Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / CodeGen / CallingConvLower.cpp
blobb7152587a9fa059f3e803ee6093c4843ed25a732
1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the CCState class, used for lowering and implementing
10 // calling conventions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetRegisterInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/MC/MCRegisterInfo.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/SaveAndRestore.h"
24 #include "llvm/Support/raw_ostream.h"
26 using namespace llvm;
28 CCState::CCState(CallingConv::ID CC, bool IsVarArg, MachineFunction &MF,
29 SmallVectorImpl<CCValAssign> &Locs, LLVMContext &Context,
30 bool NegativeOffsets)
31 : CallingConv(CC), IsVarArg(IsVarArg), MF(MF),
32 TRI(*MF.getSubtarget().getRegisterInfo()), Locs(Locs), Context(Context),
33 NegativeOffsets(NegativeOffsets) {
35 // No stack is used.
36 StackSize = 0;
38 clearByValRegsInfo();
39 UsedRegs.resize((TRI.getNumRegs()+31)/32);
42 /// Allocate space on the stack large enough to pass an argument by value.
43 /// The size and alignment information of the argument is encoded in
44 /// its parameter attribute.
45 void CCState::HandleByVal(unsigned ValNo, MVT ValVT, MVT LocVT,
46 CCValAssign::LocInfo LocInfo, int MinSize,
47 Align MinAlign, ISD::ArgFlagsTy ArgFlags) {
48 Align Alignment = ArgFlags.getNonZeroByValAlign();
49 unsigned Size = ArgFlags.getByValSize();
50 if (MinSize > (int)Size)
51 Size = MinSize;
52 if (MinAlign > Alignment)
53 Alignment = MinAlign;
54 ensureMaxAlignment(Alignment);
55 MF.getSubtarget().getTargetLowering()->HandleByVal(this, Size, Alignment);
56 Size = unsigned(alignTo(Size, MinAlign));
57 uint64_t Offset = AllocateStack(Size, Alignment);
58 addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
61 /// Mark a register and all of its aliases as allocated.
62 void CCState::MarkAllocated(MCPhysReg Reg) {
63 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
64 UsedRegs[*AI / 32] |= 1 << (*AI & 31);
67 void CCState::MarkUnallocated(MCPhysReg Reg) {
68 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
69 UsedRegs[*AI / 32] &= ~(1 << (*AI & 31));
72 bool CCState::IsShadowAllocatedReg(MCRegister Reg) const {
73 if (!isAllocated(Reg))
74 return false;
76 for (auto const &ValAssign : Locs)
77 if (ValAssign.isRegLoc() && TRI.regsOverlap(ValAssign.getLocReg(), Reg))
78 return false;
79 return true;
82 /// Analyze an array of argument values,
83 /// incorporating info about the formals into this state.
84 void
85 CCState::AnalyzeFormalArguments(const SmallVectorImpl<ISD::InputArg> &Ins,
86 CCAssignFn Fn) {
87 unsigned NumArgs = Ins.size();
89 for (unsigned i = 0; i != NumArgs; ++i) {
90 MVT ArgVT = Ins[i].VT;
91 ISD::ArgFlagsTy ArgFlags = Ins[i].Flags;
92 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this))
93 report_fatal_error("unable to allocate function argument #" + Twine(i));
97 /// Analyze the return values of a function, returning true if the return can
98 /// be performed without sret-demotion and false otherwise.
99 bool CCState::CheckReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
100 CCAssignFn Fn) {
101 // Determine which register each value should be copied into.
102 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
103 MVT VT = Outs[i].VT;
104 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
105 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
106 return false;
108 return true;
111 /// Analyze the returned values of a return,
112 /// incorporating info about the result values into this state.
113 void CCState::AnalyzeReturn(const SmallVectorImpl<ISD::OutputArg> &Outs,
114 CCAssignFn Fn) {
115 // Determine which register each value should be copied into.
