Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Analysis / VectorUtils.cpp
blobbe171867a2bf4d9f10228e9940f16b6c74d4c7bd
1 //===----------- VectorUtils.cpp - Vectorizer utility functions -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines vectorizer utilities.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/Analysis/VectorUtils.h"
14 #include "llvm/ADT/EquivalenceClasses.h"
15 #include "llvm/Analysis/DemandedBits.h"
16 #include "llvm/Analysis/LoopInfo.h"
17 #include "llvm/Analysis/LoopIterator.h"
18 #include "llvm/Analysis/ScalarEvolution.h"
19 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/CommandLine.h"
28 #define DEBUG_TYPE "vectorutils"
30 using namespace llvm;
31 using namespace llvm::PatternMatch;
33 /// Maximum factor for an interleaved memory access.
34 static cl::opt<unsigned> MaxInterleaveGroupFactor(
35 "max-interleave-group-factor", cl::Hidden,
36 cl::desc("Maximum factor for an interleaved access group (default = 8)"),
37 cl::init(8));
39 /// Return true if all of the intrinsic's arguments and return type are scalars
40 /// for the scalar form of the intrinsic, and vectors for the vector form of the
41 /// intrinsic (except operands that are marked as always being scalar by
42 /// isVectorIntrinsicWithScalarOpAtArg).
43 bool llvm::isTriviallyVectorizable(Intrinsic::ID ID) {
44 switch (ID) {
45 case Intrinsic::abs: // Begin integer bit-manipulation.
46 case Intrinsic::bswap:
47 case Intrinsic::bitreverse:
48 case Intrinsic::ctpop:
49 case Intrinsic::ctlz:
50 case Intrinsic::cttz:
51 case Intrinsic::fshl:
52 case Intrinsic::fshr:
53 case Intrinsic::smax:
54 case Intrinsic::smin:
55 case Intrinsic::umax:
56 case Intrinsic::umin:
57 case Intrinsic::sadd_sat:
58 case Intrinsic::ssub_sat:
59 case Intrinsic::uadd_sat:
60 case Intrinsic::usub_sat:
61 case Intrinsic::smul_fix:
62 case Intrinsic::smul_fix_sat:
63 case Intrinsic::umul_fix:
64 case Intrinsic::umul_fix_sat:
65 case Intrinsic::sqrt: // Begin floating-point.
66 case Intrinsic::sin:
67 case Intrinsic::cos:
68 case Intrinsic::exp:
69 case Intrinsic::exp2:
70 case Intrinsic::log:
71 case Intrinsic::log10:
72 case Intrinsic::log2:
73 case Intrinsic::fabs:
74 case Intrinsic::minnum:
75 case Intrinsic::maxnum:
76 case Intrinsic::minimum:
77 case Intrinsic::maximum:
78 case Intrinsic::copysign:
79 case Intrinsic::floor:
80 case Intrinsic::ceil:
81 case Intrinsic::trunc:
82 case Intrinsic::rint:
83 case Intrinsic::nearbyint:
84 case Intrinsic::round:
85 case Intrinsic::roundeven:
86 case Intrinsic::pow:
87 case Intrinsic::fma:
88 case Intrinsic::fmuladd:
89 case Intrinsic::is_fpclass:
90 case Intrinsic::powi:
91 case Intrinsic::canonicalize:
92 case Intrinsic::fptosi_sat:
93 case Intrinsic::fptoui_sat:
94 return true;
95 default:
96 return false;
100 /// Identifies if the vector form of the intrinsic has a scalar operand.
101 bool llvm::isVectorIntrinsicWithScalarOpAtArg(Intrinsic::ID ID,
102 unsigned ScalarOpdIdx) {
103 switch (ID) {
104 case Intrinsic::abs:
105 case Intrinsic::ctlz:
106 case Intrinsic::cttz:
107 case Intrinsic::is_fpclass:
108 case Intrinsic::powi:
109 return (ScalarOpdIdx == 1);
110 case Intrinsic::smul_fix:
111 case Intrinsic::smul_fix_sat:
112 case Intrinsic::umul_fix:
113 case Intrinsic::umul_fix_sat:
114 return (ScalarOpdIdx == 2);
115 default:
116 return false;
120 bool llvm::isVectorIntrinsicWithOverloadTypeAtArg(Intrinsic::ID ID,
121 int OpdIdx) {
122 switch (ID) {
123 case Intrinsic::fptosi_sat:
124 case Intrinsic::fptoui_sat:
125 return OpdIdx == -1 || OpdIdx == 0;
126 case Intrinsic::is_fpclass:
127 return OpdIdx == 0;
128 case Intrinsic::powi:
129 return OpdIdx == -1 || OpdIdx == 1;
130 default:
131 return OpdIdx == -1;
135 /// Returns intrinsic ID for call.
136 /// For the input call instruction it finds mapping intrinsic and returns
137 /// its ID, in case it does not found it return not_intrinsic.
138 Intrinsic::ID llvm::getVectorIntrinsicIDForCall(const CallInst *CI,
139 const TargetLibraryInfo *TLI) {
140 Intrinsic::ID ID = getIntrinsicForCallSite(*CI, TLI);
141 if (ID == Intrinsic::not_intrinsic)
142 return Intrinsic::not_intrinsic;
144 if (isTriviallyVectorizable(ID) || ID == Intrinsic::lifetime_start ||
145 ID == Intrinsic::lifetime_end || ID == Intrinsic::assume ||
146 ID == Intrinsic::experimental_noalias_scope_decl ||
147 ID == Intrinsic::sideeffect || ID == Intrinsic::pseudoprobe)
148 return ID;
149 return Intrinsic::not_intrinsic;
152 /// Given a vector and an element number, see if the scalar value is
153 /// already around as a register, for example if it were inserted then extracted
154 /// from the vector.
155 Value *llvm::findScalarElement(Value *V, unsigned EltNo) {
156 assert(V->getType()->isVectorTy() && "Not looking at a vector?");
157 VectorType *VTy = cast<VectorType>(V->getType());
158 // For fixed-length vector, return undef for out of range access.
159 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
160 unsigned Width = FVTy->getNumElements();
161 if (EltNo >= Width)
162 return UndefValue::get(FVTy->getElementType());
165 if (Constant *C = dyn_cast<Constant>(V))
166 return C->getAggregateElement(EltNo);
168 if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
169 // If this is an insert to a variable element, we don't know what it is.
170 if (!isa<ConstantInt>(III->getOperand(2)))
171 return nullptr;
172 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
174 // If this is an insert to the element we are looking for, return the
175 // inserted value.
176 if (EltNo == IIElt)
177 return III->getOperand(1);
179 // Guard against infinite loop on malformed, unreachable IR.
180 if (III == III->getOperand(0))
181 return nullptr;
183 // Otherwise, the insertelement doesn't modify the value, recurse on its
184 // vector input.
185 return findScalarElement(III->getOperand(0), EltNo);
188 ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
189 // Restrict the following transformation to fixed-length vector.
190 if (SVI && isa<FixedVectorType>(SVI->getType())) {
191 unsigned LHSWidth =
192 cast<FixedVectorType>(SVI->getOperand(0)->getType())->getNumElements();
193 int InEl = SVI->getMaskValue(EltNo);
194 if (InEl < 0)
195 return UndefValue::get(VTy->getElementType());
196 if (InEl < (int)LHSWidth)
197 return findScalarElement(SVI->getOperand(0), InEl);
198 return findScalarElement(SVI->getOperand(1), InEl - LHSWidth);
201 // Extract a value from a vector add operation with a constant zero.
202 // TODO: Use getBinOpIdentity() to generalize this.
203 Value *Val; Constant *C;
204 if (match(V, m_Add(m_Value(Val), m_Constant(C))))
205 if (Constant *Elt = C->getAggregateElement(EltNo))
206 if (Elt->isNullValue())
207 return findScalarElement(Val, EltNo);
209 // If the vector is a splat then we can trivially find the scalar element.
