Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / CodeGen / AtomicExpandPass.cpp
blobccf3e9ec64921052bbdacaef332a4f2944a4784d
1 //===- AtomicExpandPass.cpp - Expand atomic instructions ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains a pass (at IR level) to replace atomic instructions with
10 // __atomic_* library calls, or target specific instruction which implement the
11 // same semantics in a way which better fits the target backend. This can
12 // include the use of (intrinsic-based) load-linked/store-conditional loops,
13 // AtomicCmpXchg, or type coercions.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/InstSimplifyFolder.h"
21 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
22 #include "llvm/CodeGen/AtomicExpandUtils.h"
23 #include "llvm/CodeGen/RuntimeLibcalls.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/Constant.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/InstIterator.h"
37 #include "llvm/IR/Instruction.h"
38 #include "llvm/IR/Instructions.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/User.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/AtomicOrdering.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Debug.h"
48 #include "llvm/Support/ErrorHandling.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include "llvm/Transforms/Utils/LowerAtomic.h"
52 #include <cassert>
53 #include <cstdint>
54 #include <iterator>
56 using namespace llvm;
58 #define DEBUG_TYPE "atomic-expand"
60 namespace {
62 class AtomicExpand : public FunctionPass {
63 const TargetLowering *TLI = nullptr;
64 const DataLayout *DL = nullptr;
66 public:
67 static char ID; // Pass identification, replacement for typeid
69 AtomicExpand() : FunctionPass(ID) {
70 initializeAtomicExpandPass(*PassRegistry::getPassRegistry());
73 bool runOnFunction(Function &F) override;
75 private:
76 bool bracketInstWithFences(Instruction *I, AtomicOrdering Order);
77 IntegerType *getCorrespondingIntegerType(Type *T, const DataLayout &DL);
78 LoadInst *convertAtomicLoadToIntegerType(LoadInst *LI);
79 bool tryExpandAtomicLoad(LoadInst *LI);
80 bool expandAtomicLoadToLL(LoadInst *LI);
81 bool expandAtomicLoadToCmpXchg(LoadInst *LI);
82 StoreInst *convertAtomicStoreToIntegerType(StoreInst *SI);
83 bool tryExpandAtomicStore(StoreInst *SI);
84 void expandAtomicStore(StoreInst *SI);
85 bool tryExpandAtomicRMW(AtomicRMWInst *AI);
86 AtomicRMWInst *convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI);
87 Value *
88 insertRMWLLSCLoop(IRBuilderBase &Builder, Type *ResultTy, Value *Addr,
89 Align AddrAlign, AtomicOrdering MemOpOrder,
90 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
91 void expandAtomicOpToLLSC(
92 Instruction *I, Type *ResultTy, Value *Addr, Align AddrAlign,
93 AtomicOrdering MemOpOrder,
94 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp);
95 void expandPartwordAtomicRMW(
96 AtomicRMWInst *I, TargetLoweringBase::AtomicExpansionKind ExpansionKind);
97 AtomicRMWInst *widenPartwordAtomicRMW(AtomicRMWInst *AI);
98 bool expandPartwordCmpXchg(AtomicCmpXchgInst *I);
99 void expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI);
100 void expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI);
102 AtomicCmpXchgInst *convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI);
103 static Value *insertRMWCmpXchgLoop(
104 IRBuilderBase &Builder, Type *ResultType, Value *Addr, Align AddrAlign,
105 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
106 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
107 CreateCmpXchgInstFun CreateCmpXchg);
108 bool tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI);
110 bool expandAtomicCmpXchg(AtomicCmpXchgInst *CI);
111 bool isIdempotentRMW(AtomicRMWInst *RMWI);
112 bool simplifyIdempotentRMW(AtomicRMWInst *RMWI);
114 bool expandAtomicOpToLibcall(Instruction *I, unsigned Size, Align Alignment,
115 Value *PointerOperand, Value *ValueOperand,
116 Value *CASExpected, AtomicOrdering Ordering,
117 AtomicOrdering Ordering2,
118 ArrayRef<RTLIB::Libcall> Libcalls);
119 void expandAtomicLoadToLibcall(LoadInst *LI);
120 void expandAtomicStoreToLibcall(StoreInst *LI);
121 void expandAtomicRMWToLibcall(AtomicRMWInst *I);
122 void expandAtomicCASToLibcall(AtomicCmpXchgInst *I);
124 friend bool
125 llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
126 CreateCmpXchgInstFun CreateCmpXchg);
129 // IRBuilder to be used for replacement atomic instructions.
130 struct ReplacementIRBuilder : IRBuilder<InstSimplifyFolder> {
131 // Preserves the DebugLoc from I, and preserves still valid metadata.
132 explicit ReplacementIRBuilder(Instruction *I, const DataLayout &DL)
133 : IRBuilder(I->getContext(), DL) {
134 SetInsertPoint(I);
135 this->CollectMetadataToCopy(I, {LLVMContext::MD_pcsections});
139 } // end anonymous namespace
141 char AtomicExpand::ID = 0;
143 char &llvm::AtomicExpandID = AtomicExpand::ID;
145 INITIALIZE_PASS(AtomicExpand, DEBUG_TYPE, "Expand Atomic instructions", false,
146 false)
148 FunctionPass *llvm::createAtomicExpandPass() { return new AtomicExpand(); }
150 // Helper functions to retrieve the size of atomic instructions.
151 static unsigned getAtomicOpSize(LoadInst *LI) {
152 const DataLayout &DL = LI->getModule()->getDataLayout();
153 return DL.getTypeStoreSize(LI->getType());
156 static unsigned getAtomicOpSize(StoreInst *SI) {
157 const DataLayout &DL = SI->getModule()->getDataLayout();
158 return DL.getTypeStoreSize(SI->getValueOperand()->getType());
161 static unsigned getAtomicOpSize(AtomicRMWInst *RMWI) {
162 const DataLayout &DL = RMWI->getModule()->getDataLayout();
163 return DL.getTypeStoreSize(RMWI->getValOperand()->getType());
166 static unsigned getAtomicOpSize(AtomicCmpXchgInst *CASI) {
167 const DataLayout &DL = CASI->getModule()->getDataLayout();
168 return DL.getTypeStoreSize(CASI->getCompareOperand()->getType());
171 // Determine if a particular atomic operation has a supported size,
172 // and is of appropriate alignment, to be passed through for target
173 // lowering. (Versus turning into a __atomic libcall)
174 template <typename Inst>
175 static bool atomicSizeSupported(const TargetLowering *TLI, Inst *I) {
176 unsigned Size = getAtomicOpSize(I);
177 Align Alignment = I->getAlign();
178 return Alignment >= Size &&
179 Size <= TLI->getMaxAtomicSizeInBitsSupported() / 8;
182 bool AtomicExpand::runOnFunction(Function &F) {
183 auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
184 if (!TPC)
185 return false;
187 auto &TM = TPC->getTM<TargetMachine>();
188 const auto *Subtarget = TM.getSubtargetImpl(F);
189 if (!Subtarget->enableAtomicExpand())
190 return false;
191 TLI = Subtarget->getTargetLowering();
192 DL = &F.getParent()->getDataLayout();
194 SmallVector<Instruction *, 1> AtomicInsts;
196 // Changing control-flow while iterating through it is a bad idea, so gather a
197 // list of all atomic instructions before we start.
198 for (Instruction &I : instructions(F))
199 if (I.isAtomic() && !isa<FenceInst>(&I))
200 AtomicInsts.push_back(&I);
202 bool MadeChange = false;
203 for (auto *I : AtomicInsts) {
204 auto LI = dyn_cast<LoadInst>(I);
205 auto SI = dyn_cast<StoreInst>(I);
206 auto RMWI = dyn_cast<AtomicRMWInst>(I);
207 auto CASI = dyn_cast<AtomicCmpXchgInst>(I);
208 assert((LI || SI || RMWI || CASI) && "Unknown atomic instruction");
210 // If the Size/Alignment is not supported, replace with a libcall.
211 if (LI) {
212 if (!atomicSizeSupported(TLI, LI)) {
213 expandAtomicLoadToLibcall(LI);
214 MadeChange = true;
215 continue;
217 } else if (SI) {
218 if (!atomicSizeSupported(TLI, SI)) {
219 expandAtomicStoreToLibcall(SI);
220 MadeChange = true;
221 continue;
223 } else if (RMWI) {
224 if (!atomicSizeSupported(TLI, RMWI)) {
225 expandAtomicRMWToLibcall(RMWI);
226 MadeChange = true;
227 continue;
229 } else if (CASI) {
230 if (!atomicSizeSupported(TLI, CASI)) {
231 expandAtomicCASToLibcall(CASI);
232 MadeChange = true;
233 continue;
237 if (LI && TLI->shouldCastAtomicLoadInIR(LI) ==
238 TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
239 I = LI = convertAtomicLoadToIntegerType(LI);
240 MadeChange = true;
241 } else if (SI &&
242 TLI->shouldCastAtomicStoreInIR(SI) ==
243 TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
244 I = SI = convertAtomicStoreToIntegerType(SI);
245 MadeChange = true;
246 } else if (RMWI &&
247 TLI->shouldCastAtomicRMWIInIR(RMWI) ==
248 TargetLoweringBase::AtomicExpansionKind::CastToInteger) {
249 I = RMWI = convertAtomicXchgToIntegerType(RMWI);
250 MadeChange = true;
251 } else if (CASI) {
252 // TODO: when we're ready to make the change at the IR level, we can
253 // extend convertCmpXchgToInteger for floating point too.
254 if (CASI->getCompareOperand()->getType()->isPointerTy()) {
255 // TODO: add a TLI hook to control this so that each target can
256 // convert to lowering the original type one at a time.
257 I = CASI = convertCmpXchgToIntegerType(CASI);
258 MadeChange = true;
262 if (TLI->shouldInsertFencesForAtomic(I)) {
263 auto FenceOrdering = AtomicOrdering::Monotonic;
264 if (LI && isAcquireOrStronger(LI->getOrdering())) {
265 FenceOrdering = LI->getOrdering();
266 LI->setOrdering(AtomicOrdering::Monotonic);
267 } else if (SI && isReleaseOrStronger(SI->getOrdering())) {
268 FenceOrdering = SI->getOrdering();
269 SI->setOrdering(AtomicOrdering::Monotonic);
270 } else if (RMWI && (isReleaseOrStronger(RMWI->getOrdering()) ||
271 isAcquireOrStronger(RMWI->getOrdering()))) {
272 FenceOrdering = RMWI->getOrdering();
273 RMWI->setOrdering(AtomicOrdering::Monotonic);
274 } else if (CASI &&
275 TLI->shouldExpandAtomicCmpXchgInIR(CASI) ==
276 TargetLoweringBase::AtomicExpansionKind::None &&
277 (isReleaseOrStronger(CASI->getSuccessOrdering()) ||
278 isAcquireOrStronger(CASI->getSuccessOrdering()) ||
279 isAcquireOrStronger(CASI->getFailureOrdering()))) {
280 // If a compare and swap is lowered to LL/SC, we can do smarter fence
281 // insertion, with a stronger one on the success path than on the
282 // failure path. As a result, fence insertion is directly done by
283 // expandAtomicCmpXchg in that case.
