Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / CodeGen / ModuloSchedule.cpp
blob0bef513342ff123b75863fa242c9a0b555b4b07d
1 //===- ModuloSchedule.cpp - Software pipeline schedule expansion ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/CodeGen/ModuloSchedule.h"
10 #include "llvm/ADT/StringExtras.h"
11 #include "llvm/Analysis/MemoryLocation.h"
12 #include "llvm/CodeGen/LiveIntervals.h"
13 #include "llvm/CodeGen/MachineInstrBuilder.h"
14 #include "llvm/CodeGen/MachineLoopInfo.h"
15 #include "llvm/CodeGen/MachineRegisterInfo.h"
16 #include "llvm/InitializePasses.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/Support/Debug.h"
19 #include "llvm/Support/ErrorHandling.h"
20 #include "llvm/Support/raw_ostream.h"
22 #define DEBUG_TYPE "pipeliner"
23 using namespace llvm;
25 void ModuloSchedule::print(raw_ostream &OS) {
26 for (MachineInstr *MI : ScheduledInstrs)
27 OS << "[stage " << getStage(MI) << " @" << getCycle(MI) << "c] " << *MI;
30 //===----------------------------------------------------------------------===//
31 // ModuloScheduleExpander implementation
32 //===----------------------------------------------------------------------===//
34 /// Return the register values for the operands of a Phi instruction.
35 /// This function assume the instruction is a Phi.
36 static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
37 unsigned &InitVal, unsigned &LoopVal) {
38 assert(Phi.isPHI() && "Expecting a Phi.");
40 InitVal = 0;
41 LoopVal = 0;
42 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
43 if (Phi.getOperand(i + 1).getMBB() != Loop)
44 InitVal = Phi.getOperand(i).getReg();
45 else
46 LoopVal = Phi.getOperand(i).getReg();
48 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
51 /// Return the Phi register value that comes from the incoming block.
52 static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
53 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
54 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
55 return Phi.getOperand(i).getReg();
56 return 0;
59 /// Return the Phi register value that comes the loop block.
60 static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
61 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
62 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
63 return Phi.getOperand(i).getReg();
64 return 0;
67 void ModuloScheduleExpander::expand() {
68 BB = Schedule.getLoop()->getTopBlock();
69 Preheader = *BB->pred_begin();
70 if (Preheader == BB)
71 Preheader = *std::next(BB->pred_begin());
73 // Iterate over the definitions in each instruction, and compute the
74 // stage difference for each use. Keep the maximum value.
75 for (MachineInstr *MI : Schedule.getInstructions()) {
76 int DefStage = Schedule.getStage(MI);
77 for (const MachineOperand &Op : MI->all_defs()) {
78 Register Reg = Op.getReg();
79 unsigned MaxDiff = 0;
80 bool PhiIsSwapped = false;
81 for (MachineOperand &UseOp : MRI.use_operands(Reg)) {
82 MachineInstr *UseMI = UseOp.getParent();
83 int UseStage = Schedule.getStage(UseMI);
84 unsigned Diff = 0;
85 if (UseStage != -1 && UseStage >= DefStage)
86 Diff = UseStage - DefStage;
87 if (MI->isPHI()) {
88 if (isLoopCarried(*MI))
89 ++Diff;
90 else
91 PhiIsSwapped = true;
93 MaxDiff = std::max(Diff, MaxDiff);
95 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
99 generatePipelinedLoop();
102 void ModuloScheduleExpander::generatePipelinedLoop() {
103 LoopInfo = TII->analyzeLoopForPipelining(BB);
104 assert(LoopInfo && "Must be able to analyze loop!");
106 // Create a new basic block for the kernel and add it to the CFG.
107 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
109 unsigned MaxStageCount = Schedule.getNumStages() - 1;
111 // Remember the registers that are used in different stages. The index is
112 // the iteration, or stage, that the instruction is scheduled in. This is
113 // a map between register names in the original block and the names created
114 // in each stage of the pipelined loop.
115 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
117 // The renaming destination by Phis for the registers across stages.
118 // This map is updated during Phis generation to point to the most recent
119 // renaming destination.
120 ValueMapTy *VRMapPhi = new ValueMapTy[(MaxStageCount + 1) * 2];
122 InstrMapTy InstrMap;
124 SmallVector<MachineBasicBlock *, 4> PrologBBs;
126 // Generate the prolog instructions that set up the pipeline.
127 generateProlog(MaxStageCount, KernelBB, VRMap, PrologBBs);
128 MF.insert(BB->getIterator(), KernelBB);
130 // Rearrange the instructions to generate the new, pipelined loop,
131 // and update register names as needed.
132 for (MachineInstr *CI : Schedule.getInstructions()) {
133 if (CI->isPHI())
134 continue;
135 unsigned StageNum = Schedule.getStage(CI);
136 MachineInstr *NewMI = cloneInstr(CI, MaxStageCount, StageNum);
137 updateInstruction(NewMI, false, MaxStageCount, StageNum, VRMap);
138 KernelBB->push_back(NewMI);
139 InstrMap[NewMI] = CI;
142 // Copy any terminator instructions to the new kernel, and update
143 // names as needed.
144 for (MachineInstr &MI : BB->terminators()) {
145 MachineInstr *NewMI = MF.CloneMachineInstr(&MI);
146 updateInstruction(NewMI, false, MaxStageCount, 0, VRMap);
147 KernelBB->push_back(NewMI);
148 InstrMap[NewMI] = &MI;
151 NewKernel = KernelBB;
152 KernelBB->transferSuccessors(BB);
153 KernelBB->replaceSuccessor(BB, KernelBB);
155 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap,
156 InstrMap, MaxStageCount, MaxStageCount, false);
157 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, VRMap, VRMapPhi,
158 InstrMap, MaxStageCount, MaxStageCount, false);
160 LLVM_DEBUG(dbgs() << "New block\n"; KernelBB->dump(););
162 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
163 // Generate the epilog instructions to complete the pipeline.
164 generateEpilog(MaxStageCount, KernelBB, BB, VRMap, VRMapPhi, EpilogBBs,
165 PrologBBs);
167 // We need this step because the register allocation doesn't handle some
168 // situations well, so we insert copies to help out.
169 splitLifetimes(KernelBB, EpilogBBs);
171 // Remove dead instructions due to loop induction variables.
172 removeDeadInstructions(KernelBB, EpilogBBs);
174 // Add branches between prolog and epilog blocks.
175 addBranches(*Preheader, PrologBBs, KernelBB, EpilogBBs, VRMap);
177 delete[] VRMap;
178 delete[] VRMapPhi;
181 void ModuloScheduleExpander::cleanup() {
182 // Remove the original loop since it's no longer referenced.
183 for (auto &I : *BB)
184 LIS.RemoveMachineInstrFromMaps(I);
185 BB->clear();
186 BB->eraseFromParent();
189 /// Generate the pipeline prolog code.
190 void ModuloScheduleExpander::generateProlog(unsigned LastStage,
191 MachineBasicBlock *KernelBB,
192 ValueMapTy *VRMap,
193 MBBVectorTy &PrologBBs) {
194 MachineBasicBlock *PredBB = Preheader;
195 InstrMapTy InstrMap;
197 // Generate a basic block for each stage, not including the last stage,
198 // which will be generated in the kernel. Each basic block may contain
199 // instructions from multiple stages/iterations.
200 for (unsigned i = 0; i < LastStage; ++i) {
201 // Create and insert the prolog basic block prior to the original loop
202 // basic block. The original loop is removed later.
203 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
204 PrologBBs.push_back(NewBB);
205 MF.insert(BB->getIterator(), NewBB);
206 NewBB->transferSuccessors(PredBB);
207 PredBB->addSuccessor(NewBB);
208 PredBB = NewBB;
210 // Generate instructions for each appropriate stage. Process instructions
211 // in original program order.
212 for (int StageNum = i; StageNum >= 0; --StageNum) {
213 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
214 BBE = BB->getFirstTerminator();
215 BBI != BBE; ++BBI) {
216 if (Schedule.getStage(&*BBI) == StageNum) {
217 if (BBI->isPHI())
218 continue;
219 MachineInstr *NewMI =
220 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum);
221 updateInstruction(NewMI, false, i, (unsigned)StageNum, VRMap);
222 NewBB->push_back(NewMI);
223 InstrMap[NewMI] = &*BBI;
227 rewritePhiValues(NewBB, i, VRMap, InstrMap);
228 LLVM_DEBUG({
229 dbgs() << "prolog:\n";
230 NewBB->dump();
234 PredBB->replaceSuccessor(BB, KernelBB);
236 // Check if we need to remove the branch from the preheader to the original
237 // loop, and replace it with a branch to the new loop.
238 unsigned numBranches = TII->removeBranch(*Preheader);
239 if (numBranches) {
240 SmallVector<MachineOperand, 0> Cond;
241 TII->insertBranch(*Preheader, PrologBBs[0], nullptr, Cond, DebugLoc());
245 /// Generate the pipeline epilog code. The epilog code finishes the iterations
246 /// that were started in either the prolog or the kernel. We create a basic
247 /// block for each stage that needs to complete.
248 void ModuloScheduleExpander::generateEpilog(
249 unsigned LastStage, MachineBasicBlock *KernelBB, MachineBasicBlock *OrigBB,
250 ValueMapTy *VRMap, ValueMapTy *VRMapPhi, MBBVectorTy &EpilogBBs,
251 MBBVectorTy &PrologBBs) {
252 // We need to change the branch from the kernel to the first epilog block, so
253 // this call to analyze branch uses the kernel rather than the original BB.
254 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
255 SmallVector<MachineOperand, 4> Cond;
256 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
257 assert(!checkBranch && "generateEpilog must be able to analyze the branch");
258 if (checkBranch)
259 return;
261 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
262 if (*LoopExitI == KernelBB)
263 ++LoopExitI;
264 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor");
265 MachineBasicBlock *LoopExitBB = *LoopExitI;
267 MachineBasicBlock *PredBB = KernelBB;
268 MachineBasicBlock *EpilogStart = LoopExitBB;
269 InstrMapTy InstrMap;
271 // Generate a basic block for each stage, not including the last stage,
272 // which was generated for the kernel. Each basic block may contain
273 // instructions from multiple stages/iterations.
274 int EpilogStage = LastStage + 1;
275 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
276 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
277 EpilogBBs.push_back(NewBB);
278 MF.insert(BB->getIterator(), NewBB);
280 PredBB->replaceSuccessor(LoopExitBB, NewBB);
281 NewBB->addSuccessor(LoopExitBB);
283 if (EpilogStart == LoopExitBB)
284 EpilogStart = NewBB;
286 // Add instructions to the epilog depending on the current block.
287 // Process instructions in original program order.
288 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
289 for (auto &BBI : *BB) {
290 if (BBI.isPHI())
291 continue;
292 MachineInstr *In = &BBI;
293 if ((unsigned)Schedule.getStage(In) == StageNum) {
294 // Instructions with memoperands in the epilog are updated with
295 // conservative values.
296 MachineInstr *NewMI = cloneInstr(In, UINT_MAX, 0);
297 updateInstruction(NewMI, i == 1, EpilogStage, 0, VRMap);
298 NewBB->push_back(NewMI);
299 InstrMap[NewMI] = In;
303 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap,
304 InstrMap, LastStage, EpilogStage, i == 1);
305 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, VRMap, VRMapPhi,
306 InstrMap, LastStage, EpilogStage, i == 1);
307 PredBB = NewBB;
309 LLVM_DEBUG({
310 dbgs() << "epilog:\n";
311 NewBB->dump();
315 // Fix any Phi nodes in the loop exit block.