210 if (isa<ScalableVectorType>(VTy))
211 if (Value *Splat = getSplatValue(V))
212 if (EltNo < VTy->getElementCount().getKnownMinValue())
213 return Splat;
215 // Otherwise, we don't know.
216 return nullptr;
219 int llvm::getSplatIndex(ArrayRef<int> Mask) {
220 int SplatIndex = -1;
221 for (int M : Mask) {
222 // Ignore invalid (undefined) mask elements.
223 if (M < 0)
224 continue;
226 // There can be only 1 non-negative mask element value if this is a splat.
227 if (SplatIndex != -1 && SplatIndex != M)
228 return -1;
230 // Initialize the splat index to the 1st non-negative mask element.
231 SplatIndex = M;
233 assert((SplatIndex == -1 || SplatIndex >= 0) && "Negative index?");
234 return SplatIndex;
237 /// Get splat value if the input is a splat vector or return nullptr.
238 /// This function is not fully general. It checks only 2 cases:
239 /// the input value is (1) a splat constant vector or (2) a sequence
240 /// of instructions that broadcasts a scalar at element 0.
241 Value *llvm::getSplatValue(const Value *V) {
242 if (isa<VectorType>(V->getType()))
243 if (auto *C = dyn_cast<Constant>(V))
244 return C->getSplatValue();
246 // shuf (inselt ?, Splat, 0), ?, <0, undef, 0, ...>
247 Value *Splat;
248 if (match(V,
249 m_Shuffle(m_InsertElt(m_Value(), m_Value(Splat), m_ZeroInt()),
250 m_Value(), m_ZeroMask())))
251 return Splat;
253 return nullptr;
256 bool llvm::isSplatValue(const Value *V, int Index, unsigned Depth) {
257 assert(Depth <= MaxAnalysisRecursionDepth && "Limit Search Depth");
259 if (isa<VectorType>(V->getType())) {
260 if (isa<UndefValue>(V))
261 return true;
262 // FIXME: We can allow undefs, but if Index was specified, we may want to
263 // check that the constant is defined at that index.
264 if (auto *C = dyn_cast<Constant>(V))
265 return C->getSplatValue() != nullptr;
268 if (auto *Shuf = dyn_cast<ShuffleVectorInst>(V)) {
269 // FIXME: We can safely allow undefs here. If Index was specified, we will
270 // check that the mask elt is defined at the required index.
271 if (!all_equal(Shuf->getShuffleMask()))
272 return false;
274 // Match any index.
275 if (Index == -1)
276 return true;
278 // Match a specific element. The mask should be defined at and match the
279 // specified index.
280 return Shuf->getMaskValue(Index) == Index;
283 // The remaining tests are all recursive, so bail out if we hit the limit.
284 if (Depth++ == MaxAnalysisRecursionDepth)
285 return false;
287 // If both operands of a binop are splats, the result is a splat.
288 Value *X, *Y, *Z;
289 if (match(V, m_BinOp(m_Value(X), m_Value(Y))))
290 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth);
292 // If all operands of a select are splats, the result is a splat.
293 if (match(V, m_Select(m_Value(X), m_Value(Y), m_Value(Z))))
294 return isSplatValue(X, Index, Depth) && isSplatValue(Y, Index, Depth) &&
295 isSplatValue(Z, Index, Depth);
297 // TODO: Add support for unary ops (fneg), casts, intrinsics (overflow ops).
299 return false;
302 bool llvm::getShuffleDemandedElts(int SrcWidth, ArrayRef<int> Mask,
303 const APInt &DemandedElts, APInt &DemandedLHS,
304 APInt &DemandedRHS, bool AllowUndefElts) {
305 DemandedLHS = DemandedRHS = APInt::getZero(SrcWidth);
307 // Early out if we don't demand any elements.
308 if (DemandedElts.isZero())
309 return true;
311 // Simple case of a shuffle with zeroinitializer.
312 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
313 DemandedLHS.setBit(0);
314 return true;
317 for (unsigned I = 0, E = Mask.size(); I != E; ++I) {
318 int M = Mask[I];
319 assert((-1 <= M) && (M < (SrcWidth * 2)) &&
320 "Invalid shuffle mask constant");
322 if (!DemandedElts[I] || (AllowUndefElts && (M < 0)))
323 continue;
325 // For undef elements, we don't know anything about the common state of
326 // the shuffle result.
327 if (M < 0)
328 return false;
330 if (M < SrcWidth)
331 DemandedLHS.setBit(M);
332 else
333 DemandedRHS.setBit(M - SrcWidth);
336 return true;
339 void llvm::narrowShuffleMaskElts(int Scale, ArrayRef<int> Mask,
340 SmallVectorImpl<int> &ScaledMask) {
341 assert(Scale > 0 && "Unexpected scaling factor");
343 // Fast-path: if no scaling, then it is just a copy.
344 if (Scale == 1) {
345 ScaledMask.assign(Mask.begin(), Mask.end());
346 return;
349 ScaledMask.clear();
350 for (int MaskElt : Mask) {
351 if (MaskElt >= 0) {
352 assert(((uint64_t)Scale * MaskElt + (Scale - 1)) <= INT32_MAX &&
353 "Overflowed 32-bits");
355 for (int SliceElt = 0; SliceElt != Scale; ++SliceElt)
356 ScaledMask.push_back(MaskElt < 0 ? MaskElt : Scale * MaskElt + SliceElt);
360 bool llvm::widenShuffleMaskElts(int Scale, ArrayRef<int> Mask,
361 SmallVectorImpl<int> &ScaledMask) {
362 assert(Scale > 0 && "Unexpected scaling factor");
364 // Fast-path: if no scaling, then it is just a copy.
365 if (Scale == 1) {
366 ScaledMask.assign(Mask.begin(), Mask.end());
367 return true;
370 // We must map the original elements down evenly to a type with less elements.
371 int NumElts = Mask.size();
372 if (NumElts % Scale != 0)
373 return false;
375 ScaledMask.clear();
376 ScaledMask.reserve(NumElts / Scale);
378 // Step through the input mask by splitting into Scale-sized slices.
379 do {
380 ArrayRef<int> MaskSlice = Mask.take_front(Scale);
381 assert((int)MaskSlice.size() == Scale && "Expected Scale-sized slice.");
383 // The first element of the slice determines how we evaluate this slice.
384 int SliceFront = MaskSlice.front();
385 if (SliceFront < 0) {
386 // Negative values (undef or other "sentinel" values) must be equal across
387 // the entire slice.
388 if (!all_equal(MaskSlice))
389 return false;
390 ScaledMask.push_back(SliceFront);
391 } else {
392 // A positive mask element must be cleanly divisible.
393 if (SliceFront % Scale != 0)
394 return false;
395 // Elements of the slice must be consecutive.
396 for (int i = 1; i < Scale; ++i)
397 if (MaskSlice[i] != SliceFront + i)
398 return false;
399 ScaledMask.push_back(SliceFront / Scale);
401 Mask = Mask.drop_front(Scale);
402 } while (!Mask.empty());
404 assert((int)ScaledMask.size() * Scale == NumElts && "Unexpected scaled mask");
406 // All elements of the original mask can be scaled down to map to the elements
407 // of a mask with wider elements.
