1 //===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file This file implements the LiveInterval analysis pass which is used
10 /// by the Linear Scan Register allocator. This pass linearizes the
11 /// basic blocks of the function in DFS order and computes live intervals for
12 /// each virtual and physical register.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/LiveIntervals.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/LiveInterval.h"
23 #include "llvm/CodeGen/LiveIntervalCalc.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineDominators.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineInstrBundle.h"
31 #include "llvm/CodeGen/MachineOperand.h"
32 #include "llvm/CodeGen/MachineRegisterInfo.h"
33 #include "llvm/CodeGen/Passes.h"
34 #include "llvm/CodeGen/SlotIndexes.h"
35 #include "llvm/CodeGen/StackMaps.h"
36 #include "llvm/CodeGen/TargetRegisterInfo.h"
37 #include "llvm/CodeGen/TargetSubtargetInfo.h"
38 #include "llvm/CodeGen/VirtRegMap.h"
39 #include "llvm/Config/llvm-config.h"
40 #include "llvm/IR/Statepoint.h"
41 #include "llvm/MC/LaneBitmask.h"
42 #include "llvm/MC/MCRegisterInfo.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Compiler.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/MathExtras.h"
48 #include "llvm/Support/raw_ostream.h"
58 #define DEBUG_TYPE "regalloc"
60 char LiveIntervals::ID
= 0;
61 char &llvm::LiveIntervalsID
= LiveIntervals::ID
;
62 INITIALIZE_PASS_BEGIN(LiveIntervals
, "liveintervals", "Live Interval Analysis",
64 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree
)
65 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
66 INITIALIZE_PASS_END(LiveIntervals
, "liveintervals",
67 "Live Interval Analysis", false, false)
70 static cl::opt
<bool> EnablePrecomputePhysRegs(
71 "precompute-phys-liveness", cl::Hidden
,
72 cl::desc("Eagerly compute live intervals for all physreg units."));
74 static bool EnablePrecomputePhysRegs
= false;
79 cl::opt
<bool> UseSegmentSetForPhysRegs(
80 "use-segment-set-for-physregs", cl::Hidden
, cl::init(true),
82 "Use segment set for the computation of the live ranges of physregs."));
84 } // end namespace llvm
86 void LiveIntervals::getAnalysisUsage(AnalysisUsage
&AU
) const {
88 AU
.addPreserved
<LiveVariables
>();
89 AU
.addPreservedID(MachineLoopInfoID
);
90 AU
.addRequiredTransitiveID(MachineDominatorsID
);
91 AU
.addPreservedID(MachineDominatorsID
);
92 AU
.addPreserved
<SlotIndexes
>();
93 AU
.addRequiredTransitive
<SlotIndexes
>();
94 MachineFunctionPass::getAnalysisUsage(AU
);
97 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID
) {
98 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
101 LiveIntervals::~LiveIntervals() { delete LICalc
; }
103 void LiveIntervals::releaseMemory() {
104 // Free the live intervals themselves.
105 for (unsigned i
= 0, e
= VirtRegIntervals
.size(); i
!= e
; ++i
)
106 delete VirtRegIntervals
[Register::index2VirtReg(i
)];
107 VirtRegIntervals
.clear();
108 RegMaskSlots
.clear();
110 RegMaskBlocks
.clear();
112 for (LiveRange
*LR
: RegUnitRanges
)
114 RegUnitRanges
.clear();
116 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
117 VNInfoAllocator
.Reset();
120 bool LiveIntervals::runOnMachineFunction(MachineFunction
&fn
) {
122 MRI
= &MF
->getRegInfo();
123 TRI
= MF
->getSubtarget().getRegisterInfo();
124 TII
= MF
->getSubtarget().getInstrInfo();
125 Indexes
= &getAnalysis
<SlotIndexes
>();
126 DomTree
= &getAnalysis
<MachineDominatorTree
>();
129 LICalc
= new LiveIntervalCalc();
131 // Allocate space for all virtual registers.
132 VirtRegIntervals
.resize(MRI
->getNumVirtRegs());
136 computeLiveInRegUnits();
138 if (EnablePrecomputePhysRegs
) {
139 // For stress testing, precompute live ranges of all physical register
140 // units, including reserved registers.
141 for (unsigned i
= 0, e
= TRI
->getNumRegUnits(); i
!= e
; ++i
)
148 void LiveIntervals::print(raw_ostream
&OS
, const Module
* ) const {
149 OS
<< "********** INTERVALS **********\n";
151 // Dump the regunits.
152 for (unsigned Unit
= 0, UnitE
= RegUnitRanges
.size(); Unit
!= UnitE
; ++Unit
)
153 if (LiveRange
*LR
= RegUnitRanges
[Unit
])
154 OS
<< printRegUnit(Unit
, TRI
) << ' ' << *LR
<< '\n';
156 // Dump the virtregs.
157 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
158 Register Reg
= Register::index2VirtReg(i
);
159 if (hasInterval(Reg
))
160 OS
<< getInterval(Reg
) << '\n';
164 for (SlotIndex Idx
: RegMaskSlots
)
171 void LiveIntervals::printInstrs(raw_ostream
&OS
) const {
172 OS
<< "********** MACHINEINSTRS **********\n";
173 MF
->print(OS
, Indexes
);
176 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
177 LLVM_DUMP_METHOD
void LiveIntervals::dumpInstrs() const {
182 LiveInterval
*LiveIntervals::createInterval(Register reg
) {
183 float Weight
= reg
.isPhysical() ? huge_valf
: 0.0F
;
184 return new LiveInterval(reg
, Weight
);
187 /// Compute the live interval of a virtual register, based on defs and uses.
188 bool LiveIntervals::computeVirtRegInterval(LiveInterval
&LI
) {
189 assert(LICalc
&& "LICalc not initialized.");
190 assert(LI
.empty() && "Should only compute empty intervals.");
191 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
192 LICalc
->calculate(LI
, MRI
->shouldTrackSubRegLiveness(LI
.reg()));
193 return computeDeadValues(LI
, nullptr);
196 void LiveIntervals::computeVirtRegs() {
197 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
198 Register Reg
= Register::index2VirtReg(i
);
199 if (MRI
->reg_nodbg_empty(Reg
))
201 LiveInterval
&LI
= createEmptyInterval(Reg
);
202 bool NeedSplit
= computeVirtRegInterval(LI
);
204 SmallVector
<LiveInterval
*, 8> SplitLIs
;
205 splitSeparateComponents(LI
, SplitLIs
);
210 void LiveIntervals::computeRegMasks() {
211 RegMaskBlocks
.resize(MF
->getNumBlockIDs());
213 // Find all instructions with regmask operands.
214 for (const MachineBasicBlock
&MBB
: *MF
) {
215 std::pair
<unsigned, unsigned> &RMB
= RegMaskBlocks
[MBB
.getNumber()];
216 RMB
.first
= RegMaskSlots
.size();
218 // Some block starts, such as EH funclets, create masks.
219 if (const uint32_t *Mask
= MBB
.getBeginClobberMask(TRI
)) {
220 RegMaskSlots
.push_back(Indexes
->getMBBStartIdx(&MBB
));
221 RegMaskBits
.push_back(Mask
);
224 // Unwinders may clobber additional registers.
225 // FIXME: This functionality can possibly be merged into
226 // MachineBasicBlock::getBeginClobberMask().
228 if (auto *Mask
= TRI
->getCustomEHPadPreservedMask(*MBB
.getParent())) {
229 RegMaskSlots
.push_back(Indexes
->getMBBStartIdx(&MBB
));
230 RegMaskBits
.push_back(Mask
);
233 for (const MachineInstr
&MI
: MBB
) {
234 for (const MachineOperand
&MO
: MI
.operands()) {
237 RegMaskSlots
.push_back(Indexes
->getInstructionIndex(MI
).getRegSlot());
238 RegMaskBits
.push_back(MO
.getRegMask());
242 // Some block ends, such as funclet returns, create masks. Put the mask on
243 // the last instruction of the block, because MBB slot index intervals are
245 if (const uint32_t *Mask
= MBB
.getEndClobberMask(TRI
)) {
246 assert(!MBB
.empty() && "empty return block?");
247 RegMaskSlots
.push_back(
248 Indexes
->getInstructionIndex(MBB
.back()).getRegSlot());
249 RegMaskBits
.push_back(Mask
);
252 // Compute the number of register mask instructions in this block.
253 RMB
.second
= RegMaskSlots
.size() - RMB
.first
;
257 //===----------------------------------------------------------------------===//
258 // Register Unit Liveness
259 //===----------------------------------------------------------------------===//
261 // Fixed interference typically comes from ABI boundaries: Function arguments
262 // and return values are passed in fixed registers, and so are exception
263 // pointers entering landing pads. Certain instructions require values to be
264 // present in specific registers. That is also represented through fixed
268 /// Compute the live range of a register unit, based on the uses and defs of
269 /// aliasing registers. The range should be empty, or contain only dead
270 /// phi-defs from ABI blocks.
271 void LiveIntervals::computeRegUnitRange(LiveRange
&LR
, unsigned Unit
) {
272 assert(LICalc
&& "LICalc not initialized.");
273 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
275 // The physregs aliasing Unit are the roots and their super-registers.
