1 //===- InterleavedAccessPass.cpp ------------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Interleaved Access pass, which identifies
10 // interleaved memory accesses and transforms them into target specific
13 // An interleaved load reads data from memory into several vectors, with
14 // DE-interleaving the data on a factor. An interleaved store writes several
15 // vectors to memory with RE-interleaving the data on a factor.
17 // As interleaved accesses are difficult to identified in CodeGen (mainly
18 // because the VECTOR_SHUFFLE DAG node is quite different from the shufflevector
19 // IR), we identify and transform them to intrinsics in this pass so the
20 // intrinsics can be easily matched into target specific instructions later in
23 // E.g. An interleaved load (Factor = 2):
24 // %wide.vec = load <8 x i32>, <8 x i32>* %ptr
25 // %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <0, 2, 4, 6>
26 // %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> poison, <1, 3, 5, 7>
28 // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2
29 // intrinsic in ARM backend.
31 // In X86, this can be further optimized into a set of target
32 // specific loads followed by an optimized sequence of shuffles.
34 // E.g. An interleaved store (Factor = 3):
35 // %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
36 // <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
37 // store <12 x i32> %i.vec, <12 x i32>* %ptr
39 // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3
40 // intrinsic in ARM backend.
42 // Similarly, a set of interleaved stores can be transformed into an optimized
43 // sequence of shuffles followed by a set of target specific stores for X86.
45 //===----------------------------------------------------------------------===//
47 #include "llvm/ADT/ArrayRef.h"
48 #include "llvm/ADT/DenseMap.h"
49 #include "llvm/ADT/SetVector.h"
50 #include "llvm/ADT/SmallVector.h"
51 #include "llvm/CodeGen/TargetLowering.h"
52 #include "llvm/CodeGen/TargetPassConfig.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/IR/Constants.h"
55 #include "llvm/IR/Dominators.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/IRBuilder.h"
58 #include "llvm/IR/InstIterator.h"
59 #include "llvm/IR/Instruction.h"
60 #include "llvm/IR/Instructions.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/InitializePasses.h"
63 #include "llvm/Pass.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Support/raw_ostream.h"
69 #include "llvm/Target/TargetMachine.h"
70 #include "llvm/Transforms/Utils/Local.h"
76 #define DEBUG_TYPE "interleaved-access"
78 static cl::opt
<bool> LowerInterleavedAccesses(
79 "lower-interleaved-accesses",
80 cl::desc("Enable lowering interleaved accesses to intrinsics"),
81 cl::init(true), cl::Hidden
);
85 class InterleavedAccess
: public FunctionPass
{
89 InterleavedAccess() : FunctionPass(ID
) {
90 initializeInterleavedAccessPass(*PassRegistry::getPassRegistry());
93 StringRef
getPassName() const override
{ return "Interleaved Access Pass"; }
95 bool runOnFunction(Function
&F
) override
;
97 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
98 AU
.addRequired
<DominatorTreeWrapperPass
>();
103 DominatorTree
*DT
= nullptr;
104 const TargetLowering
*TLI
= nullptr;
106 /// The maximum supported interleave factor.
107 unsigned MaxFactor
= 0u;
109 /// Transform an interleaved load into target specific intrinsics.
110 bool lowerInterleavedLoad(LoadInst
*LI
,
111 SmallVector
<Instruction
*, 32> &DeadInsts
);
113 /// Transform an interleaved store into target specific intrinsics.
114 bool lowerInterleavedStore(StoreInst
*SI
,
115 SmallVector
<Instruction
*, 32> &DeadInsts
);
117 /// Transform a load and a deinterleave intrinsic into target specific
119 bool lowerDeinterleaveIntrinsic(IntrinsicInst
*II
,
120 SmallVector
<Instruction
*, 32> &DeadInsts
);
122 /// Transform an interleave intrinsic and a store into target specific
124 bool lowerInterleaveIntrinsic(IntrinsicInst
*II
,
125 SmallVector
<Instruction
*, 32> &DeadInsts
);
127 /// Returns true if the uses of an interleaved load by the
128 /// extractelement instructions in \p Extracts can be replaced by uses of the
129 /// shufflevector instructions in \p Shuffles instead. If so, the necessary
130 /// replacements are also performed.