408 return true;
411 void llvm::getShuffleMaskWithWidestElts(ArrayRef<int> Mask,
412 SmallVectorImpl<int> &ScaledMask) {
413 std::array<SmallVector<int, 16>, 2> TmpMasks;
414 SmallVectorImpl<int> *Output = &TmpMasks[0], *Tmp = &TmpMasks[1];
415 ArrayRef<int> InputMask = Mask;
416 for (unsigned Scale = 2; Scale <= InputMask.size(); ++Scale) {
417 while (widenShuffleMaskElts(Scale, InputMask, *Output)) {
418 InputMask = *Output;
419 std::swap(Output, Tmp);
422 ScaledMask.assign(InputMask.begin(), InputMask.end());
425 void llvm::processShuffleMasks(
426 ArrayRef<int> Mask, unsigned NumOfSrcRegs, unsigned NumOfDestRegs,
427 unsigned NumOfUsedRegs, function_ref<void()> NoInputAction,
428 function_ref<void(ArrayRef<int>, unsigned, unsigned)> SingleInputAction,
429 function_ref<void(ArrayRef<int>, unsigned, unsigned)> ManyInputsAction) {
430 SmallVector<SmallVector<SmallVector<int>>> Res(NumOfDestRegs);
431 // Try to perform better estimation of the permutation.
432 // 1. Split the source/destination vectors into real registers.
433 // 2. Do the mask analysis to identify which real registers are
434 // permuted.
435 int Sz = Mask.size();
436 unsigned SzDest = Sz / NumOfDestRegs;
437 unsigned SzSrc = Sz / NumOfSrcRegs;
438 for (unsigned I = 0; I < NumOfDestRegs; ++I) {
439 auto &RegMasks = Res[I];
440 RegMasks.assign(NumOfSrcRegs, {});
441 // Check that the values in dest registers are in the one src
442 // register.
443 for (unsigned K = 0; K < SzDest; ++K) {
444 int Idx = I * SzDest + K;
445 if (Idx == Sz)
446 break;
447 if (Mask[Idx] >= Sz || Mask[Idx] == PoisonMaskElem)
448 continue;
449 int SrcRegIdx = Mask[Idx] / SzSrc;
450 // Add a cost of PermuteTwoSrc for each new source register permute,
451 // if we have more than one source registers.
452 if (RegMasks[SrcRegIdx].empty())
453 RegMasks[SrcRegIdx].assign(SzDest, PoisonMaskElem);
454 RegMasks[SrcRegIdx][K] = Mask[Idx] % SzSrc;
457 // Process split mask.
458 for (unsigned I = 0; I < NumOfUsedRegs; ++I) {
459 auto &Dest = Res[I];
460 int NumSrcRegs =
461 count_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
462 switch (NumSrcRegs) {
463 case 0:
464 // No input vectors were used!
465 NoInputAction();
466 break;
467 case 1: {
468 // Find the only mask with at least single undef mask elem.
469 auto *It =
470 find_if(Dest, [](ArrayRef<int> Mask) { return !Mask.empty(); });
471 unsigned SrcReg = std::distance(Dest.begin(), It);
472 SingleInputAction(*It, SrcReg, I);
473 break;
475 default: {
476 // The first mask is a permutation of a single register. Since we have >2
477 // input registers to shuffle, we merge the masks for 2 first registers
478 // and generate a shuffle of 2 registers rather than the reordering of the
479 // first register and then shuffle with the second register. Next,
480 // generate the shuffles of the resulting register + the remaining
481 // registers from the list.
482 auto &&CombineMasks = [](MutableArrayRef<int> FirstMask,
483 ArrayRef<int> SecondMask) {
484 for (int Idx = 0, VF = FirstMask.size(); Idx < VF; ++Idx) {
485 if (SecondMask[Idx] != PoisonMaskElem) {
486 assert(FirstMask[Idx] == PoisonMaskElem &&
487 "Expected undefined mask element.");
488 FirstMask[Idx] = SecondMask[Idx] + VF;
492 auto &&NormalizeMask = [](MutableArrayRef<int> Mask) {
493 for (int Idx = 0, VF = Mask.size(); Idx < VF; ++Idx) {
494 if (Mask[Idx] != PoisonMaskElem)
495 Mask[Idx] = Idx;
498 int SecondIdx;
499 do {
500 int FirstIdx = -1;
501 SecondIdx = -1;
502 MutableArrayRef<int> FirstMask, SecondMask;
503 for (unsigned I = 0; I < NumOfDestRegs; ++I) {
504 SmallVectorImpl<int> &RegMask = Dest[I];
505 if (RegMask.empty())
506 continue;
508 if (FirstIdx == SecondIdx) {
509 FirstIdx = I;
510 FirstMask = RegMask;
511 continue;
513 SecondIdx = I;
514 SecondMask = RegMask;
515 CombineMasks(FirstMask, SecondMask);
516 ManyInputsAction(FirstMask, FirstIdx, SecondIdx);
517 NormalizeMask(FirstMask);
518 RegMask.clear();
519 SecondMask = FirstMask;
520 SecondIdx = FirstIdx;
522 if (FirstIdx != SecondIdx && SecondIdx >= 0) {
523 CombineMasks(SecondMask, FirstMask);
524 ManyInputsAction(SecondMask, SecondIdx, FirstIdx);
525 Dest[FirstIdx].clear();
526 NormalizeMask(SecondMask);
528 } while (SecondIdx >= 0);
529 break;
535 MapVector<Instruction *, uint64_t>
536 llvm::computeMinimumValueSizes(ArrayRef<BasicBlock *> Blocks, DemandedBits &DB,
537 const TargetTransformInfo *TTI) {
539 // DemandedBits will give us every value's live-out bits. But we want
540 // to ensure no extra casts would need to be inserted, so every DAG
541 // of connected values must have the same minimum bitwidth.
542 EquivalenceClasses<Value *> ECs;
543 SmallVector<Value *, 16> Worklist;
544 SmallPtrSet<Value *, 4> Roots;
545 SmallPtrSet<Value *, 16> Visited;
546 DenseMap<Value *, uint64_t> DBits;
547 SmallPtrSet<Instruction *, 4> InstructionSet;
548 MapVector<Instruction *, uint64_t> MinBWs;
550 // Determine the roots. We work bottom-up, from truncs or icmps.
551 bool SeenExtFromIllegalType = false;
552 for (auto *BB : Blocks)
553 for (auto &I : *BB) {
554 InstructionSet.insert(&I);
556 if (TTI && (isa<ZExtInst>(&I) || isa<SExtInst>(&I)) &&
557 !TTI->isTypeLegal(I.getOperand(0)->getType()))
558 SeenExtFromIllegalType = true;
560 // Only deal with non-vector integers up to 64-bits wide.
561 if ((isa<TruncInst>(&I) || isa<ICmpInst>(&I)) &&
562 !I.getType()->isVectorTy() &&
563 I.getOperand(0)->getType()->getScalarSizeInBits() <= 64) {
564 // Don't make work for ourselves. If we know the loaded type is legal,
565 // don't add it to the worklist.
566 if (TTI && isa<TruncInst>(&I) && TTI->isTypeLegal(I.getType()))
567 continue;
569 Worklist.push_back(&I);
570 Roots.insert(&I);
573 // Early exit.
574 if (Worklist.empty() || (TTI && !SeenExtFromIllegalType))
575 return MinBWs;
577 // Now proceed breadth-first, unioning values together.
578 while (!Worklist.empty()) {
579 Value *Val = Worklist.pop_back_val();
580 Value *Leader = ECs.getOrInsertLeaderValue(Val);
582 if (!Visited.insert(Val).second)
583 continue;
585 // Non-instructions terminate a chain successfully.
586 if (!isa<Instruction>(Val))
587 continue;
588 Instruction *I = cast<Instruction>(Val);
590 // If we encounter a type that is larger than 64 bits, we can't represent
591 // it so bail out.
592 if (DB.getDemandedBits(I).getBitWidth() > 64)
593 return MapVector<Instruction *, uint64_t>();
595 uint64_t V = DB.getDemandedBits(I).getZExtValue();
596 DBits[Leader] |= V;
597 DBits[I] = V;
599 // Casts, loads and instructions outside of our range terminate a chain
600 // successfully.