284 FenceOrdering = CASI->getMergedOrdering();
285 CASI->setSuccessOrdering(AtomicOrdering::Monotonic);
286 CASI->setFailureOrdering(AtomicOrdering::Monotonic);
289 if (FenceOrdering != AtomicOrdering::Monotonic) {
290 MadeChange |= bracketInstWithFences(I, FenceOrdering);
292 } else if (I->hasAtomicStore() &&
293 TLI->shouldInsertTrailingFenceForAtomicStore(I)) {
294 auto FenceOrdering = AtomicOrdering::Monotonic;
295 if (SI)
296 FenceOrdering = SI->getOrdering();
297 else if (RMWI)
298 FenceOrdering = RMWI->getOrdering();
299 else if (CASI && TLI->shouldExpandAtomicCmpXchgInIR(CASI) !=
300 TargetLoweringBase::AtomicExpansionKind::LLSC)
301 // LLSC is handled in expandAtomicCmpXchg().
302 FenceOrdering = CASI->getSuccessOrdering();
304 IRBuilder Builder(I);
305 if (auto TrailingFence =
306 TLI->emitTrailingFence(Builder, I, FenceOrdering)) {
307 TrailingFence->moveAfter(I);
308 MadeChange = true;
312 if (LI)
313 MadeChange |= tryExpandAtomicLoad(LI);
314 else if (SI)
315 MadeChange |= tryExpandAtomicStore(SI);
316 else if (RMWI) {
317 // There are two different ways of expanding RMW instructions:
318 // - into a load if it is idempotent
319 // - into a Cmpxchg/LL-SC loop otherwise
320 // we try them in that order.
322 if (isIdempotentRMW(RMWI) && simplifyIdempotentRMW(RMWI)) {
323 MadeChange = true;
324 } else {
325 AtomicRMWInst::BinOp Op = RMWI->getOperation();
326 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
327 unsigned ValueSize = getAtomicOpSize(RMWI);
328 if (ValueSize < MinCASSize &&
329 (Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
330 Op == AtomicRMWInst::And)) {
331 RMWI = widenPartwordAtomicRMW(RMWI);
332 MadeChange = true;
335 MadeChange |= tryExpandAtomicRMW(RMWI);
337 } else if (CASI)
338 MadeChange |= tryExpandAtomicCmpXchg(CASI);
340 return MadeChange;
343 bool AtomicExpand::bracketInstWithFences(Instruction *I, AtomicOrdering Order) {
344 ReplacementIRBuilder Builder(I, *DL);
346 auto LeadingFence = TLI->emitLeadingFence(Builder, I, Order);
348 auto TrailingFence = TLI->emitTrailingFence(Builder, I, Order);
349 // We have a guard here because not every atomic operation generates a
350 // trailing fence.
351 if (TrailingFence)
352 TrailingFence->moveAfter(I);
354 return (LeadingFence || TrailingFence);
357 /// Get the iX type with the same bitwidth as T.
358 IntegerType *AtomicExpand::getCorrespondingIntegerType(Type *T,
359 const DataLayout &DL) {
360 EVT VT = TLI->getMemValueType(DL, T);
361 unsigned BitWidth = VT.getStoreSizeInBits();
362 assert(BitWidth == VT.getSizeInBits() && "must be a power of two");
363 return IntegerType::get(T->getContext(), BitWidth);
366 /// Convert an atomic load of a non-integral type to an integer load of the
367 /// equivalent bitwidth. See the function comment on
368 /// convertAtomicStoreToIntegerType for background.
369 LoadInst *AtomicExpand::convertAtomicLoadToIntegerType(LoadInst *LI) {
370 auto *M = LI->getModule();
371 Type *NewTy = getCorrespondingIntegerType(LI->getType(), M->getDataLayout());
373 ReplacementIRBuilder Builder(LI, *DL);
375 Value *Addr = LI->getPointerOperand();
377 auto *NewLI = Builder.CreateLoad(NewTy, Addr);
378 NewLI->setAlignment(LI->getAlign());
379 NewLI->setVolatile(LI->isVolatile());
380 NewLI->setAtomic(LI->getOrdering(), LI->getSyncScopeID());
381 LLVM_DEBUG(dbgs() << "Replaced " << *LI << " with " << *NewLI << "\n");
383 Value *NewVal = Builder.CreateBitCast(NewLI, LI->getType());
384 LI->replaceAllUsesWith(NewVal);
385 LI->eraseFromParent();
386 return NewLI;
389 AtomicRMWInst *
390 AtomicExpand::convertAtomicXchgToIntegerType(AtomicRMWInst *RMWI) {
391 auto *M = RMWI->getModule();
392 Type *NewTy =
393 getCorrespondingIntegerType(RMWI->getType(), M->getDataLayout());
395 ReplacementIRBuilder Builder(RMWI, *DL);
397 Value *Addr = RMWI->getPointerOperand();
398 Value *Val = RMWI->getValOperand();
399 Value *NewVal = Val->getType()->isPointerTy()
400 ? Builder.CreatePtrToInt(Val, NewTy)
401 : Builder.CreateBitCast(Val, NewTy);
403 auto *NewRMWI =
404 Builder.CreateAtomicRMW(AtomicRMWInst::Xchg, Addr, NewVal,
405 RMWI->getAlign(), RMWI->getOrdering());
406 NewRMWI->setVolatile(RMWI->isVolatile());
407 LLVM_DEBUG(dbgs() << "Replaced " << *RMWI << " with " << *NewRMWI << "\n");
409 Value *NewRVal = RMWI->getType()->isPointerTy()
410 ? Builder.CreateIntToPtr(NewRMWI, RMWI->getType())
411 : Builder.CreateBitCast(NewRMWI, RMWI->getType());
412 RMWI->replaceAllUsesWith(NewRVal);
413 RMWI->eraseFromParent();
414 return NewRMWI;
417 bool AtomicExpand::tryExpandAtomicLoad(LoadInst *LI) {
418 switch (TLI->shouldExpandAtomicLoadInIR(LI)) {
419 case TargetLoweringBase::AtomicExpansionKind::None:
420 return false;
421 case TargetLoweringBase::AtomicExpansionKind::LLSC:
422 expandAtomicOpToLLSC(
423 LI, LI->getType(), LI->getPointerOperand(), LI->getAlign(),
424 LI->getOrdering(),
425 [](IRBuilderBase &Builder, Value *Loaded) { return Loaded; });
426 return true;
427 case TargetLoweringBase::AtomicExpansionKind::LLOnly:
428 return expandAtomicLoadToLL(LI);
429 case TargetLoweringBase::AtomicExpansionKind::CmpXChg:
430 return expandAtomicLoadToCmpXchg(LI);
431 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
432 LI->setAtomic(AtomicOrdering::NotAtomic);
433 return true;
434 default:
435 llvm_unreachable("Unhandled case in tryExpandAtomicLoad");
439 bool AtomicExpand::tryExpandAtomicStore(StoreInst *SI) {
440 switch (TLI->shouldExpandAtomicStoreInIR(SI)) {
441 case TargetLoweringBase::AtomicExpansionKind::None:
442 return false;
443 case TargetLoweringBase::AtomicExpansionKind::Expand:
444 expandAtomicStore(SI);
445 return true;
446 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
447 SI->setAtomic(AtomicOrdering::NotAtomic);
448 return true;
449 default:
450 llvm_unreachable("Unhandled case in tryExpandAtomicStore");
454 bool AtomicExpand::expandAtomicLoadToLL(LoadInst *LI) {
455 ReplacementIRBuilder Builder(LI, *DL);
457 // On some architectures, load-linked instructions are atomic for larger
458 // sizes than normal loads. For example, the only 64-bit load guaranteed
459 // to be single-copy atomic by ARM is an ldrexd (A3.5.3).
460 Value *Val = TLI->emitLoadLinked(Builder, LI->getType(),
461 LI->getPointerOperand(), LI->getOrdering());
462 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
464 LI->replaceAllUsesWith(Val);
465 LI->eraseFromParent();
467 return true;
470 bool AtomicExpand::expandAtomicLoadToCmpXchg(LoadInst *LI) {
471 ReplacementIRBuilder Builder(LI, *DL);
472 AtomicOrdering Order = LI->getOrdering();
473 if (Order == AtomicOrdering::Unordered)
474 Order = AtomicOrdering::Monotonic;
476 Value *Addr = LI->getPointerOperand();
477 Type *Ty = LI->getType();
478 Constant *DummyVal = Constant::getNullValue(Ty);
480 Value *Pair = Builder.CreateAtomicCmpXchg(
481 Addr, DummyVal, DummyVal, LI->getAlign(), Order,
482 AtomicCmpXchgInst::getStrongestFailureOrdering(Order));
483 Value *Loaded = Builder.CreateExtractValue(Pair, 0, "loaded");
485 LI->replaceAllUsesWith(Loaded);
486 LI->eraseFromParent();
488 return true;
491 /// Convert an atomic store of a non-integral type to an integer store of the
492 /// equivalent bitwidth. We used to not support floating point or vector
493 /// atomics in the IR at all. The backends learned to deal with the bitcast
494 /// idiom because that was the only way of expressing the notion of a atomic
495 /// float or vector store. The long term plan is to teach each backend to
496 /// instruction select from the original atomic store, but as a migration
497 /// mechanism, we convert back to the old format which the backends understand.
498 /// Each backend will need individual work to recognize the new format.
499 StoreInst *AtomicExpand::convertAtomicStoreToIntegerType(StoreInst *SI) {
500 ReplacementIRBuilder Builder(SI, *DL);
501 auto *M = SI->getModule();
502 Type *NewTy = getCorrespondingIntegerType(SI->getValueOperand()->getType(),
503 M->getDataLayout());
504 Value *NewVal = Builder.CreateBitCast(SI->getValueOperand(), NewTy);
506 Value *Addr = SI->getPointerOperand();
508 StoreInst *NewSI = Builder.CreateStore(NewVal, Addr);
509 NewSI->setAlignment(SI->getAlign());
510 NewSI->setVolatile(SI->isVolatile());
511 NewSI->setAtomic(SI->getOrdering(), SI->getSyncScopeID());
512 LLVM_DEBUG(dbgs() << "Replaced " << *SI << " with " << *NewSI << "\n");
513 SI->eraseFromParent();
514 return NewSI;
517 void AtomicExpand::expandAtomicStore(StoreInst *SI) {
518 // This function is only called on atomic stores that are too large to be
519 // atomic if implemented as a native store. So we replace them by an
520 // atomic swap, that can be implemented for example as a ldrex/strex on ARM
521 // or lock cmpxchg8/16b on X86, as these are atomic for larger sizes.
522 // It is the responsibility of the target to only signal expansion via
523 // shouldExpandAtomicRMW in cases where this is required and possible.
524 ReplacementIRBuilder Builder(SI, *DL);
525 AtomicOrdering Ordering = SI->getOrdering();
526 assert(Ordering != AtomicOrdering::NotAtomic);
527 AtomicOrdering RMWOrdering = Ordering == AtomicOrdering::Unordered
528 ? AtomicOrdering::Monotonic
529 : Ordering;
530 AtomicRMWInst *AI = Builder.CreateAtomicRMW(
531 AtomicRMWInst::Xchg, SI->getPointerOperand(), SI->getValueOperand(),
532 SI->getAlign(), RMWOrdering);
533 SI->eraseFromParent();
535 // Now we have an appropriate swap instruction, lower it as usual.
536 tryExpandAtomicRMW(AI);
539 static void createCmpXchgInstFun(IRBuilderBase &Builder, Value *Addr,
540 Value *Loaded, Value *NewVal, Align AddrAlign,
541 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
542 Value *&Success, Value *&NewLoaded) {
543 Type *OrigTy = NewVal->getType();
545 // This code can go away when cmpxchg supports FP types.
