Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / CodeGen / MachineVerifier.cpp
blobdadaf60fa09da04ade63049e9a89c0bac0f3a2cd
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
11 // Operand counts: All explicit operands must be present.
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/BitVector.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DenseSet.h"
26 #include "llvm/ADT/DepthFirstIterator.h"
27 #include "llvm/ADT/PostOrderIterator.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/CodeGen/CodeGenCommonISel.h"
35 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
36 #include "llvm/CodeGen/LiveInterval.h"
37 #include "llvm/CodeGen/LiveIntervals.h"
38 #include "llvm/CodeGen/LiveRangeCalc.h"
39 #include "llvm/CodeGen/LiveStacks.h"
40 #include "llvm/CodeGen/LiveVariables.h"
41 #include "llvm/CodeGen/LowLevelType.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineFunctionPass.h"
46 #include "llvm/CodeGen/MachineInstr.h"
47 #include "llvm/CodeGen/MachineInstrBundle.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineOperand.h"
50 #include "llvm/CodeGen/MachineRegisterInfo.h"
51 #include "llvm/CodeGen/PseudoSourceValue.h"
52 #include "llvm/CodeGen/RegisterBank.h"
53 #include "llvm/CodeGen/RegisterBankInfo.h"
54 #include "llvm/CodeGen/SlotIndexes.h"
55 #include "llvm/CodeGen/StackMaps.h"
56 #include "llvm/CodeGen/TargetInstrInfo.h"
57 #include "llvm/CodeGen/TargetOpcodes.h"
58 #include "llvm/CodeGen/TargetRegisterInfo.h"
59 #include "llvm/CodeGen/TargetSubtargetInfo.h"
60 #include "llvm/IR/BasicBlock.h"
61 #include "llvm/IR/Constants.h"
62 #include "llvm/IR/EHPersonalities.h"
63 #include "llvm/IR/Function.h"
64 #include "llvm/IR/InlineAsm.h"
65 #include "llvm/IR/Instructions.h"
66 #include "llvm/InitializePasses.h"
67 #include "llvm/MC/LaneBitmask.h"
68 #include "llvm/MC/MCAsmInfo.h"
69 #include "llvm/MC/MCDwarf.h"
70 #include "llvm/MC/MCInstrDesc.h"
71 #include "llvm/MC/MCRegisterInfo.h"
72 #include "llvm/MC/MCTargetOptions.h"
73 #include "llvm/Pass.h"
74 #include "llvm/Support/Casting.h"
75 #include "llvm/Support/ErrorHandling.h"
76 #include "llvm/Support/MathExtras.h"
77 #include "llvm/Support/ModRef.h"
78 #include "llvm/Support/raw_ostream.h"
79 #include "llvm/Target/TargetMachine.h"
80 #include <algorithm>
81 #include <cassert>
82 #include <cstddef>
83 #include <cstdint>
84 #include <iterator>
85 #include <string>
86 #include <utility>
88 using namespace llvm;
90 namespace {
92 struct MachineVerifier {
93 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
95 MachineVerifier(const char *b, LiveVariables *LiveVars,
96 LiveIntervals *LiveInts, LiveStacks *LiveStks,
97 SlotIndexes *Indexes)
98 : Banner(b), LiveVars(LiveVars), LiveInts(LiveInts), LiveStks(LiveStks),
99 Indexes(Indexes) {}
101 unsigned verify(const MachineFunction &MF);
103 Pass *const PASS = nullptr;
104 const char *Banner;
105 const MachineFunction *MF = nullptr;
106 const TargetMachine *TM = nullptr;
107 const TargetInstrInfo *TII = nullptr;
108 const TargetRegisterInfo *TRI = nullptr;
109 const MachineRegisterInfo *MRI = nullptr;
110 const RegisterBankInfo *RBI = nullptr;
112 unsigned foundErrors = 0;
114 // Avoid querying the MachineFunctionProperties for each operand.
115 bool isFunctionRegBankSelected = false;
116 bool isFunctionSelected = false;
117 bool isFunctionTracksDebugUserValues = false;
119 using RegVector = SmallVector<Register, 16>;
120 using RegMaskVector = SmallVector<const uint32_t *, 4>;
121 using RegSet = DenseSet<Register>;
122 using RegMap = DenseMap<Register, const MachineInstr *>;
123 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
125 const MachineInstr *FirstNonPHI = nullptr;
126 const MachineInstr *FirstTerminator = nullptr;
127 BlockSet FunctionBlocks;
129 BitVector regsReserved;
130 RegSet regsLive;
131 RegVector regsDefined, regsDead, regsKilled;
132 RegMaskVector regMasks;
134 SlotIndex lastIndex;
136 // Add Reg and any sub-registers to RV
137 void addRegWithSubRegs(RegVector &RV, Register Reg) {
138 RV.push_back(Reg);
139 if (Reg.isPhysical())
140 append_range(RV, TRI->subregs(Reg.asMCReg()));
143 struct BBInfo {
144 // Is this MBB reachable from the MF entry point?
145 bool reachable = false;
147 // Vregs that must be live in because they are used without being
148 // defined. Map value is the user. vregsLiveIn doesn't include regs
149 // that only are used by PHI nodes.
150 RegMap vregsLiveIn;
152 // Regs killed in MBB. They may be defined again, and will then be in both
153 // regsKilled and regsLiveOut.
154 RegSet regsKilled;
156 // Regs defined in MBB and live out. Note that vregs passing through may
157 // be live out without being mentioned here.
158 RegSet regsLiveOut;
160 // Vregs that pass through MBB untouched. This set is disjoint from
161 // regsKilled and regsLiveOut.
162 RegSet vregsPassed;
164 // Vregs that must pass through MBB because they are needed by a successor
165 // block. This set is disjoint from regsLiveOut.
166 RegSet vregsRequired;
168 // Set versions of block's predecessor and successor lists.
169 BlockSet Preds, Succs;
171 BBInfo() = default;
173 // Add register to vregsRequired if it belongs there. Return true if
174 // anything changed.
175 bool addRequired(Register Reg) {
176 if (!Reg.isVirtual())
177 return false;
178 if (regsLiveOut.count(Reg))
179 return false;
180 return vregsRequired.insert(Reg).second;
183 // Same for a full set.
184 bool addRequired(const RegSet &RS) {
185 bool Changed = false;
186 for (Register Reg : RS)
187 Changed |= addRequired(Reg);
188 return Changed;
191 // Same for a full map.
192 bool addRequired(const RegMap &RM) {
193 bool Changed = false;
194 for (const auto &I : RM)
195 Changed |= addRequired(I.first);
196 return Changed;
199 // Live-out registers are either in regsLiveOut or vregsPassed.
200 bool isLiveOut(Register Reg) const {
201 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
205 // Extra register info per MBB.
206 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
208 bool isReserved(Register Reg) {
209 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
212 bool isAllocatable(Register Reg) const {
213 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
214 !regsReserved.test(Reg.id());
217 // Analysis information if available
218 LiveVariables *LiveVars = nullptr;
219 LiveIntervals *LiveInts = nullptr;
220 LiveStacks *LiveStks = nullptr;
221 SlotIndexes *Indexes = nullptr;
223 void visitMachineFunctionBefore();
224 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
225 void visitMachineBundleBefore(const MachineInstr *MI);
227 /// Verify that all of \p MI's virtual register operands are scalars.
228 /// \returns True if all virtual register operands are scalar. False
229 /// otherwise.
230 bool verifyAllRegOpsScalar(const MachineInstr &MI,
231 const MachineRegisterInfo &MRI);
232 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
234 bool verifyGIntrinsicSideEffects(const MachineInstr *MI);
235 bool verifyGIntrinsicConvergence(const MachineInstr *MI);
236 void verifyPreISelGenericInstruction(const MachineInstr *MI);
238 void visitMachineInstrBefore(const MachineInstr *MI);
239 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
240 void visitMachineBundleAfter(const MachineInstr *MI);
241 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
242 void visitMachineFunctionAfter();
244 void report(const char *msg, const MachineFunction *MF);
245 void report(const char *msg, const MachineBasicBlock *MBB);
246 void report(const char *msg, const MachineInstr *MI);
247 void report(const char *msg, const MachineOperand *MO, unsigned MONum,
248 LLT MOVRegType = LLT{});
249 void report(const Twine &Msg, const MachineInstr *MI);
251 void report_context(const LiveInterval &LI) const;
252 void report_context(const LiveRange &LR, Register VRegUnit,
253 LaneBitmask LaneMask) const;
254 void report_context(const LiveRange::Segment &S) const;
255 void report_context(const VNInfo &VNI) const;
256 void report_context(SlotIndex Pos) const;
257 void report_context(MCPhysReg PhysReg) const;
258 void report_context_liverange(const LiveRange &LR) const;
259 void report_context_lanemask(LaneBitmask LaneMask) const;
260 void report_context_vreg(Register VReg) const;
261 void report_context_vreg_regunit(Register VRegOrUnit) const;
263 void verifyInlineAsm(const MachineInstr *MI);
265 void checkLiveness(const MachineOperand *MO, unsigned MONum);
266 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
267 SlotIndex UseIdx, const LiveRange &LR,
268 Register VRegOrUnit,
269 LaneBitmask LaneMask = LaneBitmask::getNone());
270 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
271 SlotIndex DefIdx, const LiveRange &LR,
272 Register VRegOrUnit, bool SubRangeCheck = false,
273 LaneBitmask LaneMask = LaneBitmask::getNone());
275 void markReachable(const MachineBasicBlock *MBB);
276 void calcRegsPassed();
277 void checkPHIOps(const MachineBasicBlock &MBB);
279 void calcRegsRequired();
280 void verifyLiveVariables();
281 void verifyLiveIntervals();
282 void verifyLiveInterval(const LiveInterval&);
283 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
284 LaneBitmask);
285 void verifyLiveRangeSegment(const LiveRange &,
286 const LiveRange::const_iterator I, Register,
287 LaneBitmask);
288 void verifyLiveRange(const LiveRange &, Register,
289 LaneBitmask LaneMask = LaneBitmask::getNone());
291 void verifyStackFrame();
293 void verifySlotIndexes() const;
294 void verifyProperties(const MachineFunction &MF);
297 struct MachineVerifierPass : public MachineFunctionPass {
298 static char ID; // Pass ID, replacement for typeid
300 const std::string Banner;
302 MachineVerifierPass(std::string banner = std::string())
303 : MachineFunctionPass(ID), Banner(std::move(banner)) {
304 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
307 void getAnalysisUsage(AnalysisUsage &AU) const override {
308 AU.addUsedIfAvailable<LiveStacks>();
309 AU.addUsedIfAvailable<LiveVariables>();
310 AU.addUsedIfAvailable<SlotIndexes>();
311 AU.addUsedIfAvailable<LiveIntervals>();
312 AU.setPreservesAll();
313 MachineFunctionPass::getAnalysisUsage(AU);
316 bool runOnMachineFunction(MachineFunction &MF) override {
317 // Skip functions that have known verification problems.
318 // FIXME: Remove this mechanism when all problematic passes have been
319 // fixed.
320 if (MF.getProperties().hasProperty(
321 MachineFunctionProperties::Property::FailsVerification))
322 return false;
324 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
325 if (FoundErrors)
326 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
327 return false;
331 } // end anonymous namespace
333 char MachineVerifierPass::ID = 0;
335 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
336 "Verify generated machine code", false, false)
338 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
339 return new MachineVerifierPass(Banner);
342 void llvm::verifyMachineFunction(MachineFunctionAnalysisManager *,
343 const std::string &Banner,
344 const MachineFunction &MF) {
345 // TODO: Use MFAM after porting below analyses.
346 // LiveVariables *LiveVars;
347 // LiveIntervals *LiveInts;
348 // LiveStacks *LiveStks;
349 // SlotIndexes *Indexes;
350 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
351 if (FoundErrors)
352 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
355 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
356 const {
357 MachineFunction &MF = const_cast<MachineFunction&>(*this);
358 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
359 if (AbortOnErrors && FoundErrors)
360 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
361 return FoundErrors == 0;
364 bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes,
365 const char *Banner, bool AbortOnErrors) const {
366 MachineFunction &MF = const_cast<MachineFunction &>(*this);
367 unsigned FoundErrors =
368 MachineVerifier(Banner, nullptr, LiveInts, nullptr, Indexes).verify(MF);
369 if (AbortOnErrors && FoundErrors)
370 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
371 return FoundErrors == 0;
374 void MachineVerifier::verifySlotIndexes() const {
375 if (Indexes == nullptr)
376 return;
378 // Ensure the IdxMBB list is sorted by slot indexes.
379 SlotIndex Last;
380 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
381 E = Indexes->MBBIndexEnd(); I != E; ++I) {
382 assert(!Last.isValid() || I->first > Last);
383 Last = I->first;
387 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
388 // If a pass has introduced virtual registers without clearing the
389 // NoVRegs property (or set it without allocating the vregs)
390 // then report an error.
391 if (MF.getProperties().hasProperty(
392 MachineFunctionProperties::Property::NoVRegs) &&
393 MRI->getNumVirtRegs())
394 report("Function has NoVRegs property but there are VReg operands", &MF);
397 unsigned MachineVerifier::verify(const MachineFunction &MF) {
398 foundErrors = 0;
400 this->MF = &MF;
401 TM = &MF.getTarget();
402 TII = MF.getSubtarget().getInstrInfo();
403 TRI = MF.getSubtarget().getRegisterInfo();
404 RBI = MF.getSubtarget().getRegBankInfo();
405 MRI = &MF.getRegInfo();
407 const bool isFunctionFailedISel = MF.getProperties().hasProperty(
408 MachineFunctionProperties::Property::FailedISel);
410 // If we're mid-GlobalISel and we already triggered the fallback path then
411 // it's expected that the MIR is somewhat broken but that's ok since we'll
412 // reset it and clear the FailedISel attribute in ResetMachineFunctions.
413 if (isFunctionFailedISel)
414 return foundErrors;
416 isFunctionRegBankSelected = MF.getProperties().hasProperty(
417 MachineFunctionProperties::Property::RegBankSelected);
418 isFunctionSelected = MF.getProperties().hasProperty(
419 MachineFunctionProperties::Property::Selected);
420 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty(
421 MachineFunctionProperties::Property::TracksDebugUserValues);
423 if (PASS) {
424 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
425 // We don't want to verify LiveVariables if LiveIntervals is available.
426 if (!LiveInts)
427 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
428 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
429 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
432 verifySlotIndexes();
434 verifyProperties(MF);
436 visitMachineFunctionBefore();
437 for (const MachineBasicBlock &MBB : MF) {
438 visitMachineBasicBlockBefore(&MBB);
439 // Keep track of the current bundle header.