601 if (isa<SExtInst>(I) || isa<ZExtInst>(I) || isa<LoadInst>(I) ||
602 !InstructionSet.count(I))
603 continue;
605 // Unsafe casts terminate a chain unsuccessfully. We can't do anything
606 // useful with bitcasts, ptrtoints or inttoptrs and it'd be unsafe to
607 // transform anything that relies on them.
608 if (isa<BitCastInst>(I) || isa<PtrToIntInst>(I) || isa<IntToPtrInst>(I) ||
609 !I->getType()->isIntegerTy()) {
610 DBits[Leader] |= ~0ULL;
611 continue;
614 // We don't modify the types of PHIs. Reductions will already have been
615 // truncated if possible, and inductions' sizes will have been chosen by
616 // indvars.
617 if (isa<PHINode>(I))
618 continue;
620 if (DBits[Leader] == ~0ULL)
621 // All bits demanded, no point continuing.
622 continue;
624 for (Value *O : cast<User>(I)->operands()) {
625 ECs.unionSets(Leader, O);
626 Worklist.push_back(O);
630 // Now we've discovered all values, walk them to see if there are
631 // any users we didn't see. If there are, we can't optimize that
632 // chain.
633 for (auto &I : DBits)
634 for (auto *U : I.first->users())
635 if (U->getType()->isIntegerTy() && DBits.count(U) == 0)
636 DBits[ECs.getOrInsertLeaderValue(I.first)] |= ~0ULL;
638 for (auto I = ECs.begin(), E = ECs.end(); I != E; ++I) {
639 uint64_t LeaderDemandedBits = 0;
640 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
641 LeaderDemandedBits |= DBits[M];
643 uint64_t MinBW = llvm::bit_width(LeaderDemandedBits);
644 // Round up to a power of 2
645 MinBW = llvm::bit_ceil(MinBW);
647 // We don't modify the types of PHIs. Reductions will already have been
648 // truncated if possible, and inductions' sizes will have been chosen by
649 // indvars.
650 // If we are required to shrink a PHI, abandon this entire equivalence class.
651 bool Abort = false;
652 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end()))
653 if (isa<PHINode>(M) && MinBW < M->getType()->getScalarSizeInBits()) {
654 Abort = true;
655 break;
657 if (Abort)
658 continue;
660 for (Value *M : llvm::make_range(ECs.member_begin(I), ECs.member_end())) {
661 auto *MI = dyn_cast<Instruction>(M);
662 if (!MI)
663 continue;
664 Type *Ty = M->getType();
665 if (Roots.count(M))
666 Ty = MI->getOperand(0)->getType();
668 if (MinBW >= Ty->getScalarSizeInBits())
669 continue;
671 // If any of M's operands demand more bits than MinBW then M cannot be
672 // performed safely in MinBW.
673 if (any_of(MI->operands(), [&DB, MinBW](Use &U) {
674 auto *CI = dyn_cast<ConstantInt>(U);
675 // For constants shift amounts, check if the shift would result in
676 // poison.
677 if (CI &&
678 isa<ShlOperator, LShrOperator, AShrOperator>(U.getUser()) &&
679 U.getOperandNo() == 1)
680 return CI->uge(MinBW);
681 uint64_t BW = bit_width(DB.getDemandedBits(&U).getZExtValue());
682 return bit_ceil(BW) > MinBW;
684 continue;
686 MinBWs[MI] = MinBW;
690 return MinBWs;
693 /// Add all access groups in @p AccGroups to @p List.
694 template <typename ListT>
695 static void addToAccessGroupList(ListT &List, MDNode *AccGroups) {
696 // Interpret an access group as a list containing itself.
697 if (AccGroups->getNumOperands() == 0) {
698 assert(isValidAsAccessGroup(AccGroups) && "Node must be an access group");
699 List.insert(AccGroups);
700 return;
703 for (const auto &AccGroupListOp : AccGroups->operands()) {
704 auto *Item = cast<MDNode>(AccGroupListOp.get());
705 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
706 List.insert(Item);
710 MDNode *llvm::uniteAccessGroups(MDNode *AccGroups1, MDNode *AccGroups2) {
711 if (!AccGroups1)
712 return AccGroups2;
713 if (!AccGroups2)
714 return AccGroups1;
715 if (AccGroups1 == AccGroups2)
716 return AccGroups1;
718 SmallSetVector<Metadata *, 4> Union;
719 addToAccessGroupList(Union, AccGroups1);
720 addToAccessGroupList(Union, AccGroups2);
722 if (Union.size() == 0)
723 return nullptr;
724 if (Union.size() == 1)
725 return cast<MDNode>(Union.front());
727 LLVMContext &Ctx = AccGroups1->getContext();
728 return MDNode::get(Ctx, Union.getArrayRef());
731 MDNode *llvm::intersectAccessGroups(const Instruction *Inst1,
732 const Instruction *Inst2) {
733 bool MayAccessMem1 = Inst1->mayReadOrWriteMemory();
734 bool MayAccessMem2 = Inst2->mayReadOrWriteMemory();
736 if (!MayAccessMem1 && !MayAccessMem2)
737 return nullptr;
738 if (!MayAccessMem1)
739 return Inst2->getMetadata(LLVMContext::MD_access_group);
740 if (!MayAccessMem2)
741 return Inst1->getMetadata(LLVMContext::MD_access_group);
743 MDNode *MD1 = Inst1->getMetadata(LLVMContext::MD_access_group);
744 MDNode *MD2 = Inst2->getMetadata(LLVMContext::MD_access_group);
745 if (!MD1 || !MD2)
746 return nullptr;
747 if (MD1 == MD2)
748 return MD1;
750 // Use set for scalable 'contains' check.
751 SmallPtrSet<Metadata *, 4> AccGroupSet2;
752 addToAccessGroupList(AccGroupSet2, MD2);
754 SmallVector<Metadata *, 4> Intersection;
755 if (MD1->getNumOperands() == 0) {
756 assert(isValidAsAccessGroup(MD1) && "Node must be an access group");
757 if (AccGroupSet2.count(MD1))
758 Intersection.push_back(MD1);
759 } else {
760 for (const MDOperand &Node : MD1->operands()) {
761 auto *Item = cast<MDNode>(Node.get());
762 assert(isValidAsAccessGroup(Item) && "List item must be an access group");
763 if (AccGroupSet2.count(Item))
764 Intersection.push_back(Item);
768 if (Intersection.size() == 0)
769 return nullptr;
770 if (Intersection.size() == 1)
771 return cast<MDNode>(Intersection.front());
773 LLVMContext &Ctx = Inst1->getContext();
774 return MDNode::get(Ctx, Intersection);
777 /// \returns \p I after propagating metadata from \p VL.
778 Instruction *llvm::propagateMetadata(Instruction *Inst, ArrayRef<Value *> VL) {
779 if (VL.empty())
780 return Inst;
781 Instruction *I0 = cast<Instruction>(VL[0]);
782 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
783 I0->getAllMetadataOtherThanDebugLoc(Metadata);
785 for (auto Kind : {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
786 LLVMContext::MD_noalias, LLVMContext::MD_fpmath,
787 LLVMContext::MD_nontemporal, LLVMContext::MD_invariant_load,
788 LLVMContext::MD_access_group}) {
789 MDNode *MD = I0->getMetadata(Kind);
791 for (int J = 1, E = VL.size(); MD && J != E; ++J) {
792 const Instruction *IJ = cast<Instruction>(VL[J]);
793 MDNode *IMD = IJ->getMetadata(Kind);
794 switch (Kind) {
795 case LLVMContext::MD_tbaa:
796 MD = MDNode::getMostGenericTBAA(MD, IMD);
797 break;
798 case LLVMContext::MD_alias_scope:
799 MD = MDNode::getMostGenericAliasScope(MD, IMD);
800 break;
801 case LLVMContext::MD_fpmath:
802 MD = MDNode::getMostGenericFPMath(MD, IMD);
803 break;
804 case LLVMContext::MD_noalias:
805 case LLVMContext::MD_nontemporal:
806 case LLVMContext::MD_invariant_load:
807 MD = MDNode::intersect(MD, IMD);
808 break;
809 case LLVMContext::MD_access_group:
810 MD = intersectAccessGroups(Inst, IJ);
811 break;
812 default:
813 llvm_unreachable("unhandled metadata");
817 Inst->setMetadata(Kind, MD);
820 return Inst;
823 Constant *
824 llvm::createBitMaskForGaps(IRBuilderBase &Builder, unsigned VF,
825 const InterleaveGroup<Instruction> &Group) {
826 // All 1's means mask is not needed.