131 bool tryReplaceExtracts(ArrayRef
<ExtractElementInst
*> Extracts
,
132 ArrayRef
<ShuffleVectorInst
*> Shuffles
);
134 /// Given a number of shuffles of the form shuffle(binop(x,y)), convert them
135 /// to binop(shuffle(x), shuffle(y)) to allow the formation of an
136 /// interleaving load. Any newly created shuffles that operate on \p LI will
137 /// be added to \p Shuffles. Returns true, if any changes to the IR have been
139 bool replaceBinOpShuffles(ArrayRef
<ShuffleVectorInst
*> BinOpShuffles
,
140 SmallVectorImpl
<ShuffleVectorInst
*> &Shuffles
,
144 } // end anonymous namespace.
146 char InterleavedAccess::ID
= 0;
148 INITIALIZE_PASS_BEGIN(InterleavedAccess
, DEBUG_TYPE
,
149 "Lower interleaved memory accesses to target specific intrinsics", false,
151 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
152 INITIALIZE_PASS_END(InterleavedAccess
, DEBUG_TYPE
,
153 "Lower interleaved memory accesses to target specific intrinsics", false,
156 FunctionPass
*llvm::createInterleavedAccessPass() {
157 return new InterleavedAccess();
160 /// Check if the mask is a DE-interleave mask of the given factor
162 /// <Index, Index+Factor, ..., Index+(NumElts-1)*Factor>
163 static bool isDeInterleaveMaskOfFactor(ArrayRef
<int> Mask
, unsigned Factor
,
165 // Check all potential start indices from 0 to (Factor - 1).
166 for (Index
= 0; Index
< Factor
; Index
++) {
169 // Check that elements are in ascending order by Factor. Ignore undef
171 for (; i
< Mask
.size(); i
++)
172 if (Mask
[i
] >= 0 && static_cast<unsigned>(Mask
[i
]) != Index
+ i
* Factor
)
175 if (i
== Mask
.size())
182 /// Check if the mask is a DE-interleave mask for an interleaved load.
184 /// E.g. DE-interleave masks (Factor = 2) could be:
185 /// <0, 2, 4, 6> (mask of index 0 to extract even elements)
186 /// <1, 3, 5, 7> (mask of index 1 to extract odd elements)
187 static bool isDeInterleaveMask(ArrayRef
<int> Mask
, unsigned &Factor
,
188 unsigned &Index
, unsigned MaxFactor
,
189 unsigned NumLoadElements
) {
193 // Check potential Factors.
194 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
195 // Make sure we don't produce a load wider than the input load.
196 if (Mask
.size() * Factor
> NumLoadElements
)
198 if (isDeInterleaveMaskOfFactor(Mask
, Factor
, Index
))
205 /// Check if the mask can be used in an interleaved store.
207 /// It checks for a more general pattern than the RE-interleave mask.
208 /// I.e. <x, y, ... z, x+1, y+1, ...z+1, x+2, y+2, ...z+2, ...>
209 /// E.g. For a Factor of 2 (LaneLen=4): <4, 32, 5, 33, 6, 34, 7, 35>
210 /// E.g. For a Factor of 3 (LaneLen=4): <4, 32, 16, 5, 33, 17, 6, 34, 18, 7, 35, 19>
211 /// E.g. For a Factor of 4 (LaneLen=2): <8, 2, 12, 4, 9, 3, 13, 5>
213 /// The particular case of an RE-interleave mask is:
214 /// I.e. <0, LaneLen, ... , LaneLen*(Factor - 1), 1, LaneLen + 1, ...>
215 /// E.g. For a Factor of 2 (LaneLen=4): <0, 4, 1, 5, 2, 6, 3, 7>
216 static bool isReInterleaveMask(ShuffleVectorInst
*SVI
, unsigned &Factor
,
217 unsigned MaxFactor
) {
218 unsigned NumElts
= SVI
->getShuffleMask().size();
222 // Check potential Factors.
223 for (Factor
= 2; Factor
<= MaxFactor
; Factor
++) {
224 if (SVI
->isInterleave(Factor
))
231 bool InterleavedAccess::lowerInterleavedLoad(
232 LoadInst
*LI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
233 if (!LI
->isSimple() || isa
<ScalableVectorType
>(LI
->getType()))
236 // Check if all users of this load are shufflevectors. If we encounter any
237 // users that are extractelement instructions or binary operators, we save
238 // them to later check if they can be modified to extract from one of the
239 // shufflevectors instead of the load.