440 const MachineInstr *CurBundle = nullptr;
441 // Do we expect the next instruction to be part of the same bundle?
442 bool InBundle = false;
444 for (const MachineInstr &MI : MBB.instrs()) {
445 if (MI.getParent() != &MBB) {
446 report("Bad instruction parent pointer", &MBB);
447 errs() << "Instruction: " << MI;
448 continue;
451 // Check for consistent bundle flags.
452 if (InBundle && !MI.isBundledWithPred())
453 report("Missing BundledPred flag, "
454 "BundledSucc was set on predecessor",
455 &MI);
456 if (!InBundle && MI.isBundledWithPred())
457 report("BundledPred flag is set, "
458 "but BundledSucc not set on predecessor",
459 &MI);
461 // Is this a bundle header?
462 if (!MI.isInsideBundle()) {
463 if (CurBundle)
464 visitMachineBundleAfter(CurBundle);
465 CurBundle = &MI;
466 visitMachineBundleBefore(CurBundle);
467 } else if (!CurBundle)
468 report("No bundle header", &MI);
469 visitMachineInstrBefore(&MI);
470 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
471 const MachineOperand &Op = MI.getOperand(I);
472 if (Op.getParent() != &MI) {
473 // Make sure to use correct addOperand / removeOperand / ChangeTo
474 // functions when replacing operands of a MachineInstr.
475 report("Instruction has operand with wrong parent set", &MI);
478 visitMachineOperand(&Op, I);
481 // Was this the last bundled instruction?
482 InBundle = MI.isBundledWithSucc();
484 if (CurBundle)
485 visitMachineBundleAfter(CurBundle);
486 if (InBundle)
487 report("BundledSucc flag set on last instruction in block", &MBB.back());
488 visitMachineBasicBlockAfter(&MBB);
490 visitMachineFunctionAfter();
492 // Clean up.
493 regsLive.clear();
494 regsDefined.clear();
495 regsDead.clear();
496 regsKilled.clear();
497 regMasks.clear();
498 MBBInfoMap.clear();
500 return foundErrors;
503 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
504 assert(MF);
505 errs() << '\n';
506 if (!foundErrors++) {
507 if (Banner)
508 errs() << "# " << Banner << '\n';
509 if (LiveInts != nullptr)
510 LiveInts->print(errs());
511 else
512 MF->print(errs(), Indexes);
514 errs() << "*** Bad machine code: " << msg << " ***\n"
515 << "- function: " << MF->getName() << "\n";
518 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
519 assert(MBB);
520 report(msg, MBB->getParent());
521 errs() << "- basic block: " << printMBBReference(*MBB) << ' '
522 << MBB->getName() << " (" << (const void *)MBB << ')';
523 if (Indexes)
524 errs() << " [" << Indexes->getMBBStartIdx(MBB)
525 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
526 errs() << '\n';
529 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
530 assert(MI);
531 report(msg, MI->getParent());
532 errs() << "- instruction: ";
533 if (Indexes && Indexes->hasIndex(*MI))
534 errs() << Indexes->getInstructionIndex(*MI) << '\t';
535 MI->print(errs(), /*IsStandalone=*/true);
538 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
539 unsigned MONum, LLT MOVRegType) {
540 assert(MO);
541 report(msg, MO->getParent());
542 errs() << "- operand " << MONum << ": ";
543 MO->print(errs(), MOVRegType, TRI);
544 errs() << "\n";
547 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
548 report(Msg.str().c_str(), MI);
551 void MachineVerifier::report_context(SlotIndex Pos) const {
552 errs() << "- at: " << Pos << '\n';
555 void MachineVerifier::report_context(const LiveInterval &LI) const {
556 errs() << "- interval: " << LI << '\n';
559 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
560 LaneBitmask LaneMask) const {
561 report_context_liverange(LR);
562 report_context_vreg_regunit(VRegUnit);
563 if (LaneMask.any())
564 report_context_lanemask(LaneMask);
567 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
568 errs() << "- segment: " << S << '\n';
571 void MachineVerifier::report_context(const VNInfo &VNI) const {
572 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n";
575 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
576 errs() << "- liverange: " << LR << '\n';
579 void MachineVerifier::report_context(MCPhysReg PReg) const {
580 errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
583 void MachineVerifier::report_context_vreg(Register VReg) const {
584 errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
587 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
588 if (VRegOrUnit.isVirtual()) {
589 report_context_vreg(VRegOrUnit);
590 } else {
591 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n';
595 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
596 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n';
599 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
600 BBInfo &MInfo = MBBInfoMap[MBB];
601 if (!MInfo.reachable) {
602 MInfo.reachable = true;
603 for (const MachineBasicBlock *Succ : MBB->successors())
604 markReachable(Succ);
608 void MachineVerifier::visitMachineFunctionBefore() {
609 lastIndex = SlotIndex();
610 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
611 : TRI->getReservedRegs(*MF);
613 if (!MF->empty())
614 markReachable(&MF->front());
616 // Build a set of the basic blocks in the function.
617 FunctionBlocks.clear();
618 for (const auto &MBB : *MF) {
619 FunctionBlocks.insert(&MBB);
620 BBInfo &MInfo = MBBInfoMap[&MBB];
622 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
623 if (MInfo.Preds.size() != MBB.pred_size())
624 report("MBB has duplicate entries in its predecessor list.", &MBB);
626 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
627 if (MInfo.Succs.size() != MBB.succ_size())
628 report("MBB has duplicate entries in its successor list.", &MBB);
631 // Check that the register use lists are sane.
632 MRI->verifyUseLists();
634 if (!MF->empty())
635 verifyStackFrame();
638 void
639 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
640 FirstTerminator = nullptr;
641 FirstNonPHI = nullptr;
643 if (!MF->getProperties().hasProperty(
644 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
645 // If this block has allocatable physical registers live-in, check that
646 // it is an entry block or landing pad.
647 for (const auto &LI : MBB->liveins()) {
648 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
649 MBB->getIterator() != MBB->getParent()->begin() &&
650 !MBB->isInlineAsmBrIndirectTarget()) {
651 report("MBB has allocatable live-in, but isn't entry, landing-pad, or "
652 "inlineasm-br-indirect-target.",
653 MBB);
654 report_context(LI.PhysReg);
659 if (MBB->isIRBlockAddressTaken()) {
660 if (!MBB->getAddressTakenIRBlock()->hasAddressTaken())
661 report("ir-block-address-taken is associated with basic block not used by "
662 "a blockaddress.",
663 MBB);
666 // Count the number of landing pad successors.
667 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
668 for (const auto *succ : MBB->successors()) {
669 if (succ->isEHPad())
670 LandingPadSuccs.insert(succ);
671 if (!FunctionBlocks.count(succ))
672 report("MBB has successor that isn't part of the function.", MBB);
673 if (!MBBInfoMap[succ].Preds.count(MBB)) {
674 report("Inconsistent CFG", MBB);
675 errs() << "MBB is not in the predecessor list of the successor "
676 << printMBBReference(*succ) << ".\n";
680 // Check the predecessor list.
681 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
682 if (!FunctionBlocks.count(Pred))
683 report("MBB has predecessor that isn't part of the function.", MBB);
684 if (!MBBInfoMap[Pred].Succs.count(MBB)) {
685 report("Inconsistent CFG", MBB);
686 errs() << "MBB is not in the successor list of the predecessor "
687 << printMBBReference(*Pred) << ".\n";
691 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
692 const BasicBlock *BB = MBB->getBasicBlock();
693 const Function &F = MF->getFunction();
694 if (LandingPadSuccs.size() > 1 &&
695 !(AsmInfo &&
696 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
697 BB && isa<SwitchInst>(BB->getTerminator())) &&
698 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
699 report("MBB has more than one landing pad successor", MBB);
701 // Call analyzeBranch. If it succeeds, there several more conditions to check.
702 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
703 SmallVector<MachineOperand, 4> Cond;
704 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
705 Cond)) {
706 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
707 // check whether its answers match up with reality.
708 if (!TBB && !FBB) {
709 // Block falls through to its successor.
710 if (!MBB->empty() && MBB->back().isBarrier() &&
711 !TII->isPredicated(MBB->back())) {
712 report("MBB exits via unconditional fall-through but ends with a "
713 "barrier instruction!", MBB);
715 if (!Cond.empty()) {
716 report("MBB exits via unconditional fall-through but has a condition!",
717 MBB);
719 } else if (TBB && !FBB && Cond.empty()) {
720 // Block unconditionally branches somewhere.
721 if (MBB->empty()) {
722 report("MBB exits via unconditional branch but doesn't contain "
723 "any instructions!", MBB);
724 } else if (!MBB->back().isBarrier()) {
725 report("MBB exits via unconditional branch but doesn't end with a "
726 "barrier instruction!", MBB);
727 } else if (!MBB->back().isTerminator()) {
728 report("MBB exits via unconditional branch but the branch isn't a "
729 "terminator instruction!", MBB);
731 } else if (TBB && !FBB && !Cond.empty()) {
732 // Block conditionally branches somewhere, otherwise falls through.
733 if (MBB->empty()) {
734 report("MBB exits via conditional branch/fall-through but doesn't "
735 "contain any instructions!", MBB);
736 } else if (MBB->back().isBarrier()) {
737 report("MBB exits via conditional branch/fall-through but ends with a "
738 "barrier instruction!", MBB);
739 } else if (!MBB->back().isTerminator()) {
740 report("MBB exits via conditional branch/fall-through but the branch "
741 "isn't a terminator instruction!", MBB);
743 } else if (TBB && FBB) {
744 // Block conditionally branches somewhere, otherwise branches
745 // somewhere else.
746 if (MBB->empty()) {
747 report("MBB exits via conditional branch/branch but doesn't "
748 "contain any instructions!", MBB);
749 } else if (!MBB->back().isBarrier()) {
750 report("MBB exits via conditional branch/branch but doesn't end with a "
751 "barrier instruction!", MBB);
752 } else if (!MBB->back().isTerminator()) {
753 report("MBB exits via conditional branch/branch but the branch "
754 "isn't a terminator instruction!", MBB);
756 if (Cond.empty()) {
757 report("MBB exits via conditional branch/branch but there's no "
758 "condition!", MBB);
760 } else {
761 report("analyzeBranch returned invalid data!", MBB);
764 // Now check that the successors match up with the answers reported by
765 // analyzeBranch.
766 if (TBB && !MBB->isSuccessor(TBB))
767 report("MBB exits via jump or conditional branch, but its target isn't a "
768 "CFG successor!",
769 MBB);
770 if (FBB && !MBB->isSuccessor(FBB))
771 report("MBB exits via conditional branch, but its target isn't a CFG "
772 "successor!",
773 MBB);
775 // There might be a fallthrough to the next block if there's either no
776 // unconditional true branch, or if there's a condition, and one of the
777 // branches is missing.
778 bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
780 // A conditional fallthrough must be an actual CFG successor, not
781 // unreachable. (Conversely, an unconditional fallthrough might not really
782 // be a successor, because the block might end in unreachable.)
783 if (!Cond.empty() && !FBB) {
784 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
785 if (MBBI == MF->end()) {
786 report("MBB conditionally falls through out of function!", MBB);
787 } else if (!MBB->isSuccessor(&*MBBI))
788 report("MBB exits via conditional branch/fall-through but the CFG "
789 "successors don't match the actual successors!",
790 MBB);
793 // Verify that there aren't any extra un-accounted-for successors.
794 for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
795 // If this successor is one of the branch targets, it's okay.
796 if (SuccMBB == TBB || SuccMBB == FBB)
797 continue;
798 // If we might have a fallthrough, and the successor is the fallthrough
799 // block, that's also ok.
800 if (Fallthrough && SuccMBB == MBB->getNextNode())
801 continue;
802 // Also accept successors which are for exception-handling or might be
803 // inlineasm_br targets.
804 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
805 continue;
806 report("MBB has unexpected successors which are not branch targets, "
807 "fallthrough, EHPads, or inlineasm_br targets.",
808 MBB);
812 regsLive.clear();
813 if (MRI->tracksLiveness()) {
814 for (const auto &LI : MBB->liveins()) {
815 if (!Register::isPhysicalRegister(LI.PhysReg)) {
816 report("MBB live-in list contains non-physical register", MBB);
817 continue;
819 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
820 regsLive.insert(SubReg);
824 const MachineFrameInfo &MFI = MF->getFrameInfo();
825 BitVector PR = MFI.getPristineRegs(*MF);
826 for (unsigned I : PR.set_bits()) {
827 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
828 regsLive.insert(SubReg);
831 regsKilled.clear();
832 regsDefined.clear();
834 if (Indexes)
835 lastIndex = Indexes->getMBBStartIdx(MBB);
838 // This function gets called for all bundle headers, including normal
839 // stand-alone unbundled instructions.
840 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
841 if (Indexes && Indexes->hasIndex(*MI)) {
842 SlotIndex idx = Indexes->getInstructionIndex(*MI);
843 if (!(idx > lastIndex)) {
844 report("Instruction index out of order", MI);
845 errs() << "Last instruction was at " << lastIndex << '\n';
847 lastIndex = idx;
850 // Ensure non-terminators don't follow terminators.
851 if (MI->isTerminator()) {
852 if (!FirstTerminator)
853 FirstTerminator = MI;
854 } else if (FirstTerminator) {
855 // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to
856 // precede non-terminators.
857 if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) {
858 report("Non-terminator instruction after the first terminator", MI);
859 errs() << "First terminator was:\t" << *FirstTerminator;
864 // The operands on an INLINEASM instruction must follow a template.
865 // Verify that the flag operands make sense.
866 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
867 // The first two operands on INLINEASM are the asm string and global flags.
868 if (MI->getNumOperands() < 2) {
869 report("Too few operands on inline asm", MI);
870 return;
872 if (!MI->getOperand(0).isSymbol())
873 report("Asm string must be an external symbol", MI);
874 if (!MI->getOperand(1).isImm())
875 report("Asm flags must be an immediate", MI);
876 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
877 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
878 // and Extra_IsConvergent = 32.
879 if (!isUInt<6>(MI->getOperand(1).getImm()))
880 report("Unknown asm flags", &MI->getOperand(1), 1);
882 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
884 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
885 unsigned NumOps;
886 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
887 const MachineOperand &MO = MI->getOperand(OpNo);
888 // There may be implicit ops after the fixed operands.
889 if (!MO.isImm())
890 break;
891 const InlineAsm::Flag F(MO.getImm());
892 NumOps = 1 + F.getNumOperandRegisters();
895 if (OpNo > MI->getNumOperands())
896 report("Missing operands in last group", MI);
898 // An optional MDNode follows the groups.