316 LoopExitBB->replacePhiUsesWith(BB, PredBB);
318 // Create a branch to the new epilog from the kernel.
319 // Remove the original branch and add a new branch to the epilog.
320 TII->removeBranch(*KernelBB);
321 assert((OrigBB == TBB || OrigBB == FBB) &&
322 "Unable to determine looping branch direction");
323 if (OrigBB != TBB)
324 TII->insertBranch(*KernelBB, EpilogStart, KernelBB, Cond, DebugLoc());
325 else
326 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
327 // Add a branch to the loop exit.
328 if (EpilogBBs.size() > 0) {
329 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
330 SmallVector<MachineOperand, 4> Cond1;
331 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
335 /// Replace all uses of FromReg that appear outside the specified
336 /// basic block with ToReg.
337 static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
338 MachineBasicBlock *MBB,
339 MachineRegisterInfo &MRI,
340 LiveIntervals &LIS) {
341 for (MachineOperand &O :
342 llvm::make_early_inc_range(MRI.use_operands(FromReg)))
343 if (O.getParent()->getParent() != MBB)
344 O.setReg(ToReg);
345 if (!LIS.hasInterval(ToReg))
346 LIS.createEmptyInterval(ToReg);
349 /// Return true if the register has a use that occurs outside the
350 /// specified loop.
351 static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
352 MachineRegisterInfo &MRI) {
353 for (const MachineOperand &MO : MRI.use_operands(Reg))
354 if (MO.getParent()->getParent() != BB)
355 return true;
356 return false;
359 /// Generate Phis for the specific block in the generated pipelined code.
360 /// This function looks at the Phis from the original code to guide the
361 /// creation of new Phis.
362 void ModuloScheduleExpander::generateExistingPhis(
363 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
364 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, InstrMapTy &InstrMap,
365 unsigned LastStageNum, unsigned CurStageNum, bool IsLast) {
366 // Compute the stage number for the initial value of the Phi, which
367 // comes from the prolog. The prolog to use depends on to which kernel/
368 // epilog that we're adding the Phi.
369 unsigned PrologStage = 0;
370 unsigned PrevStage = 0;
371 bool InKernel = (LastStageNum == CurStageNum);
372 if (InKernel) {
373 PrologStage = LastStageNum - 1;
374 PrevStage = CurStageNum;
375 } else {
376 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
377 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
380 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
381 BBE = BB->getFirstNonPHI();
382 BBI != BBE; ++BBI) {
383 Register Def = BBI->getOperand(0).getReg();
385 unsigned InitVal = 0;
386 unsigned LoopVal = 0;
387 getPhiRegs(*BBI, BB, InitVal, LoopVal);
389 unsigned PhiOp1 = 0;
390 // The Phi value from the loop body typically is defined in the loop, but
391 // not always. So, we need to check if the value is defined in the loop.
392 unsigned PhiOp2 = LoopVal;
393 if (VRMap[LastStageNum].count(LoopVal))
394 PhiOp2 = VRMap[LastStageNum][LoopVal];
396 int StageScheduled = Schedule.getStage(&*BBI);
397 int LoopValStage = Schedule.getStage(MRI.getVRegDef(LoopVal));
398 unsigned NumStages = getStagesForReg(Def, CurStageNum);
399 if (NumStages == 0) {
400 // We don't need to generate a Phi anymore, but we need to rename any uses
401 // of the Phi value.
402 unsigned NewReg = VRMap[PrevStage][LoopVal];
403 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, 0, &*BBI, Def,
404 InitVal, NewReg);
405 if (VRMap[CurStageNum].count(LoopVal))
406 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
408 // Adjust the number of Phis needed depending on the number of prologs left,
409 // and the distance from where the Phi is first scheduled. The number of
410 // Phis cannot exceed the number of prolog stages. Each stage can
411 // potentially define two values.
412 unsigned MaxPhis = PrologStage + 2;
413 if (!InKernel && (int)PrologStage <= LoopValStage)
414 MaxPhis = std::max((int)MaxPhis - (int)LoopValStage, 1);
415 unsigned NumPhis = std::min(NumStages, MaxPhis);
417 unsigned NewReg = 0;
418 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
419 // In the epilog, we may need to look back one stage to get the correct
420 // Phi name, because the epilog and prolog blocks execute the same stage.
421 // The correct name is from the previous block only when the Phi has
422 // been completely scheduled prior to the epilog, and Phi value is not
423 // needed in multiple stages.
424 int StageDiff = 0;
425 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
426 NumPhis == 1)
427 StageDiff = 1;
428 // Adjust the computations below when the phi and the loop definition
429 // are scheduled in different stages.
430 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
431 StageDiff = StageScheduled - LoopValStage;
432 for (unsigned np = 0; np < NumPhis; ++np) {
433 // If the Phi hasn't been scheduled, then use the initial Phi operand
434 // value. Otherwise, use the scheduled version of the instruction. This
435 // is a little complicated when a Phi references another Phi.
436 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
437 PhiOp1 = InitVal;
438 // Check if the Phi has already been scheduled in a prolog stage.
439 else if (PrologStage >= AccessStage + StageDiff + np &&
440 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
441 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
442 // Check if the Phi has already been scheduled, but the loop instruction
443 // is either another Phi, or doesn't occur in the loop.
444 else if (PrologStage >= AccessStage + StageDiff + np) {
445 // If the Phi references another Phi, we need to examine the other
446 // Phi to get the correct value.
447 PhiOp1 = LoopVal;
448 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
449 int Indirects = 1;
450 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
451 int PhiStage = Schedule.getStage(InstOp1);
452 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
453 PhiOp1 = getInitPhiReg(*InstOp1, BB);
454 else
455 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
456 InstOp1 = MRI.getVRegDef(PhiOp1);
457 int PhiOpStage = Schedule.getStage(InstOp1);
458 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
459 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
460 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
461 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
462 break;
464 ++Indirects;
466 } else
467 PhiOp1 = InitVal;
468 // If this references a generated Phi in the kernel, get the Phi operand
469 // from the incoming block.
470 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
471 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
472 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
474 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
475 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
476 // In the epilog, a map lookup is needed to get the value from the kernel,
477 // or previous epilog block. How is does this depends on if the
478 // instruction is scheduled in the previous block.
479 if (!InKernel) {
480 int StageDiffAdj = 0;
481 if (LoopValStage != -1 && StageScheduled > LoopValStage)
482 StageDiffAdj = StageScheduled - LoopValStage;
483 // Use the loop value defined in the kernel, unless the kernel
484 // contains the last definition of the Phi.
485 if (np == 0 && PrevStage == LastStageNum &&
486 (StageScheduled != 0 || LoopValStage != 0) &&
487 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
488 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
489 // Use the value defined by the Phi. We add one because we switch
490 // from looking at the loop value to the Phi definition.
491 else if (np > 0 && PrevStage == LastStageNum &&
492 VRMap[PrevStage - np + 1].count(Def))
493 PhiOp2 = VRMap[PrevStage - np + 1][Def];
494 // Use the loop value defined in the kernel.
495 else if (static_cast<unsigned>(LoopValStage) > PrologStage + 1 &&
496 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
497 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
498 // Use the value defined by the Phi, unless we're generating the first
499 // epilog and the Phi refers to a Phi in a different stage.
500 else if (VRMap[PrevStage - np].count(Def) &&
501 (!LoopDefIsPhi || (PrevStage != LastStageNum) ||
502 (LoopValStage == StageScheduled)))
503 PhiOp2 = VRMap[PrevStage - np][Def];
506 // Check if we can reuse an existing Phi. This occurs when a Phi
507 // references another Phi, and the other Phi is scheduled in an
508 // earlier stage. We can try to reuse an existing Phi up until the last
509 // stage of the current Phi.
510 if (LoopDefIsPhi) {
511 if (static_cast<int>(PrologStage - np) >= StageScheduled) {
512 int LVNumStages = getStagesForPhi(LoopVal);
513 int StageDiff = (StageScheduled - LoopValStage);
514 LVNumStages -= StageDiff;
515 // Make sure the loop value Phi has been processed already.
516 if (LVNumStages > (int)np && VRMap[CurStageNum].count(LoopVal)) {
517 NewReg = PhiOp2;
518 unsigned ReuseStage = CurStageNum;
519 if (isLoopCarried(*PhiInst))
520 ReuseStage -= LVNumStages;
521 // Check if the Phi to reuse has been generated yet. If not, then
522 // there is nothing to reuse.
523 if (VRMap[ReuseStage - np].count(LoopVal)) {
524 NewReg = VRMap[ReuseStage - np][LoopVal];
526 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI,
527 Def, NewReg);
528 // Update the map with the new Phi name.
529 VRMap[CurStageNum - np][Def] = NewReg;
530 PhiOp2 = NewReg;
531 if (VRMap[LastStageNum - np - 1].count(LoopVal))
532 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
534 if (IsLast && np == NumPhis - 1)
535 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
536 continue;
540 if (InKernel && StageDiff > 0 &&
541 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
542 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
545 const TargetRegisterClass *RC = MRI.getRegClass(Def);
546 NewReg = MRI.createVirtualRegister(RC);
548 MachineInstrBuilder NewPhi =
549 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
550 TII->get(TargetOpcode::PHI), NewReg);
551 NewPhi.addReg(PhiOp1).addMBB(BB1);
552 NewPhi.addReg(PhiOp2).addMBB(BB2);
553 if (np == 0)
554 InstrMap[NewPhi] = &*BBI;
556 // We define the Phis after creating the new pipelined code, so
557 // we need to rename the Phi values in scheduled instructions.
559 unsigned PrevReg = 0;
560 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
561 PrevReg = VRMap[PrevStage - np][LoopVal];
562 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
563 NewReg, PrevReg);
564 // If the Phi has been scheduled, use the new name for rewriting.
565 if (VRMap[CurStageNum - np].count(Def)) {
566 unsigned R = VRMap[CurStageNum - np][Def];
567 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, R,
568 NewReg);
571 // Check if we need to rename any uses that occurs after the loop. The
572 // register to replace depends on whether the Phi is scheduled in the
573 // epilog.
574 if (IsLast && np == NumPhis - 1)
575 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
577 // In the kernel, a dependent Phi uses the value from this Phi.
578 if (InKernel)
579 PhiOp2 = NewReg;
581 // Update the map with the new Phi name.
582 VRMap[CurStageNum - np][Def] = NewReg;
585 while (NumPhis++ < NumStages) {
586 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, NumPhis, &*BBI, Def,
587 NewReg, 0);
590 // Check if we need to rename a Phi that has been eliminated due to
591 // scheduling.
592 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
593 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
597 /// Generate Phis for the specified block in the generated pipelined code.
598 /// These are new Phis needed because the definition is scheduled after the
599 /// use in the pipelined sequence.
600 void ModuloScheduleExpander::generatePhis(
601 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
602 MachineBasicBlock *KernelBB, ValueMapTy *VRMap, ValueMapTy *VRMapPhi,
603 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
604 bool IsLast) {
605 // Compute the stage number that contains the initial Phi value, and
606 // the Phi from the previous stage.