116 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
117 MVT VT = Outs[i].VT;
118 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
119 if (Fn(i, VT, VT, CCValAssign::Full, ArgFlags, *this))
120 report_fatal_error("unable to allocate function return #" + Twine(i));
124 /// Analyze the outgoing arguments to a call,
125 /// incorporating info about the passed values into this state.
126 void CCState::AnalyzeCallOperands(const SmallVectorImpl<ISD::OutputArg> &Outs,
127 CCAssignFn Fn) {
128 unsigned NumOps = Outs.size();
129 for (unsigned i = 0; i != NumOps; ++i) {
130 MVT ArgVT = Outs[i].VT;
131 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
132 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
133 #ifndef NDEBUG
134 dbgs() << "Call operand #" << i << " has unhandled type "
135 << ArgVT << '\n';
136 #endif
137 llvm_unreachable(nullptr);
142 /// Same as above except it takes vectors of types and argument flags.
143 void CCState::AnalyzeCallOperands(SmallVectorImpl<MVT> &ArgVTs,
144 SmallVectorImpl<ISD::ArgFlagsTy> &Flags,
145 CCAssignFn Fn) {
146 unsigned NumOps = ArgVTs.size();
147 for (unsigned i = 0; i != NumOps; ++i) {
148 MVT ArgVT = ArgVTs[i];
149 ISD::ArgFlagsTy ArgFlags = Flags[i];
150 if (Fn(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags, *this)) {
151 #ifndef NDEBUG
152 dbgs() << "Call operand #" << i << " has unhandled type "
153 << ArgVT << '\n';
154 #endif
155 llvm_unreachable(nullptr);
160 /// Analyze the return values of a call, incorporating info about the passed
161 /// values into this state.
162 void CCState::AnalyzeCallResult(const SmallVectorImpl<ISD::InputArg> &Ins,
163 CCAssignFn Fn) {
164 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
165 MVT VT = Ins[i].VT;
166 ISD::ArgFlagsTy Flags = Ins[i].Flags;
167 if (Fn(i, VT, VT, CCValAssign::Full, Flags, *this)) {
168 #ifndef NDEBUG
169 dbgs() << "Call result #" << i << " has unhandled type "
170 << VT << '\n';
171 #endif
172 llvm_unreachable(nullptr);
177 /// Same as above except it's specialized for calls that produce a single value.
178 void CCState::AnalyzeCallResult(MVT VT, CCAssignFn Fn) {
179 if (Fn(0, VT, VT, CCValAssign::Full, ISD::ArgFlagsTy(), *this)) {
180 #ifndef NDEBUG
181 dbgs() << "Call result has unhandled type "
182 << VT << '\n';
183 #endif
184 llvm_unreachable(nullptr);
188 void CCState::ensureMaxAlignment(Align Alignment) {
189 if (!AnalyzingMustTailForwardedRegs)
190 MF.getFrameInfo().ensureMaxAlignment(Alignment);
193 static bool isValueTypeInRegForCC(CallingConv::ID CC, MVT VT) {
194 if (VT.isVector())
195 return true; // Assume -msse-regparm might be in effect.
196 if (!VT.isInteger())
197 return false;
198 return (CC == CallingConv::X86_VectorCall || CC == CallingConv::X86_FastCall);
201 void CCState::getRemainingRegParmsForType(SmallVectorImpl<MCPhysReg> &Regs,
202 MVT VT, CCAssignFn Fn) {
203 uint64_t SavedStackSize = StackSize;
204 Align SavedMaxStackArgAlign = MaxStackArgAlign;
205 unsigned NumLocs = Locs.size();
207 // Set the 'inreg' flag if it is used for this calling convention.
208 ISD::ArgFlagsTy Flags;
209 if (isValueTypeInRegForCC(CallingConv, VT))
210 Flags.setInReg();
212 // Allocate something of this value type repeatedly until we get assigned a
213 // location in memory.