899 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
900 ++OpNo;
902 // All trailing operands must be implicit registers.
903 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
904 const MachineOperand &MO = MI->getOperand(OpNo);
905 if (!MO.isReg() || !MO.isImplicit())
906 report("Expected implicit register after groups", &MO, OpNo);
909 if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) {
910 const MachineBasicBlock *MBB = MI->getParent();
912 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
913 i != e; ++i) {
914 const MachineOperand &MO = MI->getOperand(i);
916 if (!MO.isMBB())
917 continue;
919 // Check the successor & predecessor lists look ok, assume they are
920 // not. Find the indirect target without going through the successors.
921 const MachineBasicBlock *IndirectTargetMBB = MO.getMBB();
922 if (!IndirectTargetMBB) {
923 report("INLINEASM_BR indirect target does not exist", &MO, i);
924 break;
927 if (!MBB->isSuccessor(IndirectTargetMBB))
928 report("INLINEASM_BR indirect target missing from successor list", &MO,
931 if (!IndirectTargetMBB->isPredecessor(MBB))
932 report("INLINEASM_BR indirect target predecessor list missing parent",
933 &MO, i);
938 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
939 const MachineRegisterInfo &MRI) {
940 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
941 if (!Op.isReg())
942 return false;
943 const auto Reg = Op.getReg();
944 if (Reg.isPhysical())
945 return false;
946 return !MRI.getType(Reg).isScalar();
948 return true;
949 report("All register operands must have scalar types", &MI);
950 return false;
953 /// Check that types are consistent when two operands need to have the same
954 /// number of vector elements.
955 /// \return true if the types are valid.
956 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
957 const MachineInstr *MI) {
958 if (Ty0.isVector() != Ty1.isVector()) {
959 report("operand types must be all-vector or all-scalar", MI);
960 // Generally we try to report as many issues as possible at once, but in
961 // this case it's not clear what should we be comparing the size of the
962 // scalar with: the size of the whole vector or its lane. Instead of
963 // making an arbitrary choice and emitting not so helpful message, let's
964 // avoid the extra noise and stop here.
965 return false;
968 if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
969 report("operand types must preserve number of vector elements", MI);
970 return false;
973 return true;
976 bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) {
977 auto Opcode = MI->getOpcode();
978 bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC ||
979 Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT;
980 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID();
981 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
982 AttributeList Attrs = Intrinsic::getAttributes(
983 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID));
984 bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory();
985 if (NoSideEffects && DeclHasSideEffects) {
986 report(Twine(TII->getName(Opcode),
987 " used with intrinsic that accesses memory"),
988 MI);
989 return false;
991 if (!NoSideEffects && !DeclHasSideEffects) {
992 report(Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI);
993 return false;
997 return true;
1000 bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) {
1001 auto Opcode = MI->getOpcode();
1002 bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC ||
1003 Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS;
1004 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID();
1005 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1006 AttributeList Attrs = Intrinsic::getAttributes(
1007 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID));
1008 bool DeclIsConvergent = Attrs.hasFnAttr(Attribute::Convergent);
1009 if (NotConvergent && DeclIsConvergent) {
1010 report(Twine(TII->getName(Opcode), " used with a convergent intrinsic"),
1011 MI);
1012 return false;
1014 if (!NotConvergent && !DeclIsConvergent) {
1015 report(
1016 Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"),
1017 MI);
1018 return false;
1022 return true;
1025 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
1026 if (isFunctionSelected)
1027 report("Unexpected generic instruction in a Selected function", MI);
1029 const MCInstrDesc &MCID = MI->getDesc();
1030 unsigned NumOps = MI->getNumOperands();
1032 // Branches must reference a basic block if they are not indirect
1033 if (MI->isBranch() && !MI->isIndirectBranch()) {
1034 bool HasMBB = false;
1035 for (const MachineOperand &Op : MI->operands()) {
1036 if (Op.isMBB()) {
1037 HasMBB = true;
1038 break;
1042 if (!HasMBB) {
1043 report("Branch instruction is missing a basic block operand or "
1044 "isIndirectBranch property",
1045 MI);
1049 // Check types.
1050 SmallVector<LLT, 4> Types;
1051 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
1052 I != E; ++I) {
1053 if (!MCID.operands()[I].isGenericType())
1054 continue;
1055 // Generic instructions specify type equality constraints between some of
1056 // their operands. Make sure these are consistent.
1057 size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex();
1058 Types.resize(std::max(TypeIdx + 1, Types.size()));
1060 const MachineOperand *MO = &MI->getOperand(I);
1061 if (!MO->isReg()) {
1062 report("generic instruction must use register operands", MI);
1063 continue;
1066 LLT OpTy = MRI->getType(MO->getReg());
1067 // Don't report a type mismatch if there is no actual mismatch, only a
1068 // type missing, to reduce noise:
1069 if (OpTy.isValid()) {
1070 // Only the first valid type for a type index will be printed: don't
1071 // overwrite it later so it's always clear which type was expected:
1072 if (!Types[TypeIdx].isValid())
1073 Types[TypeIdx] = OpTy;
1074 else if (Types[TypeIdx] != OpTy)
1075 report("Type mismatch in generic instruction", MO, I, OpTy);
1076 } else {
1077 // Generic instructions must have types attached to their operands.
1078 report("Generic instruction is missing a virtual register type", MO, I);
1082 // Generic opcodes must not have physical register operands.
1083 for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
1084 const MachineOperand *MO = &MI->getOperand(I);
1085 if (MO->isReg() && MO->getReg().isPhysical())
1086 report("Generic instruction cannot have physical register", MO, I);
1089 // Avoid out of bounds in checks below. This was already reported earlier.
1090 if (MI->getNumOperands() < MCID.getNumOperands())
1091 return;
1093 StringRef ErrorInfo;
1094 if (!TII->verifyInstruction(*MI, ErrorInfo))
1095 report(ErrorInfo.data(), MI);
1097 // Verify properties of various specific instruction types
1098 unsigned Opc = MI->getOpcode();
1099 switch (Opc) {
1100 case TargetOpcode::G_ASSERT_SEXT:
1101 case TargetOpcode::G_ASSERT_ZEXT: {
1102 std::string OpcName =
1103 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
1104 if (!MI->getOperand(2).isImm()) {
1105 report(Twine(OpcName, " expects an immediate operand #2"), MI);
1106 break;
1109 Register Dst = MI->getOperand(0).getReg();
1110 Register Src = MI->getOperand(1).getReg();
1111 LLT SrcTy = MRI->getType(Src);
1112 int64_t Imm = MI->getOperand(2).getImm();
1113 if (Imm <= 0) {
1114 report(Twine(OpcName, " size must be >= 1"), MI);
1115 break;
1118 if (Imm >= SrcTy.getScalarSizeInBits()) {
1119 report(Twine(OpcName, " size must be less than source bit width"), MI);
1120 break;
1123 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI);
1124 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI);
1126 // Allow only the source bank to be set.
1127 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) {
1128 report(Twine(OpcName, " cannot change register bank"), MI);
1129 break;
1132 // Don't allow a class change. Do allow member class->regbank.
1133 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst);
1134 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) {
1135 report(
1136 Twine(OpcName, " source and destination register classes must match"),
1137 MI);
1138 break;
1141 break;
1144 case TargetOpcode::G_CONSTANT:
1145 case TargetOpcode::G_FCONSTANT: {
1146 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1147 if (DstTy.isVector())
1148 report("Instruction cannot use a vector result type", MI);
1150 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1151 if (!MI->getOperand(1).isCImm()) {
1152 report("G_CONSTANT operand must be cimm", MI);
1153 break;
1156 const ConstantInt *CI = MI->getOperand(1).getCImm();
1157 if (CI->getBitWidth() != DstTy.getSizeInBits())
1158 report("inconsistent constant size", MI);
1159 } else {
1160 if (!MI->getOperand(1).isFPImm()) {
1161 report("G_FCONSTANT operand must be fpimm", MI);
1162 break;
1164 const ConstantFP *CF = MI->getOperand(1).getFPImm();
1166 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1167 DstTy.getSizeInBits()) {
1168 report("inconsistent constant size", MI);
1172 break;
1174 case TargetOpcode::G_LOAD:
1175 case TargetOpcode::G_STORE:
1176 case TargetOpcode::G_ZEXTLOAD:
1177 case TargetOpcode::G_SEXTLOAD: {
1178 LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1179 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1180 if (!PtrTy.isPointer())
1181 report("Generic memory instruction must access a pointer", MI);
1183 // Generic loads and stores must have a single MachineMemOperand
1184 // describing that access.
1185 if (!MI->hasOneMemOperand()) {
1186 report("Generic instruction accessing memory must have one mem operand",
1187 MI);
1188 } else {
1189 const MachineMemOperand &MMO = **MI->memoperands_begin();
1190 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1191 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1192 if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
1193 report("Generic extload must have a narrower memory type", MI);
1194 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1195 if (MMO.getSize() > ValTy.getSizeInBytes())
1196 report("load memory size cannot exceed result size", MI);
1197 } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1198 if (ValTy.getSizeInBytes() < MMO.getSize())
1199 report("store memory size cannot exceed value size", MI);
1202 const AtomicOrdering Order = MMO.getSuccessOrdering();
1203 if (Opc == TargetOpcode::G_STORE) {
1204 if (Order == AtomicOrdering::Acquire ||
1205 Order == AtomicOrdering::AcquireRelease)
1206 report("atomic store cannot use acquire ordering", MI);
1208 } else {
1209 if (Order == AtomicOrdering::Release ||
1210 Order == AtomicOrdering::AcquireRelease)
1211 report("atomic load cannot use release ordering", MI);
1215 break;
1217 case TargetOpcode::G_PHI: {
1218 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1219 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1220 [this, &DstTy](const MachineOperand &MO) {
1221 if (!MO.isReg())
1222 return true;
1223 LLT Ty = MRI->getType(MO.getReg());
1224 if (!Ty.isValid() || (Ty != DstTy))
1225 return false;
1226 return true;
1228 report("Generic Instruction G_PHI has operands with incompatible/missing "
1229 "types",
1230 MI);
1231 break;
1233 case TargetOpcode::G_BITCAST: {
1234 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1235 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1236 if (!DstTy.isValid() || !SrcTy.isValid())
1237 break;
1239 if (SrcTy.isPointer() != DstTy.isPointer())
1240 report("bitcast cannot convert between pointers and other types", MI);
1242 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1243 report("bitcast sizes must match", MI);
1245 if (SrcTy == DstTy)
1246 report("bitcast must change the type", MI);
1248 break;
1250 case TargetOpcode::G_INTTOPTR:
1251 case TargetOpcode::G_PTRTOINT:
1252 case TargetOpcode::G_ADDRSPACE_CAST: {
1253 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1254 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1255 if (!DstTy.isValid() || !SrcTy.isValid())
1256 break;
1258 verifyVectorElementMatch(DstTy, SrcTy, MI);
1260 DstTy = DstTy.getScalarType();
1261 SrcTy = SrcTy.getScalarType();
1263 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1264 if (!DstTy.isPointer())
1265 report("inttoptr result type must be a pointer", MI);
1266 if (SrcTy.isPointer())
1267 report("inttoptr source type must not be a pointer", MI);
1268 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1269 if (!SrcTy.isPointer())
1270 report("ptrtoint source type must be a pointer", MI);
1271 if (DstTy.isPointer())
1272 report("ptrtoint result type must not be a pointer", MI);
1273 } else {
1274 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1275 if (!SrcTy.isPointer() || !DstTy.isPointer())
1276 report("addrspacecast types must be pointers", MI);
1277 else {
1278 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1279 report("addrspacecast must convert different address spaces", MI);
1283 break;
1285 case TargetOpcode::G_PTR_ADD: {
1286 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1287 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1288 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1289 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1290 break;
1292 if (!PtrTy.getScalarType().isPointer())
1293 report("gep first operand must be a pointer", MI);
1295 if (OffsetTy.getScalarType().isPointer())
1296 report("gep offset operand must not be a pointer", MI);
1298 // TODO: Is the offset allowed to be a scalar with a vector?
1299 break;
1301 case TargetOpcode::G_PTRMASK: {
1302 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1303 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1304 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1305 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1306 break;
1308 if (!DstTy.getScalarType().isPointer())
1309 report("ptrmask result type must be a pointer", MI);
1311 if (!MaskTy.getScalarType().isScalar())
1312 report("ptrmask mask type must be an integer", MI);
1314 verifyVectorElementMatch(DstTy, MaskTy, MI);
1315 break;
1317 case TargetOpcode::G_SEXT:
1318 case TargetOpcode::G_ZEXT:
1319 case TargetOpcode::G_ANYEXT:
1320 case TargetOpcode::G_TRUNC:
1321 case TargetOpcode::G_FPEXT:
1322 case TargetOpcode::G_FPTRUNC: {
1323 // Number of operands and presense of types is already checked (and
1324 // reported in case of any issues), so no need to report them again. As
1325 // we're trying to report as many issues as possible at once, however, the
1326 // instructions aren't guaranteed to have the right number of operands or
1327 // types attached to them at this point
1328 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1329 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1330 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1331 if (!DstTy.isValid() || !SrcTy.isValid())
1332 break;
1334 LLT DstElTy = DstTy.getScalarType();
1335 LLT SrcElTy = SrcTy.getScalarType();
1336 if (DstElTy.isPointer() || SrcElTy.isPointer())
1337 report("Generic extend/truncate can not operate on pointers", MI);
1339 verifyVectorElementMatch(DstTy, SrcTy, MI);
1341 unsigned DstSize = DstElTy.getSizeInBits();
1342 unsigned SrcSize = SrcElTy.getSizeInBits();
1343 switch (MI->getOpcode()) {
1344 default:
1345 if (DstSize <= SrcSize)
1346 report("Generic extend has destination type no larger than source", MI);
1347 break;
1348 case TargetOpcode::G_TRUNC:
1349 case TargetOpcode::G_FPTRUNC:
1350 if (DstSize >= SrcSize)
1351 report("Generic truncate has destination type no smaller than source",
1352 MI);
1353 break;
1355 break;
1357 case TargetOpcode::G_SELECT: {
1358 LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1359 LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1360 if (!SelTy.isValid() || !CondTy.isValid())
1361 break;
1363 // Scalar condition select on a vector is valid.
1364 if (CondTy.isVector())
1365 verifyVectorElementMatch(SelTy, CondTy, MI);
1366 break;
1368 case TargetOpcode::G_MERGE_VALUES: {
1369 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1370 // e.g. s2N = MERGE sN, sN
1371 // Merging multiple scalars into a vector is not allowed, should use
1372 // G_BUILD_VECTOR for that.