827 if (Group.getNumMembers() == Group.getFactor())
828 return nullptr;
830 // TODO: support reversed access.
831 assert(!Group.isReverse() && "Reversed group not supported.");
833 SmallVector<Constant *, 16> Mask;
834 for (unsigned i = 0; i < VF; i++)
835 for (unsigned j = 0; j < Group.getFactor(); ++j) {
836 unsigned HasMember = Group.getMember(j) ? 1 : 0;
837 Mask.push_back(Builder.getInt1(HasMember));
840 return ConstantVector::get(Mask);
843 llvm::SmallVector<int, 16>
844 llvm::createReplicatedMask(unsigned ReplicationFactor, unsigned VF) {
845 SmallVector<int, 16> MaskVec;
846 for (unsigned i = 0; i < VF; i++)
847 for (unsigned j = 0; j < ReplicationFactor; j++)
848 MaskVec.push_back(i);
850 return MaskVec;
853 llvm::SmallVector<int, 16> llvm::createInterleaveMask(unsigned VF,
854 unsigned NumVecs) {
855 SmallVector<int, 16> Mask;
856 for (unsigned i = 0; i < VF; i++)
857 for (unsigned j = 0; j < NumVecs; j++)
858 Mask.push_back(j * VF + i);
860 return Mask;
863 llvm::SmallVector<int, 16>
864 llvm::createStrideMask(unsigned Start, unsigned Stride, unsigned VF) {
865 SmallVector<int, 16> Mask;
866 for (unsigned i = 0; i < VF; i++)
867 Mask.push_back(Start + i * Stride);
869 return Mask;
872 llvm::SmallVector<int, 16> llvm::createSequentialMask(unsigned Start,
873 unsigned NumInts,
874 unsigned NumUndefs) {
875 SmallVector<int, 16> Mask;
876 for (unsigned i = 0; i < NumInts; i++)
877 Mask.push_back(Start + i);
879 for (unsigned i = 0; i < NumUndefs; i++)
880 Mask.push_back(-1);
882 return Mask;
885 llvm::SmallVector<int, 16> llvm::createUnaryMask(ArrayRef<int> Mask,
886 unsigned NumElts) {
887 // Avoid casts in the loop and make sure we have a reasonable number.
888 int NumEltsSigned = NumElts;
889 assert(NumEltsSigned > 0 && "Expected smaller or non-zero element count");
891 // If the mask chooses an element from operand 1, reduce it to choose from the
892 // corresponding element of operand 0. Undef mask elements are unchanged.
893 SmallVector<int, 16> UnaryMask;
894 for (int MaskElt : Mask) {
895 assert((MaskElt < NumEltsSigned * 2) && "Expected valid shuffle mask");
896 int UnaryElt = MaskElt >= NumEltsSigned ? MaskElt - NumEltsSigned : MaskElt;
897 UnaryMask.push_back(UnaryElt);
899 return UnaryMask;
902 /// A helper function for concatenating vectors. This function concatenates two
903 /// vectors having the same element type. If the second vector has fewer
904 /// elements than the first, it is padded with undefs.
905 static Value *concatenateTwoVectors(IRBuilderBase &Builder, Value *V1,
906 Value *V2) {
907 VectorType *VecTy1 = dyn_cast<VectorType>(V1->getType());
908 VectorType *VecTy2 = dyn_cast<VectorType>(V2->getType());
909 assert(VecTy1 && VecTy2 &&
910 VecTy1->getScalarType() == VecTy2->getScalarType() &&
911 "Expect two vectors with the same element type");
913 unsigned NumElts1 = cast<FixedVectorType>(VecTy1)->getNumElements();
914 unsigned NumElts2 = cast<FixedVectorType>(VecTy2)->getNumElements();
915 assert(NumElts1 >= NumElts2 && "Unexpect the first vector has less elements");
917 if (NumElts1 > NumElts2) {
918 // Extend with UNDEFs.
919 V2 = Builder.CreateShuffleVector(
920 V2, createSequentialMask(0, NumElts2, NumElts1 - NumElts2));
923 return Builder.CreateShuffleVector(
924 V1, V2, createSequentialMask(0, NumElts1 + NumElts2, 0));
927 Value *llvm::concatenateVectors(IRBuilderBase &Builder,
928 ArrayRef<Value *> Vecs) {
929 unsigned NumVecs = Vecs.size();
930 assert(NumVecs > 1 && "Should be at least two vectors");
932 SmallVector<Value *, 8> ResList;
933 ResList.append(Vecs.begin(), Vecs.end());
934 do {
935 SmallVector<Value *, 8> TmpList;
936 for (unsigned i = 0; i < NumVecs - 1; i += 2) {
937 Value *V0 = ResList[i], *V1 = ResList[i + 1];
938 assert((V0->getType() == V1->getType() || i == NumVecs - 2) &&
939 "Only the last vector may have a different type");
941 TmpList.push_back(concatenateTwoVectors(Builder, V0, V1));
944 // Push the last vector if the total number of vectors is odd.
945 if (NumVecs % 2 != 0)
946 TmpList.push_back(ResList[NumVecs - 1]);
948 ResList = TmpList;
949 NumVecs = ResList.size();
950 } while (NumVecs > 1);
952 return ResList[0];
955 bool llvm::maskIsAllZeroOrUndef(Value *Mask) {
956 assert(isa<VectorType>(Mask->getType()) &&
957 isa<IntegerType>(Mask->getType()->getScalarType()) &&
958 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
959 1 &&
960 "Mask must be a vector of i1");
962 auto *ConstMask = dyn_cast<Constant>(Mask);
963 if (!ConstMask)
964 return false;
965 if (ConstMask->isNullValue() || isa<UndefValue>(ConstMask))
966 return true;
967 if (isa<ScalableVectorType>(ConstMask->getType()))
968 return false;
969 for (unsigned
970 I = 0,
971 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
972 I != E; ++I) {
973 if (auto *MaskElt = ConstMask->getAggregateElement(I))
974 if (MaskElt->isNullValue() || isa<UndefValue>(MaskElt))
975 continue;
976 return false;
978 return true;
981 bool llvm::maskIsAllOneOrUndef(Value *Mask) {
982 assert(isa<VectorType>(Mask->getType()) &&
983 isa<IntegerType>(Mask->getType()->getScalarType()) &&
984 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
985 1 &&
986 "Mask must be a vector of i1");
988 auto *ConstMask = dyn_cast<Constant>(Mask);
989 if (!ConstMask)
990 return false;
991 if (ConstMask->isAllOnesValue() || isa<UndefValue>(ConstMask))
992 return true;
993 if (isa<ScalableVectorType>(ConstMask->getType()))
994 return false;
995 for (unsigned
996 I = 0,
997 E = cast<FixedVectorType>(ConstMask->getType())->getNumElements();
998 I != E; ++I) {
999 if (auto *MaskElt = ConstMask->getAggregateElement(I))
1000 if (MaskElt->isAllOnesValue() || isa<UndefValue>(MaskElt))
1001 continue;
1002 return false;
1004 return true;
1007 /// TODO: This is a lot like known bits, but for
1008 /// vectors. Is there something we can common this with?