546 assert(!OrigTy->isPointerTy());
547 bool NeedBitcast = OrigTy->isFloatingPointTy();
548 if (NeedBitcast) {
549 IntegerType *IntTy = Builder.getIntNTy(OrigTy->getPrimitiveSizeInBits());
550 NewVal = Builder.CreateBitCast(NewVal, IntTy);
551 Loaded = Builder.CreateBitCast(Loaded, IntTy);
554 Value *Pair = Builder.CreateAtomicCmpXchg(
555 Addr, Loaded, NewVal, AddrAlign, MemOpOrder,
556 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
557 Success = Builder.CreateExtractValue(Pair, 1, "success");
558 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
560 if (NeedBitcast)
561 NewLoaded = Builder.CreateBitCast(NewLoaded, OrigTy);
564 bool AtomicExpand::tryExpandAtomicRMW(AtomicRMWInst *AI) {
565 LLVMContext &Ctx = AI->getModule()->getContext();
566 TargetLowering::AtomicExpansionKind Kind = TLI->shouldExpandAtomicRMWInIR(AI);
567 switch (Kind) {
568 case TargetLoweringBase::AtomicExpansionKind::None:
569 return false;
570 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
571 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
572 unsigned ValueSize = getAtomicOpSize(AI);
573 if (ValueSize < MinCASSize) {
574 expandPartwordAtomicRMW(AI,
575 TargetLoweringBase::AtomicExpansionKind::LLSC);
576 } else {
577 auto PerformOp = [&](IRBuilderBase &Builder, Value *Loaded) {
578 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
579 AI->getValOperand());
581 expandAtomicOpToLLSC(AI, AI->getType(), AI->getPointerOperand(),
582 AI->getAlign(), AI->getOrdering(), PerformOp);
584 return true;
586 case TargetLoweringBase::AtomicExpansionKind::CmpXChg: {
587 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
588 unsigned ValueSize = getAtomicOpSize(AI);
589 if (ValueSize < MinCASSize) {
590 expandPartwordAtomicRMW(AI,
591 TargetLoweringBase::AtomicExpansionKind::CmpXChg);
592 } else {
593 SmallVector<StringRef> SSNs;
594 Ctx.getSyncScopeNames(SSNs);
595 auto MemScope = SSNs[AI->getSyncScopeID()].empty()
596 ? "system"
597 : SSNs[AI->getSyncScopeID()];
598 OptimizationRemarkEmitter ORE(AI->getFunction());
599 ORE.emit([&]() {
600 return OptimizationRemark(DEBUG_TYPE, "Passed", AI)
601 << "A compare and swap loop was generated for an atomic "
602 << AI->getOperationName(AI->getOperation()) << " operation at "
603 << MemScope << " memory scope";
605 expandAtomicRMWToCmpXchg(AI, createCmpXchgInstFun);
607 return true;
609 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic: {
610 expandAtomicRMWToMaskedIntrinsic(AI);
611 return true;
613 case TargetLoweringBase::AtomicExpansionKind::BitTestIntrinsic: {
614 TLI->emitBitTestAtomicRMWIntrinsic(AI);
615 return true;
617 case TargetLoweringBase::AtomicExpansionKind::CmpArithIntrinsic: {
618 TLI->emitCmpArithAtomicRMWIntrinsic(AI);
619 return true;
621 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
622 return lowerAtomicRMWInst(AI);
623 case TargetLoweringBase::AtomicExpansionKind::Expand:
624 TLI->emitExpandAtomicRMW(AI);
625 return true;
626 default:
627 llvm_unreachable("Unhandled case in tryExpandAtomicRMW");
631 namespace {
633 struct PartwordMaskValues {
634 // These three fields are guaranteed to be set by createMaskInstrs.
635 Type *WordType = nullptr;
636 Type *ValueType = nullptr;
637 Type *IntValueType = nullptr;
638 Value *AlignedAddr = nullptr;
639 Align AlignedAddrAlignment;
640 // The remaining fields can be null.
641 Value *ShiftAmt = nullptr;
642 Value *Mask = nullptr;
643 Value *Inv_Mask = nullptr;
646 LLVM_ATTRIBUTE_UNUSED
647 raw_ostream &operator<<(raw_ostream &O, const PartwordMaskValues &PMV) {
648 auto PrintObj = [&O](auto *V) {
649 if (V)
650 O << *V;
651 else
652 O << "nullptr";
653 O << '\n';
655 O << "PartwordMaskValues {\n";
656 O << " WordType: ";
657 PrintObj(PMV.WordType);
658 O << " ValueType: ";
659 PrintObj(PMV.ValueType);
660 O << " AlignedAddr: ";
661 PrintObj(PMV.AlignedAddr);
662 O << " AlignedAddrAlignment: " << PMV.AlignedAddrAlignment.value() << '\n';
663 O << " ShiftAmt: ";
664 PrintObj(PMV.ShiftAmt);
665 O << " Mask: ";
666 PrintObj(PMV.Mask);
667 O << " Inv_Mask: ";
668 PrintObj(PMV.Inv_Mask);
669 O << "}\n";
670 return O;
673 } // end anonymous namespace
675 /// This is a helper function which builds instructions to provide
676 /// values necessary for partword atomic operations. It takes an
677 /// incoming address, Addr, and ValueType, and constructs the address,
678 /// shift-amounts and masks needed to work with a larger value of size
679 /// WordSize.
681 /// AlignedAddr: Addr rounded down to a multiple of WordSize
683 /// ShiftAmt: Number of bits to right-shift a WordSize value loaded
684 /// from AlignAddr for it to have the same value as if
685 /// ValueType was loaded from Addr.
687 /// Mask: Value to mask with the value loaded from AlignAddr to
688 /// include only the part that would've been loaded from Addr.
690 /// Inv_Mask: The inverse of Mask.
691 static PartwordMaskValues createMaskInstrs(IRBuilderBase &Builder,
692 Instruction *I, Type *ValueType,
693 Value *Addr, Align AddrAlign,
694 unsigned MinWordSize) {
695 PartwordMaskValues PMV;
697 Module *M = I->getModule();
698 LLVMContext &Ctx = M->getContext();
699 const DataLayout &DL = M->getDataLayout();
700 unsigned ValueSize = DL.getTypeStoreSize(ValueType);
702 PMV.ValueType = PMV.IntValueType = ValueType;
703 if (PMV.ValueType->isFloatingPointTy())
704 PMV.IntValueType =
705 Type::getIntNTy(Ctx, ValueType->getPrimitiveSizeInBits());
707 PMV.WordType = MinWordSize > ValueSize ? Type::getIntNTy(Ctx, MinWordSize * 8)
708 : ValueType;
709 if (PMV.ValueType == PMV.WordType) {
710 PMV.AlignedAddr = Addr;
711 PMV.AlignedAddrAlignment = AddrAlign;
712 PMV.ShiftAmt = ConstantInt::get(PMV.ValueType, 0);
713 PMV.Mask = ConstantInt::get(PMV.ValueType, ~0, /*isSigned*/ true);
714 return PMV;
717 PMV.AlignedAddrAlignment = Align(MinWordSize);
719 assert(ValueSize < MinWordSize);
721 PointerType *PtrTy = cast<PointerType>(Addr->getType());
722 IntegerType *IntTy = DL.getIntPtrType(Ctx, PtrTy->getAddressSpace());
723 Value *PtrLSB;
725 if (AddrAlign < MinWordSize) {
726 PMV.AlignedAddr = Builder.CreateIntrinsic(
727 Intrinsic::ptrmask, {PtrTy, IntTy},
728 {Addr, ConstantInt::get(IntTy, ~(uint64_t)(MinWordSize - 1))}, nullptr,
729 "AlignedAddr");
731 Value *AddrInt = Builder.CreatePtrToInt(Addr, IntTy);
732 PtrLSB = Builder.CreateAnd(AddrInt, MinWordSize - 1, "PtrLSB");
733 } else {
734 // If the alignment is high enough, the LSB are known 0.
735 PMV.AlignedAddr = Addr;
736 PtrLSB = ConstantInt::getNullValue(IntTy);
739 if (DL.isLittleEndian()) {
740 // turn bytes into bits
741 PMV.ShiftAmt = Builder.CreateShl(PtrLSB, 3);
742 } else {
743 // turn bytes into bits, and count from the other side.
744 PMV.ShiftAmt = Builder.CreateShl(
745 Builder.CreateXor(PtrLSB, MinWordSize - ValueSize), 3);
748 PMV.ShiftAmt = Builder.CreateTrunc(PMV.ShiftAmt, PMV.WordType, "ShiftAmt");
749 PMV.Mask = Builder.CreateShl(
750 ConstantInt::get(PMV.WordType, (1 << (ValueSize * 8)) - 1), PMV.ShiftAmt,
751 "Mask");
753 PMV.Inv_Mask = Builder.CreateNot(PMV.Mask, "Inv_Mask");
755 return PMV;
758 static Value *extractMaskedValue(IRBuilderBase &Builder, Value *WideWord,
759 const PartwordMaskValues &PMV) {
760 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
761 if (PMV.WordType == PMV.ValueType)
762 return WideWord;
764 Value *Shift = Builder.CreateLShr(WideWord, PMV.ShiftAmt, "shifted");
765 Value *Trunc = Builder.CreateTrunc(Shift, PMV.IntValueType, "extracted");
766 return Builder.CreateBitCast(Trunc, PMV.ValueType);
769 static Value *insertMaskedValue(IRBuilderBase &Builder, Value *WideWord,
770 Value *Updated, const PartwordMaskValues &PMV) {
771 assert(WideWord->getType() == PMV.WordType && "Widened type mismatch");
772 assert(Updated->getType() == PMV.ValueType && "Value type mismatch");
773 if (PMV.WordType == PMV.ValueType)
774 return Updated;
776 Updated = Builder.CreateBitCast(Updated, PMV.IntValueType);
778 Value *ZExt = Builder.CreateZExt(Updated, PMV.WordType, "extended");
779 Value *Shift =
780 Builder.CreateShl(ZExt, PMV.ShiftAmt, "shifted", /*HasNUW*/ true);
781 Value *And = Builder.CreateAnd(WideWord, PMV.Inv_Mask, "unmasked");
782 Value *Or = Builder.CreateOr(And, Shift, "inserted");
783 return Or;
786 /// Emit IR to implement a masked version of a given atomicrmw
787 /// operation. (That is, only the bits under the Mask should be
788 /// affected by the operation)
789 static Value *performMaskedAtomicOp(AtomicRMWInst::BinOp Op,
790 IRBuilderBase &Builder, Value *Loaded,
791 Value *Shifted_Inc, Value *Inc,
792 const PartwordMaskValues &PMV) {
793 // TODO: update to use
794 // https://graphics.stanford.edu/~seander/bithacks.html#MaskedMerge in order
795 // to merge bits from two values without requiring PMV.Inv_Mask.
796 switch (Op) {
797 case AtomicRMWInst::Xchg: {
798 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
799 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, Shifted_Inc);
800 return FinalVal;
802 case AtomicRMWInst::Or:
803 case AtomicRMWInst::Xor:
804 case AtomicRMWInst::And:
805 llvm_unreachable("Or/Xor/And handled by widenPartwordAtomicRMW");
806 case AtomicRMWInst::Add:
807 case AtomicRMWInst::Sub:
808 case AtomicRMWInst::Nand: {
809 // The other arithmetic ops need to be masked into place.