276 // Create all values as dead defs before extending to uses. Note that roots
277 // may share super-registers. That's OK because createDeadDefs() is
278 // idempotent. It is very rare for a register unit to have multiple roots, so
279 // uniquing super-registers is probably not worthwhile.
280 bool IsReserved
= false;
281 for (MCRegUnitRootIterator
Root(Unit
, TRI
); Root
.isValid(); ++Root
) {
282 bool IsRootReserved
= true;
283 for (MCPhysReg Reg
: TRI
->superregs_inclusive(*Root
)) {
284 if (!MRI
->reg_empty(Reg
))
285 LICalc
->createDeadDefs(LR
, Reg
);
286 // A register unit is considered reserved if all its roots and all their
287 // super registers are reserved.
288 if (!MRI
->isReserved(Reg
))
289 IsRootReserved
= false;
291 IsReserved
|= IsRootReserved
;
293 assert(IsReserved
== MRI
->isReservedRegUnit(Unit
) &&
294 "reserved computation mismatch");
296 // Now extend LR to reach all uses.
297 // Ignore uses of reserved registers. We only track defs of those.
299 for (MCRegUnitRootIterator
Root(Unit
, TRI
); Root
.isValid(); ++Root
) {
300 for (MCPhysReg Reg
: TRI
->superregs_inclusive(*Root
)) {
301 if (!MRI
->reg_empty(Reg
))
302 LICalc
->extendToUses(LR
, Reg
);
307 // Flush the segment set to the segment vector.
308 if (UseSegmentSetForPhysRegs
)
309 LR
.flushSegmentSet();
312 /// Precompute the live ranges of any register units that are live-in to an ABI
313 /// block somewhere. Register values can appear without a corresponding def when
314 /// entering the entry block or a landing pad.
315 void LiveIntervals::computeLiveInRegUnits() {
316 RegUnitRanges
.resize(TRI
->getNumRegUnits());
317 LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
319 // Keep track of the live range sets allocated.
320 SmallVector
<unsigned, 8> NewRanges
;
322 // Check all basic blocks for live-ins.
323 for (const MachineBasicBlock
&MBB
: *MF
) {
324 // We only care about ABI blocks: Entry + landing pads.
325 if ((&MBB
!= &MF
->front() && !MBB
.isEHPad()) || MBB
.livein_empty())
328 // Create phi-defs at Begin for all live-in registers.
329 SlotIndex Begin
= Indexes
->getMBBStartIdx(&MBB
);
330 LLVM_DEBUG(dbgs() << Begin
<< "\t" << printMBBReference(MBB
));
331 for (const auto &LI
: MBB
.liveins()) {
332 for (MCRegUnit Unit
: TRI
->regunits(LI
.PhysReg
)) {
333 LiveRange
*LR
= RegUnitRanges
[Unit
];
335 // Use segment set to speed-up initial computation of the live range.
336 LR
= RegUnitRanges
[Unit
] = new LiveRange(UseSegmentSetForPhysRegs
);
337 NewRanges
.push_back(Unit
);
339 VNInfo
*VNI
= LR
->createDeadDef(Begin
, getVNInfoAllocator());
341 LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit
, TRI
) << '#' << VNI
->id
);
344 LLVM_DEBUG(dbgs() << '\n');
346 LLVM_DEBUG(dbgs() << "Created " << NewRanges
.size() << " new intervals.\n");
348 // Compute the 'normal' part of the ranges.
349 for (unsigned Unit
: NewRanges
)
350 computeRegUnitRange(*RegUnitRanges
[Unit
], Unit
);
353 static void createSegmentsForValues(LiveRange
&LR
,
354 iterator_range
<LiveInterval::vni_iterator
> VNIs
) {
355 for (VNInfo
*VNI
: VNIs
) {
358 SlotIndex Def
= VNI
->def
;
359 LR
.addSegment(LiveRange::Segment(Def
, Def
.getDeadSlot(), VNI
));
363 void LiveIntervals::extendSegmentsToUses(LiveRange
&Segments
,
364 ShrinkToUsesWorkList
&WorkList
,
365 Register Reg
, LaneBitmask LaneMask
) {
366 // Keep track of the PHIs that are in use.
367 SmallPtrSet
<VNInfo
*, 8> UsedPHIs
;
368 // Blocks that have already been added to WorkList as live-out.
369 SmallPtrSet
<const MachineBasicBlock
*, 16> LiveOut
;
371 auto getSubRange
= [](const LiveInterval
&I
, LaneBitmask M
)
372 -> const LiveRange
& {
375 for (const LiveInterval::SubRange
&SR
: I
.subranges()) {
376 if ((SR
.LaneMask
& M
).any()) {
377 assert(SR
.LaneMask
== M
&& "Expecting lane masks to match exactly");
381 llvm_unreachable("Subrange for mask not found");
384 const LiveInterval
&LI
= getInterval(Reg
);
385 const LiveRange
&OldRange
= getSubRange(LI
, LaneMask
);
387 // Extend intervals to reach all uses in WorkList.
388 while (!WorkList
.empty()) {
389 SlotIndex Idx
= WorkList
.back().first
;
390 VNInfo
*VNI
= WorkList
.back().second
;
392 const MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(Idx
.getPrevSlot());
393 SlotIndex BlockStart
= Indexes
->getMBBStartIdx(MBB
);
395 // Extend the live range for VNI to be live at Idx.
396 if (VNInfo
*ExtVNI
= Segments
.extendInBlock(BlockStart
, Idx
)) {
397 assert(ExtVNI
== VNI
&& "Unexpected existing value number");
399 // Is this a PHIDef we haven't seen before?
400 if (!VNI
->isPHIDef() || VNI
->def
!= BlockStart
||
401 !UsedPHIs
.insert(VNI
).second
)
403 // The PHI is live, make sure the predecessors are live-out.
404 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
405 if (!LiveOut
.insert(Pred
).second
)
407 SlotIndex Stop
= Indexes
->getMBBEndIdx(Pred
);
408 // A predecessor is not required to have a live-out value for a PHI.
409 if (VNInfo
*PVNI
= OldRange
.getVNInfoBefore(Stop
))
410 WorkList
.push_back(std::make_pair(Stop
, PVNI
));
415 // VNI is live-in to MBB.
416 LLVM_DEBUG(dbgs() << " live-in at " << BlockStart
<< '\n');
417 Segments
.addSegment(LiveRange::Segment(BlockStart
, Idx
, VNI
));
419 // Make sure VNI is live-out from the predecessors.
420 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
421 if (!LiveOut
.insert(Pred
).second
)
423 SlotIndex Stop
= Indexes
->getMBBEndIdx(Pred
);
424 if (VNInfo
*OldVNI
= OldRange
.getVNInfoBefore(Stop
)) {
425 assert(OldVNI
== VNI
&& "Wrong value out of predecessor");
427 WorkList
.push_back(std::make_pair(Stop
, VNI
));
430 // There was no old VNI. Verify that Stop is jointly dominated
431 // by <undef>s for this live range.
432 assert(LaneMask
.any() &&
433 "Missing value out of predecessor for main range");
434 SmallVector
<SlotIndex
,8> Undefs
;
435 LI
.computeSubRangeUndefs(Undefs
, LaneMask
, *MRI
, *Indexes
);
436 assert(LiveRangeCalc::isJointlyDominated(Pred
, Undefs
, *Indexes
) &&
437 "Missing value out of predecessor for subrange");
444 bool LiveIntervals::shrinkToUses(LiveInterval
*li
,
445 SmallVectorImpl
<MachineInstr
*> *dead
) {
446 LLVM_DEBUG(dbgs() << "Shrink: " << *li
<< '\n');
447 assert(li
->reg().isVirtual() && "Can only shrink virtual registers");
449 // Shrink subregister live ranges.
450 bool NeedsCleanup
= false;
451 for (LiveInterval::SubRange
&S
: li
->subranges()) {
452 shrinkToUses(S
, li
->reg());
457 li
->removeEmptySubRanges();
459 // Find all the values used, including PHI kills.
460 ShrinkToUsesWorkList WorkList
;
462 // Visit all instructions reading li->reg().
463 Register Reg
= li
->reg();
464 for (MachineInstr
&UseMI
: MRI
->reg_instructions(Reg
)) {
465 if (UseMI
.isDebugInstr() || !UseMI
.readsVirtualRegister(Reg
))
467 SlotIndex Idx
= getInstructionIndex(UseMI
).getRegSlot();
468 LiveQueryResult LRQ
= li
->Query(Idx
);
469 VNInfo
*VNI
= LRQ
.valueIn();
471 // This shouldn't happen: readsVirtualRegister returns true, but there is
472 // no live value. It is likely caused by a target getting <undef> flags
475 dbgs() << Idx
<< '\t' << UseMI
476 << "Warning: Instr claims to read non-existent value in "
480 // Special case: An early-clobber tied operand reads and writes the
481 // register one slot early.
482 if (VNInfo
*DefVNI
= LRQ
.valueDefined())
485 WorkList
.push_back(std::make_pair(Idx
, VNI
));
488 // Create new live ranges with only minimal live segments per def.
