Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / CodeGen / PeepholeOptimizer.cpp
blob76b3b16af16bdc7cde57310713a5782e853ea224
1 //===- PeepholeOptimizer.cpp - Peephole Optimizations ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Perform peephole optimizations on the machine code:
11 // - Optimize Extensions
13 // Optimization of sign / zero extension instructions. It may be extended to
14 // handle other instructions with similar properties.
16 // On some targets, some instructions, e.g. X86 sign / zero extension, may
17 // leave the source value in the lower part of the result. This optimization
18 // will replace some uses of the pre-extension value with uses of the
19 // sub-register of the results.
21 // - Optimize Comparisons
23 // Optimization of comparison instructions. For instance, in this code:
25 // sub r1, 1
26 // cmp r1, 0
27 // bz L1
29 // If the "sub" instruction all ready sets (or could be modified to set) the
30 // same flag that the "cmp" instruction sets and that "bz" uses, then we can
31 // eliminate the "cmp" instruction.
33 // Another instance, in this code:
35 // sub r1, r3 | sub r1, imm
36 // cmp r3, r1 or cmp r1, r3 | cmp r1, imm
37 // bge L1
39 // If the branch instruction can use flag from "sub", then we can replace
40 // "sub" with "subs" and eliminate the "cmp" instruction.
42 // - Optimize Loads:
44 // Loads that can be folded into a later instruction. A load is foldable
45 // if it loads to virtual registers and the virtual register defined has
46 // a single use.
48 // - Optimize Copies and Bitcast (more generally, target specific copies):
50 // Rewrite copies and bitcasts to avoid cross register bank copies
51 // when possible.
52 // E.g., Consider the following example, where capital and lower
53 // letters denote different register file:
54 // b = copy A <-- cross-bank copy
55 // C = copy b <-- cross-bank copy
56 // =>
57 // b = copy A <-- cross-bank copy
58 // C = copy A <-- same-bank copy
60 // E.g., for bitcast:
61 // b = bitcast A <-- cross-bank copy
62 // C = bitcast b <-- cross-bank copy
63 // =>
64 // b = bitcast A <-- cross-bank copy
65 // C = copy A <-- same-bank copy
66 //===----------------------------------------------------------------------===//
68 #include "llvm/ADT/DenseMap.h"
69 #include "llvm/ADT/SmallPtrSet.h"
70 #include "llvm/ADT/SmallSet.h"
71 #include "llvm/ADT/SmallVector.h"
72 #include "llvm/ADT/Statistic.h"
73 #include "llvm/CodeGen/MachineBasicBlock.h"
74 #include "llvm/CodeGen/MachineDominators.h"
75 #include "llvm/CodeGen/MachineFunction.h"
76 #include "llvm/CodeGen/MachineFunctionPass.h"
77 #include "llvm/CodeGen/MachineInstr.h"
78 #include "llvm/CodeGen/MachineInstrBuilder.h"
79 #include "llvm/CodeGen/MachineLoopInfo.h"
80 #include "llvm/CodeGen/MachineOperand.h"
81 #include "llvm/CodeGen/MachineRegisterInfo.h"
82 #include "llvm/CodeGen/TargetInstrInfo.h"
83 #include "llvm/CodeGen/TargetOpcodes.h"
84 #include "llvm/CodeGen/TargetRegisterInfo.h"
85 #include "llvm/CodeGen/TargetSubtargetInfo.h"
86 #include "llvm/InitializePasses.h"
87 #include "llvm/MC/LaneBitmask.h"
88 #include "llvm/MC/MCInstrDesc.h"
89 #include "llvm/Pass.h"
90 #include "llvm/Support/CommandLine.h"
91 #include "llvm/Support/Debug.h"
92 #include "llvm/Support/raw_ostream.h"
93 #include <cassert>
94 #include <cstdint>
95 #include <memory>
96 #include <utility>
98 using namespace llvm;
99 using RegSubRegPair = TargetInstrInfo::RegSubRegPair;
100 using RegSubRegPairAndIdx = TargetInstrInfo::RegSubRegPairAndIdx;
102 #define DEBUG_TYPE "peephole-opt"
104 // Optimize Extensions
105 static cl::opt<bool>
106 Aggressive("aggressive-ext-opt", cl::Hidden,
107 cl::desc("Aggressive extension optimization"));
109 static cl::opt<bool>
110 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
111 cl::desc("Disable the peephole optimizer"));
113 /// Specifiy whether or not the value tracking looks through
114 /// complex instructions. When this is true, the value tracker
115 /// bails on everything that is not a copy or a bitcast.