1373 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1374 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1375 if (DstTy.isVector() || SrcTy.isVector())
1376 report("G_MERGE_VALUES cannot operate on vectors", MI);
1378 const unsigned NumOps = MI->getNumOperands();
1379 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1380 report("G_MERGE_VALUES result size is inconsistent", MI);
1382 for (unsigned I = 2; I != NumOps; ++I) {
1383 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1384 report("G_MERGE_VALUES source types do not match", MI);
1387 break;
1389 case TargetOpcode::G_UNMERGE_VALUES: {
1390 unsigned NumDsts = MI->getNumOperands() - 1;
1391 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1392 for (unsigned i = 1; i < NumDsts; ++i) {
1393 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) {
1394 report("G_UNMERGE_VALUES destination types do not match", MI);
1395 break;
1399 LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg());
1400 if (DstTy.isVector()) {
1401 // This case is the converse of G_CONCAT_VECTORS.
1402 if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() ||
1403 SrcTy.getNumElements() != NumDsts * DstTy.getNumElements())
1404 report("G_UNMERGE_VALUES source operand does not match vector "
1405 "destination operands",
1406 MI);
1407 } else if (SrcTy.isVector()) {
1408 // This case is the converse of G_BUILD_VECTOR, but relaxed to allow
1409 // mismatched types as long as the total size matches:
1410 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>)
1411 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits())
1412 report("G_UNMERGE_VALUES vector source operand does not match scalar "
1413 "destination operands",
1414 MI);
1415 } else {
1416 // This case is the converse of G_MERGE_VALUES.
1417 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) {
1418 report("G_UNMERGE_VALUES scalar source operand does not match scalar "
1419 "destination operands",
1420 MI);
1423 break;
1425 case TargetOpcode::G_BUILD_VECTOR: {
1426 // Source types must be scalars, dest type a vector. Total size of scalars
1427 // must match the dest vector size.
1428 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1429 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1430 if (!DstTy.isVector() || SrcEltTy.isVector()) {
1431 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1432 break;
1435 if (DstTy.getElementType() != SrcEltTy)
1436 report("G_BUILD_VECTOR result element type must match source type", MI);
1438 if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1439 report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1441 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1442 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1443 report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1445 break;
1447 case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1448 // Source types must be scalars, dest type a vector. Scalar types must be
1449 // larger than the dest vector elt type, as this is a truncating operation.
1450 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1451 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1452 if (!DstTy.isVector() || SrcEltTy.isVector())
1453 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1454 MI);
1455 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1456 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1457 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1458 MI);
1459 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1460 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1461 "dest elt type",
1462 MI);
1463 break;
1465 case TargetOpcode::G_CONCAT_VECTORS: {
1466 // Source types should be vectors, and total size should match the dest
1467 // vector size.
1468 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1469 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1470 if (!DstTy.isVector() || !SrcTy.isVector())
1471 report("G_CONCAT_VECTOR requires vector source and destination operands",
1472 MI);
1474 if (MI->getNumOperands() < 3)
1475 report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1477 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1478 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1479 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1480 if (DstTy.getNumElements() !=
1481 SrcTy.getNumElements() * (MI->getNumOperands() - 1))
1482 report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1483 break;
1485 case TargetOpcode::G_ICMP:
1486 case TargetOpcode::G_FCMP: {
1487 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1488 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1490 if ((DstTy.isVector() != SrcTy.isVector()) ||
1491 (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
1492 report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1494 break;
1496 case TargetOpcode::G_EXTRACT: {
1497 const MachineOperand &SrcOp = MI->getOperand(1);
1498 if (!SrcOp.isReg()) {
1499 report("extract source must be a register", MI);
1500 break;
1503 const MachineOperand &OffsetOp = MI->getOperand(2);
1504 if (!OffsetOp.isImm()) {
1505 report("extract offset must be a constant", MI);
1506 break;
1509 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1510 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1511 if (SrcSize == DstSize)
1512 report("extract source must be larger than result", MI);
1514 if (DstSize + OffsetOp.getImm() > SrcSize)
1515 report("extract reads past end of register", MI);
1516 break;
1518 case TargetOpcode::G_INSERT: {
1519 const MachineOperand &SrcOp = MI->getOperand(2);
1520 if (!SrcOp.isReg()) {
1521 report("insert source must be a register", MI);
1522 break;
1525 const MachineOperand &OffsetOp = MI->getOperand(3);
1526 if (!OffsetOp.isImm()) {
1527 report("insert offset must be a constant", MI);
1528 break;
1531 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1532 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1534 if (DstSize <= SrcSize)
1535 report("inserted size must be smaller than total register", MI);
1537 if (SrcSize + OffsetOp.getImm() > DstSize)
1538 report("insert writes past end of register", MI);
1540 break;
1542 case TargetOpcode::G_JUMP_TABLE: {
1543 if (!MI->getOperand(1).isJTI())
1544 report("G_JUMP_TABLE source operand must be a jump table index", MI);
1545 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1546 if (!DstTy.isPointer())
1547 report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1548 break;
1550 case TargetOpcode::G_BRJT: {
1551 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1552 report("G_BRJT src operand 0 must be a pointer type", MI);
1554 if (!MI->getOperand(1).isJTI())
1555 report("G_BRJT src operand 1 must be a jump table index", MI);
1557 const auto &IdxOp = MI->getOperand(2);
1558 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1559 report("G_BRJT src operand 2 must be a scalar reg type", MI);
1560 break;
1562 case TargetOpcode::G_INTRINSIC:
1563 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
1564 case TargetOpcode::G_INTRINSIC_CONVERGENT:
1565 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: {
1566 // TODO: Should verify number of def and use operands, but the current
1567 // interface requires passing in IR types for mangling.
1568 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1569 if (!IntrIDOp.isIntrinsicID()) {
1570 report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1571 break;
1574 if (!verifyGIntrinsicSideEffects(MI))
1575 break;
1576 if (!verifyGIntrinsicConvergence(MI))
1577 break;
1579 break;
1581 case TargetOpcode::G_SEXT_INREG: {
1582 if (!MI->getOperand(2).isImm()) {
1583 report("G_SEXT_INREG expects an immediate operand #2", MI);
1584 break;
1587 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1588 int64_t Imm = MI->getOperand(2).getImm();
1589 if (Imm <= 0)
1590 report("G_SEXT_INREG size must be >= 1", MI);
1591 if (Imm >= SrcTy.getScalarSizeInBits())
1592 report("G_SEXT_INREG size must be less than source bit width", MI);
1593 break;
1595 case TargetOpcode::G_BSWAP: {
1596 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1597 if (DstTy.getScalarSizeInBits() % 16 != 0)
1598 report("G_BSWAP size must be a multiple of 16 bits", MI);
1599 break;
1601 case TargetOpcode::G_SHUFFLE_VECTOR: {
1602 const MachineOperand &MaskOp = MI->getOperand(3);
1603 if (!MaskOp.isShuffleMask()) {
1604 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1605 break;
1608 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1609 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1610 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1612 if (Src0Ty != Src1Ty)
1613 report("Source operands must be the same type", MI);
1615 if (Src0Ty.getScalarType() != DstTy.getScalarType())
1616 report("G_SHUFFLE_VECTOR cannot change element type", MI);
1618 // Don't check that all operands are vector because scalars are used in
1619 // place of 1 element vectors.
1620 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1621 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1623 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1625 if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1626 report("Wrong result type for shufflemask", MI);
1628 for (int Idx : MaskIdxes) {
1629 if (Idx < 0)
1630 continue;
1632 if (Idx >= 2 * SrcNumElts)
1633 report("Out of bounds shuffle index", MI);
1636 break;
1638 case TargetOpcode::G_DYN_STACKALLOC: {
1639 const MachineOperand &DstOp = MI->getOperand(0);
1640 const MachineOperand &AllocOp = MI->getOperand(1);
1641 const MachineOperand &AlignOp = MI->getOperand(2);
1643 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1644 report("dst operand 0 must be a pointer type", MI);
1645 break;
1648 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1649 report("src operand 1 must be a scalar reg type", MI);
1650 break;
1653 if (!AlignOp.isImm()) {
1654 report("src operand 2 must be an immediate type", MI);
1655 break;
1657 break;
1659 case TargetOpcode::G_MEMCPY_INLINE:
1660 case TargetOpcode::G_MEMCPY:
1661 case TargetOpcode::G_MEMMOVE: {
1662 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1663 if (MMOs.size() != 2) {
1664 report("memcpy/memmove must have 2 memory operands", MI);
1665 break;
1668 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1669 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1670 report("wrong memory operand types", MI);
1671 break;
1674 if (MMOs[0]->getSize() != MMOs[1]->getSize())
1675 report("inconsistent memory operand sizes", MI);
1677 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1678 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1680 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1681 report("memory instruction operand must be a pointer", MI);
1682 break;
1685 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1686 report("inconsistent store address space", MI);
1687 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1688 report("inconsistent load address space", MI);
1690 if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1691 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1692 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1694 break;
1696 case TargetOpcode::G_BZERO:
1697 case TargetOpcode::G_MEMSET: {
1698 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1699 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1700 if (MMOs.size() != 1) {
1701 report(Twine(Name, " must have 1 memory operand"), MI);
1702 break;
1705 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
1706 report(Twine(Name, " memory operand must be a store"), MI);
1707 break;
1710 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1711 if (!DstPtrTy.isPointer()) {
1712 report(Twine(Name, " operand must be a pointer"), MI);
1713 break;
1716 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1717 report("inconsistent " + Twine(Name, " address space"), MI);
1719 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
1720 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
1721 report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
1723 break;
1725 case TargetOpcode::G_VECREDUCE_SEQ_FADD:
1726 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
1727 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1728 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1729 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1730 if (!DstTy.isScalar())
1731 report("Vector reduction requires a scalar destination type", MI);
1732 if (!Src1Ty.isScalar())
1733 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
1734 if (!Src2Ty.isVector())
1735 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
1736 break;
1738 case TargetOpcode::G_VECREDUCE_FADD:
1739 case TargetOpcode::G_VECREDUCE_FMUL:
1740 case TargetOpcode::G_VECREDUCE_FMAX:
1741 case TargetOpcode::G_VECREDUCE_FMIN:
1742 case TargetOpcode::G_VECREDUCE_FMAXIMUM:
1743 case TargetOpcode::G_VECREDUCE_FMINIMUM:
1744 case TargetOpcode::G_VECREDUCE_ADD:
1745 case TargetOpcode::G_VECREDUCE_MUL:
1746 case TargetOpcode::G_VECREDUCE_AND:
1747 case TargetOpcode::G_VECREDUCE_OR:
1748 case TargetOpcode::G_VECREDUCE_XOR:
1749 case TargetOpcode::G_VECREDUCE_SMAX:
1750 case TargetOpcode::G_VECREDUCE_SMIN:
1751 case TargetOpcode::G_VECREDUCE_UMAX:
1752 case TargetOpcode::G_VECREDUCE_UMIN: {
1753 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1754 if (!DstTy.isScalar())
1755 report("Vector reduction requires a scalar destination type", MI);
1756 break;
1759 case TargetOpcode::G_SBFX:
1760 case TargetOpcode::G_UBFX: {
1761 LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1762 if (DstTy.isVector()) {
1763 report("Bitfield extraction is not supported on vectors", MI);
1764 break;
1766 break;
1768 case TargetOpcode::G_SHL:
1769 case TargetOpcode::G_LSHR:
1770 case TargetOpcode::G_ASHR:
1771 case TargetOpcode::G_ROTR:
1772 case TargetOpcode::G_ROTL: {
1773 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
1774 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
1775 if (Src1Ty.isVector() != Src2Ty.isVector()) {
1776 report("Shifts and rotates require operands to be either all scalars or "
1777 "all vectors",
1778 MI);
1779 break;
1781 break;
1783 case TargetOpcode::G_LLROUND:
1784 case TargetOpcode::G_LROUND: {
1785 verifyAllRegOpsScalar(*MI, *MRI);
1786 break;
1788 case TargetOpcode::G_IS_FPCLASS: {
1789 LLT DestTy = MRI->getType(MI->getOperand(0).getReg());
1790 LLT DestEltTy = DestTy.getScalarType();
1791 if (!DestEltTy.isScalar()) {
1792 report("Destination must be a scalar or vector of scalars", MI);
1793 break;
1795 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1796 LLT SrcEltTy = SrcTy.getScalarType();
1797 if (!SrcEltTy.isScalar()) {
1798 report("Source must be a scalar or vector of scalars", MI);
1799 break;
1801 if (!verifyVectorElementMatch(DestTy, SrcTy, MI))
1802 break;
1803 const MachineOperand &TestMO = MI->getOperand(2);
1804 if (!TestMO.isImm()) {
1805 report("floating-point class set (operand 2) must be an immediate", MI);
1806 break;
1808 int64_t Test = TestMO.getImm();
1809 if (Test < 0 || Test > fcAllFlags) {
1810 report("Incorrect floating-point class set (operand 2)", MI);
1811 break;
1813 break;
1815 case TargetOpcode::G_ASSERT_ALIGN: {
1816 if (MI->getOperand(2).getImm() < 1)
1817 report("alignment immediate must be >= 1", MI);
1818 break;
1820 case TargetOpcode::G_CONSTANT_POOL: {
1821 if (!MI->getOperand(1).isCPI())
1822 report("Src operand 1 must be a constant pool index", MI);
1823 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1824 report("Dst operand 0 must be a pointer", MI);
1825 break;
1827 default:
1828 break;
1832 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
1833 const MCInstrDesc &MCID = MI->getDesc();
1834 if (MI->getNumOperands() < MCID.getNumOperands()) {
1835 report("Too few operands", MI);
1836 errs() << MCID.getNumOperands() << " operands expected, but "
1837 << MI->getNumOperands() << " given.\n";
1840 if (MI->getFlag(MachineInstr::NoConvergent) && !MCID.isConvergent())
1841 report("NoConvergent flag expected only on convergent instructions.", MI);
1843 if (MI->isPHI()) {
1844 if (MF->getProperties().hasProperty(
1845 MachineFunctionProperties::Property::NoPHIs))
1846 report("Found PHI instruction with NoPHIs property set", MI);
1848 if (FirstNonPHI)
1849 report("Found PHI instruction after non-PHI", MI);
1850 } else if (FirstNonPHI == nullptr)
1851 FirstNonPHI = MI;
1853 // Check the tied operands.
1854 if (MI->isInlineAsm())
1855 verifyInlineAsm(MI);
1857 // Check that unspillable terminators define a reg and have at most one use.