490 createSegmentsForValues(NewLR
, li
->vnis());
491 extendSegmentsToUses(NewLR
, WorkList
, Reg
, LaneBitmask::getNone());
493 // Move the trimmed segments back.
494 li
->segments
.swap(NewLR
.segments
);
496 // Handle dead values.
497 bool CanSeparate
= computeDeadValues(*li
, dead
);
498 LLVM_DEBUG(dbgs() << "Shrunk: " << *li
<< '\n');
502 bool LiveIntervals::computeDeadValues(LiveInterval
&LI
,
503 SmallVectorImpl
<MachineInstr
*> *dead
) {
504 bool MayHaveSplitComponents
= false;
506 for (VNInfo
*VNI
: LI
.valnos
) {
509 SlotIndex Def
= VNI
->def
;
510 LiveRange::iterator I
= LI
.FindSegmentContaining(Def
);
511 assert(I
!= LI
.end() && "Missing segment for VNI");
513 // Is the register live before? Otherwise we may have to add a read-undef
514 // flag for subregister defs.
515 Register VReg
= LI
.reg();
516 if (MRI
->shouldTrackSubRegLiveness(VReg
)) {
517 if ((I
== LI
.begin() || std::prev(I
)->end
< Def
) && !VNI
->isPHIDef()) {
518 MachineInstr
*MI
= getInstructionFromIndex(Def
);
519 MI
->setRegisterDefReadUndef(VReg
);
523 if (I
->end
!= Def
.getDeadSlot())
525 if (VNI
->isPHIDef()) {
526 // This is a dead PHI. Remove it.
529 LLVM_DEBUG(dbgs() << "Dead PHI at " << Def
<< " may separate interval\n");
531 // This is a dead def. Make sure the instruction knows.
532 MachineInstr
*MI
= getInstructionFromIndex(Def
);
533 assert(MI
&& "No instruction defining live value");
534 MI
->addRegisterDead(LI
.reg(), TRI
);
536 if (dead
&& MI
->allDefsAreDead()) {
537 LLVM_DEBUG(dbgs() << "All defs dead: " << Def
<< '\t' << *MI
);
541 MayHaveSplitComponents
= true;
543 return MayHaveSplitComponents
;
546 void LiveIntervals::shrinkToUses(LiveInterval::SubRange
&SR
, Register Reg
) {
547 LLVM_DEBUG(dbgs() << "Shrink: " << SR
<< '\n');
548 assert(Reg
.isVirtual() && "Can only shrink virtual registers");
549 // Find all the values used, including PHI kills.
550 ShrinkToUsesWorkList WorkList
;
552 // Visit all instructions reading Reg.
554 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
555 // Skip "undef" uses.
558 // Maybe the operand is for a subregister we don't care about.
559 unsigned SubReg
= MO
.getSubReg();
561 LaneBitmask LaneMask
= TRI
->getSubRegIndexLaneMask(SubReg
);
562 if ((LaneMask
& SR
.LaneMask
).none())
565 // We only need to visit each instruction once.
566 MachineInstr
*UseMI
= MO
.getParent();
567 SlotIndex Idx
= getInstructionIndex(*UseMI
).getRegSlot();
572 LiveQueryResult LRQ
= SR
.Query(Idx
);
573 VNInfo
*VNI
= LRQ
.valueIn();
574 // For Subranges it is possible that only undef values are left in that
575 // part of the subregister, so there is no real liverange at the use
579 // Special case: An early-clobber tied operand reads and writes the
580 // register one slot early.
581 if (VNInfo
*DefVNI
= LRQ
.valueDefined())
584 WorkList
.push_back(std::make_pair(Idx
, VNI
));
587 // Create a new live ranges with only minimal live segments per def.
589 createSegmentsForValues(NewLR
, SR
.vnis());
590 extendSegmentsToUses(NewLR
, WorkList
, Reg
, SR
.LaneMask
);
592 // Move the trimmed ranges back.
593 SR
.segments
.swap(NewLR
.segments
);
595 // Remove dead PHI value numbers
596 for (VNInfo
*VNI
: SR
.valnos
) {
599 const LiveRange::Segment
*Segment
= SR
.getSegmentContaining(VNI
->def
);
600 assert(Segment
!= nullptr && "Missing segment for VNI");
601 if (Segment
->end
!= VNI
->def
.getDeadSlot())
603 if (VNI
->isPHIDef()) {
604 // This is a dead PHI. Remove it.
605 LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI
->def
606 << " may separate interval\n");
608 SR
.removeSegment(*Segment
);
612 LLVM_DEBUG(dbgs() << "Shrunk: " << SR
<< '\n');
615 void LiveIntervals::extendToIndices(LiveRange
&LR
,
616 ArrayRef
<SlotIndex
> Indices
,
617 ArrayRef
<SlotIndex
> Undefs
) {
618 assert(LICalc
&& "LICalc not initialized.");
619 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
620 for (SlotIndex Idx
: Indices
)
621 LICalc
->extend(LR
, Idx
, /*PhysReg=*/0, Undefs
);
624 void LiveIntervals::pruneValue(LiveRange
&LR
, SlotIndex Kill
,
625 SmallVectorImpl
<SlotIndex
> *EndPoints
) {
626 LiveQueryResult LRQ
= LR
.Query(Kill
);
627 VNInfo
*VNI
= LRQ
.valueOutOrDead();
631 MachineBasicBlock
*KillMBB
= Indexes
->getMBBFromIndex(Kill
);
632 SlotIndex MBBEnd
= Indexes
->getMBBEndIdx(KillMBB
);
634 // If VNI isn't live out from KillMBB, the value is trivially pruned.
635 if (LRQ
.endPoint() < MBBEnd
) {
636 LR
.removeSegment(Kill
, LRQ
.endPoint());
637 if (EndPoints
) EndPoints
->push_back(LRQ
.endPoint());
641 // VNI is live out of KillMBB.
642 LR
.removeSegment(Kill
, MBBEnd
);
643 if (EndPoints
) EndPoints
->push_back(MBBEnd
);
645 // Find all blocks that are reachable from KillMBB without leaving VNI's live
646 // range. It is possible that KillMBB itself is reachable, so start a DFS
647 // from each successor.
648 using VisitedTy
= df_iterator_default_set
<MachineBasicBlock
*,9>;
650 for (MachineBasicBlock
*Succ
: KillMBB
->successors()) {
651 for (df_ext_iterator
<MachineBasicBlock
*, VisitedTy
>
652 I
= df_ext_begin(Succ
, Visited
), E
= df_ext_end(Succ
, Visited
);
654 MachineBasicBlock
*MBB
= *I
;
656 // Check if VNI is live in to MBB.
657 SlotIndex MBBStart
, MBBEnd
;
658 std::tie(MBBStart
, MBBEnd
) = Indexes
->getMBBRange(MBB
);
659 LiveQueryResult LRQ
= LR
.Query(MBBStart
);
660 if (LRQ
.valueIn() != VNI
) {
661 // This block isn't part of the VNI segment. Prune the search.
666 // Prune the search if VNI is killed in MBB.
667 if (LRQ
.endPoint() < MBBEnd
) {
668 LR
.removeSegment(MBBStart
, LRQ
.endPoint());
669 if (EndPoints
) EndPoints
->push_back(LRQ
.endPoint());
674 // VNI is live through MBB.
675 LR
.removeSegment(MBBStart
, MBBEnd
);
676 if (EndPoints
) EndPoints
->push_back(MBBEnd
);
682 //===----------------------------------------------------------------------===//
683 // Register allocator hooks.
686 void LiveIntervals::addKillFlags(const VirtRegMap
*VRM
) {
687 // Keep track of regunit ranges.
688 SmallVector
<std::pair
<const LiveRange
*, LiveRange::const_iterator
>, 8> RU
;
690 for (unsigned i
= 0, e
= MRI
->getNumVirtRegs(); i
!= e
; ++i
) {
691 Register Reg
= Register::index2VirtReg(i
);
692 if (MRI
->reg_nodbg_empty(Reg
))
694 const LiveInterval
&LI
= getInterval(Reg
);
698 // Target may have not allocated this yet.
699 Register PhysReg
= VRM
->getPhys(Reg
);
703 // Find the regunit intervals for the assigned register. They may overlap
704 // the virtual register live range, cancelling any kills.
706 for (MCRegUnit Unit
: TRI
->regunits(PhysReg
)) {
707 const LiveRange
&RURange
= getRegUnit(Unit
);
710 RU
.push_back(std::make_pair(&RURange
, RURange
.find(LI
.begin()->end
)));
712 // Every instruction that kills Reg corresponds to a segment range end
714 for (LiveInterval::const_iterator RI
= LI
.begin(), RE
= LI
.end(); RI
!= RE
;
716 // A block index indicates an MBB edge.
717 if (RI
->end
.isBlock())
719 MachineInstr
*MI
= getInstructionFromIndex(RI
->end
);
723 // Check if any of the regunits are live beyond the end of RI. That could
724 // happen when a physreg is defined as a copy of a virtreg:
727 // FOO %5 <--- MI, cancel kill because %eax is live.