607 unsigned PrologStage = 0;
608 unsigned PrevStage = 0;
609 unsigned StageDiff = CurStageNum - LastStageNum;
610 bool InKernel = (StageDiff == 0);
611 if (InKernel) {
612 PrologStage = LastStageNum - 1;
613 PrevStage = CurStageNum;
614 } else {
615 PrologStage = LastStageNum - StageDiff;
616 PrevStage = LastStageNum + StageDiff - 1;
619 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
620 BBE = BB->instr_end();
621 BBI != BBE; ++BBI) {
622 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
623 MachineOperand &MO = BBI->getOperand(i);
624 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
625 continue;
627 int StageScheduled = Schedule.getStage(&*BBI);
628 assert(StageScheduled != -1 && "Expecting scheduled instruction.");
629 Register Def = MO.getReg();
630 unsigned NumPhis = getStagesForReg(Def, CurStageNum);
631 // An instruction scheduled in stage 0 and is used after the loop
632 // requires a phi in the epilog for the last definition from either
633 // the kernel or prolog.
634 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
635 hasUseAfterLoop(Def, BB, MRI))
636 NumPhis = 1;
637 if (!InKernel && (unsigned)StageScheduled > PrologStage)
638 continue;
640 unsigned PhiOp2;
641 if (InKernel) {
642 PhiOp2 = VRMap[PrevStage][Def];
643 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
644 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
645 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
647 // The number of Phis can't exceed the number of prolog stages. The
648 // prolog stage number is zero based.
649 if (NumPhis > PrologStage + 1 - StageScheduled)
650 NumPhis = PrologStage + 1 - StageScheduled;
651 for (unsigned np = 0; np < NumPhis; ++np) {
652 // Example for
653 // Org:
654 // %Org = ... (Scheduled at Stage#0, NumPhi = 2)
656 // Prolog0 (Stage0):
657 // %Clone0 = ...
658 // Prolog1 (Stage1):
659 // %Clone1 = ...
660 // Kernel (Stage2):
661 // %Phi0 = Phi %Clone1, Prolog1, %Clone2, Kernel
662 // %Phi1 = Phi %Clone0, Prolog1, %Phi0, Kernel
663 // %Clone2 = ...
664 // Epilog0 (Stage3):
665 // %Phi2 = Phi %Clone1, Prolog1, %Clone2, Kernel
666 // %Phi3 = Phi %Clone0, Prolog1, %Phi0, Kernel
667 // Epilog1 (Stage4):
668 // %Phi4 = Phi %Clone0, Prolog0, %Phi2, Epilog0
670 // VRMap = {0: %Clone0, 1: %Clone1, 2: %Clone2}
671 // VRMapPhi (after Kernel) = {0: %Phi1, 1: %Phi0}
672 // VRMapPhi (after Epilog0) = {0: %Phi3, 1: %Phi2}
674 unsigned PhiOp1 = VRMap[PrologStage][Def];
675 if (np <= PrologStage)
676 PhiOp1 = VRMap[PrologStage - np][Def];
677 if (!InKernel) {
678 if (PrevStage == LastStageNum && np == 0)
679 PhiOp2 = VRMap[LastStageNum][Def];
680 else
681 PhiOp2 = VRMapPhi[PrevStage - np][Def];
684 const TargetRegisterClass *RC = MRI.getRegClass(Def);
685 Register NewReg = MRI.createVirtualRegister(RC);
687 MachineInstrBuilder NewPhi =
688 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
689 TII->get(TargetOpcode::PHI), NewReg);
690 NewPhi.addReg(PhiOp1).addMBB(BB1);
691 NewPhi.addReg(PhiOp2).addMBB(BB2);
692 if (np == 0)
693 InstrMap[NewPhi] = &*BBI;
695 // Rewrite uses and update the map. The actions depend upon whether
696 // we generating code for the kernel or epilog blocks.
697 if (InKernel) {
698 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp1,
699 NewReg);
700 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, PhiOp2,
701 NewReg);
703 PhiOp2 = NewReg;
704 VRMapPhi[PrevStage - np - 1][Def] = NewReg;
705 } else {
706 VRMapPhi[CurStageNum - np][Def] = NewReg;
707 if (np == NumPhis - 1)
708 rewriteScheduledInstr(NewBB, InstrMap, CurStageNum, np, &*BBI, Def,
709 NewReg);
711 if (IsLast && np == NumPhis - 1)
712 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
718 /// Remove instructions that generate values with no uses.
719 /// Typically, these are induction variable operations that generate values
720 /// used in the loop itself. A dead instruction has a definition with
721 /// no uses, or uses that occur in the original loop only.
722 void ModuloScheduleExpander::removeDeadInstructions(MachineBasicBlock *KernelBB,
723 MBBVectorTy &EpilogBBs) {
724 // For each epilog block, check that the value defined by each instruction
725 // is used. If not, delete it.
726 for (MachineBasicBlock *MBB : llvm::reverse(EpilogBBs))
727 for (MachineBasicBlock::reverse_instr_iterator MI = MBB->instr_rbegin(),
728 ME = MBB->instr_rend();
729 MI != ME;) {
730 // From DeadMachineInstructionElem. Don't delete inline assembly.
731 if (MI->isInlineAsm()) {
732 ++MI;
733 continue;
735 bool SawStore = false;
736 // Check if it's safe to remove the instruction due to side effects.
737 // We can, and want to, remove Phis here.
738 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
739 ++MI;
740 continue;
742 bool used = true;
743 for (const MachineOperand &MO : MI->all_defs()) {
744 Register reg = MO.getReg();
745 // Assume physical registers are used, unless they are marked dead.
746 if (reg.isPhysical()) {
747 used = !MO.isDead();
748 if (used)
749 break;
750 continue;
752 unsigned realUses = 0;
753 for (const MachineOperand &U : MRI.use_operands(reg)) {
754 // Check if there are any uses that occur only in the original
755 // loop. If so, that's not a real use.
756 if (U.getParent()->getParent() != BB) {
757 realUses++;
758 used = true;
759 break;
762 if (realUses > 0)
763 break;
764 used = false;
766 if (!used) {
767 LIS.RemoveMachineInstrFromMaps(*MI);
768 MI++->eraseFromParent();
769 continue;
771 ++MI;
773 // In the kernel block, check if we can remove a Phi that generates a value
774 // used in an instruction removed in the epilog block.
775 for (MachineInstr &MI : llvm::make_early_inc_range(KernelBB->phis())) {
776 Register reg = MI.getOperand(0).getReg();
777 if (MRI.use_begin(reg) == MRI.use_end()) {
778 LIS.RemoveMachineInstrFromMaps(MI);
779 MI.eraseFromParent();
784 /// For loop carried definitions, we split the lifetime of a virtual register
785 /// that has uses past the definition in the next iteration. A copy with a new
786 /// virtual register is inserted before the definition, which helps with
787 /// generating a better register assignment.
789 /// v1 = phi(a, v2) v1 = phi(a, v2)
790 /// v2 = phi(b, v3) v2 = phi(b, v3)
791 /// v3 = .. v4 = copy v1
792 /// .. = V1 v3 = ..
793 /// .. = v4
794 void ModuloScheduleExpander::splitLifetimes(MachineBasicBlock *KernelBB,
795 MBBVectorTy &EpilogBBs) {
796 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
797 for (auto &PHI : KernelBB->phis()) {
798 Register Def = PHI.getOperand(0).getReg();
799 // Check for any Phi definition that used as an operand of another Phi
800 // in the same block.
801 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
802 E = MRI.use_instr_end();
803 I != E; ++I) {
804 if (I->isPHI() && I->getParent() == KernelBB) {
805 // Get the loop carried definition.
806 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
807 if (!LCDef)
808 continue;
809 MachineInstr *MI = MRI.getVRegDef(LCDef);
810 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
811 continue;
812 // Search through the rest of the block looking for uses of the Phi
813 // definition. If one occurs, then split the lifetime.
814 unsigned SplitReg = 0;
815 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
816 KernelBB->instr_end()))
817 if (BBJ.readsRegister(Def)) {
818 // We split the lifetime when we find the first use.
819 if (SplitReg == 0) {
820 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
821 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
822 TII->get(TargetOpcode::COPY), SplitReg)
823 .addReg(Def);
825 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
827 if (!SplitReg)
828 continue;
829 // Search through each of the epilog blocks for any uses to be renamed.
830 for (auto &Epilog : EpilogBBs)
831 for (auto &I : *Epilog)
832 if (I.readsRegister(Def))
833 I.substituteRegister(Def, SplitReg, 0, *TRI);
834 break;
840 /// Remove the incoming block from the Phis in a basic block.
841 static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
842 for (MachineInstr &MI : *BB) {
843 if (!MI.isPHI())
844 break;
845 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
846 if (MI.getOperand(i + 1).getMBB() == Incoming) {
847 MI.removeOperand(i + 1);
848 MI.removeOperand(i);
849 break;
854 /// Create branches from each prolog basic block to the appropriate epilog
855 /// block. These edges are needed if the loop ends before reaching the
856 /// kernel.
857 void ModuloScheduleExpander::addBranches(MachineBasicBlock &PreheaderBB,
858 MBBVectorTy &PrologBBs,
859 MachineBasicBlock *KernelBB,
860 MBBVectorTy &EpilogBBs,
861 ValueMapTy *VRMap) {
862 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch");
863 MachineBasicBlock *LastPro = KernelBB;
864 MachineBasicBlock *LastEpi = KernelBB;
866 // Start from the blocks connected to the kernel and work "out"
867 // to the first prolog and the last epilog blocks.
868 SmallVector<MachineInstr *, 4> PrevInsts;
869 unsigned MaxIter = PrologBBs.size() - 1;
870 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
871 // Add branches to the prolog that go to the corresponding
872 // epilog, and the fall-thru prolog/kernel block.
873 MachineBasicBlock *Prolog = PrologBBs[j];
874 MachineBasicBlock *Epilog = EpilogBBs[i];
876 SmallVector<MachineOperand, 4> Cond;
877 std::optional<bool> StaticallyGreater =
878 LoopInfo->createTripCountGreaterCondition(j + 1, *Prolog, Cond);
879 unsigned numAdded = 0;
880 if (!StaticallyGreater) {
881 Prolog->addSuccessor(Epilog);
882 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
883 } else if (*StaticallyGreater == false) {
884 Prolog->addSuccessor(Epilog);
885 Prolog->removeSuccessor(LastPro);
886 LastEpi->removeSuccessor(Epilog);
887 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
888 removePhis(Epilog, LastEpi);
889 // Remove the blocks that are no longer referenced.
890 if (LastPro != LastEpi) {
891 LastEpi->clear();
892 LastEpi->eraseFromParent();
894 if (LastPro == KernelBB) {
895 LoopInfo->disposed();
896 NewKernel = nullptr;
898 LastPro->clear();
899 LastPro->eraseFromParent();
900 } else {
901 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
902 removePhis(Epilog, Prolog);
904 LastPro = Prolog;
905 LastEpi = Epilog;
906 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
907 E = Prolog->instr_rend();
908 I != E && numAdded > 0; ++I, --numAdded)
909 updateInstruction(&*I, false, j, 0, VRMap);
912 if (NewKernel) {
913 LoopInfo->setPreheader(PrologBBs[MaxIter]);
914 LoopInfo->adjustTripCount(-(MaxIter + 1));
918 /// Return true if we can compute the amount the instruction changes
919 /// during each iteration. Set Delta to the amount of the change.