810 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded, Shifted_Inc);
811 Value *NewVal_Masked = Builder.CreateAnd(NewVal, PMV.Mask);
812 Value *Loaded_MaskOut = Builder.CreateAnd(Loaded, PMV.Inv_Mask);
813 Value *FinalVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Masked);
814 return FinalVal;
816 case AtomicRMWInst::Max:
817 case AtomicRMWInst::Min:
818 case AtomicRMWInst::UMax:
819 case AtomicRMWInst::UMin:
820 case AtomicRMWInst::FAdd:
821 case AtomicRMWInst::FSub:
822 case AtomicRMWInst::FMin:
823 case AtomicRMWInst::FMax:
824 case AtomicRMWInst::UIncWrap:
825 case AtomicRMWInst::UDecWrap: {
826 // Finally, other ops will operate on the full value, so truncate down to
827 // the original size, and expand out again after doing the
828 // operation. Bitcasts will be inserted for FP values.
829 Value *Loaded_Extract = extractMaskedValue(Builder, Loaded, PMV);
830 Value *NewVal = buildAtomicRMWValue(Op, Builder, Loaded_Extract, Inc);
831 Value *FinalVal = insertMaskedValue(Builder, Loaded, NewVal, PMV);
832 return FinalVal;
834 default:
835 llvm_unreachable("Unknown atomic op");
839 /// Expand a sub-word atomicrmw operation into an appropriate
840 /// word-sized operation.
842 /// It will create an LL/SC or cmpxchg loop, as appropriate, the same
843 /// way as a typical atomicrmw expansion. The only difference here is
844 /// that the operation inside of the loop may operate upon only a
845 /// part of the value.
846 void AtomicExpand::expandPartwordAtomicRMW(
847 AtomicRMWInst *AI, TargetLoweringBase::AtomicExpansionKind ExpansionKind) {
848 AtomicOrdering MemOpOrder = AI->getOrdering();
849 SyncScope::ID SSID = AI->getSyncScopeID();
851 ReplacementIRBuilder Builder(AI, *DL);
853 PartwordMaskValues PMV =
854 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
855 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
857 Value *ValOperand_Shifted = nullptr;
858 if (AI->getOperation() == AtomicRMWInst::Xchg ||
859 AI->getOperation() == AtomicRMWInst::Add ||
860 AI->getOperation() == AtomicRMWInst::Sub ||
861 AI->getOperation() == AtomicRMWInst::Nand) {
862 ValOperand_Shifted =
863 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
864 PMV.ShiftAmt, "ValOperand_Shifted");
867 auto PerformPartwordOp = [&](IRBuilderBase &Builder, Value *Loaded) {
868 return performMaskedAtomicOp(AI->getOperation(), Builder, Loaded,
869 ValOperand_Shifted, AI->getValOperand(), PMV);
872 Value *OldResult;
873 if (ExpansionKind == TargetLoweringBase::AtomicExpansionKind::CmpXChg) {
874 OldResult = insertRMWCmpXchgLoop(Builder, PMV.WordType, PMV.AlignedAddr,
875 PMV.AlignedAddrAlignment, MemOpOrder, SSID,
876 PerformPartwordOp, createCmpXchgInstFun);
877 } else {
878 assert(ExpansionKind == TargetLoweringBase::AtomicExpansionKind::LLSC);
879 OldResult = insertRMWLLSCLoop(Builder, PMV.WordType, PMV.AlignedAddr,
880 PMV.AlignedAddrAlignment, MemOpOrder,
881 PerformPartwordOp);
884 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
885 AI->replaceAllUsesWith(FinalOldResult);
886 AI->eraseFromParent();
889 // Widen the bitwise atomicrmw (or/xor/and) to the minimum supported width.
890 AtomicRMWInst *AtomicExpand::widenPartwordAtomicRMW(AtomicRMWInst *AI) {
891 ReplacementIRBuilder Builder(AI, *DL);
892 AtomicRMWInst::BinOp Op = AI->getOperation();
894 assert((Op == AtomicRMWInst::Or || Op == AtomicRMWInst::Xor ||
895 Op == AtomicRMWInst::And) &&
896 "Unable to widen operation");
898 PartwordMaskValues PMV =
899 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
900 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
902 Value *ValOperand_Shifted =
903 Builder.CreateShl(Builder.CreateZExt(AI->getValOperand(), PMV.WordType),
904 PMV.ShiftAmt, "ValOperand_Shifted");
906 Value *NewOperand;
908 if (Op == AtomicRMWInst::And)
909 NewOperand =
910 Builder.CreateOr(PMV.Inv_Mask, ValOperand_Shifted, "AndOperand");
911 else
912 NewOperand = ValOperand_Shifted;
914 AtomicRMWInst *NewAI = Builder.CreateAtomicRMW(
915 Op, PMV.AlignedAddr, NewOperand, PMV.AlignedAddrAlignment,
916 AI->getOrdering(), AI->getSyncScopeID());
917 // TODO: Preserve metadata
919 Value *FinalOldResult = extractMaskedValue(Builder, NewAI, PMV);
920 AI->replaceAllUsesWith(FinalOldResult);
921 AI->eraseFromParent();
922 return NewAI;
925 bool AtomicExpand::expandPartwordCmpXchg(AtomicCmpXchgInst *CI) {
926 // The basic idea here is that we're expanding a cmpxchg of a
927 // smaller memory size up to a word-sized cmpxchg. To do this, we
928 // need to add a retry-loop for strong cmpxchg, so that
929 // modifications to other parts of the word don't cause a spurious
930 // failure.
932 // This generates code like the following:
933 // [[Setup mask values PMV.*]]
934 // %NewVal_Shifted = shl i32 %NewVal, %PMV.ShiftAmt
935 // %Cmp_Shifted = shl i32 %Cmp, %PMV.ShiftAmt
936 // %InitLoaded = load i32* %addr
937 // %InitLoaded_MaskOut = and i32 %InitLoaded, %PMV.Inv_Mask
938 // br partword.cmpxchg.loop
939 // partword.cmpxchg.loop:
940 // %Loaded_MaskOut = phi i32 [ %InitLoaded_MaskOut, %entry ],
941 // [ %OldVal_MaskOut, %partword.cmpxchg.failure ]
942 // %FullWord_NewVal = or i32 %Loaded_MaskOut, %NewVal_Shifted
943 // %FullWord_Cmp = or i32 %Loaded_MaskOut, %Cmp_Shifted
944 // %NewCI = cmpxchg i32* %PMV.AlignedAddr, i32 %FullWord_Cmp,
945 // i32 %FullWord_NewVal success_ordering failure_ordering
946 // %OldVal = extractvalue { i32, i1 } %NewCI, 0
947 // %Success = extractvalue { i32, i1 } %NewCI, 1
948 // br i1 %Success, label %partword.cmpxchg.end,
949 // label %partword.cmpxchg.failure
950 // partword.cmpxchg.failure:
951 // %OldVal_MaskOut = and i32 %OldVal, %PMV.Inv_Mask
952 // %ShouldContinue = icmp ne i32 %Loaded_MaskOut, %OldVal_MaskOut
953 // br i1 %ShouldContinue, label %partword.cmpxchg.loop,
954 // label %partword.cmpxchg.end
955 // partword.cmpxchg.end:
956 // %tmp1 = lshr i32 %OldVal, %PMV.ShiftAmt
957 // %FinalOldVal = trunc i32 %tmp1 to i8
958 // %tmp2 = insertvalue { i8, i1 } undef, i8 %FinalOldVal, 0
959 // %Res = insertvalue { i8, i1 } %25, i1 %Success, 1
961 Value *Addr = CI->getPointerOperand();
962 Value *Cmp = CI->getCompareOperand();
963 Value *NewVal = CI->getNewValOperand();
965 BasicBlock *BB = CI->getParent();
966 Function *F = BB->getParent();
967 ReplacementIRBuilder Builder(CI, *DL);
968 LLVMContext &Ctx = Builder.getContext();
970 BasicBlock *EndBB =
971 BB->splitBasicBlock(CI->getIterator(), "partword.cmpxchg.end");
972 auto FailureBB =
973 BasicBlock::Create(Ctx, "partword.cmpxchg.failure", F, EndBB);
974 auto LoopBB = BasicBlock::Create(Ctx, "partword.cmpxchg.loop", F, FailureBB);
976 // The split call above "helpfully" added a branch at the end of BB
977 // (to the wrong place).
978 std::prev(BB->end())->eraseFromParent();
979 Builder.SetInsertPoint(BB);
981 PartwordMaskValues PMV =
982 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
983 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
985 // Shift the incoming values over, into the right location in the word.
986 Value *NewVal_Shifted =
987 Builder.CreateShl(Builder.CreateZExt(NewVal, PMV.WordType), PMV.ShiftAmt);
988 Value *Cmp_Shifted =
989 Builder.CreateShl(Builder.CreateZExt(Cmp, PMV.WordType), PMV.ShiftAmt);
991 // Load the entire current word, and mask into place the expected and new
992 // values
993 LoadInst *InitLoaded = Builder.CreateLoad(PMV.WordType, PMV.AlignedAddr);
994 InitLoaded->setVolatile(CI->isVolatile());
995 Value *InitLoaded_MaskOut = Builder.CreateAnd(InitLoaded, PMV.Inv_Mask);
996 Builder.CreateBr(LoopBB);
998 // partword.cmpxchg.loop:
999 Builder.SetInsertPoint(LoopBB);
1000 PHINode *Loaded_MaskOut = Builder.CreatePHI(PMV.WordType, 2);
1001 Loaded_MaskOut->addIncoming(InitLoaded_MaskOut, BB);
1003 // Mask/Or the expected and new values into place in the loaded word.
1004 Value *FullWord_NewVal = Builder.CreateOr(Loaded_MaskOut, NewVal_Shifted);
1005 Value *FullWord_Cmp = Builder.CreateOr(Loaded_MaskOut, Cmp_Shifted);
1006 AtomicCmpXchgInst *NewCI = Builder.CreateAtomicCmpXchg(
1007 PMV.AlignedAddr, FullWord_Cmp, FullWord_NewVal, PMV.AlignedAddrAlignment,
1008 CI->getSuccessOrdering(), CI->getFailureOrdering(), CI->getSyncScopeID());
1009 NewCI->setVolatile(CI->isVolatile());
1010 // When we're building a strong cmpxchg, we need a loop, so you
1011 // might think we could use a weak cmpxchg inside. But, using strong
1012 // allows the below comparison for ShouldContinue, and we're
1013 // expecting the underlying cmpxchg to be a machine instruction,
1014 // which is strong anyways.
1015 NewCI->setWeak(CI->isWeak());
1017 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1018 Value *Success = Builder.CreateExtractValue(NewCI, 1);
1020 if (CI->isWeak())
1021 Builder.CreateBr(EndBB);
1022 else
1023 Builder.CreateCondBr(Success, EndBB, FailureBB);
1025 // partword.cmpxchg.failure:
1026 Builder.SetInsertPoint(FailureBB);
1027 // Upon failure, verify that the masked-out part of the loaded value
1028 // has been modified. If it didn't, abort the cmpxchg, since the
1029 // masked-in part must've.