241 SmallVector
<ShuffleVectorInst
*, 4> Shuffles
;
242 SmallVector
<ExtractElementInst
*, 4> Extracts
;
243 // BinOpShuffles need to be handled a single time in case both operands of the
244 // binop are the same load.
245 SmallSetVector
<ShuffleVectorInst
*, 4> BinOpShuffles
;
247 for (auto *User
: LI
->users()) {
248 auto *Extract
= dyn_cast
<ExtractElementInst
>(User
);
249 if (Extract
&& isa
<ConstantInt
>(Extract
->getIndexOperand())) {
250 Extracts
.push_back(Extract
);
253 if (auto *BI
= dyn_cast
<BinaryOperator
>(User
)) {
254 if (all_of(BI
->users(), [](auto *U
) {
255 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(U
);
256 return SVI
&& isa
<UndefValue
>(SVI
->getOperand(1));
258 for (auto *SVI
: BI
->users())
259 BinOpShuffles
.insert(cast
<ShuffleVectorInst
>(SVI
));
263 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(User
);
264 if (!SVI
|| !isa
<UndefValue
>(SVI
->getOperand(1)))
267 Shuffles
.push_back(SVI
);
270 if (Shuffles
.empty() && BinOpShuffles
.empty())
273 unsigned Factor
, Index
;
275 unsigned NumLoadElements
=
276 cast
<FixedVectorType
>(LI
->getType())->getNumElements();
277 auto *FirstSVI
= Shuffles
.size() > 0 ? Shuffles
[0] : BinOpShuffles
[0];
278 // Check if the first shufflevector is DE-interleave shuffle.
279 if (!isDeInterleaveMask(FirstSVI
->getShuffleMask(), Factor
, Index
, MaxFactor
,
283 // Holds the corresponding index for each DE-interleave shuffle.
284 SmallVector
<unsigned, 4> Indices
;
286 Type
*VecTy
= FirstSVI
->getType();
288 // Check if other shufflevectors are also DE-interleaved of the same type
289 // and factor as the first shufflevector.
290 for (auto *Shuffle
: Shuffles
) {
291 if (Shuffle
->getType() != VecTy
)
293 if (!isDeInterleaveMaskOfFactor(Shuffle
->getShuffleMask(), Factor
,
297 assert(Shuffle
->getShuffleMask().size() <= NumLoadElements
);
298 Indices
.push_back(Index
);
300 for (auto *Shuffle
: BinOpShuffles
) {
301 if (Shuffle
->getType() != VecTy
)
303 if (!isDeInterleaveMaskOfFactor(Shuffle
->getShuffleMask(), Factor
,
307 assert(Shuffle
->getShuffleMask().size() <= NumLoadElements
);
309 if (cast
<Instruction
>(Shuffle
->getOperand(0))->getOperand(0) == LI
)
310 Indices
.push_back(Index
);
311 if (cast
<Instruction
>(Shuffle
->getOperand(0))->getOperand(1) == LI
)
312 Indices
.push_back(Index
);
315 // Try and modify users of the load that are extractelement instructions to
316 // use the shufflevector instructions instead of the load.
317 if (!tryReplaceExtracts(Extracts
, Shuffles
))
320 bool BinOpShuffleChanged
=
321 replaceBinOpShuffles(BinOpShuffles
.getArrayRef(), Shuffles
, LI
);
323 LLVM_DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI
<< "\n");
325 // Try to create target specific intrinsics to replace the load and shuffles.
326 if (!TLI
->lowerInterleavedLoad(LI
, Shuffles
, Indices
, Factor
)) {
327 // If Extracts is not empty, tryReplaceExtracts made changes earlier.