1009 APInt llvm::possiblyDemandedEltsInMask(Value *Mask) {
1010 assert(isa<FixedVectorType>(Mask->getType()) &&
1011 isa<IntegerType>(Mask->getType()->getScalarType()) &&
1012 cast<IntegerType>(Mask->getType()->getScalarType())->getBitWidth() ==
1013 1 &&
1014 "Mask must be a fixed width vector of i1");
1016 const unsigned VWidth =
1017 cast<FixedVectorType>(Mask->getType())->getNumElements();
1018 APInt DemandedElts = APInt::getAllOnes(VWidth);
1019 if (auto *CV = dyn_cast<ConstantVector>(Mask))
1020 for (unsigned i = 0; i < VWidth; i++)
1021 if (CV->getAggregateElement(i)->isNullValue())
1022 DemandedElts.clearBit(i);
1023 return DemandedElts;
1026 bool InterleavedAccessInfo::isStrided(int Stride) {
1027 unsigned Factor = std::abs(Stride);
1028 return Factor >= 2 && Factor <= MaxInterleaveGroupFactor;
1031 void InterleavedAccessInfo::collectConstStrideAccesses(
1032 MapVector<Instruction *, StrideDescriptor> &AccessStrideInfo,
1033 const DenseMap<Value*, const SCEV*> &Strides) {
1034 auto &DL = TheLoop->getHeader()->getModule()->getDataLayout();
1036 // Since it's desired that the load/store instructions be maintained in
1037 // "program order" for the interleaved access analysis, we have to visit the
1038 // blocks in the loop in reverse postorder (i.e., in a topological order).
1039 // Such an ordering will ensure that any load/store that may be executed
1040 // before a second load/store will precede the second load/store in
1041 // AccessStrideInfo.
1042 LoopBlocksDFS DFS(TheLoop);
1043 DFS.perform(LI);
1044 for (BasicBlock *BB : make_range(DFS.beginRPO(), DFS.endRPO()))
1045 for (auto &I : *BB) {
1046 Value *Ptr = getLoadStorePointerOperand(&I);
1047 if (!Ptr)
1048 continue;
1049 Type *ElementTy = getLoadStoreType(&I);
1051 // Currently, codegen doesn't support cases where the type size doesn't
1052 // match the alloc size. Skip them for now.
1053 uint64_t Size = DL.getTypeAllocSize(ElementTy);
1054 if (Size * 8 != DL.getTypeSizeInBits(ElementTy))
1055 continue;
1057 // We don't check wrapping here because we don't know yet if Ptr will be
1058 // part of a full group or a group with gaps. Checking wrapping for all
1059 // pointers (even those that end up in groups with no gaps) will be overly
1060 // conservative. For full groups, wrapping should be ok since if we would
1061 // wrap around the address space we would do a memory access at nullptr
1062 // even without the transformation. The wrapping checks are therefore
1063 // deferred until after we've formed the interleaved groups.
1064 int64_t Stride =
1065 getPtrStride(PSE, ElementTy, Ptr, TheLoop, Strides,
1066 /*Assume=*/true, /*ShouldCheckWrap=*/false).value_or(0);
1068 const SCEV *Scev = replaceSymbolicStrideSCEV(PSE, Strides, Ptr);
1069 AccessStrideInfo[&I] = StrideDescriptor(Stride, Scev, Size,
1070 getLoadStoreAlignment(&I));
1074 // Analyze interleaved accesses and collect them into interleaved load and
1075 // store groups.
1077 // When generating code for an interleaved load group, we effectively hoist all
1078 // loads in the group to the location of the first load in program order. When
1079 // generating code for an interleaved store group, we sink all stores to the
1080 // location of the last store. This code motion can change the order of load
1081 // and store instructions and may break dependences.
1083 // The code generation strategy mentioned above ensures that we won't violate
1084 // any write-after-read (WAR) dependences.
1086 // E.g., for the WAR dependence: a = A[i]; // (1)
1087 // A[i] = b; // (2)
1089 // The store group of (2) is always inserted at or below (2), and the load
1090 // group of (1) is always inserted at or above (1). Thus, the instructions will
1091 // never be reordered. All other dependences are checked to ensure the
1092 // correctness of the instruction reordering.
1094 // The algorithm visits all memory accesses in the loop in bottom-up program
1095 // order. Program order is established by traversing the blocks in the loop in
1096 // reverse postorder when collecting the accesses.
1098 // We visit the memory accesses in bottom-up order because it can simplify the
1099 // construction of store groups in the presence of write-after-write (WAW)
1100 // dependences.
1102 // E.g., for the WAW dependence: A[i] = a; // (1)
1103 // A[i] = b; // (2)
1104 // A[i + 1] = c; // (3)
1106 // We will first create a store group with (3) and (2). (1) can't be added to
1107 // this group because it and (2) are dependent. However, (1) can be grouped
1108 // with other accesses that may precede it in program order. Note that a
1109 // bottom-up order does not imply that WAW dependences should not be checked.
1110 void InterleavedAccessInfo::analyzeInterleaving(
1111 bool EnablePredicatedInterleavedMemAccesses) {
1112 LLVM_DEBUG(dbgs() << "LV: Analyzing interleaved accesses...\n");
1113 const auto &Strides = LAI->getSymbolicStrides();
1115 // Holds all accesses with a constant stride.
1116 MapVector<Instruction *, StrideDescriptor> AccessStrideInfo;
1117 collectConstStrideAccesses(AccessStrideInfo, Strides);
1119 if (AccessStrideInfo.empty())
1120 return;
1122 // Collect the dependences in the loop.
1123 collectDependences();
1125 // Holds all interleaved store groups temporarily.
1126 SmallSetVector<InterleaveGroup<Instruction> *, 4> StoreGroups;
1127 // Holds all interleaved load groups temporarily.
1128 SmallSetVector<InterleaveGroup<Instruction> *, 4> LoadGroups;
1129 // Groups added to this set cannot have new members added.
1130 SmallPtrSet<InterleaveGroup<Instruction> *, 4> CompletedLoadGroups;
1132 // Search in bottom-up program order for pairs of accesses (A and B) that can
1133 // form interleaved load or store groups. In the algorithm below, access A
1134 // precedes access B in program order. We initialize a group for B in the
1135 // outer loop of the algorithm, and then in the inner loop, we attempt to
1136 // insert each A into B's group if:
1138 // 1. A and B have the same stride,
1139 // 2. A and B have the same memory object size, and
1140 // 3. A belongs in B's group according to its distance from B.
1142 // Special care is taken to ensure group formation will not break any
1143 // dependences.
1144 for (auto BI = AccessStrideInfo.rbegin(), E = AccessStrideInfo.rend();
1145 BI != E; ++BI) {
1146 Instruction *B = BI->first;
1147 StrideDescriptor DesB = BI->second;
1149 // Initialize a group for B if it has an allowable stride. Even if we don't
1150 // create a group for B, we continue with the bottom-up algorithm to ensure
1151 // we don't break any of B's dependences.
1152 InterleaveGroup<Instruction> *GroupB = nullptr;
1153 if (isStrided(DesB.Stride) &&
1154 (!isPredicated(B->getParent()) || EnablePredicatedInterleavedMemAccesses)) {
1155 GroupB = getInterleaveGroup(B);
1156 if (!GroupB) {
1157 LLVM_DEBUG(dbgs() << "LV: Creating an interleave group with:" << *B
1158 << '\n');
1159 GroupB = createInterleaveGroup(B, DesB.Stride, DesB.Alignment);
1160 if (B->mayWriteToMemory())
1161 StoreGroups.insert(GroupB);
1162 else
1163 LoadGroups.insert(GroupB);
1167 for (auto AI = std::next(BI); AI != E; ++AI) {
1168 Instruction *A = AI->first;
1169 StrideDescriptor DesA = AI->second;
1171 // Our code motion strategy implies that we can't have dependences
1172 // between accesses in an interleaved group and other accesses located
1173 // between the first and last member of the group. Note that this also
1174 // means that a group can't have more than one member at a given offset.