920 bool ModuloScheduleExpander::computeDelta(MachineInstr &MI, unsigned &Delta) {
921 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
922 const MachineOperand *BaseOp;
923 int64_t Offset;
924 bool OffsetIsScalable;
925 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
926 return false;
928 // FIXME: This algorithm assumes instructions have fixed-size offsets.
929 if (OffsetIsScalable)
930 return false;
932 if (!BaseOp->isReg())
933 return false;
935 Register BaseReg = BaseOp->getReg();
937 MachineRegisterInfo &MRI = MF.getRegInfo();
938 // Check if there is a Phi. If so, get the definition in the loop.
939 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
940 if (BaseDef && BaseDef->isPHI()) {
941 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
942 BaseDef = MRI.getVRegDef(BaseReg);
944 if (!BaseDef)
945 return false;
947 int D = 0;
948 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
949 return false;
951 Delta = D;
952 return true;
955 /// Update the memory operand with a new offset when the pipeliner
956 /// generates a new copy of the instruction that refers to a
957 /// different memory location.
958 void ModuloScheduleExpander::updateMemOperands(MachineInstr &NewMI,
959 MachineInstr &OldMI,
960 unsigned Num) {
961 if (Num == 0)
962 return;
963 // If the instruction has memory operands, then adjust the offset
964 // when the instruction appears in different stages.
965 if (NewMI.memoperands_empty())
966 return;
967 SmallVector<MachineMemOperand *, 2> NewMMOs;
968 for (MachineMemOperand *MMO : NewMI.memoperands()) {
969 // TODO: Figure out whether isAtomic is really necessary (see D57601).
970 if (MMO->isVolatile() || MMO->isAtomic() ||
971 (MMO->isInvariant() && MMO->isDereferenceable()) ||
972 (!MMO->getValue())) {
973 NewMMOs.push_back(MMO);
974 continue;
976 unsigned Delta;
977 if (Num != UINT_MAX && computeDelta(OldMI, Delta)) {
978 int64_t AdjOffset = Delta * Num;
979 NewMMOs.push_back(
980 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize()));
981 } else {
982 NewMMOs.push_back(
983 MF.getMachineMemOperand(MMO, 0, MemoryLocation::UnknownSize));
986 NewMI.setMemRefs(MF, NewMMOs);
989 /// Clone the instruction for the new pipelined loop and update the
990 /// memory operands, if needed.
991 MachineInstr *ModuloScheduleExpander::cloneInstr(MachineInstr *OldMI,
992 unsigned CurStageNum,
993 unsigned InstStageNum) {
994 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
995 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
996 return NewMI;
999 /// Clone the instruction for the new pipelined loop. If needed, this
1000 /// function updates the instruction using the values saved in the
1001 /// InstrChanges structure.
1002 MachineInstr *ModuloScheduleExpander::cloneAndChangeInstr(
1003 MachineInstr *OldMI, unsigned CurStageNum, unsigned InstStageNum) {
1004 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
1005 auto It = InstrChanges.find(OldMI);
1006 if (It != InstrChanges.end()) {
1007 std::pair<unsigned, int64_t> RegAndOffset = It->second;
1008 unsigned BasePos, OffsetPos;
1009 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
1010 return nullptr;
1011 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
1012 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
1013 if (Schedule.getStage(LoopDef) > (signed)InstStageNum)
1014 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
1015 NewMI->getOperand(OffsetPos).setImm(NewOffset);
1017 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
1018 return NewMI;
1021 /// Update the machine instruction with new virtual registers. This
1022 /// function may change the definitions and/or uses.
1023 void ModuloScheduleExpander::updateInstruction(MachineInstr *NewMI,
1024 bool LastDef,
1025 unsigned CurStageNum,
1026 unsigned InstrStageNum,
1027 ValueMapTy *VRMap) {
1028 for (MachineOperand &MO : NewMI->operands()) {
1029 if (!MO.isReg() || !MO.getReg().isVirtual())
1030 continue;
1031 Register reg = MO.getReg();
1032 if (MO.isDef()) {
1033 // Create a new virtual register for the definition.
1034 const TargetRegisterClass *RC = MRI.getRegClass(reg);
1035 Register NewReg = MRI.createVirtualRegister(RC);
1036 MO.setReg(NewReg);
1037 VRMap[CurStageNum][reg] = NewReg;
1038 if (LastDef)
1039 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
1040 } else if (MO.isUse()) {
1041 MachineInstr *Def = MRI.getVRegDef(reg);
1042 // Compute the stage that contains the last definition for instruction.
1043 int DefStageNum = Schedule.getStage(Def);
1044 unsigned StageNum = CurStageNum;
1045 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
1046 // Compute the difference in stages between the defintion and the use.
1047 unsigned StageDiff = (InstrStageNum - DefStageNum);
1048 // Make an adjustment to get the last definition.
1049 StageNum -= StageDiff;
1051 if (VRMap[StageNum].count(reg))
1052 MO.setReg(VRMap[StageNum][reg]);
1057 /// Return the instruction in the loop that defines the register.
1058 /// If the definition is a Phi, then follow the Phi operand to
1059 /// the instruction in the loop.
1060 MachineInstr *ModuloScheduleExpander::findDefInLoop(unsigned Reg) {
1061 SmallPtrSet<MachineInstr *, 8> Visited;
1062 MachineInstr *Def = MRI.getVRegDef(Reg);
1063 while (Def->isPHI()) {
1064 if (!Visited.insert(Def).second)
1065 break;
1066 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
1067 if (Def->getOperand(i + 1).getMBB() == BB) {
1068 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
1069 break;
1072 return Def;
1075 /// Return the new name for the value from the previous stage.
1076 unsigned ModuloScheduleExpander::getPrevMapVal(
1077 unsigned StageNum, unsigned PhiStage, unsigned LoopVal, unsigned LoopStage,
1078 ValueMapTy *VRMap, MachineBasicBlock *BB) {
1079 unsigned PrevVal = 0;
1080 if (StageNum > PhiStage) {
1081 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
1082 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
1083 // The name is defined in the previous stage.
1084 PrevVal = VRMap[StageNum - 1][LoopVal];
1085 else if (VRMap[StageNum].count(LoopVal))
1086 // The previous name is defined in the current stage when the instruction
1087 // order is swapped.
1088 PrevVal = VRMap[StageNum][LoopVal];
1089 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
1090 // The loop value hasn't yet been scheduled.
1091 PrevVal = LoopVal;
1092 else if (StageNum == PhiStage + 1)
1093 // The loop value is another phi, which has not been scheduled.
1094 PrevVal = getInitPhiReg(*LoopInst, BB);
1095 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
1096 // The loop value is another phi, which has been scheduled.
1097 PrevVal =
1098 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
1099 LoopStage, VRMap, BB);
1101 return PrevVal;
1104 /// Rewrite the Phi values in the specified block to use the mappings
1105 /// from the initial operand. Once the Phi is scheduled, we switch
1106 /// to using the loop value instead of the Phi value, so those names
1107 /// do not need to be rewritten.
1108 void ModuloScheduleExpander::rewritePhiValues(MachineBasicBlock *NewBB,
1109 unsigned StageNum,
1110 ValueMapTy *VRMap,
1111 InstrMapTy &InstrMap) {
1112 for (auto &PHI : BB->phis()) {
1113 unsigned InitVal = 0;
1114 unsigned LoopVal = 0;
1115 getPhiRegs(PHI, BB, InitVal, LoopVal);
1116 Register PhiDef = PHI.getOperand(0).getReg();
1118 unsigned PhiStage = (unsigned)Schedule.getStage(MRI.getVRegDef(PhiDef));
1119 unsigned LoopStage = (unsigned)Schedule.getStage(MRI.getVRegDef(LoopVal));
1120 unsigned NumPhis = getStagesForPhi(PhiDef);
1121 if (NumPhis > StageNum)
1122 NumPhis = StageNum;
1123 for (unsigned np = 0; np <= NumPhis; ++np) {
1124 unsigned NewVal =
1125 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
1126 if (!NewVal)
1127 NewVal = InitVal;
1128 rewriteScheduledInstr(NewBB, InstrMap, StageNum - np, np, &PHI, PhiDef,
1129 NewVal);
1134 /// Rewrite a previously scheduled instruction to use the register value
1135 /// from the new instruction. Make sure the instruction occurs in the
1136 /// basic block, and we don't change the uses in the new instruction.
1137 void ModuloScheduleExpander::rewriteScheduledInstr(
1138 MachineBasicBlock *BB, InstrMapTy &InstrMap, unsigned CurStageNum,
1139 unsigned PhiNum, MachineInstr *Phi, unsigned OldReg, unsigned NewReg,
1140 unsigned PrevReg) {
1141 bool InProlog = (CurStageNum < (unsigned)Schedule.getNumStages() - 1);
1142 int StagePhi = Schedule.getStage(Phi) + PhiNum;
1143 // Rewrite uses that have been scheduled already to use the new
1144 // Phi register.
1145 for (MachineOperand &UseOp :
1146 llvm::make_early_inc_range(MRI.use_operands(OldReg))) {
1147 MachineInstr *UseMI = UseOp.getParent();
1148 if (UseMI->getParent() != BB)
1149 continue;
1150 if (UseMI->isPHI()) {
1151 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
1152 continue;
1153 if (getLoopPhiReg(*UseMI, BB) != OldReg)
1154 continue;
1156 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
1157 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.");
1158 MachineInstr *OrigMI = OrigInstr->second;
1159 int StageSched = Schedule.getStage(OrigMI);
1160 int CycleSched = Schedule.getCycle(OrigMI);
1161 unsigned ReplaceReg = 0;
1162 // This is the stage for the scheduled instruction.
1163 if (StagePhi == StageSched && Phi->isPHI()) {
1164 int CyclePhi = Schedule.getCycle(Phi);
1165 if (PrevReg && InProlog)
1166 ReplaceReg = PrevReg;
1167 else if (PrevReg && !isLoopCarried(*Phi) &&
1168 (CyclePhi <= CycleSched || OrigMI->isPHI()))
1169 ReplaceReg = PrevReg;
1170 else
1171 ReplaceReg = NewReg;
1173 // The scheduled instruction occurs before the scheduled Phi, and the
1174 // Phi is not loop carried.
1175 if (!InProlog && StagePhi + 1 == StageSched && !isLoopCarried(*Phi))
1176 ReplaceReg = NewReg;
1177 if (StagePhi > StageSched && Phi->isPHI())
1178 ReplaceReg = NewReg;
1179 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
1180 ReplaceReg = NewReg;
1181 if (ReplaceReg) {
1182 const TargetRegisterClass *NRC =
1183 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
1184 if (NRC)
1185 UseOp.setReg(ReplaceReg);
1186 else {
1187 Register SplitReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
1188 BuildMI(*BB, UseMI, UseMI->getDebugLoc(), TII->get(TargetOpcode::COPY),
1189 SplitReg)
1190 .addReg(ReplaceReg);
1191 UseOp.setReg(SplitReg);
1197 bool ModuloScheduleExpander::isLoopCarried(MachineInstr &Phi) {
1198 if (!Phi.isPHI())
1199 return false;
1200 int DefCycle = Schedule.getCycle(&Phi);
1201 int DefStage = Schedule.getStage(&Phi);
1203 unsigned InitVal = 0;
1204 unsigned LoopVal = 0;
1205 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
1206 MachineInstr *Use = MRI.getVRegDef(LoopVal);
1207 if (!Use || Use->isPHI())
1208 return true;
1209 int LoopCycle = Schedule.getCycle(Use);
1210 int LoopStage = Schedule.getStage(Use);
1211 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
1214 //===----------------------------------------------------------------------===//
1215 // PeelingModuloScheduleExpander implementation
1216 //===----------------------------------------------------------------------===//
1217 // This is a reimplementation of ModuloScheduleExpander that works by creating
1218 // a fully correct steady-state kernel and peeling off the prolog and epilogs.