328 return !Extracts
.empty() || BinOpShuffleChanged
;
331 append_range(DeadInsts
, Shuffles
);
333 DeadInsts
.push_back(LI
);
337 bool InterleavedAccess::replaceBinOpShuffles(
338 ArrayRef
<ShuffleVectorInst
*> BinOpShuffles
,
339 SmallVectorImpl
<ShuffleVectorInst
*> &Shuffles
, LoadInst
*LI
) {
340 for (auto *SVI
: BinOpShuffles
) {
341 BinaryOperator
*BI
= cast
<BinaryOperator
>(SVI
->getOperand(0));
342 Type
*BIOp0Ty
= BI
->getOperand(0)->getType();
343 ArrayRef
<int> Mask
= SVI
->getShuffleMask();
344 assert(all_of(Mask
, [&](int Idx
) {
345 return Idx
< (int)cast
<FixedVectorType
>(BIOp0Ty
)->getNumElements();
349 new ShuffleVectorInst(BI
->getOperand(0), PoisonValue::get(BIOp0Ty
),
350 Mask
, SVI
->getName(), SVI
);
351 auto *NewSVI2
= new ShuffleVectorInst(
352 BI
->getOperand(1), PoisonValue::get(BI
->getOperand(1)->getType()), Mask
,
353 SVI
->getName(), SVI
);
354 BinaryOperator
*NewBI
= BinaryOperator::CreateWithCopiedFlags(
355 BI
->getOpcode(), NewSVI1
, NewSVI2
, BI
, BI
->getName(), SVI
);
356 SVI
->replaceAllUsesWith(NewBI
);
357 LLVM_DEBUG(dbgs() << " Replaced: " << *BI
<< "\n And : " << *SVI
358 << "\n With : " << *NewSVI1
<< "\n And : "
359 << *NewSVI2
<< "\n And : " << *NewBI
<< "\n");
360 RecursivelyDeleteTriviallyDeadInstructions(SVI
);
361 if (NewSVI1
->getOperand(0) == LI
)
362 Shuffles
.push_back(NewSVI1
);
363 if (NewSVI2
->getOperand(0) == LI
)
364 Shuffles
.push_back(NewSVI2
);
367 return !BinOpShuffles
.empty();
370 bool InterleavedAccess::tryReplaceExtracts(
371 ArrayRef
<ExtractElementInst
*> Extracts
,
372 ArrayRef
<ShuffleVectorInst
*> Shuffles
) {
373 // If there aren't any extractelement instructions to modify, there's nothing
375 if (Extracts
.empty())
378 // Maps extractelement instructions to vector-index pairs. The extractlement
379 // instructions will be modified to use the new vector and index operands.
380 DenseMap
<ExtractElementInst
*, std::pair
<Value
*, int>> ReplacementMap
;
382 for (auto *Extract
: Extracts
) {
383 // The vector index that is extracted.
384 auto *IndexOperand
= cast
<ConstantInt
>(Extract
->getIndexOperand());
385 auto Index
= IndexOperand
->getSExtValue();
387 // Look for a suitable shufflevector instruction. The goal is to modify the
388 // extractelement instruction (which uses an interleaved load) to use one
389 // of the shufflevector instructions instead of the load.
390 for (auto *Shuffle
: Shuffles
) {
391 // If the shufflevector instruction doesn't dominate the extract, we
392 // can't create a use of it.
393 if (!DT
->dominates(Shuffle
, Extract
))
396 // Inspect the indices of the shufflevector instruction. If the shuffle
397 // selects the same index that is extracted, we can modify the
398 // extractelement instruction.
399 SmallVector
<int, 4> Indices
;
400 Shuffle
->getShuffleMask(Indices
);
401 for (unsigned I
= 0; I
< Indices
.size(); ++I
)
402 if (Indices
[I
] == Index
) {
403 assert(Extract
->getOperand(0) == Shuffle
->getOperand(0) &&
404 "Vector operations do not match");
405 ReplacementMap
[Extract
] = std::make_pair(Shuffle
, I
);
409 // If we found a suitable shufflevector instruction, stop looking.
410 if (ReplacementMap
.count(Extract
))
414 // If we did not find a suitable shufflevector instruction, the
415 // extractelement instruction cannot be modified, so we must give up.
416 if (!ReplacementMap
.count(Extract
))
420 // Finally, perform the replacements.