1030 Value *OldVal_MaskOut = Builder.CreateAnd(OldVal, PMV.Inv_Mask);
1031 Value *ShouldContinue = Builder.CreateICmpNE(Loaded_MaskOut, OldVal_MaskOut);
1032 Builder.CreateCondBr(ShouldContinue, LoopBB, EndBB);
1034 // Add the second value to the phi from above
1035 Loaded_MaskOut->addIncoming(OldVal_MaskOut, FailureBB);
1037 // partword.cmpxchg.end:
1038 Builder.SetInsertPoint(CI);
1040 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1041 Value *Res = PoisonValue::get(CI->getType());
1042 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1043 Res = Builder.CreateInsertValue(Res, Success, 1);
1045 CI->replaceAllUsesWith(Res);
1046 CI->eraseFromParent();
1047 return true;
1050 void AtomicExpand::expandAtomicOpToLLSC(
1051 Instruction *I, Type *ResultType, Value *Addr, Align AddrAlign,
1052 AtomicOrdering MemOpOrder,
1053 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
1054 ReplacementIRBuilder Builder(I, *DL);
1055 Value *Loaded = insertRMWLLSCLoop(Builder, ResultType, Addr, AddrAlign,
1056 MemOpOrder, PerformOp);
1058 I->replaceAllUsesWith(Loaded);
1059 I->eraseFromParent();
1062 void AtomicExpand::expandAtomicRMWToMaskedIntrinsic(AtomicRMWInst *AI) {
1063 ReplacementIRBuilder Builder(AI, *DL);
1065 PartwordMaskValues PMV =
1066 createMaskInstrs(Builder, AI, AI->getType(), AI->getPointerOperand(),
1067 AI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1069 // The value operand must be sign-extended for signed min/max so that the
1070 // target's signed comparison instructions can be used. Otherwise, just
1071 // zero-ext.
1072 Instruction::CastOps CastOp = Instruction::ZExt;
1073 AtomicRMWInst::BinOp RMWOp = AI->getOperation();
1074 if (RMWOp == AtomicRMWInst::Max || RMWOp == AtomicRMWInst::Min)
1075 CastOp = Instruction::SExt;
1077 Value *ValOperand_Shifted = Builder.CreateShl(
1078 Builder.CreateCast(CastOp, AI->getValOperand(), PMV.WordType),
1079 PMV.ShiftAmt, "ValOperand_Shifted");
1080 Value *OldResult = TLI->emitMaskedAtomicRMWIntrinsic(
1081 Builder, AI, PMV.AlignedAddr, ValOperand_Shifted, PMV.Mask, PMV.ShiftAmt,
1082 AI->getOrdering());
1083 Value *FinalOldResult = extractMaskedValue(Builder, OldResult, PMV);
1084 AI->replaceAllUsesWith(FinalOldResult);
1085 AI->eraseFromParent();
1088 void AtomicExpand::expandAtomicCmpXchgToMaskedIntrinsic(AtomicCmpXchgInst *CI) {
1089 ReplacementIRBuilder Builder(CI, *DL);
1091 PartwordMaskValues PMV = createMaskInstrs(
1092 Builder, CI, CI->getCompareOperand()->getType(), CI->getPointerOperand(),
1093 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1095 Value *CmpVal_Shifted = Builder.CreateShl(
1096 Builder.CreateZExt(CI->getCompareOperand(), PMV.WordType), PMV.ShiftAmt,
1097 "CmpVal_Shifted");
1098 Value *NewVal_Shifted = Builder.CreateShl(
1099 Builder.CreateZExt(CI->getNewValOperand(), PMV.WordType), PMV.ShiftAmt,
1100 "NewVal_Shifted");
1101 Value *OldVal = TLI->emitMaskedAtomicCmpXchgIntrinsic(
1102 Builder, CI, PMV.AlignedAddr, CmpVal_Shifted, NewVal_Shifted, PMV.Mask,
1103 CI->getMergedOrdering());
1104 Value *FinalOldVal = extractMaskedValue(Builder, OldVal, PMV);
1105 Value *Res = PoisonValue::get(CI->getType());
1106 Res = Builder.CreateInsertValue(Res, FinalOldVal, 0);
1107 Value *Success = Builder.CreateICmpEQ(
1108 CmpVal_Shifted, Builder.CreateAnd(OldVal, PMV.Mask), "Success");
1109 Res = Builder.CreateInsertValue(Res, Success, 1);
1111 CI->replaceAllUsesWith(Res);
1112 CI->eraseFromParent();
1115 Value *AtomicExpand::insertRMWLLSCLoop(
1116 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1117 AtomicOrdering MemOpOrder,
1118 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp) {
1119 LLVMContext &Ctx = Builder.getContext();
1120 BasicBlock *BB = Builder.GetInsertBlock();
1121 Function *F = BB->getParent();
1123 assert(AddrAlign >=
1124 F->getParent()->getDataLayout().getTypeStoreSize(ResultTy) &&
1125 "Expected at least natural alignment at this point.");
1127 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1129 // The standard expansion we produce is:
1130 // [...]
1131 // atomicrmw.start:
1132 // %loaded = @load.linked(%addr)
1133 // %new = some_op iN %loaded, %incr
1134 // %stored = @store_conditional(%new, %addr)
1135 // %try_again = icmp i32 ne %stored, 0
1136 // br i1 %try_again, label %loop, label %atomicrmw.end
1137 // atomicrmw.end:
1138 // [...]
1139 BasicBlock *ExitBB =
1140 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1141 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1143 // The split call above "helpfully" added a branch at the end of BB (to the
1144 // wrong place).
1145 std::prev(BB->end())->eraseFromParent();
1146 Builder.SetInsertPoint(BB);
1147 Builder.CreateBr(LoopBB);
1149 // Start the main loop block now that we've taken care of the preliminaries.
1150 Builder.SetInsertPoint(LoopBB);
1151 Value *Loaded = TLI->emitLoadLinked(Builder, ResultTy, Addr, MemOpOrder);
1153 Value *NewVal = PerformOp(Builder, Loaded);
1155 Value *StoreSuccess =
1156 TLI->emitStoreConditional(Builder, NewVal, Addr, MemOpOrder);
1157 Value *TryAgain = Builder.CreateICmpNE(
1158 StoreSuccess, ConstantInt::get(IntegerType::get(Ctx, 32), 0), "tryagain");
1159 Builder.CreateCondBr(TryAgain, LoopBB, ExitBB);
1161 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1162 return Loaded;
1165 /// Convert an atomic cmpxchg of a non-integral type to an integer cmpxchg of
1166 /// the equivalent bitwidth. We used to not support pointer cmpxchg in the
1167 /// IR. As a migration step, we convert back to what use to be the standard
1168 /// way to represent a pointer cmpxchg so that we can update backends one by
1169 /// one.
1170 AtomicCmpXchgInst *
1171 AtomicExpand::convertCmpXchgToIntegerType(AtomicCmpXchgInst *CI) {
1172 auto *M = CI->getModule();
1173 Type *NewTy = getCorrespondingIntegerType(CI->getCompareOperand()->getType(),
1174 M->getDataLayout());
1176 ReplacementIRBuilder Builder(CI, *DL);
1178 Value *Addr = CI->getPointerOperand();
1180 Value *NewCmp = Builder.CreatePtrToInt(CI->getCompareOperand(), NewTy);
1181 Value *NewNewVal = Builder.CreatePtrToInt(CI->getNewValOperand(), NewTy);
1183 auto *NewCI = Builder.CreateAtomicCmpXchg(
1184 Addr, NewCmp, NewNewVal, CI->getAlign(), CI->getSuccessOrdering(),
1185 CI->getFailureOrdering(), CI->getSyncScopeID());
1186 NewCI->setVolatile(CI->isVolatile());
1187 NewCI->setWeak(CI->isWeak());
1188 LLVM_DEBUG(dbgs() << "Replaced " << *CI << " with " << *NewCI << "\n");
1190 Value *OldVal = Builder.CreateExtractValue(NewCI, 0);
1191 Value *Succ = Builder.CreateExtractValue(NewCI, 1);
1193 OldVal = Builder.CreateIntToPtr(OldVal, CI->getCompareOperand()->getType());
1195 Value *Res = PoisonValue::get(CI->getType());
1196 Res = Builder.CreateInsertValue(Res, OldVal, 0);
1197 Res = Builder.CreateInsertValue(Res, Succ, 1);
1199 CI->replaceAllUsesWith(Res);
1200 CI->eraseFromParent();
1201 return NewCI;
1204 bool AtomicExpand::expandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1205 AtomicOrdering SuccessOrder = CI->getSuccessOrdering();
1206 AtomicOrdering FailureOrder = CI->getFailureOrdering();
1207 Value *Addr = CI->getPointerOperand();
1208 BasicBlock *BB = CI->getParent();
1209 Function *F = BB->getParent();
1210 LLVMContext &Ctx = F->getContext();
1211 // If shouldInsertFencesForAtomic() returns true, then the target does not
1212 // want to deal with memory orders, and emitLeading/TrailingFence should take
1213 // care of everything. Otherwise, emitLeading/TrailingFence are no-op and we
1214 // should preserve the ordering.
1215 bool ShouldInsertFencesForAtomic = TLI->shouldInsertFencesForAtomic(CI);
1216 AtomicOrdering MemOpOrder = ShouldInsertFencesForAtomic
1217 ? AtomicOrdering::Monotonic
1218 : CI->getMergedOrdering();
1220 // In implementations which use a barrier to achieve release semantics, we can
1221 // delay emitting this barrier until we know a store is actually going to be
1222 // attempted. The cost of this delay is that we need 2 copies of the block
1223 // emitting the load-linked, affecting code size.
1225 // Ideally, this logic would be unconditional except for the minsize check
1226 // since in other cases the extra blocks naturally collapse down to the
1227 // minimal loop. Unfortunately, this puts too much stress on later
1228 // optimisations so we avoid emitting the extra logic in those cases too.
1229 bool HasReleasedLoadBB = !CI->isWeak() && ShouldInsertFencesForAtomic &&
1230 SuccessOrder != AtomicOrdering::Monotonic &&
1231 SuccessOrder != AtomicOrdering::Acquire &&
1232 !F->hasMinSize();
1234 // There's no overhead for sinking the release barrier in a weak cmpxchg, so
1235 // do it even on minsize.
1236 bool UseUnconditionalReleaseBarrier = F->hasMinSize() && !CI->isWeak();
1238 // Given: cmpxchg some_op iN* %addr, iN %desired, iN %new success_ord fail_ord
1240 // The full expansion we produce is:
1241 // [...]
1242 // %aligned.addr = ...
1243 // cmpxchg.start:
1244 // %unreleasedload = @load.linked(%aligned.addr)
1245 // %unreleasedload.extract = extract value from %unreleasedload
1246 // %should_store = icmp eq %unreleasedload.extract, %desired
1247 // br i1 %should_store, label %cmpxchg.releasingstore,
1248 // label %cmpxchg.nostore
1249 // cmpxchg.releasingstore:
1250 // fence?
1251 // br label cmpxchg.trystore
1252 // cmpxchg.trystore:
1253 // %loaded.trystore = phi [%unreleasedload, %cmpxchg.releasingstore],
1254 // [%releasedload, %cmpxchg.releasedload]
1255 // %updated.new = insert %new into %loaded.trystore
1256 // %stored = @store_conditional(%updated.new, %aligned.addr)
1257 // %success = icmp eq i32 %stored, 0
1258 // br i1 %success, label %cmpxchg.success,
1259 // label %cmpxchg.releasedload/%cmpxchg.failure
1260 // cmpxchg.releasedload:
1261 // %releasedload = @load.linked(%aligned.addr)
1262 // %releasedload.extract = extract value from %releasedload
1263 // %should_store = icmp eq %releasedload.extract, %desired
1264 // br i1 %should_store, label %cmpxchg.trystore,
1265 // label %cmpxchg.failure
1266 // cmpxchg.success:
1267 // fence?
1268 // br label %cmpxchg.end
1269 // cmpxchg.nostore:
1270 // %loaded.nostore = phi [%unreleasedload, %cmpxchg.start],
1271 // [%releasedload,
1272 // %cmpxchg.releasedload/%cmpxchg.trystore]
1273 // @load_linked_fail_balance()?
1274 // br label %cmpxchg.failure
1275 // cmpxchg.failure:
1276 // fence?