1219 //===----------------------------------------------------------------------===//
1221 namespace {
1222 // Remove any dead phis in MBB. Dead phis either have only one block as input
1223 // (in which case they are the identity) or have no uses.
1224 void EliminateDeadPhis(MachineBasicBlock *MBB, MachineRegisterInfo &MRI,
1225 LiveIntervals *LIS, bool KeepSingleSrcPhi = false) {
1226 bool Changed = true;
1227 while (Changed) {
1228 Changed = false;
1229 for (MachineInstr &MI : llvm::make_early_inc_range(MBB->phis())) {
1230 assert(MI.isPHI());
1231 if (MRI.use_empty(MI.getOperand(0).getReg())) {
1232 if (LIS)
1233 LIS->RemoveMachineInstrFromMaps(MI);
1234 MI.eraseFromParent();
1235 Changed = true;
1236 } else if (!KeepSingleSrcPhi && MI.getNumExplicitOperands() == 3) {
1237 const TargetRegisterClass *ConstrainRegClass =
1238 MRI.constrainRegClass(MI.getOperand(1).getReg(),
1239 MRI.getRegClass(MI.getOperand(0).getReg()));
1240 assert(ConstrainRegClass &&
1241 "Expected a valid constrained register class!");
1242 (void)ConstrainRegClass;
1243 MRI.replaceRegWith(MI.getOperand(0).getReg(),
1244 MI.getOperand(1).getReg());
1245 if (LIS)
1246 LIS->RemoveMachineInstrFromMaps(MI);
1247 MI.eraseFromParent();
1248 Changed = true;
1254 /// Rewrites the kernel block in-place to adhere to the given schedule.
1255 /// KernelRewriter holds all of the state required to perform the rewriting.
1256 class KernelRewriter {
1257 ModuloSchedule &S;
1258 MachineBasicBlock *BB;
1259 MachineBasicBlock *PreheaderBB, *ExitBB;
1260 MachineRegisterInfo &MRI;
1261 const TargetInstrInfo *TII;
1262 LiveIntervals *LIS;
1264 // Map from register class to canonical undef register for that class.
1265 DenseMap<const TargetRegisterClass *, Register> Undefs;
1266 // Map from <LoopReg, InitReg> to phi register for all created phis. Note that
1267 // this map is only used when InitReg is non-undef.
1268 DenseMap<std::pair<unsigned, unsigned>, Register> Phis;
1269 // Map from LoopReg to phi register where the InitReg is undef.
1270 DenseMap<Register, Register> UndefPhis;
1272 // Reg is used by MI. Return the new register MI should use to adhere to the
1273 // schedule. Insert phis as necessary.
1274 Register remapUse(Register Reg, MachineInstr &MI);
1275 // Insert a phi that carries LoopReg from the loop body and InitReg otherwise.
1276 // If InitReg is not given it is chosen arbitrarily. It will either be undef
1277 // or will be chosen so as to share another phi.
1278 Register phi(Register LoopReg, std::optional<Register> InitReg = {},
1279 const TargetRegisterClass *RC = nullptr);
1280 // Create an undef register of the given register class.
1281 Register undef(const TargetRegisterClass *RC);
1283 public:
1284 KernelRewriter(MachineLoop &L, ModuloSchedule &S, MachineBasicBlock *LoopBB,
1285 LiveIntervals *LIS = nullptr);
1286 void rewrite();
1288 } // namespace
1290 KernelRewriter::KernelRewriter(MachineLoop &L, ModuloSchedule &S,
1291 MachineBasicBlock *LoopBB, LiveIntervals *LIS)
1292 : S(S), BB(LoopBB), PreheaderBB(L.getLoopPreheader()),
1293 ExitBB(L.getExitBlock()), MRI(BB->getParent()->getRegInfo()),
1294 TII(BB->getParent()->getSubtarget().getInstrInfo()), LIS(LIS) {
1295 PreheaderBB = *BB->pred_begin();
1296 if (PreheaderBB == BB)
1297 PreheaderBB = *std::next(BB->pred_begin());
1300 void KernelRewriter::rewrite() {
1301 // Rearrange the loop to be in schedule order. Note that the schedule may
1302 // contain instructions that are not owned by the loop block (InstrChanges and
1303 // friends), so we gracefully handle unowned instructions and delete any
1304 // instructions that weren't in the schedule.
1305 auto InsertPt = BB->getFirstTerminator();
1306 MachineInstr *FirstMI = nullptr;
1307 for (MachineInstr *MI : S.getInstructions()) {
1308 if (MI->isPHI())
1309 continue;
1310 if (MI->getParent())
1311 MI->removeFromParent();
1312 BB->insert(InsertPt, MI);
1313 if (!FirstMI)
1314 FirstMI = MI;
1316 assert(FirstMI && "Failed to find first MI in schedule");
1318 // At this point all of the scheduled instructions are between FirstMI
1319 // and the end of the block. Kill from the first non-phi to FirstMI.
1320 for (auto I = BB->getFirstNonPHI(); I != FirstMI->getIterator();) {
1321 if (LIS)
1322 LIS->RemoveMachineInstrFromMaps(*I);
1323 (I++)->eraseFromParent();
1326 // Now remap every instruction in the loop.
1327 for (MachineInstr &MI : *BB) {
1328 if (MI.isPHI() || MI.isTerminator())
1329 continue;
1330 for (MachineOperand &MO : MI.uses()) {
1331 if (!MO.isReg() || MO.getReg().isPhysical() || MO.isImplicit())
1332 continue;
1333 Register Reg = remapUse(MO.getReg(), MI);
1334 MO.setReg(Reg);
1337 EliminateDeadPhis(BB, MRI, LIS);
1339 // Ensure a phi exists for all instructions that are either referenced by
1340 // an illegal phi or by an instruction outside the loop. This allows us to
1341 // treat remaps of these values the same as "normal" values that come from
1342 // loop-carried phis.
1343 for (auto MI = BB->getFirstNonPHI(); MI != BB->end(); ++MI) {
1344 if (MI->isPHI()) {
1345 Register R = MI->getOperand(0).getReg();
1346 phi(R);
1347 continue;
1350 for (MachineOperand &Def : MI->defs()) {
1351 for (MachineInstr &MI : MRI.use_instructions(Def.getReg())) {
1352 if (MI.getParent() != BB) {
1353 phi(Def.getReg());
1354 break;
1361 Register KernelRewriter::remapUse(Register Reg, MachineInstr &MI) {
1362 MachineInstr *Producer = MRI.getUniqueVRegDef(Reg);
1363 if (!Producer)
1364 return Reg;
1366 int ConsumerStage = S.getStage(&MI);
1367 if (!Producer->isPHI()) {
1368 // Non-phi producers are simple to remap. Insert as many phis as the
1369 // difference between the consumer and producer stages.
1370 if (Producer->getParent() != BB)
1371 // Producer was not inside the loop. Use the register as-is.
1372 return Reg;
1373 int ProducerStage = S.getStage(Producer);
1374 assert(ConsumerStage != -1 &&
1375 "In-loop consumer should always be scheduled!");
1376 assert(ConsumerStage >= ProducerStage);
1377 unsigned StageDiff = ConsumerStage - ProducerStage;
1379 for (unsigned I = 0; I < StageDiff; ++I)
1380 Reg = phi(Reg);
1381 return Reg;
1384 // First, dive through the phi chain to find the defaults for the generated
1385 // phis.
1386 SmallVector<std::optional<Register>, 4> Defaults;
1387 Register LoopReg = Reg;
1388 auto LoopProducer = Producer;
1389 while (LoopProducer->isPHI() && LoopProducer->getParent() == BB) {
1390 LoopReg = getLoopPhiReg(*LoopProducer, BB);
1391 Defaults.emplace_back(getInitPhiReg(*LoopProducer, BB));
1392 LoopProducer = MRI.getUniqueVRegDef(LoopReg);
1393 assert(LoopProducer);
1395 int LoopProducerStage = S.getStage(LoopProducer);
1397 std::optional<Register> IllegalPhiDefault;
1399 if (LoopProducerStage == -1) {
1400 // Do nothing.
1401 } else if (LoopProducerStage > ConsumerStage) {
1402 // This schedule is only representable if ProducerStage == ConsumerStage+1.
1403 // In addition, Consumer's cycle must be scheduled after Producer in the
1404 // rescheduled loop. This is enforced by the pipeliner's ASAP and ALAP
1405 // functions.
1406 #ifndef NDEBUG // Silence unused variables in non-asserts mode.
1407 int LoopProducerCycle = S.getCycle(LoopProducer);
1408 int ConsumerCycle = S.getCycle(&MI);
1409 #endif
1410 assert(LoopProducerCycle <= ConsumerCycle);
1411 assert(LoopProducerStage == ConsumerStage + 1);
1412 // Peel off the first phi from Defaults and insert a phi between producer
1413 // and consumer. This phi will not be at the front of the block so we
1414 // consider it illegal. It will only exist during the rewrite process; it
1415 // needs to exist while we peel off prologs because these could take the
1416 // default value. After that we can replace all uses with the loop producer
1417 // value.
1418 IllegalPhiDefault = Defaults.front();
1419 Defaults.erase(Defaults.begin());
1420 } else {
1421 assert(ConsumerStage >= LoopProducerStage);
1422 int StageDiff = ConsumerStage - LoopProducerStage;
1423 if (StageDiff > 0) {
1424 LLVM_DEBUG(dbgs() << " -- padding defaults array from " << Defaults.size()
1425 << " to " << (Defaults.size() + StageDiff) << "\n");
1426 // If we need more phis than we have defaults for, pad out with undefs for
1427 // the earliest phis, which are at the end of the defaults chain (the
1428 // chain is in reverse order).
1429 Defaults.resize(Defaults.size() + StageDiff,
1430 Defaults.empty() ? std::optional<Register>()
1431 : Defaults.back());
1435 // Now we know the number of stages to jump back, insert the phi chain.
1436 auto DefaultI = Defaults.rbegin();
1437 while (DefaultI != Defaults.rend())
1438 LoopReg = phi(LoopReg, *DefaultI++, MRI.getRegClass(Reg));
1440 if (IllegalPhiDefault) {
1441 // The consumer optionally consumes LoopProducer in the same iteration
1442 // (because the producer is scheduled at an earlier cycle than the consumer)
1443 // or the initial value. To facilitate this we create an illegal block here
1444 // by embedding a phi in the middle of the block. We will fix this up
1445 // immediately prior to pruning.
1446 auto RC = MRI.getRegClass(Reg);
1447 Register R = MRI.createVirtualRegister(RC);
1448 MachineInstr *IllegalPhi =
1449 BuildMI(*BB, MI, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1450 .addReg(*IllegalPhiDefault)
1451 .addMBB(PreheaderBB) // Block choice is arbitrary and has no effect.
1452 .addReg(LoopReg)
1453 .addMBB(BB); // Block choice is arbitrary and has no effect.
1454 // Illegal phi should belong to the producer stage so that it can be
1455 // filtered correctly during peeling.