730 // There should be no kill flag on FOO when %5 is rewritten as %eax.
731 for (auto &RUP
: RU
) {
732 const LiveRange
&RURange
= *RUP
.first
;
733 LiveRange::const_iterator
&I
= RUP
.second
;
734 if (I
== RURange
.end())
736 I
= RURange
.advanceTo(I
, RI
->end
);
737 if (I
== RURange
.end() || I
->start
>= RI
->end
)
739 // I is overlapping RI.
743 if (MRI
->subRegLivenessEnabled()) {
744 // When reading a partial undefined value we must not add a kill flag.
745 // The regalloc might have used the undef lane for something else.
747 // %1 = ... ; R32: %1
748 // %2:high16 = ... ; R64: %2
749 // = read killed %2 ; R64: %2
750 // = read %1 ; R32: %1
751 // The <kill> flag is correct for %2, but the register allocator may
752 // assign R0L to %1, and R0 to %2 because the low 32bits of R0
753 // are actually never written by %2. After assignment the <kill>
754 // flag at the read instruction is invalid.
755 LaneBitmask DefinedLanesMask
;
756 if (LI
.hasSubRanges()) {
757 // Compute a mask of lanes that are defined.
758 DefinedLanesMask
= LaneBitmask::getNone();
759 for (const LiveInterval::SubRange
&SR
: LI
.subranges())
760 for (const LiveRange::Segment
&Segment
: SR
.segments
) {
761 if (Segment
.start
>= RI
->end
)
763 if (Segment
.end
== RI
->end
) {
764 DefinedLanesMask
|= SR
.LaneMask
;
769 DefinedLanesMask
= LaneBitmask::getAll();
771 bool IsFullWrite
= false;
772 for (const MachineOperand
&MO
: MI
->operands()) {
773 if (!MO
.isReg() || MO
.getReg() != Reg
)
776 // Reading any undefined lanes?
777 unsigned SubReg
= MO
.getSubReg();
778 LaneBitmask UseMask
= SubReg
? TRI
->getSubRegIndexLaneMask(SubReg
)
779 : MRI
->getMaxLaneMaskForVReg(Reg
);
780 if ((UseMask
& ~DefinedLanesMask
).any())
782 } else if (MO
.getSubReg() == 0) {
783 // Writing to the full register?
789 // If an instruction writes to a subregister, a new segment starts in
790 // the LiveInterval. But as this is only overriding part of the register
791 // adding kill-flags is not correct here after registers have been
794 // Next segment has to be adjacent in the subregister write case.
795 LiveRange::const_iterator N
= std::next(RI
);
796 if (N
!= LI
.end() && N
->start
== RI
->end
)
801 MI
->addRegisterKilled(Reg
, nullptr);
804 MI
->clearRegisterKills(Reg
, nullptr);
810 LiveIntervals::intervalIsInOneMBB(const LiveInterval
&LI
) const {
811 assert(!LI
.empty() && "LiveInterval is empty.");
813 // A local live range must be fully contained inside the block, meaning it is
814 // defined and killed at instructions, not at block boundaries. It is not
815 // live in or out of any block.
817 // It is technically possible to have a PHI-defined live range identical to a
818 // single block, but we are going to return false in that case.
820 SlotIndex Start
= LI
.beginIndex();
824 SlotIndex Stop
= LI
.endIndex();
828 // getMBBFromIndex doesn't need to search the MBB table when both indexes
829 // belong to proper instructions.
830 MachineBasicBlock
*MBB1
= Indexes
->getMBBFromIndex(Start
);
831 MachineBasicBlock
*MBB2
= Indexes
->getMBBFromIndex(Stop
);
832 return MBB1
== MBB2
? MBB1
: nullptr;
836 LiveIntervals::hasPHIKill(const LiveInterval
&LI
, const VNInfo
*VNI
) const {
837 for (const VNInfo
*PHI
: LI
.valnos
) {
838 if (PHI
->isUnused() || !PHI
->isPHIDef())
840 const MachineBasicBlock
*PHIMBB
= getMBBFromIndex(PHI
->def
);
841 // Conservatively return true instead of scanning huge predecessor lists.
842 if (PHIMBB
->pred_size() > 100)
844 for (const MachineBasicBlock
*Pred
: PHIMBB
->predecessors())
845 if (VNI
== LI
.getVNInfoBefore(Indexes
->getMBBEndIdx(Pred
)))
851 float LiveIntervals::getSpillWeight(bool isDef
, bool isUse
,
852 const MachineBlockFrequencyInfo
*MBFI
,
853 const MachineInstr
&MI
) {
854 return getSpillWeight(isDef
, isUse
, MBFI
, MI
.getParent());
857 float LiveIntervals::getSpillWeight(bool isDef
, bool isUse
,
858 const MachineBlockFrequencyInfo
*MBFI
,
859 const MachineBasicBlock
*MBB
) {
860 return (isDef
+ isUse
) * MBFI
->getBlockFreqRelativeToEntryBlock(MBB
);
864 LiveIntervals::addSegmentToEndOfBlock(Register Reg
, MachineInstr
&startInst
) {
865 LiveInterval
&Interval
= createEmptyInterval(Reg
);
866 VNInfo
*VN
= Interval
.getNextValue(
867 SlotIndex(getInstructionIndex(startInst
).getRegSlot()),
868 getVNInfoAllocator());
869 LiveRange::Segment
S(SlotIndex(getInstructionIndex(startInst
).getRegSlot()),
870 getMBBEndIdx(startInst
.getParent()), VN
);
871 Interval
.addSegment(S
);
876 //===----------------------------------------------------------------------===//
877 // Register mask functions
878 //===----------------------------------------------------------------------===//
879 /// Check whether use of reg in MI is live-through. Live-through means that
880 /// the value is alive on exit from Machine instruction. The example of such
881 /// use is a deopt value in statepoint instruction.
882 static bool hasLiveThroughUse(const MachineInstr
*MI
, Register Reg
) {
883 if (MI
->getOpcode() != TargetOpcode::STATEPOINT
)
885 StatepointOpers
SO(MI
);
886 if (SO
.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn
)
888 for (unsigned Idx
= SO
.getNumDeoptArgsIdx(), E
= SO
.getNumGCPtrIdx(); Idx
< E
;
890 const MachineOperand
&MO
= MI
->getOperand(Idx
);
891 if (MO
.isReg() && MO
.getReg() == Reg
)
897 bool LiveIntervals::checkRegMaskInterference(const LiveInterval
&LI
,
898 BitVector
&UsableRegs
) {
901 LiveInterval::const_iterator LiveI
= LI
.begin(), LiveE
= LI
.end();
903 // Use a smaller arrays for local live ranges.
904 ArrayRef
<SlotIndex
> Slots
;
905 ArrayRef
<const uint32_t*> Bits
;
906 if (MachineBasicBlock
*MBB
= intervalIsInOneMBB(LI
)) {
907 Slots
= getRegMaskSlotsInBlock(MBB
->getNumber());
908 Bits
= getRegMaskBitsInBlock(MBB
->getNumber());
910 Slots
= getRegMaskSlots();
911 Bits
= getRegMaskBits();
914 // We are going to enumerate all the register mask slots contained in LI.
915 // Start with a binary search of RegMaskSlots to find a starting point.
916 ArrayRef
<SlotIndex
>::iterator SlotI
= llvm::lower_bound(Slots
, LiveI
->start
);
917 ArrayRef
<SlotIndex
>::iterator SlotE
= Slots
.end();
919 // No slots in range, LI begins after the last call.
924 // Utility to union regmasks.
925 auto unionBitMask
= [&](unsigned Idx
) {
927 // This is the first overlap. Initialize UsableRegs to all ones.
929 UsableRegs
.resize(TRI
->getNumRegs(), true);
932 // Remove usable registers clobbered by this mask.
933 UsableRegs
.clearBitsNotInMask(Bits
[Idx
]);
936 assert(*SlotI
>= LiveI
->start
);
937 // Loop over all slots overlapping this segment.
938 while (*SlotI
< LiveI
->end
) {
939 // *SlotI overlaps LI. Collect mask bits.
940 unionBitMask(SlotI
- Slots
.begin());
941 if (++SlotI
== SlotE
)
944 // If segment ends with live-through use we need to collect its regmask.
945 if (*SlotI
== LiveI
->end
)
946 if (MachineInstr
*MI
= getInstructionFromIndex(*SlotI
))
947 if (hasLiveThroughUse(MI
, LI
.reg()))
948 unionBitMask(SlotI
++ - Slots
.begin());
949 // *SlotI is beyond the current LI segment.
950 // Special advance implementation to not miss next LiveI->end.
951 if (++LiveI
== LiveE
|| SlotI
== SlotE
|| *SlotI
> LI
.endIndex())
953 while (LiveI
->end
< *SlotI
)
955 // Advance SlotI until it overlaps.
956 while (*SlotI
< LiveI
->start
)
957 if (++SlotI
== SlotE
)
962 //===----------------------------------------------------------------------===//
963 // IntervalUpdate class.