1858 if (TII->isUnspillableTerminator(MI)) {
1859 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
1860 report("Unspillable Terminator does not define a reg", MI);
1861 Register Def = MI->getOperand(0).getReg();
1862 if (Def.isVirtual() &&
1863 !MF->getProperties().hasProperty(
1864 MachineFunctionProperties::Property::NoPHIs) &&
1865 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
1866 report("Unspillable Terminator expected to have at most one use!", MI);
1869 // A fully-formed DBG_VALUE must have a location. Ignore partially formed
1870 // DBG_VALUEs: these are convenient to use in tests, but should never get
1871 // generated.
1872 if (MI->isDebugValue() && MI->getNumOperands() == 4)
1873 if (!MI->getDebugLoc())
1874 report("Missing DebugLoc for debug instruction", MI);
1876 // Meta instructions should never be the subject of debug value tracking,
1877 // they don't create a value in the output program at all.
1878 if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
1879 report("Metadata instruction should not have a value tracking number", MI);
1881 // Check the MachineMemOperands for basic consistency.
1882 for (MachineMemOperand *Op : MI->memoperands()) {
1883 if (Op->isLoad() && !MI->mayLoad())
1884 report("Missing mayLoad flag", MI);
1885 if (Op->isStore() && !MI->mayStore())
1886 report("Missing mayStore flag", MI);
1889 // Debug values must not have a slot index.
1890 // Other instructions must have one, unless they are inside a bundle.
1891 if (LiveInts) {
1892 bool mapped = !LiveInts->isNotInMIMap(*MI);
1893 if (MI->isDebugOrPseudoInstr()) {
1894 if (mapped)
1895 report("Debug instruction has a slot index", MI);
1896 } else if (MI->isInsideBundle()) {
1897 if (mapped)
1898 report("Instruction inside bundle has a slot index", MI);
1899 } else {
1900 if (!mapped)
1901 report("Missing slot index", MI);
1905 unsigned Opc = MCID.getOpcode();
1906 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
1907 verifyPreISelGenericInstruction(MI);
1908 return;
1911 StringRef ErrorInfo;
1912 if (!TII->verifyInstruction(*MI, ErrorInfo))
1913 report(ErrorInfo.data(), MI);
1915 // Verify properties of various specific instruction types
1916 switch (MI->getOpcode()) {
1917 case TargetOpcode::COPY: {
1918 const MachineOperand &DstOp = MI->getOperand(0);
1919 const MachineOperand &SrcOp = MI->getOperand(1);
1920 const Register SrcReg = SrcOp.getReg();
1921 const Register DstReg = DstOp.getReg();
1923 LLT DstTy = MRI->getType(DstReg);
1924 LLT SrcTy = MRI->getType(SrcReg);
1925 if (SrcTy.isValid() && DstTy.isValid()) {
1926 // If both types are valid, check that the types are the same.
1927 if (SrcTy != DstTy) {
1928 report("Copy Instruction is illegal with mismatching types", MI);
1929 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
1932 break;
1935 if (!SrcTy.isValid() && !DstTy.isValid())
1936 break;
1938 // If we have only one valid type, this is likely a copy between a virtual
1939 // and physical register.
1940 unsigned SrcSize = 0;
1941 unsigned DstSize = 0;
1942 if (SrcReg.isPhysical() && DstTy.isValid()) {
1943 const TargetRegisterClass *SrcRC =
1944 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
1945 if (SrcRC)
1946 SrcSize = TRI->getRegSizeInBits(*SrcRC);
1949 if (SrcSize == 0)
1950 SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
1952 if (DstReg.isPhysical() && SrcTy.isValid()) {
1953 const TargetRegisterClass *DstRC =
1954 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
1955 if (DstRC)
1956 DstSize = TRI->getRegSizeInBits(*DstRC);
1959 if (DstSize == 0)
1960 DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
1962 if (SrcSize != 0 && DstSize != 0 && SrcSize != DstSize) {
1963 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
1964 report("Copy Instruction is illegal with mismatching sizes", MI);
1965 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
1966 << "\n";
1969 break;
1971 case TargetOpcode::STATEPOINT: {
1972 StatepointOpers SO(MI);
1973 if (!MI->getOperand(SO.getIDPos()).isImm() ||
1974 !MI->getOperand(SO.getNBytesPos()).isImm() ||
1975 !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
1976 report("meta operands to STATEPOINT not constant!", MI);
1977 break;
1980 auto VerifyStackMapConstant = [&](unsigned Offset) {
1981 if (Offset >= MI->getNumOperands()) {
1982 report("stack map constant to STATEPOINT is out of range!", MI);
1983 return;
1985 if (!MI->getOperand(Offset - 1).isImm() ||
1986 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
1987 !MI->getOperand(Offset).isImm())
1988 report("stack map constant to STATEPOINT not well formed!", MI);
1990 VerifyStackMapConstant(SO.getCCIdx());
1991 VerifyStackMapConstant(SO.getFlagsIdx());
1992 VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
1993 VerifyStackMapConstant(SO.getNumGCPtrIdx());
1994 VerifyStackMapConstant(SO.getNumAllocaIdx());
1995 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
1997 // Verify that all explicit statepoint defs are tied to gc operands as
1998 // they are expected to be a relocation of gc operands.
1999 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
2000 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
2001 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
2002 unsigned UseOpIdx;
2003 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
2004 report("STATEPOINT defs expected to be tied", MI);
2005 break;
2007 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
2008 report("STATEPOINT def tied to non-gc operand", MI);
2009 break;
2013 // TODO: verify we have properly encoded deopt arguments
2014 } break;
2015 case TargetOpcode::INSERT_SUBREG: {
2016 unsigned InsertedSize;
2017 if (unsigned SubIdx = MI->getOperand(2).getSubReg())
2018 InsertedSize = TRI->getSubRegIdxSize(SubIdx);
2019 else
2020 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
2021 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
2022 if (SubRegSize < InsertedSize) {
2023 report("INSERT_SUBREG expected inserted value to have equal or lesser "
2024 "size than the subreg it was inserted into", MI);
2025 break;
2027 } break;
2028 case TargetOpcode::REG_SEQUENCE: {
2029 unsigned NumOps = MI->getNumOperands();
2030 if (!(NumOps & 1)) {
2031 report("Invalid number of operands for REG_SEQUENCE", MI);
2032 break;
2035 for (unsigned I = 1; I != NumOps; I += 2) {
2036 const MachineOperand &RegOp = MI->getOperand(I);
2037 const MachineOperand &SubRegOp = MI->getOperand(I + 1);
2039 if (!RegOp.isReg())
2040 report("Invalid register operand for REG_SEQUENCE", &RegOp, I);
2042 if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 ||
2043 SubRegOp.getImm() >= TRI->getNumSubRegIndices()) {
2044 report("Invalid subregister index operand for REG_SEQUENCE",
2045 &SubRegOp, I + 1);
2049 Register DstReg = MI->getOperand(0).getReg();
2050 if (DstReg.isPhysical())
2051 report("REG_SEQUENCE does not support physical register results", MI);
2053 if (MI->getOperand(0).getSubReg())
2054 report("Invalid subreg result for REG_SEQUENCE", MI);
2056 break;
2061 void
2062 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
2063 const MachineInstr *MI = MO->getParent();
2064 const MCInstrDesc &MCID = MI->getDesc();
2065 unsigned NumDefs = MCID.getNumDefs();
2066 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
2067 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
2069 // The first MCID.NumDefs operands must be explicit register defines
2070 if (MONum < NumDefs) {
2071 const MCOperandInfo &MCOI = MCID.operands()[MONum];
2072 if (!MO->isReg())
2073 report("Explicit definition must be a register", MO, MONum);
2074 else if (!MO->isDef() && !MCOI.isOptionalDef())
2075 report("Explicit definition marked as use", MO, MONum);
2076 else if (MO->isImplicit())
2077 report("Explicit definition marked as implicit", MO, MONum);
2078 } else if (MONum < MCID.getNumOperands()) {
2079 const MCOperandInfo &MCOI = MCID.operands()[MONum];
2080 // Don't check if it's the last operand in a variadic instruction. See,
2081 // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
2082 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
2083 if (!IsOptional) {
2084 if (MO->isReg()) {
2085 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
2086 report("Explicit operand marked as def", MO, MONum);
2087 if (MO->isImplicit())
2088 report("Explicit operand marked as implicit", MO, MONum);
2091 // Check that an instruction has register operands only as expected.
2092 if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
2093 !MO->isReg() && !MO->isFI())
2094 report("Expected a register operand.", MO, MONum);
2095 if (MO->isReg()) {
2096 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
2097 (MCOI.OperandType == MCOI::OPERAND_PCREL &&
2098 !TII->isPCRelRegisterOperandLegal(*MO)))
2099 report("Expected a non-register operand.", MO, MONum);
2103 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
2104 if (TiedTo != -1) {
2105 if (!MO->isReg())
2106 report("Tied use must be a register", MO, MONum);
2107 else if (!MO->isTied())
2108 report("Operand should be tied", MO, MONum);
2109 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
2110 report("Tied def doesn't match MCInstrDesc", MO, MONum);
2111 else if (MO->getReg().isPhysical()) {
2112 const MachineOperand &MOTied = MI->getOperand(TiedTo);
2113 if (!MOTied.isReg())
2114 report("Tied counterpart must be a register", &MOTied, TiedTo);
2115 else if (MOTied.getReg().isPhysical() &&
2116 MO->getReg() != MOTied.getReg())
2117 report("Tied physical registers must match.", &MOTied, TiedTo);
2119 } else if (MO->isReg() && MO->isTied())
2120 report("Explicit operand should not be tied", MO, MONum);
2121 } else {
2122 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
2123 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
2124 report("Extra explicit operand on non-variadic instruction", MO, MONum);
2127 switch (MO->getType()) {
2128 case MachineOperand::MO_Register: {
2129 // Verify debug flag on debug instructions. Check this first because reg0
2130 // indicates an undefined debug value.
2131 if (MI->isDebugInstr() && MO->isUse()) {
2132 if (!MO->isDebug())
2133 report("Register operand must be marked debug", MO, MONum);
2134 } else if (MO->isDebug()) {
2135 report("Register operand must not be marked debug", MO, MONum);
2138 const Register Reg = MO->getReg();
2139 if (!Reg)
2140 return;
2141 if (MRI->tracksLiveness() && !MI->isDebugInstr())
2142 checkLiveness(MO, MONum);
2144 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() &&
2145 MO->getReg().isVirtual()) // TODO: Apply to physregs too
2146 report("Undef virtual register def operands require a subregister", MO, MONum);
2148 // Verify the consistency of tied operands.
2149 if (MO->isTied()) {
2150 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
2151 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
2152 if (!OtherMO.isReg())
2153 report("Must be tied to a register", MO, MONum);
2154 if (!OtherMO.isTied())
2155 report("Missing tie flags on tied operand", MO, MONum);
2156 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
2157 report("Inconsistent tie links", MO, MONum);
2158 if (MONum < MCID.getNumDefs()) {
2159 if (OtherIdx < MCID.getNumOperands()) {
2160 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
2161 report("Explicit def tied to explicit use without tie constraint",
2162 MO, MONum);
2163 } else {
2164 if (!OtherMO.isImplicit())
2165 report("Explicit def should be tied to implicit use", MO, MONum);
2170 // Verify two-address constraints after the twoaddressinstruction pass.
2171 // Both twoaddressinstruction pass and phi-node-elimination pass call
2172 // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification
2173 // after twoaddressinstruction pass not after phi-node-elimination pass. So
2174 // we shouldn't use the IsSSA as the condition, we should based on
2175 // TiedOpsRewritten property to verify two-address constraints, this
2176 // property will be set in twoaddressinstruction pass.
2177 unsigned DefIdx;
2178 if (MF->getProperties().hasProperty(
2179 MachineFunctionProperties::Property::TiedOpsRewritten) &&
2180 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
2181 Reg != MI->getOperand(DefIdx).getReg())
2182 report("Two-address instruction operands must be identical", MO, MONum);
2184 // Check register classes.
2185 unsigned SubIdx = MO->getSubReg();
2187 if (Reg.isPhysical()) {
2188 if (SubIdx) {
2189 report("Illegal subregister index for physical register", MO, MONum);
2190 return;
2192 if (MONum < MCID.getNumOperands()) {
2193 if (const TargetRegisterClass *DRC =
2194 TII->getRegClass(MCID, MONum, TRI, *MF)) {
2195 if (!DRC->contains(Reg)) {
2196 report("Illegal physical register for instruction", MO, MONum);
2197 errs() << printReg(Reg, TRI) << " is not a "
2198 << TRI->getRegClassName(DRC) << " register.\n";
2202 if (MO->isRenamable()) {
2203 if (MRI->isReserved(Reg)) {
2204 report("isRenamable set on reserved register", MO, MONum);
2205 return;
2208 } else {
2209 // Virtual register.
2210 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
2211 if (!RC) {
2212 // This is a generic virtual register.
2214 // Do not allow undef uses for generic virtual registers. This ensures
2215 // getVRegDef can never fail and return null on a generic register.
2217 // FIXME: This restriction should probably be broadened to all SSA
2218 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
2219 // run on the SSA function just before phi elimination.
2220 if (MO->isUndef())
2221 report("Generic virtual register use cannot be undef", MO, MONum);
2223 // Debug value instruction is permitted to use undefined vregs.
2224 // This is a performance measure to skip the overhead of immediately
2225 // pruning unused debug operands. The final undef substitution occurs
2226 // when debug values are allocated in LDVImpl::handleDebugValue, so
2227 // these verifications always apply after this pass.
2228 if (isFunctionTracksDebugUserValues || !MO->isUse() ||
2229 !MI->isDebugValue() || !MRI->def_empty(Reg)) {
2230 // If we're post-Select, we can't have gvregs anymore.
2231 if (isFunctionSelected) {
2232 report("Generic virtual register invalid in a Selected function",
2233 MO, MONum);
2234 return;
2237 // The gvreg must have a type and it must not have a SubIdx.
2238 LLT Ty = MRI->getType(Reg);
2239 if (!Ty.isValid()) {
2240 report("Generic virtual register must have a valid type", MO,
2241 MONum);
2242 return;
2245 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2246 const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo();
2248 // If we're post-RegBankSelect, the gvreg must have a bank.
2249 if (!RegBank && isFunctionRegBankSelected) {
2250 report("Generic virtual register must have a bank in a "
2251 "RegBankSelected function",
2252 MO, MONum);
2253 return;
2256 // Make sure the register fits into its register bank if any.