1175 // The accesses in a group can have dependences with other accesses, but
1176 // we must ensure we don't extend the boundaries of the group such that
1177 // we encompass those dependent accesses.
1179 // For example, assume we have the sequence of accesses shown below in a
1180 // stride-2 loop:
1182 // (1, 2) is a group | A[i] = a; // (1)
1183 // | A[i-1] = b; // (2) |
1184 // A[i-3] = c; // (3)
1185 // A[i] = d; // (4) | (2, 4) is not a group
1187 // Because accesses (2) and (3) are dependent, we can group (2) with (1)
1188 // but not with (4). If we did, the dependent access (3) would be within
1189 // the boundaries of the (2, 4) group.
1190 auto DependentMember = [&](InterleaveGroup<Instruction> *Group,
1191 StrideEntry *A) -> Instruction * {
1192 for (uint32_t Index = 0; Index < Group->getFactor(); ++Index) {
1193 Instruction *MemberOfGroupB = Group->getMember(Index);
1194 if (MemberOfGroupB && !canReorderMemAccessesForInterleavedGroups(
1195 A, &*AccessStrideInfo.find(MemberOfGroupB)))
1196 return MemberOfGroupB;
1198 return nullptr;
1201 auto GroupA = getInterleaveGroup(A);
1202 // If A is a load, dependencies are tolerable, there's nothing to do here.
1203 // If both A and B belong to the same (store) group, they are independent,
1204 // even if dependencies have not been recorded.
1205 // If both GroupA and GroupB are null, there's nothing to do here.
1206 if (A->mayWriteToMemory() && GroupA != GroupB) {
1207 Instruction *DependentInst = nullptr;
1208 // If GroupB is a load group, we have to compare AI against all
1209 // members of GroupB because if any load within GroupB has a dependency
1210 // on AI, we need to mark GroupB as complete and also release the
1211 // store GroupA (if A belongs to one). The former prevents incorrect
1212 // hoisting of load B above store A while the latter prevents incorrect
1213 // sinking of store A below load B.
1214 if (GroupB && LoadGroups.contains(GroupB))
1215 DependentInst = DependentMember(GroupB, &*AI);
1216 else if (!canReorderMemAccessesForInterleavedGroups(&*AI, &*BI))
1217 DependentInst = B;
1219 if (DependentInst) {
1220 // A has a store dependence on B (or on some load within GroupB) and
1221 // is part of a store group. Release A's group to prevent illegal
1222 // sinking of A below B. A will then be free to form another group
1223 // with instructions that precede it.
1224 if (GroupA && StoreGroups.contains(GroupA)) {
1225 LLVM_DEBUG(dbgs() << "LV: Invalidated store group due to "
1226 "dependence between "
1227 << *A << " and " << *DependentInst << '\n');
1228 StoreGroups.remove(GroupA);
1229 releaseGroup(GroupA);
1231 // If B is a load and part of an interleave group, no earlier loads
1232 // can be added to B's interleave group, because this would mean the
1233 // DependentInst would move across store A. Mark the interleave group
1234 // as complete.
1235 if (GroupB && LoadGroups.contains(GroupB)) {
1236 LLVM_DEBUG(dbgs() << "LV: Marking interleave group for " << *B
1237 << " as complete.\n");
1238 CompletedLoadGroups.insert(GroupB);
1242 if (CompletedLoadGroups.contains(GroupB)) {
1243 // Skip trying to add A to B, continue to look for other conflicting A's
1244 // in groups to be released.
1245 continue;
1248 // At this point, we've checked for illegal code motion. If either A or B
1249 // isn't strided, there's nothing left to do.
1250 if (!isStrided(DesA.Stride) || !isStrided(DesB.Stride))
1251 continue;
1253 // Ignore A if it's already in a group or isn't the same kind of memory
1254 // operation as B.
1255 // Note that mayReadFromMemory() isn't mutually exclusive to
1256 // mayWriteToMemory in the case of atomic loads. We shouldn't see those
1257 // here, canVectorizeMemory() should have returned false - except for the
1258 // case we asked for optimization remarks.
1259 if (isInterleaved(A) ||
1260 (A->mayReadFromMemory() != B->mayReadFromMemory()) ||
1261 (A->mayWriteToMemory() != B->mayWriteToMemory()))
1262 continue;
1264 // Check rules 1 and 2. Ignore A if its stride or size is different from
1265 // that of B.
1266 if (DesA.Stride != DesB.Stride || DesA.Size != DesB.Size)
1267 continue;
1269 // Ignore A if the memory object of A and B don't belong to the same
1270 // address space
1271 if (getLoadStoreAddressSpace(A) != getLoadStoreAddressSpace(B))
1272 continue;
1274 // Calculate the distance from A to B.
1275 const SCEVConstant *DistToB = dyn_cast<SCEVConstant>(
1276 PSE.getSE()->getMinusSCEV(DesA.Scev, DesB.Scev));
1277 if (!DistToB)
1278 continue;
1279 int64_t DistanceToB = DistToB->getAPInt().getSExtValue();
1281 // Check rule 3. Ignore A if its distance to B is not a multiple of the
1282 // size.
1283 if (DistanceToB % static_cast<int64_t>(DesB.Size))
1284 continue;
1286 // All members of a predicated interleave-group must have the same predicate,
1287 // and currently must reside in the same BB.
1288 BasicBlock *BlockA = A->getParent();
1289 BasicBlock *BlockB = B->getParent();
1290 if ((isPredicated(BlockA) || isPredicated(BlockB)) &&
1291 (!EnablePredicatedInterleavedMemAccesses || BlockA != BlockB))
1292 continue;
1294 // The index of A is the index of B plus A's distance to B in multiples
1295 // of the size.
1296 int IndexA =
1297 GroupB->getIndex(B) + DistanceToB / static_cast<int64_t>(DesB.Size);
1299 // Try to insert A into B's group.
1300 if (GroupB->insertMember(A, IndexA, DesA.Alignment)) {
1301 LLVM_DEBUG(dbgs() << "LV: Inserted:" << *A << '\n'
1302 << " into the interleave group with" << *B
1303 << '\n');
1304 InterleaveGroupMap[A] = GroupB;
1306 // Set the first load in program order as the insert position.
1307 if (A->mayReadFromMemory())
1308 GroupB->setInsertPos(A);
1310 } // Iteration over A accesses.
1311 } // Iteration over B accesses.
1313 auto InvalidateGroupIfMemberMayWrap = [&](InterleaveGroup<Instruction> *Group,
1314 int Index,
1315 std::string FirstOrLast) -> bool {
1316 Instruction *Member = Group->getMember(Index);
1317 assert(Member && "Group member does not exist");
1318 Value *MemberPtr = getLoadStorePointerOperand(Member);
1319 Type *AccessTy = getLoadStoreType(Member);
1320 if (getPtrStride(PSE, AccessTy, MemberPtr, TheLoop, Strides,
1321 /*Assume=*/false, /*ShouldCheckWrap=*/true).value_or(0))
1322 return false;
1323 LLVM_DEBUG(dbgs() << "LV: Invalidate candidate interleaved group due to "
1324 << FirstOrLast
1325 << " group member potentially pointer-wrapping.\n");
1326 releaseGroup(Group);
1327 return true;
1330 // Remove interleaved groups with gaps whose memory
1331 // accesses may wrap around. We have to revisit the getPtrStride analysis,
1332 // this time with ShouldCheckWrap=true, since collectConstStrideAccesses does
1333 // not check wrapping (see documentation there).
1334 // FORNOW we use Assume=false;
1335 // TODO: Change to Assume=true but making sure we don't exceed the threshold
1336 // of runtime SCEV assumptions checks (thereby potentially failing to
1337 // vectorize altogether).