964 //===----------------------------------------------------------------------===//
966 /// Toolkit used by handleMove to trim or extend live intervals.
967 class LiveIntervals::HMEditor
{
970 const MachineRegisterInfo
& MRI
;
971 const TargetRegisterInfo
& TRI
;
974 SmallPtrSet
<LiveRange
*, 8> Updated
;
978 HMEditor(LiveIntervals
& LIS
, const MachineRegisterInfo
& MRI
,
979 const TargetRegisterInfo
& TRI
,
980 SlotIndex OldIdx
, SlotIndex NewIdx
, bool UpdateFlags
)
981 : LIS(LIS
), MRI(MRI
), TRI(TRI
), OldIdx(OldIdx
), NewIdx(NewIdx
),
982 UpdateFlags(UpdateFlags
) {}
984 // FIXME: UpdateFlags is a workaround that creates live intervals for all
985 // physregs, even those that aren't needed for regalloc, in order to update
986 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
987 // flags, and postRA passes will use a live register utility instead.
988 LiveRange
*getRegUnitLI(unsigned Unit
) {
989 if (UpdateFlags
&& !MRI
.isReservedRegUnit(Unit
))
990 return &LIS
.getRegUnit(Unit
);
991 return LIS
.getCachedRegUnit(Unit
);
994 /// Update all live ranges touched by MI, assuming a move from OldIdx to
996 void updateAllRanges(MachineInstr
*MI
) {
997 LLVM_DEBUG(dbgs() << "handleMove " << OldIdx
<< " -> " << NewIdx
<< ": "
999 bool hasRegMask
= false;
1000 for (MachineOperand
&MO
: MI
->operands()) {
1008 // Aggressively clear all kill flags.
1009 // They are reinserted by VirtRegRewriter.
1010 MO
.setIsKill(false);
1013 Register Reg
= MO
.getReg();
1016 if (Reg
.isVirtual()) {
1017 LiveInterval
&LI
= LIS
.getInterval(Reg
);
1018 if (LI
.hasSubRanges()) {
1019 unsigned SubReg
= MO
.getSubReg();
1020 LaneBitmask LaneMask
= SubReg
? TRI
.getSubRegIndexLaneMask(SubReg
)
1021 : MRI
.getMaxLaneMaskForVReg(Reg
);
1022 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1023 if ((S
.LaneMask
& LaneMask
).none())
1025 updateRange(S
, Reg
, S
.LaneMask
);
1028 updateRange(LI
, Reg
, LaneBitmask::getNone());
1029 // If main range has a hole and we are moving a subrange use across
1030 // the hole updateRange() cannot properly handle it since it only
1031 // gets the LiveRange and not the whole LiveInterval. As a result
1032 // we may end up with a main range not covering all subranges.
1033 // This is extremely rare case, so let's check and reconstruct the
1035 if (LI
.hasSubRanges()) {
1036 unsigned SubReg
= MO
.getSubReg();
1037 LaneBitmask LaneMask
= SubReg
? TRI
.getSubRegIndexLaneMask(SubReg
)
1038 : MRI
.getMaxLaneMaskForVReg(Reg
);
1039 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1040 if ((S
.LaneMask
& LaneMask
).none() || LI
.covers(S
))
1043 LIS
.constructMainRangeFromSubranges(LI
);
1051 // For physregs, only update the regunits that actually have a
1052 // precomputed live range.
1053 for (MCRegUnit Unit
: TRI
.regunits(Reg
.asMCReg()))
1054 if (LiveRange
*LR
= getRegUnitLI(Unit
))
1055 updateRange(*LR
, Unit
, LaneBitmask::getNone());
1058 updateRegMaskSlots();
1062 /// Update a single live range, assuming an instruction has been moved from
1063 /// OldIdx to NewIdx.
1064 void updateRange(LiveRange
&LR
, Register Reg
, LaneBitmask LaneMask
) {
1065 if (!Updated
.insert(&LR
).second
)
1069 if (Reg
.isVirtual()) {
1070 dbgs() << printReg(Reg
);
1072 dbgs() << " L" << PrintLaneMask(LaneMask
);
1074 dbgs() << printRegUnit(Reg
, &TRI
);
1076 dbgs() << ":\t" << LR
<< '\n';
1078 if (SlotIndex::isEarlierInstr(OldIdx
, NewIdx
))
1081 handleMoveUp(LR
, Reg
, LaneMask
);
1082 LLVM_DEBUG(dbgs() << " -->\t" << LR
<< '\n');
1086 /// Update LR to reflect an instruction has been moved downwards from OldIdx
1087 /// to NewIdx (OldIdx < NewIdx).
1088 void handleMoveDown(LiveRange
&LR
) {
1089 LiveRange::iterator E
= LR
.end();
1090 // Segment going into OldIdx.
1091 LiveRange::iterator OldIdxIn
= LR
.find(OldIdx
.getBaseIndex());
1093 // No value live before or after OldIdx? Nothing to do.
1094 if (OldIdxIn
== E
|| SlotIndex::isEarlierInstr(OldIdx
, OldIdxIn
->start
))
1097 LiveRange::iterator OldIdxOut
;
1098 // Do we have a value live-in to OldIdx?
1099 if (SlotIndex::isEarlierInstr(OldIdxIn
->start
, OldIdx
)) {
1100 // If the live-in value already extends to NewIdx, there is nothing to do.
1101 if (SlotIndex::isEarlierEqualInstr(NewIdx
, OldIdxIn
->end
))
1103 // Aggressively remove all kill flags from the old kill point.
1104 // Kill flags shouldn't be used while live intervals exist, they will be
1105 // reinserted by VirtRegRewriter.
1106 if (MachineInstr
*KillMI
= LIS
.getInstructionFromIndex(OldIdxIn
->end
))
1107 for (MachineOperand
&MOP
: mi_bundle_ops(*KillMI
))
1108 if (MOP
.isReg() && MOP
.isUse())
1109 MOP
.setIsKill(false);
1111 // Is there a def before NewIdx which is not OldIdx?
1112 LiveRange::iterator Next
= std::next(OldIdxIn
);
1113 if (Next
!= E
&& !SlotIndex::isSameInstr(OldIdx
, Next
->start
) &&
1114 SlotIndex::isEarlierInstr(Next
->start
, NewIdx
)) {
1115 // If we are here then OldIdx was just a use but not a def. We only have
1116 // to ensure liveness extends to NewIdx.
1117 LiveRange::iterator NewIdxIn
=
1118 LR
.advanceTo(Next
, NewIdx
.getBaseIndex());
1119 // Extend the segment before NewIdx if necessary.
1120 if (NewIdxIn
== E
||
1121 !SlotIndex::isEarlierInstr(NewIdxIn
->start
, NewIdx
)) {
1122 LiveRange::iterator Prev
= std::prev(NewIdxIn
);
1123 Prev
->end
= NewIdx
.getRegSlot();
1126 OldIdxIn
->end
= Next
->start
;
1130 // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1131 // invalid by overlapping ranges.
1132 bool isKill
= SlotIndex::isSameInstr(OldIdx
, OldIdxIn
->end
);
1133 OldIdxIn
->end
= NewIdx
.getRegSlot(OldIdxIn
->end
.isEarlyClobber());
1134 // If this was not a kill, then there was no def and we're done.
1138 // Did we have a Def at OldIdx?
1140 if (OldIdxOut
== E
|| !SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
))
1143 OldIdxOut
= OldIdxIn
;
1146 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1147 // to the segment starting there.
1148 assert(OldIdxOut
!= E
&& SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
) &&
1150 VNInfo
*OldIdxVNI
= OldIdxOut
->valno
;
1151 assert(OldIdxVNI
->def
== OldIdxOut
->start
&& "Inconsistent def");
1153 // If the defined value extends beyond NewIdx, just move the beginning
1154 // of the segment to NewIdx.
1155 SlotIndex NewIdxDef
= NewIdx
.getRegSlot(OldIdxOut
->start
.isEarlyClobber());
1156 if (SlotIndex::isEarlierInstr(NewIdxDef
, OldIdxOut
->end
)) {
1157 OldIdxVNI
->def
= NewIdxDef
;
1158 OldIdxOut
->start
= OldIdxVNI
->def
;
1162 // If we are here then we have a Definition at OldIdx which ends before
1165 // Is there an existing Def at NewIdx?
1166 LiveRange::iterator AfterNewIdx
1167 = LR
.advanceTo(OldIdxOut
, NewIdx
.getRegSlot());
1168 bool OldIdxDefIsDead
= OldIdxOut
->end
.isDead();
1169 if (!OldIdxDefIsDead
&&
1170 SlotIndex::isEarlierInstr(OldIdxOut
->end
, NewIdxDef
)) {
1171 // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1173 if (OldIdxOut
!= LR
.begin() &&
1174 !SlotIndex::isEarlierInstr(std::prev(OldIdxOut
)->end
,
1175 OldIdxOut
->start
)) {
1176 // There is no gap between OldIdxOut and its predecessor anymore,
1178 LiveRange::iterator IPrev
= std::prev(OldIdxOut
);
1180 IPrev
->end
= OldIdxOut
->end
;
1182 // The value is live in to OldIdx
1183 LiveRange::iterator INext
= std::next(OldIdxOut
);
1184 assert(INext
!= E
&& "Must have following segment");
1185 // We merge OldIdxOut and its successor. As we're dealing with subreg
1186 // reordering, there is always a successor to OldIdxOut in the same BB
1187 // We don't need INext->valno anymore and will reuse for the new segment
1190 INext
->start
= OldIdxOut
->end
;
1191 INext
->valno
->def
= INext
->start
;
1193 // If NewIdx is behind the last segment, extend that and append a new one.