1277 // br label %cmpxchg.end
1278 // cmpxchg.end:
1279 // %loaded.exit = phi [%loaded.nostore, %cmpxchg.failure],
1280 // [%loaded.trystore, %cmpxchg.trystore]
1281 // %success = phi i1 [true, %cmpxchg.success], [false, %cmpxchg.failure]
1282 // %loaded = extract value from %loaded.exit
1283 // %restmp = insertvalue { iN, i1 } undef, iN %loaded, 0
1284 // %res = insertvalue { iN, i1 } %restmp, i1 %success, 1
1285 // [...]
1286 BasicBlock *ExitBB = BB->splitBasicBlock(CI->getIterator(), "cmpxchg.end");
1287 auto FailureBB = BasicBlock::Create(Ctx, "cmpxchg.failure", F, ExitBB);
1288 auto NoStoreBB = BasicBlock::Create(Ctx, "cmpxchg.nostore", F, FailureBB);
1289 auto SuccessBB = BasicBlock::Create(Ctx, "cmpxchg.success", F, NoStoreBB);
1290 auto ReleasedLoadBB =
1291 BasicBlock::Create(Ctx, "cmpxchg.releasedload", F, SuccessBB);
1292 auto TryStoreBB =
1293 BasicBlock::Create(Ctx, "cmpxchg.trystore", F, ReleasedLoadBB);
1294 auto ReleasingStoreBB =
1295 BasicBlock::Create(Ctx, "cmpxchg.fencedstore", F, TryStoreBB);
1296 auto StartBB = BasicBlock::Create(Ctx, "cmpxchg.start", F, ReleasingStoreBB);
1298 ReplacementIRBuilder Builder(CI, *DL);
1300 // The split call above "helpfully" added a branch at the end of BB (to the
1301 // wrong place), but we might want a fence too. It's easiest to just remove
1302 // the branch entirely.
1303 std::prev(BB->end())->eraseFromParent();
1304 Builder.SetInsertPoint(BB);
1305 if (ShouldInsertFencesForAtomic && UseUnconditionalReleaseBarrier)
1306 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1308 PartwordMaskValues PMV =
1309 createMaskInstrs(Builder, CI, CI->getCompareOperand()->getType(), Addr,
1310 CI->getAlign(), TLI->getMinCmpXchgSizeInBits() / 8);
1311 Builder.CreateBr(StartBB);
1313 // Start the main loop block now that we've taken care of the preliminaries.
1314 Builder.SetInsertPoint(StartBB);
1315 Value *UnreleasedLoad =
1316 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1317 Value *UnreleasedLoadExtract =
1318 extractMaskedValue(Builder, UnreleasedLoad, PMV);
1319 Value *ShouldStore = Builder.CreateICmpEQ(
1320 UnreleasedLoadExtract, CI->getCompareOperand(), "should_store");
1322 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1323 // jump straight past that fence instruction (if it exists).
1324 Builder.CreateCondBr(ShouldStore, ReleasingStoreBB, NoStoreBB);
1326 Builder.SetInsertPoint(ReleasingStoreBB);
1327 if (ShouldInsertFencesForAtomic && !UseUnconditionalReleaseBarrier)
1328 TLI->emitLeadingFence(Builder, CI, SuccessOrder);
1329 Builder.CreateBr(TryStoreBB);
1331 Builder.SetInsertPoint(TryStoreBB);
1332 PHINode *LoadedTryStore =
1333 Builder.CreatePHI(PMV.WordType, 2, "loaded.trystore");
1334 LoadedTryStore->addIncoming(UnreleasedLoad, ReleasingStoreBB);
1335 Value *NewValueInsert =
1336 insertMaskedValue(Builder, LoadedTryStore, CI->getNewValOperand(), PMV);
1337 Value *StoreSuccess = TLI->emitStoreConditional(Builder, NewValueInsert,
1338 PMV.AlignedAddr, MemOpOrder);
1339 StoreSuccess = Builder.CreateICmpEQ(
1340 StoreSuccess, ConstantInt::get(Type::getInt32Ty(Ctx), 0), "success");
1341 BasicBlock *RetryBB = HasReleasedLoadBB ? ReleasedLoadBB : StartBB;
1342 Builder.CreateCondBr(StoreSuccess, SuccessBB,
1343 CI->isWeak() ? FailureBB : RetryBB);
1345 Builder.SetInsertPoint(ReleasedLoadBB);
1346 Value *SecondLoad;
1347 if (HasReleasedLoadBB) {
1348 SecondLoad =
1349 TLI->emitLoadLinked(Builder, PMV.WordType, PMV.AlignedAddr, MemOpOrder);
1350 Value *SecondLoadExtract = extractMaskedValue(Builder, SecondLoad, PMV);
1351 ShouldStore = Builder.CreateICmpEQ(SecondLoadExtract,
1352 CI->getCompareOperand(), "should_store");
1354 // If the cmpxchg doesn't actually need any ordering when it fails, we can
1355 // jump straight past that fence instruction (if it exists).
1356 Builder.CreateCondBr(ShouldStore, TryStoreBB, NoStoreBB);
1357 // Update PHI node in TryStoreBB.
1358 LoadedTryStore->addIncoming(SecondLoad, ReleasedLoadBB);
1359 } else
1360 Builder.CreateUnreachable();
1362 // Make sure later instructions don't get reordered with a fence if
1363 // necessary.
1364 Builder.SetInsertPoint(SuccessBB);
1365 if (ShouldInsertFencesForAtomic ||
1366 TLI->shouldInsertTrailingFenceForAtomicStore(CI))
1367 TLI->emitTrailingFence(Builder, CI, SuccessOrder);
1368 Builder.CreateBr(ExitBB);
1370 Builder.SetInsertPoint(NoStoreBB);
1371 PHINode *LoadedNoStore =
1372 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.nostore");
1373 LoadedNoStore->addIncoming(UnreleasedLoad, StartBB);
1374 if (HasReleasedLoadBB)
1375 LoadedNoStore->addIncoming(SecondLoad, ReleasedLoadBB);
1377 // In the failing case, where we don't execute the store-conditional, the
1378 // target might want to balance out the load-linked with a dedicated
1379 // instruction (e.g., on ARM, clearing the exclusive monitor).
1380 TLI->emitAtomicCmpXchgNoStoreLLBalance(Builder);
1381 Builder.CreateBr(FailureBB);
1383 Builder.SetInsertPoint(FailureBB);
1384 PHINode *LoadedFailure =
1385 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.failure");
1386 LoadedFailure->addIncoming(LoadedNoStore, NoStoreBB);
1387 if (CI->isWeak())
1388 LoadedFailure->addIncoming(LoadedTryStore, TryStoreBB);
1389 if (ShouldInsertFencesForAtomic)
1390 TLI->emitTrailingFence(Builder, CI, FailureOrder);
1391 Builder.CreateBr(ExitBB);
1393 // Finally, we have control-flow based knowledge of whether the cmpxchg
1394 // succeeded or not. We expose this to later passes by converting any
1395 // subsequent "icmp eq/ne %loaded, %oldval" into a use of an appropriate
1396 // PHI.
1397 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1398 PHINode *LoadedExit =
1399 Builder.CreatePHI(UnreleasedLoad->getType(), 2, "loaded.exit");
1400 LoadedExit->addIncoming(LoadedTryStore, SuccessBB);
1401 LoadedExit->addIncoming(LoadedFailure, FailureBB);
1402 PHINode *Success = Builder.CreatePHI(Type::getInt1Ty(Ctx), 2, "success");
1403 Success->addIncoming(ConstantInt::getTrue(Ctx), SuccessBB);
1404 Success->addIncoming(ConstantInt::getFalse(Ctx), FailureBB);
1406 // This is the "exit value" from the cmpxchg expansion. It may be of
1407 // a type wider than the one in the cmpxchg instruction.
1408 Value *LoadedFull = LoadedExit;
1410 Builder.SetInsertPoint(ExitBB, std::next(Success->getIterator()));
1411 Value *Loaded = extractMaskedValue(Builder, LoadedFull, PMV);
1413 // Look for any users of the cmpxchg that are just comparing the loaded value
1414 // against the desired one, and replace them with the CFG-derived version.
1415 SmallVector<ExtractValueInst *, 2> PrunedInsts;
1416 for (auto *User : CI->users()) {
1417 ExtractValueInst *EV = dyn_cast<ExtractValueInst>(User);
1418 if (!EV)
1419 continue;
1421 assert(EV->getNumIndices() == 1 && EV->getIndices()[0] <= 1 &&
1422 "weird extraction from { iN, i1 }");
1424 if (EV->getIndices()[0] == 0)
1425 EV->replaceAllUsesWith(Loaded);
1426 else
1427 EV->replaceAllUsesWith(Success);
1429 PrunedInsts.push_back(EV);
1432 // We can remove the instructions now we're no longer iterating through them.
1433 for (auto *EV : PrunedInsts)
1434 EV->eraseFromParent();
1436 if (!CI->use_empty()) {
1437 // Some use of the full struct return that we don't understand has happened,
1438 // so we've got to reconstruct it properly.
1439 Value *Res;
1440 Res = Builder.CreateInsertValue(PoisonValue::get(CI->getType()), Loaded, 0);
1441 Res = Builder.CreateInsertValue(Res, Success, 1);
1443 CI->replaceAllUsesWith(Res);
1446 CI->eraseFromParent();
1447 return true;
1450 bool AtomicExpand::isIdempotentRMW(AtomicRMWInst *RMWI) {
1451 auto C = dyn_cast<ConstantInt>(RMWI->getValOperand());
1452 if (!C)
1453 return false;
1455 AtomicRMWInst::BinOp Op = RMWI->getOperation();
1456 switch (Op) {
1457 case AtomicRMWInst::Add:
1458 case AtomicRMWInst::Sub:
1459 case AtomicRMWInst::Or:
1460 case AtomicRMWInst::Xor:
1461 return C->isZero();
1462 case AtomicRMWInst::And:
1463 return C->isMinusOne();
1464 // FIXME: we could also treat Min/Max/UMin/UMax by the INT_MIN/INT_MAX/...
1465 default:
1466 return false;
1470 bool AtomicExpand::simplifyIdempotentRMW(AtomicRMWInst *RMWI) {
1471 if (auto ResultingLoad = TLI->lowerIdempotentRMWIntoFencedLoad(RMWI)) {
1472 tryExpandAtomicLoad(ResultingLoad);
1473 return true;
1475 return false;
1478 Value *AtomicExpand::insertRMWCmpXchgLoop(
1479 IRBuilderBase &Builder, Type *ResultTy, Value *Addr, Align AddrAlign,
1480 AtomicOrdering MemOpOrder, SyncScope::ID SSID,
1481 function_ref<Value *(IRBuilderBase &, Value *)> PerformOp,
1482 CreateCmpXchgInstFun CreateCmpXchg) {
1483 LLVMContext &Ctx = Builder.getContext();
1484 BasicBlock *BB = Builder.GetInsertBlock();
1485 Function *F = BB->getParent();
1487 // Given: atomicrmw some_op iN* %addr, iN %incr ordering
1489 // The standard expansion we produce is:
1490 // [...]
1491 // %init_loaded = load atomic iN* %addr
1492 // br label %loop
1493 // loop:
1494 // %loaded = phi iN [ %init_loaded, %entry ], [ %new_loaded, %loop ]
1495 // %new = some_op iN %loaded, %incr
1496 // %pair = cmpxchg iN* %addr, iN %loaded, iN %new
1497 // %new_loaded = extractvalue { iN, i1 } %pair, 0
1498 // %success = extractvalue { iN, i1 } %pair, 1
1499 // br i1 %success, label %atomicrmw.end, label %loop
1500 // atomicrmw.end:
1501 // [...]