2257 if (RegBank && Ty.isValid() &&
2258 RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) {
2259 report("Register bank is too small for virtual register", MO,
2260 MONum);
2261 errs() << "Register bank " << RegBank->getName() << " too small("
2262 << RBI->getMaximumSize(RegBank->getID()) << ") to fit "
2263 << Ty.getSizeInBits() << "-bits\n";
2264 return;
2268 if (SubIdx) {
2269 report("Generic virtual register does not allow subregister index", MO,
2270 MONum);
2271 return;
2274 // If this is a target specific instruction and this operand
2275 // has register class constraint, the virtual register must
2276 // comply to it.
2277 if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2278 MONum < MCID.getNumOperands() &&
2279 TII->getRegClass(MCID, MONum, TRI, *MF)) {
2280 report("Virtual register does not match instruction constraint", MO,
2281 MONum);
2282 errs() << "Expect register class "
2283 << TRI->getRegClassName(
2284 TII->getRegClass(MCID, MONum, TRI, *MF))
2285 << " but got nothing\n";
2286 return;
2289 break;
2291 if (SubIdx) {
2292 const TargetRegisterClass *SRC =
2293 TRI->getSubClassWithSubReg(RC, SubIdx);
2294 if (!SRC) {
2295 report("Invalid subregister index for virtual register", MO, MONum);
2296 errs() << "Register class " << TRI->getRegClassName(RC)
2297 << " does not support subreg index " << SubIdx << "\n";
2298 return;
2300 if (RC != SRC) {
2301 report("Invalid register class for subregister index", MO, MONum);
2302 errs() << "Register class " << TRI->getRegClassName(RC)
2303 << " does not fully support subreg index " << SubIdx << "\n";
2304 return;
2307 if (MONum < MCID.getNumOperands()) {
2308 if (const TargetRegisterClass *DRC =
2309 TII->getRegClass(MCID, MONum, TRI, *MF)) {
2310 if (SubIdx) {
2311 const TargetRegisterClass *SuperRC =
2312 TRI->getLargestLegalSuperClass(RC, *MF);
2313 if (!SuperRC) {
2314 report("No largest legal super class exists.", MO, MONum);
2315 return;
2317 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2318 if (!DRC) {
2319 report("No matching super-reg register class.", MO, MONum);
2320 return;
2323 if (!RC->hasSuperClassEq(DRC)) {
2324 report("Illegal virtual register for instruction", MO, MONum);
2325 errs() << "Expected a " << TRI->getRegClassName(DRC)
2326 << " register, but got a " << TRI->getRegClassName(RC)
2327 << " register\n";
2332 break;
2335 case MachineOperand::MO_RegisterMask:
2336 regMasks.push_back(MO->getRegMask());
2337 break;
2339 case MachineOperand::MO_MachineBasicBlock:
2340 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2341 report("PHI operand is not in the CFG", MO, MONum);
2342 break;
2344 case MachineOperand::MO_FrameIndex:
2345 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2346 LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2347 int FI = MO->getIndex();
2348 LiveInterval &LI = LiveStks->getInterval(FI);
2349 SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2351 bool stores = MI->mayStore();
2352 bool loads = MI->mayLoad();
2353 // For a memory-to-memory move, we need to check if the frame
2354 // index is used for storing or loading, by inspecting the
2355 // memory operands.
2356 if (stores && loads) {
2357 for (auto *MMO : MI->memoperands()) {
2358 const PseudoSourceValue *PSV = MMO->getPseudoValue();
2359 if (PSV == nullptr) continue;
2360 const FixedStackPseudoSourceValue *Value =
2361 dyn_cast<FixedStackPseudoSourceValue>(PSV);
2362 if (Value == nullptr) continue;
2363 if (Value->getFrameIndex() != FI) continue;
2365 if (MMO->isStore())
2366 loads = false;
2367 else
2368 stores = false;
2369 break;
2371 if (loads == stores)
2372 report("Missing fixed stack memoperand.", MI);
2374 if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2375 report("Instruction loads from dead spill slot", MO, MONum);
2376 errs() << "Live stack: " << LI << '\n';
2378 if (stores && !LI.liveAt(Idx.getRegSlot())) {
2379 report("Instruction stores to dead spill slot", MO, MONum);
2380 errs() << "Live stack: " << LI << '\n';
2383 break;
2385 case MachineOperand::MO_CFIIndex:
2386 if (MO->getCFIIndex() >= MF->getFrameInstructions().size())
2387 report("CFI instruction has invalid index", MO, MONum);
2388 break;
2390 default:
2391 break;
2395 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2396 unsigned MONum, SlotIndex UseIdx,
2397 const LiveRange &LR,
2398 Register VRegOrUnit,
2399 LaneBitmask LaneMask) {
2400 const MachineInstr *MI = MO->getParent();
2401 LiveQueryResult LRQ = LR.Query(UseIdx);
2402 bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut());
2403 // Check if we have a segment at the use, note however that we only need one
2404 // live subregister range, the others may be dead.
2405 if (!HasValue && LaneMask.none()) {
2406 report("No live segment at use", MO, MONum);
2407 report_context_liverange(LR);
2408 report_context_vreg_regunit(VRegOrUnit);
2409 report_context(UseIdx);
2411 if (MO->isKill() && !LRQ.isKill()) {
2412 report("Live range continues after kill flag", MO, MONum);
2413 report_context_liverange(LR);
2414 report_context_vreg_regunit(VRegOrUnit);
2415 if (LaneMask.any())
2416 report_context_lanemask(LaneMask);
2417 report_context(UseIdx);
2421 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2422 unsigned MONum, SlotIndex DefIdx,
2423 const LiveRange &LR,
2424 Register VRegOrUnit,
2425 bool SubRangeCheck,
2426 LaneBitmask LaneMask) {
2427 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2428 // The LR can correspond to the whole reg and its def slot is not obliged
2429 // to be the same as the MO' def slot. E.g. when we check here "normal"
2430 // subreg MO but there is other EC subreg MO in the same instruction so the
2431 // whole reg has EC def slot and differs from the currently checked MO' def
2432 // slot. For example:
2433 // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r
2434 // Check that there is an early-clobber def of the same superregister
2435 // somewhere is performed in visitMachineFunctionAfter()
2436 if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) ||
2437 !SlotIndex::isSameInstr(VNI->def, DefIdx) ||
2438 (VNI->def != DefIdx &&
2439 (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) {
2440 report("Inconsistent valno->def", MO, MONum);
2441 report_context_liverange(LR);
2442 report_context_vreg_regunit(VRegOrUnit);
2443 if (LaneMask.any())
2444 report_context_lanemask(LaneMask);
2445 report_context(*VNI);
2446 report_context(DefIdx);
2448 } else {
2449 report("No live segment at def", MO, MONum);
2450 report_context_liverange(LR);
2451 report_context_vreg_regunit(VRegOrUnit);
2452 if (LaneMask.any())
2453 report_context_lanemask(LaneMask);
2454 report_context(DefIdx);
2456 // Check that, if the dead def flag is present, LiveInts agree.
2457 if (MO->isDead()) {
2458 LiveQueryResult LRQ = LR.Query(DefIdx);
2459 if (!LRQ.isDeadDef()) {
2460 assert(VRegOrUnit.isVirtual() && "Expecting a virtual register.");
2461 // A dead subreg def only tells us that the specific subreg is dead. There
2462 // could be other non-dead defs of other subregs, or we could have other
2463 // parts of the register being live through the instruction. So unless we
2464 // are checking liveness for a subrange it is ok for the live range to
2465 // continue, given that we have a dead def of a subregister.
2466 if (SubRangeCheck || MO->getSubReg() == 0) {
2467 report("Live range continues after dead def flag", MO, MONum);
2468 report_context_liverange(LR);
2469 report_context_vreg_regunit(VRegOrUnit);
2470 if (LaneMask.any())
2471 report_context_lanemask(LaneMask);
2477 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2478 const MachineInstr *MI = MO->getParent();
2479 const Register Reg = MO->getReg();
2480 const unsigned SubRegIdx = MO->getSubReg();
2482 const LiveInterval *LI = nullptr;
2483 if (LiveInts && Reg.isVirtual()) {
2484 if (LiveInts->hasInterval(Reg)) {
2485 LI = &LiveInts->getInterval(Reg);
2486 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() &&
2487 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg))
2488 report("Live interval for subreg operand has no subranges", MO, MONum);
2489 } else {
2490 report("Virtual register has no live interval", MO, MONum);
2494 // Both use and def operands can read a register.
2495 if (MO->readsReg()) {
2496 if (MO->isKill())
2497 addRegWithSubRegs(regsKilled, Reg);
2499 // Check that LiveVars knows this kill (unless we are inside a bundle, in
2500 // which case we have already checked that LiveVars knows any kills on the
2501 // bundle header instead).
2502 if (LiveVars && Reg.isVirtual() && MO->isKill() &&
2503 !MI->isBundledWithPred()) {
2504 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2505 if (!is_contained(VI.Kills, MI))
2506 report("Kill missing from LiveVariables", MO, MONum);
2509 // Check LiveInts liveness and kill.
2510 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2511 SlotIndex UseIdx;
2512 if (MI->isPHI()) {
2513 // PHI use occurs on the edge, so check for live out here instead.
2514 UseIdx = LiveInts->getMBBEndIdx(
2515 MI->getOperand(MONum + 1).getMBB()).getPrevSlot();
2516 } else {
2517 UseIdx = LiveInts->getInstructionIndex(*MI);
2519 // Check the cached regunit intervals.
2520 if (Reg.isPhysical() && !isReserved(Reg)) {
2521 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) {
2522 if (MRI->isReservedRegUnit(Unit))
2523 continue;
2524 if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit))
2525 checkLivenessAtUse(MO, MONum, UseIdx, *LR, Unit);
2529 if (Reg.isVirtual()) {
2530 // This is a virtual register interval.
2531 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg);
2533 if (LI->hasSubRanges() && !MO->isDef()) {
2534 LaneBitmask MOMask = SubRegIdx != 0
2535 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2536 : MRI->getMaxLaneMaskForVReg(Reg);
2537 LaneBitmask LiveInMask;
2538 for (const LiveInterval::SubRange &SR : LI->subranges()) {
2539 if ((MOMask & SR.LaneMask).none())
2540 continue;
2541 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2542 LiveQueryResult LRQ = SR.Query(UseIdx);
2543 if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()))
2544 LiveInMask |= SR.LaneMask;
2546 // At least parts of the register has to be live at the use.
2547 if ((LiveInMask & MOMask).none()) {
2548 report("No live subrange at use", MO, MONum);
2549 report_context(*LI);
2550 report_context(UseIdx);
2552 // For PHIs all lanes should be live
2553 if (MI->isPHI() && LiveInMask != MOMask) {
2554 report("Not all lanes of PHI source live at use", MO, MONum);
2555 report_context(*LI);
2556 report_context(UseIdx);
2562 // Use of a dead register.
2563 if (!regsLive.count(Reg)) {
2564 if (Reg.isPhysical()) {
2565 // Reserved registers may be used even when 'dead'.
2566 bool Bad = !isReserved(Reg);
2567 // We are fine if just any subregister has a defined value.
2568 if (Bad) {
2570 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2571 if (regsLive.count(SubReg)) {
2572 Bad = false;
2573 break;
2577 // If there is an additional implicit-use of a super register we stop
2578 // here. By definition we are fine if the super register is not
2579 // (completely) dead, if the complete super register is dead we will
2580 // get a report for its operand.
2581 if (Bad) {
2582 for (const MachineOperand &MOP : MI->uses()) {
2583 if (!MOP.isReg() || !MOP.isImplicit())
2584 continue;
2586 if (!MOP.getReg().isPhysical())
2587 continue;
2589 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2590 Bad = false;
2593 if (Bad)
2594 report("Using an undefined physical register", MO, MONum);
2595 } else if (MRI->def_empty(Reg)) {
2596 report("Reading virtual register without a def", MO, MONum);
2597 } else {
2598 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2599 // We don't know which virtual registers are live in, so only complain
2600 // if vreg was killed in this MBB. Otherwise keep track of vregs that
2601 // must be live in. PHI instructions are handled separately.
2602 if (MInfo.regsKilled.count(Reg))
2603 report("Using a killed virtual register", MO, MONum);
2604 else if (!MI->isPHI())
2605 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2610 if (MO->isDef()) {
2611 // Register defined.
2612 // TODO: verify that earlyclobber ops are not used.
2613 if (MO->isDead())
2614 addRegWithSubRegs(regsDead, Reg);
2615 else
2616 addRegWithSubRegs(regsDefined, Reg);
2618 // Verify SSA form.
2619 if (MRI->isSSA() && Reg.isVirtual() &&
2620 std::next(MRI->def_begin(Reg)) != MRI->def_end())
2621 report("Multiple virtual register defs in SSA form", MO, MONum);
2623 // Check LiveInts for a live segment, but only for virtual registers.
2624 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2625 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
2626 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
2628 if (Reg.isVirtual()) {
2629 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg);
2631 if (LI->hasSubRanges()) {
2632 LaneBitmask MOMask = SubRegIdx != 0
2633 ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2634 : MRI->getMaxLaneMaskForVReg(Reg);
2635 for (const LiveInterval::SubRange &SR : LI->subranges()) {
2636 if ((SR.LaneMask & MOMask).none())
2637 continue;
2638 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
2646 // This function gets called after visiting all instructions in a bundle. The
2647 // argument points to the bundle header.
2648 // Normal stand-alone instructions are also considered 'bundles', and this
2649 // function is called for all of them.
2650 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
2651 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2652 set_union(MInfo.regsKilled, regsKilled);
2653 set_subtract(regsLive, regsKilled); regsKilled.clear();
2654 // Kill any masked registers.
2655 while (!regMasks.empty()) {
2656 const uint32_t *Mask = regMasks.pop_back_val();
2657 for (Register Reg : regsLive)
2658 if (Reg.isPhysical() &&
2659 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
2660 regsDead.push_back(Reg);
2662 set_subtract(regsLive, regsDead); regsDead.clear();
2663 set_union(regsLive, regsDefined); regsDefined.clear();
2666 void
2667 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
2668 MBBInfoMap[MBB].regsLiveOut = regsLive;
2669 regsLive.clear();
2671 if (Indexes) {
2672 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
2673 if (!(stop > lastIndex)) {
2674 report("Block ends before last instruction index", MBB);
2675 errs() << "Block ends at " << stop
2676 << " last instruction was at " << lastIndex << '\n';
2678 lastIndex = stop;
2682 namespace {
2683 // This implements a set of registers that serves as a filter: can filter other
2684 // sets by passing through elements not in the filter and blocking those that
2685 // are. Any filter implicitly includes the full set of physical registers upon
2686 // creation, thus filtering them all out. The filter itself as a set only grows,
2687 // and needs to be as efficient as possible.