1194 if (AfterNewIdx
== E
) {
1195 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1197 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1198 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1199 std::copy(std::next(OldIdxOut
), E
, OldIdxOut
);
1200 // The last segment is undefined now, reuse it for a dead def.
1201 LiveRange::iterator NewSegment
= std::prev(E
);
1202 *NewSegment
= LiveRange::Segment(NewIdxDef
, NewIdxDef
.getDeadSlot(),
1204 DefVNI
->def
= NewIdxDef
;
1206 LiveRange::iterator Prev
= std::prev(NewSegment
);
1207 Prev
->end
= NewIdxDef
;
1209 // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1211 // |- ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1212 // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1213 std::copy(std::next(OldIdxOut
), std::next(AfterNewIdx
), OldIdxOut
);
1214 LiveRange::iterator Prev
= std::prev(AfterNewIdx
);
1215 // We have two cases:
1216 if (SlotIndex::isEarlierInstr(Prev
->start
, NewIdxDef
)) {
1217 // Case 1: NewIdx is inside a liverange. Split this liverange at
1218 // NewIdxDef into the segment "Prev" followed by "NewSegment".
1219 LiveRange::iterator NewSegment
= AfterNewIdx
;
1220 *NewSegment
= LiveRange::Segment(NewIdxDef
, Prev
->end
, Prev
->valno
);
1221 Prev
->valno
->def
= NewIdxDef
;
1223 *Prev
= LiveRange::Segment(Prev
->start
, NewIdxDef
, DefVNI
);
1224 DefVNI
->def
= Prev
->start
;
1226 // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1227 // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1228 *Prev
= LiveRange::Segment(NewIdxDef
, AfterNewIdx
->start
, DefVNI
);
1229 DefVNI
->def
= NewIdxDef
;
1230 assert(DefVNI
!= AfterNewIdx
->valno
);
1236 if (AfterNewIdx
!= E
&&
1237 SlotIndex::isSameInstr(AfterNewIdx
->start
, NewIdxDef
)) {
1238 // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1240 assert(AfterNewIdx
->valno
!= OldIdxVNI
&& "Multiple defs of value?");
1241 LR
.removeValNo(OldIdxVNI
);
1243 // There was no existing def at NewIdx. We need to create a dead def
1244 // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1245 // a new segment at the place where we want to construct the dead def.
1246 // |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1247 // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1248 assert(AfterNewIdx
!= OldIdxOut
&& "Inconsistent iterators");
1249 std::copy(std::next(OldIdxOut
), AfterNewIdx
, OldIdxOut
);
1250 // We can reuse OldIdxVNI now.
1251 LiveRange::iterator NewSegment
= std::prev(AfterNewIdx
);
1252 VNInfo
*NewSegmentVNI
= OldIdxVNI
;
1253 NewSegmentVNI
->def
= NewIdxDef
;
1254 *NewSegment
= LiveRange::Segment(NewIdxDef
, NewIdxDef
.getDeadSlot(),
1259 /// Update LR to reflect an instruction has been moved upwards from OldIdx
1260 /// to NewIdx (NewIdx < OldIdx).
1261 void handleMoveUp(LiveRange
&LR
, Register Reg
, LaneBitmask LaneMask
) {
1262 LiveRange::iterator E
= LR
.end();
1263 // Segment going into OldIdx.
1264 LiveRange::iterator OldIdxIn
= LR
.find(OldIdx
.getBaseIndex());
1266 // No value live before or after OldIdx? Nothing to do.
1267 if (OldIdxIn
== E
|| SlotIndex::isEarlierInstr(OldIdx
, OldIdxIn
->start
))
1270 LiveRange::iterator OldIdxOut
;
1271 // Do we have a value live-in to OldIdx?
1272 if (SlotIndex::isEarlierInstr(OldIdxIn
->start
, OldIdx
)) {
1273 // If the live-in value isn't killed here, then we have no Def at
1274 // OldIdx, moreover the value must be live at NewIdx so there is nothing
1276 bool isKill
= SlotIndex::isSameInstr(OldIdx
, OldIdxIn
->end
);
1280 // At this point we have to move OldIdxIn->end back to the nearest
1281 // previous use or (dead-)def but no further than NewIdx.
1282 SlotIndex DefBeforeOldIdx
1283 = std::max(OldIdxIn
->start
.getDeadSlot(),
1284 NewIdx
.getRegSlot(OldIdxIn
->end
.isEarlyClobber()));
1285 OldIdxIn
->end
= findLastUseBefore(DefBeforeOldIdx
, Reg
, LaneMask
);
1287 // Did we have a Def at OldIdx? If not we are done now.
1288 OldIdxOut
= std::next(OldIdxIn
);
1289 if (OldIdxOut
== E
|| !SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
))
1292 OldIdxOut
= OldIdxIn
;
1293 OldIdxIn
= OldIdxOut
!= LR
.begin() ? std::prev(OldIdxOut
) : E
;
1296 // If we are here then there is a Definition at OldIdx. OldIdxOut points
1297 // to the segment starting there.
1298 assert(OldIdxOut
!= E
&& SlotIndex::isSameInstr(OldIdx
, OldIdxOut
->start
) &&
1300 VNInfo
*OldIdxVNI
= OldIdxOut
->valno
;
1301 assert(OldIdxVNI
->def
== OldIdxOut
->start
&& "Inconsistent def");
1302 bool OldIdxDefIsDead
= OldIdxOut
->end
.isDead();
1304 // Is there an existing def at NewIdx?
1305 SlotIndex NewIdxDef
= NewIdx
.getRegSlot(OldIdxOut
->start
.isEarlyClobber());
1306 LiveRange::iterator NewIdxOut
= LR
.find(NewIdx
.getRegSlot());
1307 if (SlotIndex::isSameInstr(NewIdxOut
->start
, NewIdx
)) {
1308 assert(NewIdxOut
->valno
!= OldIdxVNI
&&
1309 "Same value defined more than once?");
1310 // If OldIdx was a dead def remove it.
1311 if (!OldIdxDefIsDead
) {
1312 // Remove segment starting at NewIdx and move begin of OldIdxOut to
1313 // NewIdx so it can take its place.
1314 OldIdxVNI
->def
= NewIdxDef
;
1315 OldIdxOut
->start
= NewIdxDef
;
1316 LR
.removeValNo(NewIdxOut
->valno
);
1318 // Simply remove the dead def at OldIdx.
1319 LR
.removeValNo(OldIdxVNI
);
1322 // Previously nothing was live after NewIdx, so all we have to do now is
1323 // move the begin of OldIdxOut to NewIdx.
1324 if (!OldIdxDefIsDead
) {
1325 // Do we have any intermediate Defs between OldIdx and NewIdx?
1326 if (OldIdxIn
!= E
&&
1327 SlotIndex::isEarlierInstr(NewIdxDef
, OldIdxIn
->start
)) {
1328 // OldIdx is not a dead def and NewIdx is before predecessor start.
1329 LiveRange::iterator NewIdxIn
= NewIdxOut
;
1330 assert(NewIdxIn
== LR
.find(NewIdx
.getBaseIndex()));
1331 const SlotIndex SplitPos
= NewIdxDef
;
1332 OldIdxVNI
= OldIdxIn
->valno
;
1334 SlotIndex NewDefEndPoint
= std::next(NewIdxIn
)->end
;
1335 LiveRange::iterator Prev
= std::prev(OldIdxIn
);
1336 if (OldIdxIn
!= LR
.begin() &&
1337 SlotIndex::isEarlierInstr(NewIdx
, Prev
->end
)) {
1338 // If the segment before OldIdx read a value defined earlier than
1339 // NewIdx, the moved instruction also reads and forwards that
1340 // value. Extend the lifetime of the new def point.
1342 // Extend to where the previous range started, unless there is
1343 // another redef first.
1344 NewDefEndPoint
= std::min(OldIdxIn
->start
,
1345 std::next(NewIdxOut
)->start
);
1348 // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1349 OldIdxOut
->valno
->def
= OldIdxIn
->start
;
1350 *OldIdxOut
= LiveRange::Segment(OldIdxIn
->start
, OldIdxOut
->end
,
1352 // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1353 // We Slide [NewIdxIn, OldIdxIn) down one position.
1354 // |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1355 // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1356 std::copy_backward(NewIdxIn
, OldIdxIn
, OldIdxOut
);
1357 // NewIdxIn is now considered undef so we can reuse it for the moved
1359 LiveRange::iterator NewSegment
= NewIdxIn
;
1360 LiveRange::iterator Next
= std::next(NewSegment
);
1361 if (SlotIndex::isEarlierInstr(Next
->start
, NewIdx
)) {
1362 // There is no gap between NewSegment and its predecessor.