214 bool HaveRegParm;
215 do {
216 if (Fn(0, VT, VT, CCValAssign::Full, Flags, *this)) {
217 #ifndef NDEBUG
218 dbgs() << "Call has unhandled type " << VT
219 << " while computing remaining regparms\n";
220 #endif
221 llvm_unreachable(nullptr);
223 HaveRegParm = Locs.back().isRegLoc();
224 } while (HaveRegParm);
226 // Copy all the registers from the value locations we added.
227 assert(NumLocs < Locs.size() && "CC assignment failed to add location");
228 for (unsigned I = NumLocs, E = Locs.size(); I != E; ++I)
229 if (Locs[I].isRegLoc())
230 Regs.push_back(MCPhysReg(Locs[I].getLocReg()));
232 // Clear the assigned values and stack memory. We leave the registers marked
233 // as allocated so that future queries don't return the same registers, i.e.
234 // when i64 and f64 are both passed in GPRs.
235 StackSize = SavedStackSize;
236 MaxStackArgAlign = SavedMaxStackArgAlign;
237 Locs.truncate(NumLocs);
240 void CCState::analyzeMustTailForwardedRegisters(
241 SmallVectorImpl<ForwardedRegister> &Forwards, ArrayRef<MVT> RegParmTypes,
242 CCAssignFn Fn) {
243 // Oftentimes calling conventions will not user register parameters for
244 // variadic functions, so we need to assume we're not variadic so that we get
245 // all the registers that might be used in a non-variadic call.
246 SaveAndRestore SavedVarArg(IsVarArg, false);
247 SaveAndRestore SavedMustTail(AnalyzingMustTailForwardedRegs, true);
249 for (MVT RegVT : RegParmTypes) {
250 SmallVector<MCPhysReg, 8> RemainingRegs;
251 getRemainingRegParmsForType(RemainingRegs, RegVT, Fn);
252 const TargetLowering *TL = MF.getSubtarget().getTargetLowering();
253 const TargetRegisterClass *RC = TL->getRegClassFor(RegVT);
254 for (MCPhysReg PReg : RemainingRegs) {
255 Register VReg = MF.addLiveIn(PReg, RC);
256 Forwards.push_back(ForwardedRegister(VReg, PReg, RegVT));
261 bool CCState::resultsCompatible(CallingConv::ID CalleeCC,
262 CallingConv::ID CallerCC, MachineFunction &MF,
263 LLVMContext &C,
264 const SmallVectorImpl<ISD::InputArg> &Ins,
265 CCAssignFn CalleeFn, CCAssignFn CallerFn) {
266 if (CalleeCC == CallerCC)
267 return true;
268 SmallVector<CCValAssign, 4> RVLocs1;
269 CCState CCInfo1(CalleeCC, false, MF, RVLocs1, C);
270 CCInfo1.AnalyzeCallResult(Ins, CalleeFn);
272 SmallVector<CCValAssign, 4> RVLocs2;
273 CCState CCInfo2(CallerCC, false, MF, RVLocs2, C);
274 CCInfo2.AnalyzeCallResult(Ins, CallerFn);
276 auto AreCompatible = [](const CCValAssign &Loc1, const CCValAssign &Loc2) {
277 assert(!Loc1.isPendingLoc() && !Loc2.isPendingLoc() &&
278 "The location must have been decided by now");
279 // Must fill the same part of their locations.
280 if (Loc1.getLocInfo() != Loc2.getLocInfo())
281 return false;
282 // Must both be in the same registers, or both in memory at the same offset.
283 if (Loc1.isRegLoc() && Loc2.isRegLoc())
284 return Loc1.getLocReg() == Loc2.getLocReg();
285 if (Loc1.isMemLoc() && Loc2.isMemLoc())
286 return Loc1.getLocMemOffset() == Loc2.getLocMemOffset();
287 llvm_unreachable("Unknown location kind");
290 return std::equal(RVLocs1.begin(), RVLocs1.end(), RVLocs2.begin(),
291 RVLocs2.end(), AreCompatible);