1456 S.setStage(IllegalPhi, LoopProducerStage);
1457 return R;
1460 return LoopReg;
1463 Register KernelRewriter::phi(Register LoopReg, std::optional<Register> InitReg,
1464 const TargetRegisterClass *RC) {
1465 // If the init register is not undef, try and find an existing phi.
1466 if (InitReg) {
1467 auto I = Phis.find({LoopReg, *InitReg});
1468 if (I != Phis.end())
1469 return I->second;
1470 } else {
1471 for (auto &KV : Phis) {
1472 if (KV.first.first == LoopReg)
1473 return KV.second;
1477 // InitReg is either undef or no existing phi takes InitReg as input. Try and
1478 // find a phi that takes undef as input.
1479 auto I = UndefPhis.find(LoopReg);
1480 if (I != UndefPhis.end()) {
1481 Register R = I->second;
1482 if (!InitReg)
1483 // Found a phi taking undef as input, and this input is undef so return
1484 // without any more changes.
1485 return R;
1486 // Found a phi taking undef as input, so rewrite it to take InitReg.
1487 MachineInstr *MI = MRI.getVRegDef(R);
1488 MI->getOperand(1).setReg(*InitReg);
1489 Phis.insert({{LoopReg, *InitReg}, R});
1490 const TargetRegisterClass *ConstrainRegClass =
1491 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1492 assert(ConstrainRegClass && "Expected a valid constrained register class!");
1493 (void)ConstrainRegClass;
1494 UndefPhis.erase(I);
1495 return R;
1498 // Failed to find any existing phi to reuse, so create a new one.
1499 if (!RC)
1500 RC = MRI.getRegClass(LoopReg);
1501 Register R = MRI.createVirtualRegister(RC);
1502 if (InitReg) {
1503 const TargetRegisterClass *ConstrainRegClass =
1504 MRI.constrainRegClass(R, MRI.getRegClass(*InitReg));
1505 assert(ConstrainRegClass && "Expected a valid constrained register class!");
1506 (void)ConstrainRegClass;
1508 BuildMI(*BB, BB->getFirstNonPHI(), DebugLoc(), TII->get(TargetOpcode::PHI), R)
1509 .addReg(InitReg ? *InitReg : undef(RC))
1510 .addMBB(PreheaderBB)
1511 .addReg(LoopReg)
1512 .addMBB(BB);
1513 if (!InitReg)
1514 UndefPhis[LoopReg] = R;
1515 else
1516 Phis[{LoopReg, *InitReg}] = R;
1517 return R;
1520 Register KernelRewriter::undef(const TargetRegisterClass *RC) {
1521 Register &R = Undefs[RC];
1522 if (R == 0) {
1523 // Create an IMPLICIT_DEF that defines this register if we need it.
1524 // All uses of this should be removed by the time we have finished unrolling
1525 // prologs and epilogs.
1526 R = MRI.createVirtualRegister(RC);
1527 auto *InsertBB = &PreheaderBB->getParent()->front();
1528 BuildMI(*InsertBB, InsertBB->getFirstTerminator(), DebugLoc(),
1529 TII->get(TargetOpcode::IMPLICIT_DEF), R);
1531 return R;
1534 namespace {
1535 /// Describes an operand in the kernel of a pipelined loop. Characteristics of
1536 /// the operand are discovered, such as how many in-loop PHIs it has to jump
1537 /// through and defaults for these phis.
1538 class KernelOperandInfo {
1539 MachineBasicBlock *BB;
1540 MachineRegisterInfo &MRI;
1541 SmallVector<Register, 4> PhiDefaults;
1542 MachineOperand *Source;
1543 MachineOperand *Target;
1545 public:
1546 KernelOperandInfo(MachineOperand *MO, MachineRegisterInfo &MRI,
1547 const SmallPtrSetImpl<MachineInstr *> &IllegalPhis)
1548 : MRI(MRI) {
1549 Source = MO;
1550 BB = MO->getParent()->getParent();
1551 while (isRegInLoop(MO)) {
1552 MachineInstr *MI = MRI.getVRegDef(MO->getReg());
1553 if (MI->isFullCopy()) {
1554 MO = &MI->getOperand(1);
1555 continue;
1557 if (!MI->isPHI())
1558 break;
1559 // If this is an illegal phi, don't count it in distance.
1560 if (IllegalPhis.count(MI)) {
1561 MO = &MI->getOperand(3);
1562 continue;
1565 Register Default = getInitPhiReg(*MI, BB);
1566 MO = MI->getOperand(2).getMBB() == BB ? &MI->getOperand(1)
1567 : &MI->getOperand(3);
1568 PhiDefaults.push_back(Default);
1570 Target = MO;
1573 bool operator==(const KernelOperandInfo &Other) const {
1574 return PhiDefaults.size() == Other.PhiDefaults.size();
1577 void print(raw_ostream &OS) const {
1578 OS << "use of " << *Source << ": distance(" << PhiDefaults.size() << ") in "
1579 << *Source->getParent();
1582 private:
1583 bool isRegInLoop(MachineOperand *MO) {
1584 return MO->isReg() && MO->getReg().isVirtual() &&
1585 MRI.getVRegDef(MO->getReg())->getParent() == BB;
1588 } // namespace
1590 MachineBasicBlock *
1591 PeelingModuloScheduleExpander::peelKernel(LoopPeelDirection LPD) {
1592 MachineBasicBlock *NewBB = PeelSingleBlockLoop(LPD, BB, MRI, TII);
1593 if (LPD == LPD_Front)
1594 PeeledFront.push_back(NewBB);
1595 else
1596 PeeledBack.push_front(NewBB);
1597 for (auto I = BB->begin(), NI = NewBB->begin(); !I->isTerminator();
1598 ++I, ++NI) {
1599 CanonicalMIs[&*I] = &*I;
1600 CanonicalMIs[&*NI] = &*I;
1601 BlockMIs[{NewBB, &*I}] = &*NI;
1602 BlockMIs[{BB, &*I}] = &*I;
1604 return NewBB;
1607 void PeelingModuloScheduleExpander::filterInstructions(MachineBasicBlock *MB,
1608 int MinStage) {
1609 for (auto I = MB->getFirstInstrTerminator()->getReverseIterator();
1610 I != std::next(MB->getFirstNonPHI()->getReverseIterator());) {
1611 MachineInstr *MI = &*I++;
1612 int Stage = getStage(MI);
1613 if (Stage == -1 || Stage >= MinStage)
1614 continue;
1616 for (MachineOperand &DefMO : MI->defs()) {
1617 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1618 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1619 // Only PHIs can use values from this block by construction.
1620 // Match with the equivalent PHI in B.
1621 assert(UseMI.isPHI());
1622 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1623 MI->getParent());
1624 Subs.emplace_back(&UseMI, Reg);
1626 for (auto &Sub : Subs)
1627 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1628 *MRI.getTargetRegisterInfo());
1630 if (LIS)
1631 LIS->RemoveMachineInstrFromMaps(*MI);
1632 MI->eraseFromParent();
1636 void PeelingModuloScheduleExpander::moveStageBetweenBlocks(
1637 MachineBasicBlock *DestBB, MachineBasicBlock *SourceBB, unsigned Stage) {
1638 auto InsertPt = DestBB->getFirstNonPHI();
1639 DenseMap<Register, Register> Remaps;
1640 for (MachineInstr &MI : llvm::make_early_inc_range(
1641 llvm::make_range(SourceBB->getFirstNonPHI(), SourceBB->end()))) {
1642 if (MI.isPHI()) {
1643 // This is an illegal PHI. If we move any instructions using an illegal
1644 // PHI, we need to create a legal Phi.
1645 if (getStage(&MI) != Stage) {
1646 // The legal Phi is not necessary if the illegal phi's stage
1647 // is being moved.
1648 Register PhiR = MI.getOperand(0).getReg();
1649 auto RC = MRI.getRegClass(PhiR);
1650 Register NR = MRI.createVirtualRegister(RC);
1651 MachineInstr *NI = BuildMI(*DestBB, DestBB->getFirstNonPHI(),
1652 DebugLoc(), TII->get(TargetOpcode::PHI), NR)
1653 .addReg(PhiR)
1654 .addMBB(SourceBB);
1655 BlockMIs[{DestBB, CanonicalMIs[&MI]}] = NI;
1656 CanonicalMIs[NI] = CanonicalMIs[&MI];
1657 Remaps[PhiR] = NR;
1660 if (getStage(&MI) != Stage)
1661 continue;
1662 MI.removeFromParent();
1663 DestBB->insert(InsertPt, &MI);
1664 auto *KernelMI = CanonicalMIs[&MI];
1665 BlockMIs[{DestBB, KernelMI}] = &MI;
1666 BlockMIs.erase({SourceBB, KernelMI});
1668 SmallVector<MachineInstr *, 4> PhiToDelete;
1669 for (MachineInstr &MI : DestBB->phis()) {
1670 assert(MI.getNumOperands() == 3);
1671 MachineInstr *Def = MRI.getVRegDef(MI.getOperand(1).getReg());
1672 // If the instruction referenced by the phi is moved inside the block
1673 // we don't need the phi anymore.
1674 if (getStage(Def) == Stage) {
1675 Register PhiReg = MI.getOperand(0).getReg();
1676 assert(Def->findRegisterDefOperandIdx(MI.getOperand(1).getReg()) != -1);
1677 MRI.replaceRegWith(MI.getOperand(0).getReg(), MI.getOperand(1).getReg());
1678 MI.getOperand(0).setReg(PhiReg);
1679 PhiToDelete.push_back(&MI);
1682 for (auto *P : PhiToDelete)
1683 P->eraseFromParent();
1684 InsertPt = DestBB->getFirstNonPHI();
1685 // Helper to clone Phi instructions into the destination block. We clone Phi
1686 // greedily to avoid combinatorial explosion of Phi instructions.
1687 auto clonePhi = [&](MachineInstr *Phi) {
1688 MachineInstr *NewMI = MF.CloneMachineInstr(Phi);
1689 DestBB->insert(InsertPt, NewMI);
1690 Register OrigR = Phi->getOperand(0).getReg();
1691 Register R = MRI.createVirtualRegister(MRI.getRegClass(OrigR));
1692 NewMI->getOperand(0).setReg(R);
1693 NewMI->getOperand(1).setReg(OrigR);
1694 NewMI->getOperand(2).setMBB(*DestBB->pred_begin());
1695 Remaps[OrigR] = R;
1696 CanonicalMIs[NewMI] = CanonicalMIs[Phi];
1697 BlockMIs[{DestBB, CanonicalMIs[Phi]}] = NewMI;
1698 PhiNodeLoopIteration[NewMI] = PhiNodeLoopIteration[Phi];
1699 return R;
1701 for (auto I = DestBB->getFirstNonPHI(); I != DestBB->end(); ++I) {
1702 for (MachineOperand &MO : I->uses()) {
1703 if (!MO.isReg())
1704 continue;
1705 if (Remaps.count(MO.getReg()))
1706 MO.setReg(Remaps[MO.getReg()]);
1707 else {
1708 // If we are using a phi from the source block we need to add a new phi
1709 // pointing to the old one.