421 IRBuilder
<> Builder(Extracts
[0]->getContext());
422 for (auto &Replacement
: ReplacementMap
) {
423 auto *Extract
= Replacement
.first
;
424 auto *Vector
= Replacement
.second
.first
;
425 auto Index
= Replacement
.second
.second
;
426 Builder
.SetInsertPoint(Extract
);
427 Extract
->replaceAllUsesWith(Builder
.CreateExtractElement(Vector
, Index
));
428 Extract
->eraseFromParent();
434 bool InterleavedAccess::lowerInterleavedStore(
435 StoreInst
*SI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
439 auto *SVI
= dyn_cast
<ShuffleVectorInst
>(SI
->getValueOperand());
440 if (!SVI
|| !SVI
->hasOneUse() || isa
<ScalableVectorType
>(SVI
->getType()))
443 // Check if the shufflevector is RE-interleave shuffle.
445 if (!isReInterleaveMask(SVI
, Factor
, MaxFactor
))
448 LLVM_DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI
<< "\n");
450 // Try to create target specific intrinsics to replace the store and shuffle.
451 if (!TLI
->lowerInterleavedStore(SI
, SVI
, Factor
))
454 // Already have a new target specific interleaved store. Erase the old store.
455 DeadInsts
.push_back(SI
);
456 DeadInsts
.push_back(SVI
);
460 bool InterleavedAccess::lowerDeinterleaveIntrinsic(
461 IntrinsicInst
*DI
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
462 LoadInst
*LI
= dyn_cast
<LoadInst
>(DI
->getOperand(0));
464 if (!LI
|| !LI
->hasOneUse() || !LI
->isSimple())
467 LLVM_DEBUG(dbgs() << "IA: Found a deinterleave intrinsic: " << *DI
<< "\n");
469 // Try and match this with target specific intrinsics.
470 if (!TLI
->lowerDeinterleaveIntrinsicToLoad(DI
, LI
))
473 // We now have a target-specific load, so delete the old one.
474 DeadInsts
.push_back(DI
);
475 DeadInsts
.push_back(LI
);
479 bool InterleavedAccess::lowerInterleaveIntrinsic(
480 IntrinsicInst
*II
, SmallVector
<Instruction
*, 32> &DeadInsts
) {
481 if (!II
->hasOneUse())
484 StoreInst
*SI
= dyn_cast
<StoreInst
>(*(II
->users().begin()));
486 if (!SI
|| !SI
->isSimple())
489 LLVM_DEBUG(dbgs() << "IA: Found an interleave intrinsic: " << *II
<< "\n");
491 // Try and match this with target specific intrinsics.
492 if (!TLI
->lowerInterleaveIntrinsicToStore(II
, SI
))
495 // We now have a target-specific store, so delete the old one.
496 DeadInsts
.push_back(SI
);
497 DeadInsts
.push_back(II
);
501 bool InterleavedAccess::runOnFunction(Function
&F
) {
502 auto *TPC
= getAnalysisIfAvailable
<TargetPassConfig
>();
503 if (!TPC
|| !LowerInterleavedAccesses
)
506 LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F
.getName() << "\n");
508 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
509 auto &TM
= TPC
->getTM
<TargetMachine
>();
510 TLI
= TM
.getSubtargetImpl(F
)->getTargetLowering();
511 MaxFactor
= TLI
->getMaxSupportedInterleaveFactor();
513 // Holds dead instructions that will be erased later.
514 SmallVector
<Instruction
*, 32> DeadInsts
;
515 bool Changed
= false;
517 for (auto &I
: instructions(F
)) {
518 if (auto *LI
= dyn_cast
<LoadInst
>(&I
))
519 Changed
|= lowerInterleavedLoad(LI
, DeadInsts
);
521 if (auto *SI
= dyn_cast
<StoreInst
>(&I
))
522 Changed
|= lowerInterleavedStore(SI
, DeadInsts
);
524 if (auto *II
= dyn_cast
<IntrinsicInst
>(&I
)) {
525 // At present, we only have intrinsics to represent (de)interleaving
526 // with a factor of 2.
527 if (II
->getIntrinsicID() == Intrinsic::experimental_vector_deinterleave2
)
528 Changed
|= lowerDeinterleaveIntrinsic(II
, DeadInsts
);
529 if (II
->getIntrinsicID() == Intrinsic::experimental_vector_interleave2
)
530 Changed
|= lowerInterleaveIntrinsic(II
, DeadInsts
);
534 for (auto *I
: DeadInsts
)
535 I
->eraseFromParent();