Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Analysis / TrainingLogger.cpp
blobe236890aa2bcc22d2dcc650166624756690716b8
1 //===- TrainingLogger.cpp - mlgo feature/reward logging -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements logging infrastructure for extracting features and
10 // rewards for mlgo policy training.
12 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/TensorSpec.h"
14 #include "llvm/Config/config.h"
16 #include "llvm/ADT/Twine.h"
17 #include "llvm/Analysis/Utils/TrainingLogger.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/JSON.h"
21 #include "llvm/Support/MemoryBuffer.h"
22 #include "llvm/Support/Path.h"
23 #include "llvm/Support/raw_ostream.h"
25 #include <cassert>
26 #include <numeric>
28 using namespace llvm;
30 // FIXME(mtrofin): remove the flag altogether
31 static cl::opt<bool>
32 UseSimpleLogger("tfutils-use-simplelogger", cl::init(true), cl::Hidden,
33 cl::desc("Output simple (non-protobuf) log."));
35 void Logger::writeHeader(std::optional<TensorSpec> AdviceSpec) {
36 json::OStream JOS(*OS);
37 JOS.object([&]() {
38 JOS.attributeArray("features", [&]() {
39 for (const auto &TS : FeatureSpecs)
40 TS.toJSON(JOS);
41 });
42 if (IncludeReward) {
43 JOS.attributeBegin("score");
44 RewardSpec.toJSON(JOS);
45 JOS.attributeEnd();
47 if (AdviceSpec.has_value()) {
48 JOS.attributeBegin("advice");
49 AdviceSpec->toJSON(JOS);
50 JOS.attributeEnd();
52 });
53 *OS << "\n";
56 void Logger::switchContext(StringRef Name) {
57 CurrentContext = Name.str();
58 json::OStream JOS(*OS);
59 JOS.object([&]() { JOS.attribute("context", Name); });
60 *OS << "\n";
63 void Logger::startObservation() {
64 auto I = ObservationIDs.insert({CurrentContext, 0});
65 size_t NewObservationID = I.second ? 0 : ++I.first->second;
66 json::OStream JOS(*OS);
67 JOS.object([&]() {
68 JOS.attribute("observation", static_cast<int64_t>(NewObservationID));
69 });
70 *OS << "\n";
73 void Logger::endObservation() { *OS << "\n"; }
75 void Logger::logRewardImpl(const char *RawData) {
76 assert(IncludeReward);
77 json::OStream JOS(*OS);
78 JOS.object([&]() {
79 JOS.attribute("outcome", static_cast<int64_t>(
80 ObservationIDs.find(CurrentContext)->second));
81 });
82 *OS << "\n";
83 writeTensor(RewardSpec, RawData);
84 *OS << "\n";
87 Logger::Logger(std::unique_ptr<raw_ostream> OS,
88 const std::vector<TensorSpec> &FeatureSpecs,
89 const TensorSpec &RewardSpec, bool IncludeReward,
90 std::optional<TensorSpec> AdviceSpec)
91 : OS(std::move(OS)), FeatureSpecs(FeatureSpecs), RewardSpec(RewardSpec),
92 IncludeReward(IncludeReward) {
93 writeHeader(AdviceSpec);