1338 // Additional optional optimizations:
1339 // TODO: If we are peeling the loop and we know that the first pointer doesn't
1340 // wrap then we can deduce that all pointers in the group don't wrap.
1341 // This means that we can forcefully peel the loop in order to only have to
1342 // check the first pointer for no-wrap. When we'll change to use Assume=true
1343 // we'll only need at most one runtime check per interleaved group.
1344 for (auto *Group : LoadGroups) {
1345 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1346 // load would wrap around the address space we would do a memory access at
1347 // nullptr even without the transformation.
1348 if (Group->getNumMembers() == Group->getFactor())
1349 continue;
1351 // Case 2: If first and last members of the group don't wrap this implies
1352 // that all the pointers in the group don't wrap.
1353 // So we check only group member 0 (which is always guaranteed to exist),
1354 // and group member Factor - 1; If the latter doesn't exist we rely on
1355 // peeling (if it is a non-reversed accsess -- see Case 3).
1356 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1357 continue;
1358 if (Group->getMember(Group->getFactor() - 1))
1359 InvalidateGroupIfMemberMayWrap(Group, Group->getFactor() - 1,
1360 std::string("last"));
1361 else {
1362 // Case 3: A non-reversed interleaved load group with gaps: We need
1363 // to execute at least one scalar epilogue iteration. This will ensure
1364 // we don't speculatively access memory out-of-bounds. We only need
1365 // to look for a member at index factor - 1, since every group must have
1366 // a member at index zero.
1367 if (Group->isReverse()) {
1368 LLVM_DEBUG(
1369 dbgs() << "LV: Invalidate candidate interleaved group due to "
1370 "a reverse access with gaps.\n");
1371 releaseGroup(Group);
1372 continue;
1374 LLVM_DEBUG(
1375 dbgs() << "LV: Interleaved group requires epilogue iteration.\n");
1376 RequiresScalarEpilogue = true;
1380 for (auto *Group : StoreGroups) {
1381 // Case 1: A full group. Can Skip the checks; For full groups, if the wide
1382 // store would wrap around the address space we would do a memory access at
1383 // nullptr even without the transformation.
1384 if (Group->getNumMembers() == Group->getFactor())
1385 continue;
1387 // Interleave-store-group with gaps is implemented using masked wide store.
1388 // Remove interleaved store groups with gaps if
1389 // masked-interleaved-accesses are not enabled by the target.
1390 if (!EnablePredicatedInterleavedMemAccesses) {
1391 LLVM_DEBUG(
1392 dbgs() << "LV: Invalidate candidate interleaved store group due "
1393 "to gaps.\n");
1394 releaseGroup(Group);
1395 continue;
1398 // Case 2: If first and last members of the group don't wrap this implies
1399 // that all the pointers in the group don't wrap.
1400 // So we check only group member 0 (which is always guaranteed to exist),
1401 // and the last group member. Case 3 (scalar epilog) is not relevant for
1402 // stores with gaps, which are implemented with masked-store (rather than
1403 // speculative access, as in loads).
1404 if (InvalidateGroupIfMemberMayWrap(Group, 0, std::string("first")))
1405 continue;
1406 for (int Index = Group->getFactor() - 1; Index > 0; Index--)
1407 if (Group->getMember(Index)) {
1408 InvalidateGroupIfMemberMayWrap(Group, Index, std::string("last"));
1409 break;
1414 void InterleavedAccessInfo::invalidateGroupsRequiringScalarEpilogue() {
1415 // If no group had triggered the requirement to create an epilogue loop,
1416 // there is nothing to do.
1417 if (!requiresScalarEpilogue())
1418 return;
1420 bool ReleasedGroup = false;
1421 // Release groups requiring scalar epilogues. Note that this also removes them
1422 // from InterleaveGroups.
1423 for (auto *Group : make_early_inc_range(InterleaveGroups)) {
1424 if (!Group->requiresScalarEpilogue())
1425 continue;
1426 LLVM_DEBUG(
1427 dbgs()
1428 << "LV: Invalidate candidate interleaved group due to gaps that "
1429 "require a scalar epilogue (not allowed under optsize) and cannot "
1430 "be masked (not enabled). \n");
1431 releaseGroup(Group);
1432 ReleasedGroup = true;
1434 assert(ReleasedGroup && "At least one group must be invalidated, as a "
1435 "scalar epilogue was required");
1436 (void)ReleasedGroup;
1437 RequiresScalarEpilogue = false;
1440 template <typename InstT>
1441 void InterleaveGroup<InstT>::addMetadata(InstT *NewInst) const {
1442 llvm_unreachable("addMetadata can only be used for Instruction");
1445 namespace llvm {
1446 template <>
1447 void InterleaveGroup<Instruction>::addMetadata(Instruction *NewInst) const {
1448 SmallVector<Value *, 4> VL;
1449 std::transform(Members.begin(), Members.end(), std::back_inserter(VL),
1450 [](std::pair<int, Instruction *> p) { return p.second; });
1451 propagateMetadata(NewInst, VL);
1455 void VFABI::getVectorVariantNames(
1456 const CallInst &CI, SmallVectorImpl<std::string> &VariantMappings) {
1457 const StringRef S = CI.getFnAttr(VFABI::MappingsAttrName).getValueAsString();
1458 if (S.empty())
1459 return;
1461 SmallVector<StringRef, 8> ListAttr;
1462 S.split(ListAttr, ",");
1464 for (const auto &S : SetVector<StringRef>(ListAttr.begin(), ListAttr.end())) {
1465 #ifndef NDEBUG
1466 LLVM_DEBUG(dbgs() << "VFABI: adding mapping '" << S << "'\n");
1467 std::optional<VFInfo> Info =
1468 VFABI::tryDemangleForVFABI(S, *(CI.getModule()));
1469 assert(Info && "Invalid name for a VFABI variant.");
1470 assert(CI.getModule()->getFunction(Info->VectorName) &&
1471 "Vector function is missing.");
1472 #endif
1473 VariantMappings.push_back(std::string(S));
1477 bool VFShape::hasValidParameterList() const {
1478 for (unsigned Pos = 0, NumParams = Parameters.size(); Pos < NumParams;
1479 ++Pos) {
1480 assert(Parameters[Pos].ParamPos == Pos && "Broken parameter list.");
1482 switch (Parameters[Pos].ParamKind) {
1483 default: // Nothing to check.
1484 break;
1485 case VFParamKind::OMP_Linear:
1486 case VFParamKind::OMP_LinearRef:
1487 case VFParamKind::OMP_LinearVal:
1488 case VFParamKind::OMP_LinearUVal:
1489 // Compile time linear steps must be non-zero.
1490 if (Parameters[Pos].LinearStepOrPos == 0)
1491 return false;
1492 break;
1493 case VFParamKind::OMP_LinearPos:
1494 case VFParamKind::OMP_LinearRefPos:
1495 case VFParamKind::OMP_LinearValPos:
1496 case VFParamKind::OMP_LinearUValPos:
1497 // The runtime linear step must be referring to some other
1498 // parameters in the signature.
1499 if (Parameters[Pos].LinearStepOrPos >= int(NumParams))
1500 return false;
1501 // The linear step parameter must be marked as uniform.
1502 if (Parameters[Parameters[Pos].LinearStepOrPos].ParamKind !=
1503 VFParamKind::OMP_Uniform)
1504 return false;
1505 // The linear step parameter can't point at itself.
1506 if (Parameters[Pos].LinearStepOrPos == int(Pos))
1507 return false;
1508 break;
1509 case VFParamKind::GlobalPredicate:
1510 // The global predicate must be the unique. Can be placed anywhere in the
1511 // signature.
1512 for (unsigned NextPos = Pos + 1; NextPos < NumParams; ++NextPos)
1513 if (Parameters[NextPos].ParamKind == VFParamKind::GlobalPredicate)
1514 return false;
1515 break;
1518 return true;