1502 BasicBlock *ExitBB =
1503 BB->splitBasicBlock(Builder.GetInsertPoint(), "atomicrmw.end");
1504 BasicBlock *LoopBB = BasicBlock::Create(Ctx, "atomicrmw.start", F, ExitBB);
1506 // The split call above "helpfully" added a branch at the end of BB (to the
1507 // wrong place), but we want a load. It's easiest to just remove
1508 // the branch entirely.
1509 std::prev(BB->end())->eraseFromParent();
1510 Builder.SetInsertPoint(BB);
1511 LoadInst *InitLoaded = Builder.CreateAlignedLoad(ResultTy, Addr, AddrAlign);
1512 Builder.CreateBr(LoopBB);
1514 // Start the main loop block now that we've taken care of the preliminaries.
1515 Builder.SetInsertPoint(LoopBB);
1516 PHINode *Loaded = Builder.CreatePHI(ResultTy, 2, "loaded");
1517 Loaded->addIncoming(InitLoaded, BB);
1519 Value *NewVal = PerformOp(Builder, Loaded);
1521 Value *NewLoaded = nullptr;
1522 Value *Success = nullptr;
1524 CreateCmpXchg(Builder, Addr, Loaded, NewVal, AddrAlign,
1525 MemOpOrder == AtomicOrdering::Unordered
1526 ? AtomicOrdering::Monotonic
1527 : MemOpOrder,
1528 SSID, Success, NewLoaded);
1529 assert(Success && NewLoaded);
1531 Loaded->addIncoming(NewLoaded, LoopBB);
1533 Builder.CreateCondBr(Success, ExitBB, LoopBB);
1535 Builder.SetInsertPoint(ExitBB, ExitBB->begin());
1536 return NewLoaded;
1539 bool AtomicExpand::tryExpandAtomicCmpXchg(AtomicCmpXchgInst *CI) {
1540 unsigned MinCASSize = TLI->getMinCmpXchgSizeInBits() / 8;
1541 unsigned ValueSize = getAtomicOpSize(CI);
1543 switch (TLI->shouldExpandAtomicCmpXchgInIR(CI)) {
1544 default:
1545 llvm_unreachable("Unhandled case in tryExpandAtomicCmpXchg");
1546 case TargetLoweringBase::AtomicExpansionKind::None:
1547 if (ValueSize < MinCASSize)
1548 return expandPartwordCmpXchg(CI);
1549 return false;
1550 case TargetLoweringBase::AtomicExpansionKind::LLSC: {
1551 return expandAtomicCmpXchg(CI);
1553 case TargetLoweringBase::AtomicExpansionKind::MaskedIntrinsic:
1554 expandAtomicCmpXchgToMaskedIntrinsic(CI);
1555 return true;
1556 case TargetLoweringBase::AtomicExpansionKind::NotAtomic:
1557 return lowerAtomicCmpXchgInst(CI);
1561 // Note: This function is exposed externally by AtomicExpandUtils.h
1562 bool llvm::expandAtomicRMWToCmpXchg(AtomicRMWInst *AI,
1563 CreateCmpXchgInstFun CreateCmpXchg) {
1564 ReplacementIRBuilder Builder(AI, AI->getModule()->getDataLayout());
1565 Builder.setIsFPConstrained(
1566 AI->getFunction()->hasFnAttribute(Attribute::StrictFP));
1568 // FIXME: If FP exceptions are observable, we should force them off for the
1569 // loop for the FP atomics.
1570 Value *Loaded = AtomicExpand::insertRMWCmpXchgLoop(
1571 Builder, AI->getType(), AI->getPointerOperand(), AI->getAlign(),
1572 AI->getOrdering(), AI->getSyncScopeID(),
1573 [&](IRBuilderBase &Builder, Value *Loaded) {
1574 return buildAtomicRMWValue(AI->getOperation(), Builder, Loaded,
1575 AI->getValOperand());
1577 CreateCmpXchg);
1579 AI->replaceAllUsesWith(Loaded);
1580 AI->eraseFromParent();
1581 return true;
1584 // In order to use one of the sized library calls such as
1585 // __atomic_fetch_add_4, the alignment must be sufficient, the size
1586 // must be one of the potentially-specialized sizes, and the value
1587 // type must actually exist in C on the target (otherwise, the
1588 // function wouldn't actually be defined.)
1589 static bool canUseSizedAtomicCall(unsigned Size, Align Alignment,
1590 const DataLayout &DL) {
1591 // TODO: "LargestSize" is an approximation for "largest type that
1592 // you can express in C". It seems to be the case that int128 is
1593 // supported on all 64-bit platforms, otherwise only up to 64-bit
1594 // integers are supported. If we get this wrong, then we'll try to
1595 // call a sized libcall that doesn't actually exist. There should
1596 // really be some more reliable way in LLVM of determining integer
1597 // sizes which are valid in the target's C ABI...
1598 unsigned LargestSize = DL.getLargestLegalIntTypeSizeInBits() >= 64 ? 16 : 8;
1599 return Alignment >= Size &&
1600 (Size == 1 || Size == 2 || Size == 4 || Size == 8 || Size == 16) &&
1601 Size <= LargestSize;
1604 void AtomicExpand::expandAtomicLoadToLibcall(LoadInst *I) {
1605 static const RTLIB::Libcall Libcalls[6] = {
1606 RTLIB::ATOMIC_LOAD, RTLIB::ATOMIC_LOAD_1, RTLIB::ATOMIC_LOAD_2,
1607 RTLIB::ATOMIC_LOAD_4, RTLIB::ATOMIC_LOAD_8, RTLIB::ATOMIC_LOAD_16};
1608 unsigned Size = getAtomicOpSize(I);
1610 bool expanded = expandAtomicOpToLibcall(
1611 I, Size, I->getAlign(), I->getPointerOperand(), nullptr, nullptr,
1612 I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1613 if (!expanded)
1614 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Load");
1617 void AtomicExpand::expandAtomicStoreToLibcall(StoreInst *I) {
1618 static const RTLIB::Libcall Libcalls[6] = {
1619 RTLIB::ATOMIC_STORE, RTLIB::ATOMIC_STORE_1, RTLIB::ATOMIC_STORE_2,
1620 RTLIB::ATOMIC_STORE_4, RTLIB::ATOMIC_STORE_8, RTLIB::ATOMIC_STORE_16};
1621 unsigned Size = getAtomicOpSize(I);
1623 bool expanded = expandAtomicOpToLibcall(
1624 I, Size, I->getAlign(), I->getPointerOperand(), I->getValueOperand(),
1625 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1626 if (!expanded)
1627 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for Store");
1630 void AtomicExpand::expandAtomicCASToLibcall(AtomicCmpXchgInst *I) {
1631 static const RTLIB::Libcall Libcalls[6] = {
1632 RTLIB::ATOMIC_COMPARE_EXCHANGE, RTLIB::ATOMIC_COMPARE_EXCHANGE_1,
1633 RTLIB::ATOMIC_COMPARE_EXCHANGE_2, RTLIB::ATOMIC_COMPARE_EXCHANGE_4,
1634 RTLIB::ATOMIC_COMPARE_EXCHANGE_8, RTLIB::ATOMIC_COMPARE_EXCHANGE_16};
1635 unsigned Size = getAtomicOpSize(I);
1637 bool expanded = expandAtomicOpToLibcall(
1638 I, Size, I->getAlign(), I->getPointerOperand(), I->getNewValOperand(),
1639 I->getCompareOperand(), I->getSuccessOrdering(), I->getFailureOrdering(),
1640 Libcalls);
1641 if (!expanded)
1642 report_fatal_error("expandAtomicOpToLibcall shouldn't fail for CAS");
1645 static ArrayRef<RTLIB::Libcall> GetRMWLibcall(AtomicRMWInst::BinOp Op) {
1646 static const RTLIB::Libcall LibcallsXchg[6] = {
1647 RTLIB::ATOMIC_EXCHANGE, RTLIB::ATOMIC_EXCHANGE_1,
1648 RTLIB::ATOMIC_EXCHANGE_2, RTLIB::ATOMIC_EXCHANGE_4,
1649 RTLIB::ATOMIC_EXCHANGE_8, RTLIB::ATOMIC_EXCHANGE_16};
1650 static const RTLIB::Libcall LibcallsAdd[6] = {
1651 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_ADD_1,
1652 RTLIB::ATOMIC_FETCH_ADD_2, RTLIB::ATOMIC_FETCH_ADD_4,
1653 RTLIB::ATOMIC_FETCH_ADD_8, RTLIB::ATOMIC_FETCH_ADD_16};
1654 static const RTLIB::Libcall LibcallsSub[6] = {
1655 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_SUB_1,
1656 RTLIB::ATOMIC_FETCH_SUB_2, RTLIB::ATOMIC_FETCH_SUB_4,
1657 RTLIB::ATOMIC_FETCH_SUB_8, RTLIB::ATOMIC_FETCH_SUB_16};
1658 static const RTLIB::Libcall LibcallsAnd[6] = {
1659 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_AND_1,
1660 RTLIB::ATOMIC_FETCH_AND_2, RTLIB::ATOMIC_FETCH_AND_4,
1661 RTLIB::ATOMIC_FETCH_AND_8, RTLIB::ATOMIC_FETCH_AND_16};
1662 static const RTLIB::Libcall LibcallsOr[6] = {
1663 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_OR_1,
1664 RTLIB::ATOMIC_FETCH_OR_2, RTLIB::ATOMIC_FETCH_OR_4,
1665 RTLIB::ATOMIC_FETCH_OR_8, RTLIB::ATOMIC_FETCH_OR_16};
1666 static const RTLIB::Libcall LibcallsXor[6] = {
1667 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_XOR_1,
1668 RTLIB::ATOMIC_FETCH_XOR_2, RTLIB::ATOMIC_FETCH_XOR_4,
1669 RTLIB::ATOMIC_FETCH_XOR_8, RTLIB::ATOMIC_FETCH_XOR_16};
1670 static const RTLIB::Libcall LibcallsNand[6] = {
1671 RTLIB::UNKNOWN_LIBCALL, RTLIB::ATOMIC_FETCH_NAND_1,
1672 RTLIB::ATOMIC_FETCH_NAND_2, RTLIB::ATOMIC_FETCH_NAND_4,
1673 RTLIB::ATOMIC_FETCH_NAND_8, RTLIB::ATOMIC_FETCH_NAND_16};
1675 switch (Op) {
1676 case AtomicRMWInst::BAD_BINOP:
1677 llvm_unreachable("Should not have BAD_BINOP.");
1678 case AtomicRMWInst::Xchg:
1679 return ArrayRef(LibcallsXchg);
1680 case AtomicRMWInst::Add:
1681 return ArrayRef(LibcallsAdd);
1682 case AtomicRMWInst::Sub:
1683 return ArrayRef(LibcallsSub);
1684 case AtomicRMWInst::And:
1685 return ArrayRef(LibcallsAnd);
1686 case AtomicRMWInst::Or:
1687 return ArrayRef(LibcallsOr);
1688 case AtomicRMWInst::Xor:
1689 return ArrayRef(LibcallsXor);
1690 case AtomicRMWInst::Nand:
1691 return ArrayRef(LibcallsNand);
1692 case AtomicRMWInst::Max:
1693 case AtomicRMWInst::Min:
1694 case AtomicRMWInst::UMax:
1695 case AtomicRMWInst::UMin:
1696 case AtomicRMWInst::FMax:
1697 case AtomicRMWInst::FMin:
1698 case AtomicRMWInst::FAdd:
1699 case AtomicRMWInst::FSub:
1700 case AtomicRMWInst::UIncWrap:
1701 case AtomicRMWInst::UDecWrap:
1702 // No atomic libcalls are available for max/min/umax/umin.
