15133 IsKnownToDivideBy(MinMax
->getOperand(1), DividesBy
);
15137 const SCEV
*RewrittenLHS
= GetMaybeRewritten(LHS
);
15138 const SCEV
*DividesBy
= nullptr;
15139 if (HasDivisibiltyInfo(RewrittenLHS
, DividesBy
))
15140 // Check that the whole expression is divided by DividesBy
15142 IsKnownToDivideBy(RewrittenLHS
, DividesBy
) ? DividesBy
: nullptr;
15144 // Collect rewrites for LHS and its transitive operands based on the
15146 // For min/max expressions, also apply the guard to its operands:
15147 // 'min(a, b) >= c' -> '(a >= c) and (b >= c)',
15148 // 'min(a, b) > c' -> '(a > c) and (b > c)',
15149 // 'max(a, b) <= c' -> '(a <= c) and (b <= c)',
15150 // 'max(a, b) < c' -> '(a < c) and (b < c)'.
15152 // We cannot express strict predicates in SCEV, so instead we replace them
15153 // with non-strict ones against plus or minus one of RHS depending on the
15155 const SCEV
*One
= getOne(RHS
->getType());
15156 switch (Predicate
) {
15157 case CmpInst::ICMP_ULT
:
15158 if (RHS
->getType()->isPointerTy())
15160 RHS
= getUMaxExpr(RHS
, One
);
15162 case CmpInst::ICMP_SLT
: {
15163 RHS
= getMinusSCEV(RHS
, One
);
15164 RHS
= DividesBy
? GetPreviousSCEVDividesByDivisor(RHS
, DividesBy
) : RHS
;
15167 case CmpInst::ICMP_UGT
:
15168 case CmpInst::ICMP_SGT
:
15169 RHS
= getAddExpr(RHS
, One
);
15170 RHS
= DividesBy
? GetNextSCEVDividesByDivisor(RHS
, DividesBy
) : RHS
;
15172 case CmpInst::ICMP_ULE
:
15173 case CmpInst::ICMP_SLE
:
15174 RHS
= DividesBy
? GetPreviousSCEVDividesByDivisor(RHS
, DividesBy
) : RHS
;
15176 case CmpInst::ICMP_UGE
:
15177 case CmpInst::ICMP_SGE
:
15178 RHS
= DividesBy
? GetNextSCEVDividesByDivisor(RHS
, DividesBy
) : RHS
;
15184 SmallVector
<const SCEV
*, 16> Worklist(1, LHS
);
15185 SmallPtrSet
<const SCEV
*, 16> Visited
;
15187 auto EnqueueOperands
= [&Worklist
](const SCEVNAryExpr
*S
) {
15188 append_range(Worklist
, S
->operands());
15191 while (!Worklist
.empty()) {
15192 const SCEV
*From
= Worklist
.pop_back_val();
15193 if (isa
<SCEVConstant
>(From
))
15195 if (!Visited
.insert(From
).second
)
15197 const SCEV
*FromRewritten
= GetMaybeRewritten(From
);
15198 const SCEV
*To
= nullptr;
15200 switch (Predicate
) {
15201 case CmpInst::ICMP_ULT
:
15202 case CmpInst::ICMP_ULE
:
15203 To
= getUMinExpr(FromRewritten
, RHS
);
15204 if (auto *UMax
= dyn_cast
<SCEVUMaxExpr
>(FromRewritten
))
15205 EnqueueOperands(UMax
);
15207 case CmpInst::ICMP_SLT
:
15208 case CmpInst::ICMP_SLE
:
15209 To
= getSMinExpr(FromRewritten
, RHS
);
15210 if (auto *SMax
= dyn_cast
<SCEVSMaxExpr
>(FromRewritten
))
15211 EnqueueOperands(SMax
);
15213 case CmpInst::ICMP_UGT
:
15214 case CmpInst::ICMP_UGE
:
15215 To
= getUMaxExpr(FromRewritten
, RHS
);
15216 if (auto *UMin
= dyn_cast
<SCEVUMinExpr
>(FromRewritten
))
15217 EnqueueOperands(UMin
);
15219 case CmpInst::ICMP_SGT
:
15220 case CmpInst::ICMP_SGE
:
15221 To
= getSMaxExpr(FromRewritten
, RHS
);
15222 if (auto *SMin
= dyn_cast
<SCEVSMinExpr
>(FromRewritten
))
15223 EnqueueOperands(SMin
);
15225 case CmpInst::ICMP_EQ
:
15226 if (isa
<SCEVConstant
>(RHS
))
15229 case CmpInst::ICMP_NE
:
15230 if (isa
<SCEVConstant
>(RHS
) &&
15231 cast
<SCEVConstant
>(RHS
)->getValue()->isNullValue()) {
15232 const SCEV
*OneAlignedUp
=
15233 DividesBy
? GetNextSCEVDividesByDivisor(One
, DividesBy
) : One
;
15234 To
= getUMaxExpr(FromRewritten
, OneAlignedUp
);
15242 AddRewrite(From
, FromRewritten
, To
);
15246 BasicBlock
*Header
= L
->getHeader();
15247 SmallVector
<PointerIntPair
<Value
*, 1, bool>> Terms
;
15248 // First, collect information from assumptions dominating the loop.