2688 struct VRegFilter {
2689 // Add elements to the filter itself. \pre Input set \p FromRegSet must have
2690 // no duplicates. Both virtual and physical registers are fine.
2691 template <typename RegSetT> void add(const RegSetT &FromRegSet) {
2692 SmallVector<Register, 0> VRegsBuffer;
2693 filterAndAdd(FromRegSet, VRegsBuffer);
2695 // Filter \p FromRegSet through the filter and append passed elements into \p
2696 // ToVRegs. All elements appended are then added to the filter itself.
2697 // \returns true if anything changed.
2698 template <typename RegSetT>
2699 bool filterAndAdd(const RegSetT &FromRegSet,
2700 SmallVectorImpl<Register> &ToVRegs) {
2701 unsigned SparseUniverse = Sparse.size();
2702 unsigned NewSparseUniverse = SparseUniverse;
2703 unsigned NewDenseSize = Dense.size();
2704 size_t Begin = ToVRegs.size();
2705 for (Register Reg : FromRegSet) {
2706 if (!Reg.isVirtual())
2707 continue;
2708 unsigned Index = Register::virtReg2Index(Reg);
2709 if (Index < SparseUniverseMax) {
2710 if (Index < SparseUniverse && Sparse.test(Index))
2711 continue;
2712 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
2713 } else {
2714 if (Dense.count(Reg))
2715 continue;
2716 ++NewDenseSize;
2718 ToVRegs.push_back(Reg);
2720 size_t End = ToVRegs.size();
2721 if (Begin == End)
2722 return false;
2723 // Reserving space in sets once performs better than doing so continuously
2724 // and pays easily for double look-ups (even in Dense with SparseUniverseMax
2725 // tuned all the way down) and double iteration (the second one is over a
2726 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
2727 Sparse.resize(NewSparseUniverse);
2728 Dense.reserve(NewDenseSize);
2729 for (unsigned I = Begin; I < End; ++I) {
2730 Register Reg = ToVRegs[I];
2731 unsigned Index = Register::virtReg2Index(Reg);
2732 if (Index < SparseUniverseMax)
2733 Sparse.set(Index);
2734 else
2735 Dense.insert(Reg);
2737 return true;
2740 private:
2741 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
2742 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
2743 // are tracked by Dense. The only purpose of the threashold and the Dense set
2744 // is to have a reasonably growing memory usage in pathological cases (large
2745 // number of very sparse VRegFilter instances live at the same time). In
2746 // practice even in the worst-by-execution time cases having all elements
2747 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
2748 // space efficient than if tracked by Dense. The threashold is set to keep the
2749 // worst-case memory usage within 2x of figures determined empirically for
2750 // "all Dense" scenario in such worst-by-execution-time cases.
2751 BitVector Sparse;
2752 DenseSet<unsigned> Dense;
2755 // Implements both a transfer function and a (binary, in-place) join operator
2756 // for a dataflow over register sets with set union join and filtering transfer
2757 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
2758 // Maintains out_b as its state, allowing for O(n) iteration over it at any
2759 // time, where n is the size of the set (as opposed to O(U) where U is the
2760 // universe). filter_b implicitly contains all physical registers at all times.
2761 class FilteringVRegSet {
2762 VRegFilter Filter;
2763 SmallVector<Register, 0> VRegs;
2765 public:
2766 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
2767 // Both virtual and physical registers are fine.
2768 template <typename RegSetT> void addToFilter(const RegSetT &RS) {
2769 Filter.add(RS);
2771 // Passes \p RS through the filter_b (transfer function) and adds what's left
2772 // to itself (out_b).
2773 template <typename RegSetT> bool add(const RegSetT &RS) {
2774 // Double-duty the Filter: to maintain VRegs a set (and the join operation
2775 // a set union) just add everything being added here to the Filter as well.
2776 return Filter.filterAndAdd(RS, VRegs);
2778 using const_iterator = decltype(VRegs)::const_iterator;
2779 const_iterator begin() const { return VRegs.begin(); }
2780 const_iterator end() const { return VRegs.end(); }
2781 size_t size() const { return VRegs.size(); }
2783 } // namespace
2785 // Calculate the largest possible vregsPassed sets. These are the registers that
2786 // can pass through an MBB live, but may not be live every time. It is assumed
2787 // that all vregsPassed sets are empty before the call.
2788 void MachineVerifier::calcRegsPassed() {
2789 if (MF->empty())
2790 // ReversePostOrderTraversal doesn't handle empty functions.
2791 return;
2793 for (const MachineBasicBlock *MB :
2794 ReversePostOrderTraversal<const MachineFunction *>(MF)) {
2795 FilteringVRegSet VRegs;
2796 BBInfo &Info = MBBInfoMap[MB];
2797 assert(Info.reachable);
2799 VRegs.addToFilter(Info.regsKilled);
2800 VRegs.addToFilter(Info.regsLiveOut);
2801 for (const MachineBasicBlock *Pred : MB->predecessors()) {
2802 const BBInfo &PredInfo = MBBInfoMap[Pred];
2803 if (!PredInfo.reachable)
2804 continue;
2806 VRegs.add(PredInfo.regsLiveOut);
2807 VRegs.add(PredInfo.vregsPassed);
2809 Info.vregsPassed.reserve(VRegs.size());
2810 Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
2814 // Calculate the set of virtual registers that must be passed through each basic
2815 // block in order to satisfy the requirements of successor blocks. This is very
2816 // similar to calcRegsPassed, only backwards.
2817 void MachineVerifier::calcRegsRequired() {
2818 // First push live-in regs to predecessors' vregsRequired.
2819 SmallPtrSet<const MachineBasicBlock*, 8> todo;
2820 for (const auto &MBB : *MF) {
2821 BBInfo &MInfo = MBBInfoMap[&MBB];
2822 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2823 BBInfo &PInfo = MBBInfoMap[Pred];
2824 if (PInfo.addRequired(MInfo.vregsLiveIn))
2825 todo.insert(Pred);
2828 // Handle the PHI node.
2829 for (const MachineInstr &MI : MBB.phis()) {
2830 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
2831 // Skip those Operands which are undef regs or not regs.
2832 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
2833 continue;
2835 // Get register and predecessor for one PHI edge.
2836 Register Reg = MI.getOperand(i).getReg();
2837 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
2839 BBInfo &PInfo = MBBInfoMap[Pred];
2840 if (PInfo.addRequired(Reg))
2841 todo.insert(Pred);
2846 // Iteratively push vregsRequired to predecessors. This will converge to the
2847 // same final state regardless of DenseSet iteration order.
2848 while (!todo.empty()) {
2849 const MachineBasicBlock *MBB = *todo.begin();
2850 todo.erase(MBB);
2851 BBInfo &MInfo = MBBInfoMap[MBB];
2852 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
2853 if (Pred == MBB)
2854 continue;
2855 BBInfo &SInfo = MBBInfoMap[Pred];
2856 if (SInfo.addRequired(MInfo.vregsRequired))
2857 todo.insert(Pred);
2862 // Check PHI instructions at the beginning of MBB. It is assumed that
2863 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
2864 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
2865 BBInfo &MInfo = MBBInfoMap[&MBB];
2867 SmallPtrSet<const MachineBasicBlock*, 8> seen;
2868 for (const MachineInstr &Phi : MBB) {
2869 if (!Phi.isPHI())
2870 break;
2871 seen.clear();
2873 const MachineOperand &MODef = Phi.getOperand(0);
2874 if (!MODef.isReg() || !MODef.isDef()) {
2875 report("Expected first PHI operand to be a register def", &MODef, 0);
2876 continue;
2878 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
2879 MODef.isEarlyClobber() || MODef.isDebug())
2880 report("Unexpected flag on PHI operand", &MODef, 0);
2881 Register DefReg = MODef.getReg();
2882 if (!DefReg.isVirtual())
2883 report("Expected first PHI operand to be a virtual register", &MODef, 0);
2885 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
2886 const MachineOperand &MO0 = Phi.getOperand(I);
2887 if (!MO0.isReg()) {
2888 report("Expected PHI operand to be a register", &MO0, I);
2889 continue;
2891 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
2892 MO0.isDebug() || MO0.isTied())
2893 report("Unexpected flag on PHI operand", &MO0, I);
2895 const MachineOperand &MO1 = Phi.getOperand(I + 1);
2896 if (!MO1.isMBB()) {
2897 report("Expected PHI operand to be a basic block", &MO1, I + 1);
2898 continue;
2901 const MachineBasicBlock &Pre = *MO1.getMBB();
2902 if (!Pre.isSuccessor(&MBB)) {
2903 report("PHI input is not a predecessor block", &MO1, I + 1);
2904 continue;
2907 if (MInfo.reachable) {
2908 seen.insert(&Pre);
2909 BBInfo &PrInfo = MBBInfoMap[&Pre];
2910 if (!MO0.isUndef() && PrInfo.reachable &&
2911 !PrInfo.isLiveOut(MO0.getReg()))
2912 report("PHI operand is not live-out from predecessor", &MO0, I);
2916 // Did we see all predecessors?
2917 if (MInfo.reachable) {
2918 for (MachineBasicBlock *Pred : MBB.predecessors()) {
2919 if (!seen.count(Pred)) {
2920 report("Missing PHI operand", &Phi);
2921 errs() << printMBBReference(*Pred)
2922 << " is a predecessor according to the CFG.\n";
2929 void MachineVerifier::visitMachineFunctionAfter() {
2930 calcRegsPassed();
2932 for (const MachineBasicBlock &MBB : *MF)
2933 checkPHIOps(MBB);
2935 // Now check liveness info if available
2936 calcRegsRequired();
2938 // Check for killed virtual registers that should be live out.
2939 for (const auto &MBB : *MF) {
2940 BBInfo &MInfo = MBBInfoMap[&MBB];
2941 for (Register VReg : MInfo.vregsRequired)
2942 if (MInfo.regsKilled.count(VReg)) {
2943 report("Virtual register killed in block, but needed live out.", &MBB);
2944 errs() << "Virtual register " << printReg(VReg)
2945 << " is used after the block.\n";
2949 if (!MF->empty()) {
2950 BBInfo &MInfo = MBBInfoMap[&MF->front()];
2951 for (Register VReg : MInfo.vregsRequired) {
2952 report("Virtual register defs don't dominate all uses.", MF);
2953 report_context_vreg(VReg);
2957 if (LiveVars)
2958 verifyLiveVariables();
2959 if (LiveInts)
2960 verifyLiveIntervals();
2962 // Check live-in list of each MBB. If a register is live into MBB, check
2963 // that the register is in regsLiveOut of each predecessor block. Since
2964 // this must come from a definition in the predecesssor or its live-in
2965 // list, this will catch a live-through case where the predecessor does not
2966 // have the register in its live-in list. This currently only checks
2967 // registers that have no aliases, are not allocatable and are not
2968 // reserved, which could mean a condition code register for instance.
2969 if (MRI->tracksLiveness())
2970 for (const auto &MBB : *MF)
2971 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
2972 MCPhysReg LiveInReg = P.PhysReg;
2973 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
2974 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
2975 continue;
2976 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
2977 BBInfo &PInfo = MBBInfoMap[Pred];
2978 if (!PInfo.regsLiveOut.count(LiveInReg)) {
2979 report("Live in register not found to be live out from predecessor.",
2980 &MBB);
2981 errs() << TRI->getName(LiveInReg)
2982 << " not found to be live out from "
2983 << printMBBReference(*Pred) << "\n";
2988 for (auto CSInfo : MF->getCallSitesInfo())
2989 if (!CSInfo.first->isCall())
2990 report("Call site info referencing instruction that is not call", MF);
2992 // If there's debug-info, check that we don't have any duplicate value
2993 // tracking numbers.
2994 if (MF->getFunction().getSubprogram()) {
2995 DenseSet<unsigned> SeenNumbers;
2996 for (const auto &MBB : *MF) {
2997 for (const auto &MI : MBB) {
2998 if (auto Num = MI.peekDebugInstrNum()) {
2999 auto Result = SeenNumbers.insert((unsigned)Num);
3000 if (!Result.second)
3001 report("Instruction has a duplicated value tracking number", &MI);
3008 void MachineVerifier::verifyLiveVariables() {
3009 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
3010 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
3011 Register Reg = Register::index2VirtReg(I);
3012 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
3013 for (const auto &MBB : *MF) {
3014 BBInfo &MInfo = MBBInfoMap[&MBB];
3016 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
3017 if (MInfo.vregsRequired.count(Reg)) {
3018 if (!VI.AliveBlocks.test(MBB.getNumber())) {
3019 report("LiveVariables: Block missing from AliveBlocks", &MBB);
3020 errs() << "Virtual register " << printReg(Reg)
3021 << " must be live through the block.\n";
3023 } else {
3024 if (VI.AliveBlocks.test(MBB.getNumber())) {
3025 report("LiveVariables: Block should not be in AliveBlocks", &MBB);
3026 errs() << "Virtual register " << printReg(Reg)
3027 << " is not needed live through the block.\n";
3034 void MachineVerifier::verifyLiveIntervals() {
3035 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
3036 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
3037 Register Reg = Register::index2VirtReg(I);
3039 // Spilling and splitting may leave unused registers around. Skip them.
3040 if (MRI->reg_nodbg_empty(Reg))
3041 continue;
3043 if (!LiveInts->hasInterval(Reg)) {
3044 report("Missing live interval for virtual register", MF);
3045 errs() << printReg(Reg, TRI) << " still has defs or uses\n";
3046 continue;
3049 const LiveInterval &LI = LiveInts->getInterval(Reg);
3050 assert(Reg == LI.reg() && "Invalid reg to interval mapping");
3051 verifyLiveInterval(LI);
3054 // Verify all the cached regunit intervals.
3055 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
3056 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
3057 verifyLiveRange(*LR, i);
3060 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
3061 const VNInfo *VNI, Register Reg,
3062 LaneBitmask LaneMask) {
3063 if (VNI->isUnused())
3064 return;
3066 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
3068 if (!DefVNI) {
3069 report("Value not live at VNInfo def and not marked unused", MF);
3070 report_context(LR, Reg, LaneMask);
3071 report_context(*VNI);
3072 return;
3075 if (DefVNI != VNI) {
3076 report("Live segment at def has different VNInfo", MF);
3077 report_context(LR, Reg, LaneMask);
3078 report_context(*VNI);
3079 return;
3082 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
3083 if (!MBB) {
3084 report("Invalid VNInfo definition index", MF);
3085 report_context(LR, Reg, LaneMask);
3086 report_context(*VNI);
3087 return;
3090 if (VNI->isPHIDef()) {
3091 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
3092 report("PHIDef VNInfo is not defined at MBB start", MBB);
3093 report_context(LR, Reg, LaneMask);
3094 report_context(*VNI);
3096 return;
3099 // Non-PHI def.