1363 *NewSegment
= LiveRange::Segment(Next
->start
, SplitPos
,
1366 *Next
= LiveRange::Segment(SplitPos
, NewDefEndPoint
, OldIdxVNI
);
1367 Next
->valno
->def
= SplitPos
;
1369 // There is a gap between NewSegment and its predecessor
1370 // Value becomes live in.
1371 *NewSegment
= LiveRange::Segment(SplitPos
, Next
->start
, OldIdxVNI
);
1372 NewSegment
->valno
->def
= SplitPos
;
1375 // Leave the end point of a live def.
1376 OldIdxOut
->start
= NewIdxDef
;
1377 OldIdxVNI
->def
= NewIdxDef
;
1378 if (OldIdxIn
!= E
&& SlotIndex::isEarlierInstr(NewIdx
, OldIdxIn
->end
))
1379 OldIdxIn
->end
= NewIdxDef
;
1381 } else if (OldIdxIn
!= E
1382 && SlotIndex::isEarlierInstr(NewIdxOut
->start
, NewIdx
)
1383 && SlotIndex::isEarlierInstr(NewIdx
, NewIdxOut
->end
)) {
1384 // OldIdxVNI is a dead def that has been moved into the middle of
1385 // another value in LR. That can happen when LR is a whole register,
1386 // but the dead def is a write to a subreg that is dead at NewIdx.
1387 // The dead def may have been moved across other values
1388 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1389 // down one position.
1390 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1391 // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1392 std::copy_backward(NewIdxOut
, OldIdxOut
, std::next(OldIdxOut
));
1393 // Modify the segment at NewIdxOut and the following segment to meet at
1394 // the point of the dead def, with the following segment getting
1395 // OldIdxVNI as its value number.
1396 *NewIdxOut
= LiveRange::Segment(
1397 NewIdxOut
->start
, NewIdxDef
.getRegSlot(), NewIdxOut
->valno
);
1398 *(NewIdxOut
+ 1) = LiveRange::Segment(
1399 NewIdxDef
.getRegSlot(), (NewIdxOut
+ 1)->end
, OldIdxVNI
);
1400 OldIdxVNI
->def
= NewIdxDef
;
1401 // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1402 for (auto *Idx
= NewIdxOut
+ 2; Idx
<= OldIdxOut
; ++Idx
)
1403 Idx
->valno
= OldIdxVNI
;
1404 // Aggressively remove all dead flags from the former dead definition.
1405 // Kill/dead flags shouldn't be used while live intervals exist; they
1406 // will be reinserted by VirtRegRewriter.
1407 if (MachineInstr
*KillMI
= LIS
.getInstructionFromIndex(NewIdx
))
1408 for (MIBundleOperands
MO(*KillMI
); MO
.isValid(); ++MO
)
1409 if (MO
->isReg() && !MO
->isUse())
1410 MO
->setIsDead(false);
1412 // OldIdxVNI is a dead def. It may have been moved across other values
1413 // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1414 // down one position.
1415 // |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1416 // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1417 std::copy_backward(NewIdxOut
, OldIdxOut
, std::next(OldIdxOut
));
1418 // OldIdxVNI can be reused now to build a new dead def segment.
1419 LiveRange::iterator NewSegment
= NewIdxOut
;
1420 VNInfo
*NewSegmentVNI
= OldIdxVNI
;
1421 *NewSegment
= LiveRange::Segment(NewIdxDef
, NewIdxDef
.getDeadSlot(),
1423 NewSegmentVNI
->def
= NewIdxDef
;
1428 void updateRegMaskSlots() {
1429 SmallVectorImpl
<SlotIndex
>::iterator RI
=
1430 llvm::lower_bound(LIS
.RegMaskSlots
, OldIdx
);
1431 assert(RI
!= LIS
.RegMaskSlots
.end() && *RI
== OldIdx
.getRegSlot() &&
1432 "No RegMask at OldIdx.");
1433 *RI
= NewIdx
.getRegSlot();
1434 assert((RI
== LIS
.RegMaskSlots
.begin() ||
1435 SlotIndex::isEarlierInstr(*std::prev(RI
), *RI
)) &&
1436 "Cannot move regmask instruction above another call");
1437 assert((std::next(RI
) == LIS
.RegMaskSlots
.end() ||
1438 SlotIndex::isEarlierInstr(*RI
, *std::next(RI
))) &&
1439 "Cannot move regmask instruction below another call");
1442 // Return the last use of reg between NewIdx and OldIdx.
1443 SlotIndex
findLastUseBefore(SlotIndex Before
, Register Reg
,
1444 LaneBitmask LaneMask
) {
1445 if (Reg
.isVirtual()) {
1446 SlotIndex LastUse
= Before
;
1447 for (MachineOperand
&MO
: MRI
.use_nodbg_operands(Reg
)) {
1450 unsigned SubReg
= MO
.getSubReg();
1451 if (SubReg
!= 0 && LaneMask
.any()
1452 && (TRI
.getSubRegIndexLaneMask(SubReg
) & LaneMask
).none())
1455 const MachineInstr
&MI
= *MO
.getParent();
1456 SlotIndex InstSlot
= LIS
.getSlotIndexes()->getInstructionIndex(MI
);
1457 if (InstSlot
> LastUse
&& InstSlot
< OldIdx
)
1458 LastUse
= InstSlot
.getRegSlot();
1463 // This is a regunit interval, so scanning the use list could be very
1464 // expensive. Scan upwards from OldIdx instead.
1465 assert(Before
< OldIdx
&& "Expected upwards move");
1466 SlotIndexes
*Indexes
= LIS
.getSlotIndexes();
1467 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(Before
);
1469 // OldIdx may not correspond to an instruction any longer, so set MII to
1470 // point to the next instruction after OldIdx, or MBB->end().
1471 MachineBasicBlock::iterator MII
= MBB
->end();
1472 if (MachineInstr
*MI
= Indexes
->getInstructionFromIndex(
1473 Indexes
->getNextNonNullIndex(OldIdx
)))
1474 if (MI
->getParent() == MBB
)
1477 MachineBasicBlock::iterator Begin
= MBB
->begin();
1478 while (MII
!= Begin
) {
1479 if ((--MII
)->isDebugOrPseudoInstr())
1481 SlotIndex Idx
= Indexes
->getInstructionIndex(*MII
);
1483 // Stop searching when Before is reached.
1484 if (!SlotIndex::isEarlierInstr(Before
, Idx
))
1487 // Check if MII uses Reg.
1488 for (MIBundleOperands
MO(*MII
); MO
.isValid(); ++MO
)
1489 if (MO
->isReg() && !MO
->isUndef() && MO
->getReg().isPhysical() &&
1490 TRI
.hasRegUnit(MO
->getReg(), Reg
))
1491 return Idx
.getRegSlot();
1493 // Didn't reach Before. It must be the first instruction in the block.
1498 void LiveIntervals::handleMove(MachineInstr
&MI
, bool UpdateFlags
) {
1499 // It is fine to move a bundle as a whole, but not an individual instruction
1501 assert((!MI
.isBundled() || MI
.getOpcode() == TargetOpcode::BUNDLE
) &&
1502 "Cannot move instruction in bundle");
1503 SlotIndex OldIndex
= Indexes
->getInstructionIndex(MI
);
1504 Indexes
->removeMachineInstrFromMaps(MI
);
1505 SlotIndex NewIndex
= Indexes
->insertMachineInstrInMaps(MI
);
1506 assert(getMBBStartIdx(MI
.getParent()) <= OldIndex
&&
1507 OldIndex
< getMBBEndIdx(MI
.getParent()) &&
1508 "Cannot handle moves across basic block boundaries.");
1510 HMEditor
HME(*this, *MRI
, *TRI
, OldIndex
, NewIndex
, UpdateFlags
);
1511 HME
.updateAllRanges(&MI
);
1514 void LiveIntervals::handleMoveIntoNewBundle(MachineInstr
&BundleStart
,
1516 assert((BundleStart
.getOpcode() == TargetOpcode::BUNDLE
) &&
1517 "Bundle start is not a bundle");
1518 SmallVector
<SlotIndex
, 16> ToProcess
;
1519 const SlotIndex NewIndex
= Indexes
->insertMachineInstrInMaps(BundleStart
);
1520 auto BundleEnd
= getBundleEnd(BundleStart
.getIterator());
1522 auto I
= BundleStart
.getIterator();
1524 while (I
!= BundleEnd
) {
1525 if (!Indexes
->hasIndex(*I
))
1527 SlotIndex OldIndex
= Indexes
->getInstructionIndex(*I
, true);
1528 ToProcess
.push_back(OldIndex
);
1529 Indexes
->removeMachineInstrFromMaps(*I
, true);
1532 for (SlotIndex OldIndex
: ToProcess
) {
1533 HMEditor
HME(*this, *MRI
, *TRI
, OldIndex
, NewIndex
, UpdateFlags
);
1534 HME
.updateAllRanges(&BundleStart
);
1538 const SlotIndex Index
= getInstructionIndex(BundleStart
);
1539 for (unsigned Idx
= 0, E
= BundleStart
.getNumOperands(); Idx
!= E
; ++Idx
) {
1540 MachineOperand
&MO
= BundleStart
.getOperand(Idx
);
1543 Register Reg
= MO
.getReg();
1544 if (Reg
.isVirtual() && hasInterval(Reg
) && !MO
.isUndef()) {
1545 LiveInterval
&LI
= getInterval(Reg
);
1546 LiveQueryResult LRQ
= LI
.Query(Index
);
1547 if (LRQ
.isDeadDef())
1553 void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin
,
1554 const MachineBasicBlock::iterator End
,
1555 const SlotIndex EndIdx
, LiveRange
&LR
,
1557 LaneBitmask LaneMask
) {
1558 LiveInterval::iterator LII
= LR
.find(EndIdx
);
1559 SlotIndex lastUseIdx
;
1560 if (LII
!= LR
.end() && LII
->start
< EndIdx
) {
1561 lastUseIdx
= LII
->end
;
1562 } else if (LII
== LR
.begin()) {
1563 // We may not have a liverange at all if this is a subregister untouched
1564 // between \p Begin and \p End.