1710 MachineInstr *Use = MRI.getUniqueVRegDef(MO.getReg());
1711 if (Use && Use->isPHI() && Use->getParent() == SourceBB) {
1712 Register R = clonePhi(Use);
1713 MO.setReg(R);
1720 Register
1721 PeelingModuloScheduleExpander::getPhiCanonicalReg(MachineInstr *CanonicalPhi,
1722 MachineInstr *Phi) {
1723 unsigned distance = PhiNodeLoopIteration[Phi];
1724 MachineInstr *CanonicalUse = CanonicalPhi;
1725 Register CanonicalUseReg = CanonicalUse->getOperand(0).getReg();
1726 for (unsigned I = 0; I < distance; ++I) {
1727 assert(CanonicalUse->isPHI());
1728 assert(CanonicalUse->getNumOperands() == 5);
1729 unsigned LoopRegIdx = 3, InitRegIdx = 1;
1730 if (CanonicalUse->getOperand(2).getMBB() == CanonicalUse->getParent())
1731 std::swap(LoopRegIdx, InitRegIdx);
1732 CanonicalUseReg = CanonicalUse->getOperand(LoopRegIdx).getReg();
1733 CanonicalUse = MRI.getVRegDef(CanonicalUseReg);
1735 return CanonicalUseReg;
1738 void PeelingModuloScheduleExpander::peelPrologAndEpilogs() {
1739 BitVector LS(Schedule.getNumStages(), true);
1740 BitVector AS(Schedule.getNumStages(), true);
1741 LiveStages[BB] = LS;
1742 AvailableStages[BB] = AS;
1744 // Peel out the prologs.
1745 LS.reset();
1746 for (int I = 0; I < Schedule.getNumStages() - 1; ++I) {
1747 LS[I] = true;
1748 Prologs.push_back(peelKernel(LPD_Front));
1749 LiveStages[Prologs.back()] = LS;
1750 AvailableStages[Prologs.back()] = LS;
1753 // Create a block that will end up as the new loop exiting block (dominated by
1754 // all prologs and epilogs). It will only contain PHIs, in the same order as
1755 // BB's PHIs. This gives us a poor-man's LCSSA with the inductive property
1756 // that the exiting block is a (sub) clone of BB. This in turn gives us the
1757 // property that any value deffed in BB but used outside of BB is used by a
1758 // PHI in the exiting block.
1759 MachineBasicBlock *ExitingBB = CreateLCSSAExitingBlock();
1760 EliminateDeadPhis(ExitingBB, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1761 // Push out the epilogs, again in reverse order.
1762 // We can't assume anything about the minumum loop trip count at this point,
1763 // so emit a fairly complex epilog.
1765 // We first peel number of stages minus one epilogue. Then we remove dead
1766 // stages and reorder instructions based on their stage. If we have 3 stages
1767 // we generate first:
1768 // E0[3, 2, 1]
1769 // E1[3', 2']
1770 // E2[3'']
1771 // And then we move instructions based on their stages to have:
1772 // E0[3]
1773 // E1[2, 3']
1774 // E2[1, 2', 3'']
1775 // The transformation is legal because we only move instructions past
1776 // instructions of a previous loop iteration.
1777 for (int I = 1; I <= Schedule.getNumStages() - 1; ++I) {
1778 Epilogs.push_back(peelKernel(LPD_Back));
1779 MachineBasicBlock *B = Epilogs.back();
1780 filterInstructions(B, Schedule.getNumStages() - I);
1781 // Keep track at which iteration each phi belongs to. We need it to know
1782 // what version of the variable to use during prologue/epilogue stitching.
1783 EliminateDeadPhis(B, MRI, LIS, /*KeepSingleSrcPhi=*/true);
1784 for (MachineInstr &Phi : B->phis())
1785 PhiNodeLoopIteration[&Phi] = Schedule.getNumStages() - I;
1787 for (size_t I = 0; I < Epilogs.size(); I++) {
1788 LS.reset();
1789 for (size_t J = I; J < Epilogs.size(); J++) {
1790 int Iteration = J;
1791 unsigned Stage = Schedule.getNumStages() - 1 + I - J;
1792 // Move stage one block at a time so that Phi nodes are updated correctly.
1793 for (size_t K = Iteration; K > I; K--)
1794 moveStageBetweenBlocks(Epilogs[K - 1], Epilogs[K], Stage);
1795 LS[Stage] = true;
1797 LiveStages[Epilogs[I]] = LS;
1798 AvailableStages[Epilogs[I]] = AS;
1801 // Now we've defined all the prolog and epilog blocks as a fallthrough
1802 // sequence, add the edges that will be followed if the loop trip count is
1803 // lower than the number of stages (connecting prologs directly with epilogs).
1804 auto PI = Prologs.begin();
1805 auto EI = Epilogs.begin();
1806 assert(Prologs.size() == Epilogs.size());
1807 for (; PI != Prologs.end(); ++PI, ++EI) {
1808 MachineBasicBlock *Pred = *(*EI)->pred_begin();
1809 (*PI)->addSuccessor(*EI);
1810 for (MachineInstr &MI : (*EI)->phis()) {
1811 Register Reg = MI.getOperand(1).getReg();
1812 MachineInstr *Use = MRI.getUniqueVRegDef(Reg);
1813 if (Use && Use->getParent() == Pred) {
1814 MachineInstr *CanonicalUse = CanonicalMIs[Use];
1815 if (CanonicalUse->isPHI()) {
1816 // If the use comes from a phi we need to skip as many phi as the
1817 // distance between the epilogue and the kernel. Trace through the phi
1818 // chain to find the right value.
1819 Reg = getPhiCanonicalReg(CanonicalUse, Use);
1821 Reg = getEquivalentRegisterIn(Reg, *PI);
1823 MI.addOperand(MachineOperand::CreateReg(Reg, /*isDef=*/false));
1824 MI.addOperand(MachineOperand::CreateMBB(*PI));
1828 // Create a list of all blocks in order.
1829 SmallVector<MachineBasicBlock *, 8> Blocks;
1830 llvm::copy(PeeledFront, std::back_inserter(Blocks));
1831 Blocks.push_back(BB);
1832 llvm::copy(PeeledBack, std::back_inserter(Blocks));
1834 // Iterate in reverse order over all instructions, remapping as we go.
1835 for (MachineBasicBlock *B : reverse(Blocks)) {
1836 for (auto I = B->instr_rbegin();
1837 I != std::next(B->getFirstNonPHI()->getReverseIterator());) {
1838 MachineBasicBlock::reverse_instr_iterator MI = I++;
1839 rewriteUsesOf(&*MI);
1842 for (auto *MI : IllegalPhisToDelete) {
1843 if (LIS)
1844 LIS->RemoveMachineInstrFromMaps(*MI);
1845 MI->eraseFromParent();
1847 IllegalPhisToDelete.clear();
1849 // Now all remapping has been done, we're free to optimize the generated code.
1850 for (MachineBasicBlock *B : reverse(Blocks))
1851 EliminateDeadPhis(B, MRI, LIS);
1852 EliminateDeadPhis(ExitingBB, MRI, LIS);
1855 MachineBasicBlock *PeelingModuloScheduleExpander::CreateLCSSAExitingBlock() {
1856 MachineFunction &MF = *BB->getParent();
1857 MachineBasicBlock *Exit = *BB->succ_begin();
1858 if (Exit == BB)
1859 Exit = *std::next(BB->succ_begin());
1861 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
1862 MF.insert(std::next(BB->getIterator()), NewBB);
1864 // Clone all phis in BB into NewBB and rewrite.
1865 for (MachineInstr &MI : BB->phis()) {
1866 auto RC = MRI.getRegClass(MI.getOperand(0).getReg());
1867 Register OldR = MI.getOperand(3).getReg();
1868 Register R = MRI.createVirtualRegister(RC);
1869 SmallVector<MachineInstr *, 4> Uses;
1870 for (MachineInstr &Use : MRI.use_instructions(OldR))
1871 if (Use.getParent() != BB)
1872 Uses.push_back(&Use);
1873 for (MachineInstr *Use : Uses)
1874 Use->substituteRegister(OldR, R, /*SubIdx=*/0,
1875 *MRI.getTargetRegisterInfo());
1876 MachineInstr *NI = BuildMI(NewBB, DebugLoc(), TII->get(TargetOpcode::PHI), R)
1877 .addReg(OldR)
1878 .addMBB(BB);
1879 BlockMIs[{NewBB, &MI}] = NI;
1880 CanonicalMIs[NI] = &MI;
1882 BB->replaceSuccessor(Exit, NewBB);
1883 Exit->replacePhiUsesWith(BB, NewBB);
1884 NewBB->addSuccessor(Exit);
1886 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
1887 SmallVector<MachineOperand, 4> Cond;
1888 bool CanAnalyzeBr = !TII->analyzeBranch(*BB, TBB, FBB, Cond);
1889 (void)CanAnalyzeBr;
1890 assert(CanAnalyzeBr && "Must be able to analyze the loop branch!");
1891 TII->removeBranch(*BB);
1892 TII->insertBranch(*BB, TBB == Exit ? NewBB : TBB, FBB == Exit ? NewBB : FBB,
1893 Cond, DebugLoc());
1894 TII->insertUnconditionalBranch(*NewBB, Exit, DebugLoc());
1895 return NewBB;
1898 Register
1899 PeelingModuloScheduleExpander::getEquivalentRegisterIn(Register Reg,
1900 MachineBasicBlock *BB) {
1901 MachineInstr *MI = MRI.getUniqueVRegDef(Reg);
1902 unsigned OpIdx = MI->findRegisterDefOperandIdx(Reg);
1903 return BlockMIs[{BB, CanonicalMIs[MI]}]->getOperand(OpIdx).getReg();
1906 void PeelingModuloScheduleExpander::rewriteUsesOf(MachineInstr *MI) {
1907 if (MI->isPHI()) {
1908 // This is an illegal PHI. The loop-carried (desired) value is operand 3,
1909 // and it is produced by this block.
1910 Register PhiR = MI->getOperand(0).getReg();
1911 Register R = MI->getOperand(3).getReg();
1912 int RMIStage = getStage(MRI.getUniqueVRegDef(R));
1913 if (RMIStage != -1 && !AvailableStages[MI->getParent()].test(RMIStage))
1914 R = MI->getOperand(1).getReg();
1915 MRI.setRegClass(R, MRI.getRegClass(PhiR));
1916 MRI.replaceRegWith(PhiR, R);
1917 // Postpone deleting the Phi as it may be referenced by BlockMIs and used
1918 // later to figure out how to remap registers.
1919 MI->getOperand(0).setReg(PhiR);
1920 IllegalPhisToDelete.push_back(MI);
1921 return;
1924 int Stage = getStage(MI);
1925 if (Stage == -1 || LiveStages.count(MI->getParent()) == 0 ||
1926 LiveStages[MI->getParent()].test(Stage))
1927 // Instruction is live, no rewriting to do.
1928 return;
1930 for (MachineOperand &DefMO : MI->defs()) {
1931 SmallVector<std::pair<MachineInstr *, Register>, 4> Subs;
1932 for (MachineInstr &UseMI : MRI.use_instructions(DefMO.getReg())) {
1933 // Only PHIs can use values from this block by construction.
1934 // Match with the equivalent PHI in B.
1935 assert(UseMI.isPHI());
1936 Register Reg = getEquivalentRegisterIn(UseMI.getOperand(0).getReg(),
1937 MI->getParent());
1938 Subs.emplace_back(&UseMI, Reg);
1940 for (auto &Sub : Subs)
1941 Sub.first->substituteRegister(DefMO.getReg(), Sub.second, /*SubIdx=*/0,
1942 *MRI.getTargetRegisterInfo());
1944 if (LIS)
1945 LIS->RemoveMachineInstrFromMaps(*MI);
1946 MI->eraseFromParent();
1949 void PeelingModuloScheduleExpander::fixupBranches() {
1950 // Work outwards from the kernel.