1703 return {};
1705 llvm_unreachable("Unexpected AtomicRMW operation.");
1708 void AtomicExpand::expandAtomicRMWToLibcall(AtomicRMWInst *I) {
1709 ArrayRef<RTLIB::Libcall> Libcalls = GetRMWLibcall(I->getOperation());
1711 unsigned Size = getAtomicOpSize(I);
1713 bool Success = false;
1714 if (!Libcalls.empty())
1715 Success = expandAtomicOpToLibcall(
1716 I, Size, I->getAlign(), I->getPointerOperand(), I->getValOperand(),
1717 nullptr, I->getOrdering(), AtomicOrdering::NotAtomic, Libcalls);
1719 // The expansion failed: either there were no libcalls at all for
1720 // the operation (min/max), or there were only size-specialized
1721 // libcalls (add/sub/etc) and we needed a generic. So, expand to a
1722 // CAS libcall, via a CAS loop, instead.
1723 if (!Success) {
1724 expandAtomicRMWToCmpXchg(
1725 I, [this](IRBuilderBase &Builder, Value *Addr, Value *Loaded,
1726 Value *NewVal, Align Alignment, AtomicOrdering MemOpOrder,
1727 SyncScope::ID SSID, Value *&Success, Value *&NewLoaded) {
1728 // Create the CAS instruction normally...
1729 AtomicCmpXchgInst *Pair = Builder.CreateAtomicCmpXchg(
1730 Addr, Loaded, NewVal, Alignment, MemOpOrder,
1731 AtomicCmpXchgInst::getStrongestFailureOrdering(MemOpOrder), SSID);
1732 Success = Builder.CreateExtractValue(Pair, 1, "success");
1733 NewLoaded = Builder.CreateExtractValue(Pair, 0, "newloaded");
1735 // ...and then expand the CAS into a libcall.
1736 expandAtomicCASToLibcall(Pair);
1741 // A helper routine for the above expandAtomic*ToLibcall functions.
1743 // 'Libcalls' contains an array of enum values for the particular
1744 // ATOMIC libcalls to be emitted. All of the other arguments besides
1745 // 'I' are extracted from the Instruction subclass by the
1746 // caller. Depending on the particular call, some will be null.
1747 bool AtomicExpand::expandAtomicOpToLibcall(
1748 Instruction *I, unsigned Size, Align Alignment, Value *PointerOperand,
1749 Value *ValueOperand, Value *CASExpected, AtomicOrdering Ordering,
1750 AtomicOrdering Ordering2, ArrayRef<RTLIB::Libcall> Libcalls) {
1751 assert(Libcalls.size() == 6);
1753 LLVMContext &Ctx = I->getContext();
1754 Module *M = I->getModule();
1755 const DataLayout &DL = M->getDataLayout();
1756 IRBuilder<> Builder(I);
1757 IRBuilder<> AllocaBuilder(&I->getFunction()->getEntryBlock().front());
1759 bool UseSizedLibcall = canUseSizedAtomicCall(Size, Alignment, DL);
1760 Type *SizedIntTy = Type::getIntNTy(Ctx, Size * 8);
1762 const Align AllocaAlignment = DL.getPrefTypeAlign(SizedIntTy);
1764 // TODO: the "order" argument type is "int", not int32. So
1765 // getInt32Ty may be wrong if the arch uses e.g. 16-bit ints.
1766 ConstantInt *SizeVal64 = ConstantInt::get(Type::getInt64Ty(Ctx), Size);
1767 assert(Ordering != AtomicOrdering::NotAtomic && "expect atomic MO");
1768 Constant *OrderingVal =
1769 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering));
1770 Constant *Ordering2Val = nullptr;
1771 if (CASExpected) {
1772 assert(Ordering2 != AtomicOrdering::NotAtomic && "expect atomic MO");
1773 Ordering2Val =
1774 ConstantInt::get(Type::getInt32Ty(Ctx), (int)toCABI(Ordering2));
1776 bool HasResult = I->getType() != Type::getVoidTy(Ctx);
1778 RTLIB::Libcall RTLibType;
1779 if (UseSizedLibcall) {
1780 switch (Size) {
1781 case 1:
1782 RTLibType = Libcalls[1];
1783 break;
1784 case 2:
1785 RTLibType = Libcalls[2];
1786 break;
1787 case 4:
1788 RTLibType = Libcalls[3];
1789 break;
1790 case 8:
1791 RTLibType = Libcalls[4];
1792 break;
1793 case 16:
1794 RTLibType = Libcalls[5];
1795 break;
1797 } else if (Libcalls[0] != RTLIB::UNKNOWN_LIBCALL) {
1798 RTLibType = Libcalls[0];
1799 } else {
1800 // Can't use sized function, and there's no generic for this
1801 // operation, so give up.
1802 return false;
1805 if (!TLI->getLibcallName(RTLibType)) {
1806 // This target does not implement the requested atomic libcall so give up.
1807 return false;
1810 // Build up the function call. There's two kinds. First, the sized
1811 // variants. These calls are going to be one of the following (with
1812 // N=1,2,4,8,16):
1813 // iN __atomic_load_N(iN *ptr, int ordering)
1814 // void __atomic_store_N(iN *ptr, iN val, int ordering)
1815 // iN __atomic_{exchange|fetch_*}_N(iN *ptr, iN val, int ordering)
1816 // bool __atomic_compare_exchange_N(iN *ptr, iN *expected, iN desired,
1817 // int success_order, int failure_order)
1819 // Note that these functions can be used for non-integer atomic
1820 // operations, the values just need to be bitcast to integers on the
1821 // way in and out.
1823 // And, then, the generic variants. They look like the following:
1824 // void __atomic_load(size_t size, void *ptr, void *ret, int ordering)
1825 // void __atomic_store(size_t size, void *ptr, void *val, int ordering)
1826 // void __atomic_exchange(size_t size, void *ptr, void *val, void *ret,
1827 // int ordering)
1828 // bool __atomic_compare_exchange(size_t size, void *ptr, void *expected,
1829 // void *desired, int success_order,
1830 // int failure_order)
1832 // The different signatures are built up depending on the
1833 // 'UseSizedLibcall', 'CASExpected', 'ValueOperand', and 'HasResult'
1834 // variables.
1836 AllocaInst *AllocaCASExpected = nullptr;
1837 AllocaInst *AllocaValue = nullptr;
1838 AllocaInst *AllocaResult = nullptr;
1840 Type *ResultTy;
1841 SmallVector<Value *, 6> Args;
1842 AttributeList Attr;
1844 // 'size' argument.
1845 if (!UseSizedLibcall) {
1846 // Note, getIntPtrType is assumed equivalent to size_t.
1847 Args.push_back(ConstantInt::get(DL.getIntPtrType(Ctx), Size));
1850 // 'ptr' argument.
1851 // note: This assumes all address spaces share a common libfunc
1852 // implementation and that addresses are convertable. For systems without
1853 // that property, we'd need to extend this mechanism to support AS-specific
1854 // families of atomic intrinsics.
1855 Value *PtrVal = PointerOperand;
1856 PtrVal = Builder.CreateAddrSpaceCast(PtrVal, PointerType::getUnqual(Ctx));
1857 Args.push_back(PtrVal);
1859 // 'expected' argument, if present.
1860 if (CASExpected) {
1861 AllocaCASExpected = AllocaBuilder.CreateAlloca(CASExpected->getType());
1862 AllocaCASExpected->setAlignment(AllocaAlignment);
1863 Builder.CreateLifetimeStart(AllocaCASExpected, SizeVal64);
1864 Builder.CreateAlignedStore(CASExpected, AllocaCASExpected, AllocaAlignment);
1865 Args.push_back(AllocaCASExpected);
1868 // 'val' argument ('desired' for cas), if present.
1869 if (ValueOperand) {
1870 if (UseSizedLibcall) {
1871 Value *IntValue =
1872 Builder.CreateBitOrPointerCast(ValueOperand, SizedIntTy);
1873 Args.push_back(IntValue);
1874 } else {
1875 AllocaValue = AllocaBuilder.CreateAlloca(ValueOperand->getType());
1876 AllocaValue->setAlignment(AllocaAlignment);
1877 Builder.CreateLifetimeStart(AllocaValue, SizeVal64);
1878 Builder.CreateAlignedStore(ValueOperand, AllocaValue, AllocaAlignment);
1879 Args.push_back(AllocaValue);
1883 // 'ret' argument.
1884 if (!CASExpected && HasResult && !UseSizedLibcall) {
1885 AllocaResult = AllocaBuilder.CreateAlloca(I->getType());
1886 AllocaResult->setAlignment(AllocaAlignment);
1887 Builder.CreateLifetimeStart(AllocaResult, SizeVal64);
1888 Args.push_back(AllocaResult);
1891 // 'ordering' ('success_order' for cas) argument.
1892 Args.push_back(OrderingVal);
1894 // 'failure_order' argument, if present.
1895 if (Ordering2Val)
1896 Args.push_back(Ordering2Val);
1898 // Now, the return type.
1899 if (CASExpected) {
1900 ResultTy = Type::getInt1Ty(Ctx);
1901 Attr = Attr.addRetAttribute(Ctx, Attribute::ZExt);
1902 } else if (HasResult && UseSizedLibcall)
1903 ResultTy = SizedIntTy;
1904 else
1905 ResultTy = Type::getVoidTy(Ctx);
1907 // Done with setting up arguments and return types, create the call:
1908 SmallVector<Type *, 6> ArgTys;
1909 for (Value *Arg : Args)
1910 ArgTys.push_back(Arg->getType());
1911 FunctionType *FnType = FunctionType::get(ResultTy, ArgTys, false);
1912 FunctionCallee LibcallFn =
1913 M->getOrInsertFunction(TLI->getLibcallName(RTLibType), FnType, Attr);
1914 CallInst *Call = Builder.CreateCall(LibcallFn, Args);
1915 Call->setAttributes(Attr);
1916 Value *Result = Call;
1918 // And then, extract the results...
1919 if (ValueOperand && !UseSizedLibcall)
1920 Builder.CreateLifetimeEnd(AllocaValue, SizeVal64);
1922 if (CASExpected) {
1923 // The final result from the CAS is {load of 'expected' alloca, bool result
1924 // from call}
1925 Type *FinalResultTy = I->getType();
1926 Value *V = PoisonValue::get(FinalResultTy);
1927 Value *ExpectedOut = Builder.CreateAlignedLoad(
1928 CASExpected->getType(), AllocaCASExpected, AllocaAlignment);
1929 Builder.CreateLifetimeEnd(AllocaCASExpected, SizeVal64);
1930 V = Builder.CreateInsertValue(V, ExpectedOut, 0);
1931 V = Builder.CreateInsertValue(V, Result, 1);
1932 I->replaceAllUsesWith(V);
1933 } else if (HasResult) {
1934 Value *V;
1935 if (UseSizedLibcall)
1936 V = Builder.CreateBitOrPointerCast(Result, I->getType());
1937 else {
1938 V = Builder.CreateAlignedLoad(I->getType(), AllocaResult,
1939 AllocaAlignment);
1940 Builder.CreateLifetimeEnd(AllocaResult, SizeVal64);
1942 I->replaceAllUsesWith(V);
1944 I->eraseFromParent();
1945 return true;