1569 for (MachineBasicBlock::iterator I
= End
; I
!= Begin
;) {
1571 MachineInstr
&MI
= *I
;
1572 if (MI
.isDebugOrPseudoInstr())
1575 SlotIndex instrIdx
= getInstructionIndex(MI
);
1576 bool isStartValid
= getInstructionFromIndex(LII
->start
);
1577 bool isEndValid
= getInstructionFromIndex(LII
->end
);
1579 // FIXME: This doesn't currently handle early-clobber or multiple removed
1580 // defs inside of the region to repair.
1581 for (const MachineOperand
&MO
: MI
.operands()) {
1582 if (!MO
.isReg() || MO
.getReg() != Reg
)
1585 unsigned SubReg
= MO
.getSubReg();
1586 LaneBitmask Mask
= TRI
->getSubRegIndexLaneMask(SubReg
);
1587 if ((Mask
& LaneMask
).none())
1591 if (!isStartValid
) {
1592 if (LII
->end
.isDead()) {
1593 LII
= LR
.removeSegment(LII
, true);
1594 if (LII
!= LR
.begin())
1597 LII
->start
= instrIdx
.getRegSlot();
1598 LII
->valno
->def
= instrIdx
.getRegSlot();
1599 if (MO
.getSubReg() && !MO
.isUndef())
1600 lastUseIdx
= instrIdx
.getRegSlot();
1602 lastUseIdx
= SlotIndex();
1607 if (!lastUseIdx
.isValid()) {
1608 VNInfo
*VNI
= LR
.getNextValue(instrIdx
.getRegSlot(), VNInfoAllocator
);
1609 LiveRange::Segment
S(instrIdx
.getRegSlot(),
1610 instrIdx
.getDeadSlot(), VNI
);
1611 LII
= LR
.addSegment(S
);
1612 } else if (LII
->start
!= instrIdx
.getRegSlot()) {
1613 VNInfo
*VNI
= LR
.getNextValue(instrIdx
.getRegSlot(), VNInfoAllocator
);
1614 LiveRange::Segment
S(instrIdx
.getRegSlot(), lastUseIdx
, VNI
);
1615 LII
= LR
.addSegment(S
);
1618 if (MO
.getSubReg() && !MO
.isUndef())
1619 lastUseIdx
= instrIdx
.getRegSlot();
1621 lastUseIdx
= SlotIndex();
1622 } else if (MO
.isUse()) {
1623 // FIXME: This should probably be handled outside of this branch,
1624 // either as part of the def case (for defs inside of the region) or
1625 // after the loop over the region.
1626 if (!isEndValid
&& !LII
->end
.isBlock())
1627 LII
->end
= instrIdx
.getRegSlot();
1628 if (!lastUseIdx
.isValid())
1629 lastUseIdx
= instrIdx
.getRegSlot();
1634 bool isStartValid
= getInstructionFromIndex(LII
->start
);
1635 if (!isStartValid
&& LII
->end
.isDead())
1636 LR
.removeSegment(*LII
, true);
1640 LiveIntervals::repairIntervalsInRange(MachineBasicBlock
*MBB
,
1641 MachineBasicBlock::iterator Begin
,
1642 MachineBasicBlock::iterator End
,
1643 ArrayRef
<Register
> OrigRegs
) {
1644 // Find anchor points, which are at the beginning/end of blocks or at
1645 // instructions that already have indexes.
1646 while (Begin
!= MBB
->begin() && !Indexes
->hasIndex(*std::prev(Begin
)))
1648 while (End
!= MBB
->end() && !Indexes
->hasIndex(*End
))
1652 if (End
== MBB
->end())
1653 EndIdx
= getMBBEndIdx(MBB
).getPrevSlot();
1655 EndIdx
= getInstructionIndex(*End
);
1657 Indexes
->repairIndexesInRange(MBB
, Begin
, End
);
1659 // Make sure a live interval exists for all register operands in the range.
1660 SmallVector
<Register
> RegsToRepair(OrigRegs
.begin(), OrigRegs
.end());
1661 for (MachineBasicBlock::iterator I
= End
; I
!= Begin
;) {
1663 MachineInstr
&MI
= *I
;
1664 if (MI
.isDebugOrPseudoInstr())
1666 for (const MachineOperand
&MO
: MI
.operands()) {
1667 if (MO
.isReg() && MO
.getReg().isVirtual()) {
1668 Register Reg
= MO
.getReg();
1669 // If the new instructions refer to subregs but the old instructions did
1670 // not, throw away any old live interval so it will be recomputed with
1672 if (MO
.getSubReg() && hasInterval(Reg
) &&
1673 !getInterval(Reg
).hasSubRanges() &&
1674 MRI
->shouldTrackSubRegLiveness(Reg
))
1675 removeInterval(Reg
);
1676 if (!hasInterval(Reg
)) {
1677 createAndComputeVirtRegInterval(Reg
);
1678 // Don't bother to repair a freshly calculated live interval.
1679 llvm::erase(RegsToRepair
, Reg
);
1685 for (Register Reg
: RegsToRepair
) {
1686 if (!Reg
.isVirtual())
1689 LiveInterval
&LI
= getInterval(Reg
);
1690 // FIXME: Should we support undefs that gain defs?
1691 if (!LI
.hasAtLeastOneValue())
1694 for (LiveInterval::SubRange
&S
: LI
.subranges())
1695 repairOldRegInRange(Begin
, End
, EndIdx
, S
, Reg
, S
.LaneMask
);
1696 LI
.removeEmptySubRanges();
1698 repairOldRegInRange(Begin
, End
, EndIdx
, LI
, Reg
);
1702 void LiveIntervals::removePhysRegDefAt(MCRegister Reg
, SlotIndex Pos
) {
1703 for (MCRegUnit Unit
: TRI
->regunits(Reg
)) {
1704 if (LiveRange
*LR
= getCachedRegUnit(Unit
))
1705 if (VNInfo
*VNI
= LR
->getVNInfoAt(Pos
))
1706 LR
->removeValNo(VNI
);
1710 void LiveIntervals::removeVRegDefAt(LiveInterval
&LI
, SlotIndex Pos
) {
1711 // LI may not have the main range computed yet, but its subranges may
1713 VNInfo
*VNI
= LI
.getVNInfoAt(Pos
);
1714 if (VNI
!= nullptr) {
1715 assert(VNI
->def
.getBaseIndex() == Pos
.getBaseIndex());
1716 LI
.removeValNo(VNI
);
1719 // Also remove the value defined in subranges.
1720 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1721 if (VNInfo
*SVNI
= S
.getVNInfoAt(Pos
))
1722 if (SVNI
->def
.getBaseIndex() == Pos
.getBaseIndex())
1723 S
.removeValNo(SVNI
);
1725 LI
.removeEmptySubRanges();
1728 void LiveIntervals::splitSeparateComponents(LiveInterval
&LI
,
1729 SmallVectorImpl
<LiveInterval
*> &SplitLIs
) {
1730 ConnectedVNInfoEqClasses
ConEQ(*this);
1731 unsigned NumComp
= ConEQ
.Classify(LI
);
1734 LLVM_DEBUG(dbgs() << " Split " << NumComp
<< " components: " << LI
<< '\n');
1735 Register Reg
= LI
.reg();
1736 for (unsigned I
= 1; I
< NumComp
; ++I
) {
1737 Register NewVReg
= MRI
->cloneVirtualRegister(Reg
);
1738 LiveInterval
&NewLI
= createEmptyInterval(NewVReg
);
1739 SplitLIs
.push_back(&NewLI
);
1741 ConEQ
.Distribute(LI
, SplitLIs
.data(), *MRI
);
1744 void LiveIntervals::constructMainRangeFromSubranges(LiveInterval
&LI
) {
1745 assert(LICalc
&& "LICalc not initialized.");
1746 LICalc
->reset(MF
, getSlotIndexes(), DomTree
, &getVNInfoAllocator());
1747 LICalc
->constructMainRangeFromSubranges(LI
);