1951 bool KernelDisposed = false;
1952 int TC = Schedule.getNumStages() - 1;
1953 for (auto PI = Prologs.rbegin(), EI = Epilogs.rbegin(); PI != Prologs.rend();
1954 ++PI, ++EI, --TC) {
1955 MachineBasicBlock *Prolog = *PI;
1956 MachineBasicBlock *Fallthrough = *Prolog->succ_begin();
1957 MachineBasicBlock *Epilog = *EI;
1958 SmallVector<MachineOperand, 4> Cond;
1959 TII->removeBranch(*Prolog);
1960 std::optional<bool> StaticallyGreater =
1961 LoopInfo->createTripCountGreaterCondition(TC, *Prolog, Cond);
1962 if (!StaticallyGreater) {
1963 LLVM_DEBUG(dbgs() << "Dynamic: TC > " << TC << "\n");
1964 // Dynamically branch based on Cond.
1965 TII->insertBranch(*Prolog, Epilog, Fallthrough, Cond, DebugLoc());
1966 } else if (*StaticallyGreater == false) {
1967 LLVM_DEBUG(dbgs() << "Static-false: TC > " << TC << "\n");
1968 // Prolog never falls through; branch to epilog and orphan interior
1969 // blocks. Leave it to unreachable-block-elim to clean up.
1970 Prolog->removeSuccessor(Fallthrough);
1971 for (MachineInstr &P : Fallthrough->phis()) {
1972 P.removeOperand(2);
1973 P.removeOperand(1);
1975 TII->insertUnconditionalBranch(*Prolog, Epilog, DebugLoc());
1976 KernelDisposed = true;
1977 } else {
1978 LLVM_DEBUG(dbgs() << "Static-true: TC > " << TC << "\n");
1979 // Prolog always falls through; remove incoming values in epilog.
1980 Prolog->removeSuccessor(Epilog);
1981 for (MachineInstr &P : Epilog->phis()) {
1982 P.removeOperand(4);
1983 P.removeOperand(3);
1988 if (!KernelDisposed) {
1989 LoopInfo->adjustTripCount(-(Schedule.getNumStages() - 1));
1990 LoopInfo->setPreheader(Prologs.back());
1991 } else {
1992 LoopInfo->disposed();
1996 void PeelingModuloScheduleExpander::rewriteKernel() {
1997 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
1998 KR.rewrite();
2001 void PeelingModuloScheduleExpander::expand() {
2002 BB = Schedule.getLoop()->getTopBlock();
2003 Preheader = Schedule.getLoop()->getLoopPreheader();
2004 LLVM_DEBUG(Schedule.dump());
2005 LoopInfo = TII->analyzeLoopForPipelining(BB);
2006 assert(LoopInfo);
2008 rewriteKernel();
2009 peelPrologAndEpilogs();
2010 fixupBranches();
2013 void PeelingModuloScheduleExpander::validateAgainstModuloScheduleExpander() {
2014 BB = Schedule.getLoop()->getTopBlock();
2015 Preheader = Schedule.getLoop()->getLoopPreheader();
2017 // Dump the schedule before we invalidate and remap all its instructions.
2018 // Stash it in a string so we can print it if we found an error.
2019 std::string ScheduleDump;
2020 raw_string_ostream OS(ScheduleDump);
2021 Schedule.print(OS);
2022 OS.flush();
2024 // First, run the normal ModuleScheduleExpander. We don't support any
2025 // InstrChanges.
2026 assert(LIS && "Requires LiveIntervals!");
2027 ModuloScheduleExpander MSE(MF, Schedule, *LIS,
2028 ModuloScheduleExpander::InstrChangesTy());
2029 MSE.expand();
2030 MachineBasicBlock *ExpandedKernel = MSE.getRewrittenKernel();
2031 if (!ExpandedKernel) {
2032 // The expander optimized away the kernel. We can't do any useful checking.
2033 MSE.cleanup();
2034 return;
2036 // Before running the KernelRewriter, re-add BB into the CFG.
2037 Preheader->addSuccessor(BB);
2039 // Now run the new expansion algorithm.
2040 KernelRewriter KR(*Schedule.getLoop(), Schedule, BB);
2041 KR.rewrite();
2042 peelPrologAndEpilogs();
2044 // Collect all illegal phis that the new algorithm created. We'll give these
2045 // to KernelOperandInfo.
2046 SmallPtrSet<MachineInstr *, 4> IllegalPhis;
2047 for (auto NI = BB->getFirstNonPHI(); NI != BB->end(); ++NI) {
2048 if (NI->isPHI())
2049 IllegalPhis.insert(&*NI);
2052 // Co-iterate across both kernels. We expect them to be identical apart from
2053 // phis and full COPYs (we look through both).
2054 SmallVector<std::pair<KernelOperandInfo, KernelOperandInfo>, 8> KOIs;
2055 auto OI = ExpandedKernel->begin();
2056 auto NI = BB->begin();
2057 for (; !OI->isTerminator() && !NI->isTerminator(); ++OI, ++NI) {
2058 while (OI->isPHI() || OI->isFullCopy())
2059 ++OI;
2060 while (NI->isPHI() || NI->isFullCopy())
2061 ++NI;
2062 assert(OI->getOpcode() == NI->getOpcode() && "Opcodes don't match?!");
2063 // Analyze every operand separately.
2064 for (auto OOpI = OI->operands_begin(), NOpI = NI->operands_begin();
2065 OOpI != OI->operands_end(); ++OOpI, ++NOpI)
2066 KOIs.emplace_back(KernelOperandInfo(&*OOpI, MRI, IllegalPhis),
2067 KernelOperandInfo(&*NOpI, MRI, IllegalPhis));
2070 bool Failed = false;
2071 for (auto &OldAndNew : KOIs) {
2072 if (OldAndNew.first == OldAndNew.second)
2073 continue;
2074 Failed = true;
2075 errs() << "Modulo kernel validation error: [\n";
2076 errs() << " [golden] ";
2077 OldAndNew.first.print(errs());
2078 errs() << " ";
2079 OldAndNew.second.print(errs());
2080 errs() << "]\n";
2083 if (Failed) {
2084 errs() << "Golden reference kernel:\n";
2085 ExpandedKernel->print(errs());
2086 errs() << "New kernel:\n";
2087 BB->print(errs());
2088 errs() << ScheduleDump;
2089 report_fatal_error(
2090 "Modulo kernel validation (-pipeliner-experimental-cg) failed");
2093 // Cleanup by removing BB from the CFG again as the original
2094 // ModuloScheduleExpander intended.
2095 Preheader->removeSuccessor(BB);
2096 MSE.cleanup();
2099 //===----------------------------------------------------------------------===//
2100 // ModuloScheduleTestPass implementation
2101 //===----------------------------------------------------------------------===//
2102 // This pass constructs a ModuloSchedule from its module and runs
2103 // ModuloScheduleExpander.
2105 // The module is expected to contain a single-block analyzable loop.
2106 // The total order of instructions is taken from the loop as-is.
2107 // Instructions are expected to be annotated with a PostInstrSymbol.
2108 // This PostInstrSymbol must have the following format:
2109 // "Stage=%d Cycle=%d".
2110 //===----------------------------------------------------------------------===//
2112 namespace {
2113 class ModuloScheduleTest : public MachineFunctionPass {
2114 public:
2115 static char ID;
2117 ModuloScheduleTest() : MachineFunctionPass(ID) {
2118 initializeModuloScheduleTestPass(*PassRegistry::getPassRegistry());
2121 bool runOnMachineFunction(MachineFunction &MF) override;
2122 void runOnLoop(MachineFunction &MF, MachineLoop &L);
2124 void getAnalysisUsage(AnalysisUsage &AU) const override {
2125 AU.addRequired<MachineLoopInfo>();
2126 AU.addRequired<LiveIntervals>();
2127 MachineFunctionPass::getAnalysisUsage(AU);
2130 } // namespace
2132 char ModuloScheduleTest::ID = 0;
2134 INITIALIZE_PASS_BEGIN(ModuloScheduleTest, "modulo-schedule-test",
2135 "Modulo Schedule test pass", false, false)
2136 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
2137 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
2138 INITIALIZE_PASS_END(ModuloScheduleTest, "modulo-schedule-test",
2139 "Modulo Schedule test pass", false, false)
2141 bool ModuloScheduleTest::runOnMachineFunction(MachineFunction &MF) {
2142 MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
2143 for (auto *L : MLI) {
2144 if (L->getTopBlock() != L->getBottomBlock())
2145 continue;
2146 runOnLoop(MF, *L);
2147 return false;
2149 return false;
2152 static void parseSymbolString(StringRef S, int &Cycle, int &Stage) {
2153 std::pair<StringRef, StringRef> StageAndCycle = getToken(S, "_");
2154 std::pair<StringRef, StringRef> StageTokenAndValue =
2155 getToken(StageAndCycle.first, "-");
2156 std::pair<StringRef, StringRef> CycleTokenAndValue =
2157 getToken(StageAndCycle.second, "-");
2158 if (StageTokenAndValue.first != "Stage" ||
2159 CycleTokenAndValue.first != "_Cycle") {
2160 llvm_unreachable(
2161 "Bad post-instr symbol syntax: see comment in ModuloScheduleTest");
2162 return;
2165 StageTokenAndValue.second.drop_front().getAsInteger(10, Stage);
2166 CycleTokenAndValue.second.drop_front().getAsInteger(10, Cycle);
2168 dbgs() << " Stage=" << Stage << ", Cycle=" << Cycle << "\n";
2171 void ModuloScheduleTest::runOnLoop(MachineFunction &MF, MachineLoop &L) {
2172 LiveIntervals &LIS = getAnalysis<LiveIntervals>();
2173 MachineBasicBlock *BB = L.getTopBlock();
2174 dbgs() << "--- ModuloScheduleTest running on BB#" << BB->getNumber() << "\n";
2176 DenseMap<MachineInstr *, int> Cycle, Stage;
2177 std::vector<MachineInstr *> Instrs;
2178 for (MachineInstr &MI : *BB) {
2179 if (MI.isTerminator())
2180 continue;
2181 Instrs.push_back(&MI);
2182 if (MCSymbol *Sym = MI.getPostInstrSymbol()) {
2183 dbgs() << "Parsing post-instr symbol for " << MI;
2184 parseSymbolString(Sym->getName(), Cycle[&MI], Stage[&MI]);
2188 ModuloSchedule MS(MF, &L, std::move(Instrs), std::move(Cycle),
2189 std::move(Stage));
2190 ModuloScheduleExpander MSE(
2191 MF, MS, LIS, /*InstrChanges=*/ModuloScheduleExpander::InstrChangesTy());
2192 MSE.expand();
2193 MSE.cleanup();
2196 //===----------------------------------------------------------------------===//
2197 // ModuloScheduleTestAnnotater implementation
2198 //===----------------------------------------------------------------------===//
2200 void ModuloScheduleTestAnnotater::annotate() {
2201 for (MachineInstr *MI : S.getInstructions()) {
2202 SmallVector<char, 16> SV;
2203 raw_svector_ostream OS(SV);
2204 OS << "Stage-" << S.getStage(MI) << "_Cycle-" << S.getCycle(MI);
2205 MCSymbol *Sym = MF.getContext().getOrCreateSymbol(OS.str());
2206 MI->setPostInstrSymbol(MF, Sym);