3100 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
3101 if (!MI) {
3102 report("No instruction at VNInfo def index", MBB);
3103 report_context(LR, Reg, LaneMask);
3104 report_context(*VNI);
3105 return;
3108 if (Reg != 0) {
3109 bool hasDef = false;
3110 bool isEarlyClobber = false;
3111 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3112 if (!MOI->isReg() || !MOI->isDef())
3113 continue;
3114 if (Reg.isVirtual()) {
3115 if (MOI->getReg() != Reg)
3116 continue;
3117 } else {
3118 if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg))
3119 continue;
3121 if (LaneMask.any() &&
3122 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
3123 continue;
3124 hasDef = true;
3125 if (MOI->isEarlyClobber())
3126 isEarlyClobber = true;
3129 if (!hasDef) {
3130 report("Defining instruction does not modify register", MI);
3131 report_context(LR, Reg, LaneMask);
3132 report_context(*VNI);
3135 // Early clobber defs begin at USE slots, but other defs must begin at
3136 // DEF slots.
3137 if (isEarlyClobber) {
3138 if (!VNI->def.isEarlyClobber()) {
3139 report("Early clobber def must be at an early-clobber slot", MBB);
3140 report_context(LR, Reg, LaneMask);
3141 report_context(*VNI);
3143 } else if (!VNI->def.isRegister()) {
3144 report("Non-PHI, non-early clobber def must be at a register slot", MBB);
3145 report_context(LR, Reg, LaneMask);
3146 report_context(*VNI);
3151 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
3152 const LiveRange::const_iterator I,
3153 Register Reg,
3154 LaneBitmask LaneMask) {
3155 const LiveRange::Segment &S = *I;
3156 const VNInfo *VNI = S.valno;
3157 assert(VNI && "Live segment has no valno");
3159 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
3160 report("Foreign valno in live segment", MF);
3161 report_context(LR, Reg, LaneMask);
3162 report_context(S);
3163 report_context(*VNI);
3166 if (VNI->isUnused()) {
3167 report("Live segment valno is marked unused", MF);
3168 report_context(LR, Reg, LaneMask);
3169 report_context(S);
3172 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
3173 if (!MBB) {
3174 report("Bad start of live segment, no basic block", MF);
3175 report_context(LR, Reg, LaneMask);
3176 report_context(S);
3177 return;
3179 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
3180 if (S.start != MBBStartIdx && S.start != VNI->def) {
3181 report("Live segment must begin at MBB entry or valno def", MBB);
3182 report_context(LR, Reg, LaneMask);
3183 report_context(S);
3186 const MachineBasicBlock *EndMBB =
3187 LiveInts->getMBBFromIndex(S.end.getPrevSlot());
3188 if (!EndMBB) {
3189 report("Bad end of live segment, no basic block", MF);
3190 report_context(LR, Reg, LaneMask);
3191 report_context(S);
3192 return;
3195 // Checks for non-live-out segments.
3196 if (S.end != LiveInts->getMBBEndIdx(EndMBB)) {
3197 // RegUnit intervals are allowed dead phis.
3198 if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def &&
3199 S.end == VNI->def.getDeadSlot())
3200 return;
3202 // The live segment is ending inside EndMBB
3203 const MachineInstr *MI =
3204 LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
3205 if (!MI) {
3206 report("Live segment doesn't end at a valid instruction", EndMBB);
3207 report_context(LR, Reg, LaneMask);
3208 report_context(S);
3209 return;
3212 // The block slot must refer to a basic block boundary.
3213 if (S.end.isBlock()) {
3214 report("Live segment ends at B slot of an instruction", EndMBB);
3215 report_context(LR, Reg, LaneMask);
3216 report_context(S);
3219 if (S.end.isDead()) {
3220 // Segment ends on the dead slot.
3221 // That means there must be a dead def.
3222 if (!SlotIndex::isSameInstr(S.start, S.end)) {
3223 report("Live segment ending at dead slot spans instructions", EndMBB);
3224 report_context(LR, Reg, LaneMask);
3225 report_context(S);
3229 // After tied operands are rewritten, a live segment can only end at an
3230 // early-clobber slot if it is being redefined by an early-clobber def.
3231 // TODO: Before tied operands are rewritten, a live segment can only end at
3232 // an early-clobber slot if the last use is tied to an early-clobber def.
3233 if (MF->getProperties().hasProperty(
3234 MachineFunctionProperties::Property::TiedOpsRewritten) &&
3235 S.end.isEarlyClobber()) {
3236 if (I + 1 == LR.end() || (I + 1)->start != S.end) {
3237 report("Live segment ending at early clobber slot must be "
3238 "redefined by an EC def in the same instruction",
3239 EndMBB);
3240 report_context(LR, Reg, LaneMask);
3241 report_context(S);
3245 // The following checks only apply to virtual registers. Physreg liveness
3246 // is too weird to check.
3247 if (Reg.isVirtual()) {
3248 // A live segment can end with either a redefinition, a kill flag on a
3249 // use, or a dead flag on a def.
3250 bool hasRead = false;
3251 bool hasSubRegDef = false;
3252 bool hasDeadDef = false;
3253 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3254 if (!MOI->isReg() || MOI->getReg() != Reg)
3255 continue;
3256 unsigned Sub = MOI->getSubReg();
3257 LaneBitmask SLM =
3258 Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll();
3259 if (MOI->isDef()) {
3260 if (Sub != 0) {
3261 hasSubRegDef = true;
3262 // An operand %0:sub0 reads %0:sub1..n. Invert the lane
3263 // mask for subregister defs. Read-undef defs will be handled by
3264 // readsReg below.
3265 SLM = ~SLM;
3267 if (MOI->isDead())
3268 hasDeadDef = true;
3270 if (LaneMask.any() && (LaneMask & SLM).none())
3271 continue;
3272 if (MOI->readsReg())
3273 hasRead = true;
3275 if (S.end.isDead()) {
3276 // Make sure that the corresponding machine operand for a "dead" live
3277 // range has the dead flag. We cannot perform this check for subregister
3278 // liveranges as partially dead values are allowed.
3279 if (LaneMask.none() && !hasDeadDef) {
3280 report(
3281 "Instruction ending live segment on dead slot has no dead flag",
3282 MI);
3283 report_context(LR, Reg, LaneMask);
3284 report_context(S);
3286 } else {
3287 if (!hasRead) {
3288 // When tracking subregister liveness, the main range must start new
3289 // values on partial register writes, even if there is no read.
3290 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3291 !hasSubRegDef) {
3292 report("Instruction ending live segment doesn't read the register",
3293 MI);
3294 report_context(LR, Reg, LaneMask);
3295 report_context(S);
3302 // Now check all the basic blocks in this live segment.
3303 MachineFunction::const_iterator MFI = MBB->getIterator();
3304 // Is this live segment the beginning of a non-PHIDef VN?
3305 if (S.start == VNI->def && !VNI->isPHIDef()) {
3306 // Not live-in to any blocks.
3307 if (MBB == EndMBB)
3308 return;
3309 // Skip this block.
3310 ++MFI;
3313 SmallVector<SlotIndex, 4> Undefs;
3314 if (LaneMask.any()) {
3315 LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3316 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3319 while (true) {
3320 assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3321 // We don't know how to track physregs into a landing pad.
3322 if (!Reg.isVirtual() && MFI->isEHPad()) {
3323 if (&*MFI == EndMBB)
3324 break;
3325 ++MFI;
3326 continue;
3329 // Is VNI a PHI-def in the current block?
3330 bool IsPHI = VNI->isPHIDef() &&
3331 VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3333 // Check that VNI is live-out of all predecessors.
3334 for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3335 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3336 // Predecessor of landing pad live-out on last call.
3337 if (MFI->isEHPad()) {
3338 for (const MachineInstr &MI : llvm::reverse(*Pred)) {
3339 if (MI.isCall()) {
3340 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
3341 break;
3345 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3347 // All predecessors must have a live-out value. However for a phi
3348 // instruction with subregister intervals
3349 // only one of the subregisters (not necessarily the current one) needs to
3350 // be defined.
3351 if (!PVNI && (LaneMask.none() || !IsPHI)) {
3352 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3353 continue;
3354 report("Register not marked live out of predecessor", Pred);
3355 report_context(LR, Reg, LaneMask);
3356 report_context(*VNI);
3357 errs() << " live into " << printMBBReference(*MFI) << '@'
3358 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3359 << PEnd << '\n';
3360 continue;
3363 // Only PHI-defs can take different predecessor values.
3364 if (!IsPHI && PVNI != VNI) {
3365 report("Different value live out of predecessor", Pred);
3366 report_context(LR, Reg, LaneMask);
3367 errs() << "Valno #" << PVNI->id << " live out of "
3368 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3369 << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3370 << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3373 if (&*MFI == EndMBB)
3374 break;
3375 ++MFI;
3379 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3380 LaneBitmask LaneMask) {
3381 for (const VNInfo *VNI : LR.valnos)
3382 verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3384 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3385 verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3388 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3389 Register Reg = LI.reg();
3390 assert(Reg.isVirtual());
3391 verifyLiveRange(LI, Reg);
3393 if (LI.hasSubRanges()) {
3394 LaneBitmask Mask;
3395 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3396 for (const LiveInterval::SubRange &SR : LI.subranges()) {
3397 if ((Mask & SR.LaneMask).any()) {
3398 report("Lane masks of sub ranges overlap in live interval", MF);
3399 report_context(LI);
3401 if ((SR.LaneMask & ~MaxMask).any()) {
3402 report("Subrange lanemask is invalid", MF);
3403 report_context(LI);
3405 if (SR.empty()) {
3406 report("Subrange must not be empty", MF);
3407 report_context(SR, LI.reg(), SR.LaneMask);
3409 Mask |= SR.LaneMask;
3410 verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3411 if (!LI.covers(SR)) {
3412 report("A Subrange is not covered by the main range", MF);
3413 report_context(LI);
3418 // Check the LI only has one connected component.
3419 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3420 unsigned NumComp = ConEQ.Classify(LI);
3421 if (NumComp > 1) {
3422 report("Multiple connected components in live interval", MF);
3423 report_context(LI);
3424 for (unsigned comp = 0; comp != NumComp; ++comp) {
3425 errs() << comp << ": valnos";
3426 for (const VNInfo *I : LI.valnos)
3427 if (comp == ConEQ.getEqClass(I))
3428 errs() << ' ' << I->id;
3429 errs() << '\n';
3434 namespace {
3436 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3437 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3438 // value is zero.
3439 // We use a bool plus an integer to capture the stack state.
3440 struct StackStateOfBB {
3441 StackStateOfBB() = default;
3442 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3443 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3444 ExitIsSetup(ExitSetup) {}
3446 // Can be negative, which means we are setting up a frame.
3447 int EntryValue = 0;
3448 int ExitValue = 0;
3449 bool EntryIsSetup = false;
3450 bool ExitIsSetup = false;
3453 } // end anonymous namespace
3455 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3456 /// by a FrameDestroy <n>, stack adjustments are identical on all
3457 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3458 void MachineVerifier::verifyStackFrame() {
3459 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode();
3460 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3461 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3462 return;
3464 SmallVector<StackStateOfBB, 8> SPState;
3465 SPState.resize(MF->getNumBlockIDs());
3466 df_iterator_default_set<const MachineBasicBlock*> Reachable;
3468 // Visit the MBBs in DFS order.
3469 for (df_ext_iterator<const MachineFunction *,
3470 df_iterator_default_set<const MachineBasicBlock *>>
3471 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3472 DFI != DFE; ++DFI) {
3473 const MachineBasicBlock *MBB = *DFI;
3475 StackStateOfBB BBState;
3476 // Check the exit state of the DFS stack predecessor.
3477 if (DFI.getPathLength() >= 2) {
3478 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3479 assert(Reachable.count(StackPred) &&
3480 "DFS stack predecessor is already visited.\n");
3481 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3482 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3483 BBState.ExitValue = BBState.EntryValue;
3484 BBState.ExitIsSetup = BBState.EntryIsSetup;
3487 if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) {
3488 report("Call frame size on entry does not match value computed from "
3489 "predecessor",
3490 MBB);
3491 errs() << "Call frame size on entry " << MBB->getCallFrameSize()
3492 << " does not match value computed from predecessor "
3493 << -BBState.EntryValue << '\n';
3496 // Update stack state by checking contents of MBB.
3497 for (const auto &I : *MBB) {
3498 if (I.getOpcode() == FrameSetupOpcode) {
3499 if (BBState.ExitIsSetup)
3500 report("FrameSetup is after another FrameSetup", &I);
3501 BBState.ExitValue -= TII->getFrameTotalSize(I);
3502 BBState.ExitIsSetup = true;
3505 if (I.getOpcode() == FrameDestroyOpcode) {
3506 int Size = TII->getFrameTotalSize(I);
3507 if (!BBState.ExitIsSetup)
3508 report("FrameDestroy is not after a FrameSetup", &I);
3509 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3510 BBState.ExitValue;
3511 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3512 report("FrameDestroy <n> is after FrameSetup <m>", &I);
3513 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3514 << AbsSPAdj << ">.\n";
3516 BBState.ExitValue += Size;
3517 BBState.ExitIsSetup = false;
3520 SPState[MBB->getNumber()] = BBState;
3522 // Make sure the exit state of any predecessor is consistent with the entry
3523 // state.
3524 for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3525 if (Reachable.count(Pred) &&
3526 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3527 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3528 report("The exit stack state of a predecessor is inconsistent.", MBB);
3529 errs() << "Predecessor " << printMBBReference(*Pred)
3530 << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3531 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3532 << printMBBReference(*MBB) << " has entry state ("
3533 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3537 // Make sure the entry state of any successor is consistent with the exit
3538 // state.
3539 for (const MachineBasicBlock *Succ : MBB->successors()) {
3540 if (Reachable.count(Succ) &&
3541 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3542 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3543 report("The entry stack state of a successor is inconsistent.", MBB);
3544 errs() << "Successor " << printMBBReference(*Succ)
3545 << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3546 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3547 << printMBBReference(*MBB) << " has exit state ("
3548 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3552 // Make sure a basic block with return ends with zero stack adjustment.
3553 if (!MBB->empty() && MBB->back().isReturn()) {
3554 if (BBState.ExitIsSetup)
3555 report("A return block ends with a FrameSetup.", MBB);
3556 if (BBState.ExitValue)
3557 report("A return block ends with a nonzero stack adjustment.", MBB);