15249 for (auto &AssumeVH
: AC
.assumptions()) {
15252 auto *AssumeI
= cast
<CallInst
>(AssumeVH
);
15253 if (!DT
.dominates(AssumeI
, Header
))
15255 Terms
.emplace_back(AssumeI
->getOperand(0), true);
15258 // Second, collect information from llvm.experimental.guards dominating the loop.
15259 auto *GuardDecl
= F
.getParent()->getFunction(
15260 Intrinsic::getName(Intrinsic::experimental_guard
));
15262 for (const auto *GU
: GuardDecl
->users())
15263 if (const auto *Guard
= dyn_cast
<IntrinsicInst
>(GU
))
15264 if (Guard
->getFunction() == Header
->getParent() && DT
.dominates(Guard
, Header
))
15265 Terms
.emplace_back(Guard
->getArgOperand(0), true);
15267 // Third, collect conditions from dominating branches. Starting at the loop
15268 // predecessor, climb up the predecessor chain, as long as there are
15269 // predecessors that can be found that have unique successors leading to the
15270 // original header.
15271 // TODO: share this logic with isLoopEntryGuardedByCond.
15272 for (std::pair
<const BasicBlock
*, const BasicBlock
*> Pair(
15273 L
->getLoopPredecessor(), Header
);
15274 Pair
.first
; Pair
= getPredecessorWithUniqueSuccessorForBB(Pair
.first
)) {
15276 const BranchInst
*LoopEntryPredicate
=
15277 dyn_cast
<BranchInst
>(Pair
.first
->getTerminator());
15278 if (!LoopEntryPredicate
|| LoopEntryPredicate
->isUnconditional())
15281 Terms
.emplace_back(LoopEntryPredicate
->getCondition(),
15282 LoopEntryPredicate
->getSuccessor(0) == Pair
.second
);
15285 // Now apply the information from the collected conditions to RewriteMap.
15286 // Conditions are processed in reverse order, so the earliest conditions is
15287 // processed first. This ensures the SCEVs with the shortest dependency chains
15288 // are constructed first.
15289 DenseMap
<const SCEV
*, const SCEV
*> RewriteMap
;
15290 for (auto [Term
, EnterIfTrue
] : reverse(Terms
)) {
15291 SmallVector
<Value
*, 8> Worklist
;
15292 SmallPtrSet
<Value
*, 8> Visited
;
15293 Worklist
.push_back(Term
);
15294 while (!Worklist
.empty()) {
15295 Value
*Cond
= Worklist
.pop_back_val();
15296 if (!Visited
.insert(Cond
).second
)
15299 if (auto *Cmp
= dyn_cast
<ICmpInst
>(Cond
)) {
15301 EnterIfTrue
? Cmp
->getPredicate() : Cmp
->getInversePredicate();
15302 const auto *LHS
= getSCEV(Cmp
->getOperand(0));
15303 const auto *RHS
= getSCEV(Cmp
->getOperand(1));
15304 CollectCondition(Predicate
, LHS
, RHS
, RewriteMap
);
15309 if (EnterIfTrue
? match(Cond
, m_LogicalAnd(m_Value(L
), m_Value(R
)))
15310 : match(Cond
, m_LogicalOr(m_Value(L
), m_Value(R
)))) {
15311 Worklist
.push_back(L
);
15312 Worklist
.push_back(R
);
15317 if (RewriteMap
.empty())
15320 // Now that all rewrite information is collect, rewrite the collected
15321 // expressions with the information in the map. This applies information to
15322 // sub-expressions.
15323 if (ExprsToRewrite
.size() > 1) {
15324 for (const SCEV
*Expr
: ExprsToRewrite
) {
15325 const SCEV
*RewriteTo
= RewriteMap
[Expr
];
15326 RewriteMap
.erase(Expr
);
15327 SCEVLoopGuardRewriter
Rewriter(*this, RewriteMap
);
15328 RewriteMap
.insert({Expr
, Rewriter
.visit(RewriteTo
)});
15332 SCEVLoopGuardRewriter
Rewriter(*this, RewriteMap
);
15333 return Rewriter
.visit(Expr
);