116 static cl::opt<bool>
117 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
118 cl::desc("Disable advanced copy optimization"));
120 static cl::opt<bool> DisableNAPhysCopyOpt(
121 "disable-non-allocatable-phys-copy-opt", cl::Hidden, cl::init(false),
122 cl::desc("Disable non-allocatable physical register copy optimization"));
124 // Limit the number of PHI instructions to process
125 // in PeepholeOptimizer::getNextSource.
126 static cl::opt<unsigned> RewritePHILimit(
127 "rewrite-phi-limit", cl::Hidden, cl::init(10),
128 cl::desc("Limit the length of PHI chains to lookup"));
130 // Limit the length of recurrence chain when evaluating the benefit of
131 // commuting operands.
132 static cl::opt<unsigned> MaxRecurrenceChain(
133 "recurrence-chain-limit", cl::Hidden, cl::init(3),
134 cl::desc("Maximum length of recurrence chain when evaluating the benefit "
135 "of commuting operands"));
138 STATISTIC(NumReuse, "Number of extension results reused");
139 STATISTIC(NumCmps, "Number of compares eliminated");
140 STATISTIC(NumImmFold, "Number of move immediate folded");
141 STATISTIC(NumLoadFold, "Number of loads folded");
142 STATISTIC(NumSelects, "Number of selects optimized");
143 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
144 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
145 STATISTIC(NumNAPhysCopies, "Number of non-allocatable physical copies removed");
147 namespace {
149 class ValueTrackerResult;
150 class RecurrenceInstr;
152 class PeepholeOptimizer : public MachineFunctionPass,
153 private MachineFunction::Delegate {
154 const TargetInstrInfo *TII = nullptr;
155 const TargetRegisterInfo *TRI = nullptr;
156 MachineRegisterInfo *MRI = nullptr;
157 MachineDominatorTree *DT = nullptr; // Machine dominator tree
158 MachineLoopInfo *MLI = nullptr;
160 public:
161 static char ID; // Pass identification
163 PeepholeOptimizer() : MachineFunctionPass(ID) {
164 initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
167 bool runOnMachineFunction(MachineFunction &MF) override;
169 void getAnalysisUsage(AnalysisUsage &AU) const override {
170 AU.setPreservesCFG();
171 MachineFunctionPass::getAnalysisUsage(AU);
172 AU.addRequired<MachineLoopInfo>();
173 AU.addPreserved<MachineLoopInfo>();
174 if (Aggressive) {
175 AU.addRequired<MachineDominatorTree>();
176 AU.addPreserved<MachineDominatorTree>();
180 MachineFunctionProperties getRequiredProperties() const override {
181 return MachineFunctionProperties()
182 .set(MachineFunctionProperties::Property::IsSSA);
185 /// Track Def -> Use info used for rewriting copies.
186 using RewriteMapTy = SmallDenseMap<RegSubRegPair, ValueTrackerResult>;
188 /// Sequence of instructions that formulate recurrence cycle.
189 using RecurrenceCycle = SmallVector<RecurrenceInstr, 4>;
191 private:
192 bool optimizeCmpInstr(MachineInstr &MI);
193 bool optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
194 SmallPtrSetImpl<MachineInstr*> &LocalMIs);
195 bool optimizeSelect(MachineInstr &MI,
196 SmallPtrSetImpl<MachineInstr *> &LocalMIs);
197 bool optimizeCondBranch(MachineInstr &MI);
198 bool optimizeCoalescableCopy(MachineInstr &MI);
199 bool optimizeUncoalescableCopy(MachineInstr &MI,
200 SmallPtrSetImpl<MachineInstr *> &LocalMIs);
201 bool optimizeRecurrence(MachineInstr &PHI);
202 bool findNextSource(RegSubRegPair RegSubReg, RewriteMapTy &RewriteMap);
203 bool isMoveImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
204 DenseMap<Register, MachineInstr *> &ImmDefMIs);
205 bool foldImmediate(MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
206 DenseMap<Register, MachineInstr *> &ImmDefMIs,
207 bool &Deleted);
209 /// Finds recurrence cycles, but only ones that formulated around
210 /// a def operand and a use operand that are tied. If there is a use
211 /// operand commutable with the tied use operand, find recurrence cycle
212 /// along that operand as well.
213 bool findTargetRecurrence(Register Reg,
214 const SmallSet<Register, 2> &TargetReg,
215 RecurrenceCycle &RC);
217 /// If copy instruction \p MI is a virtual register copy or a copy of a
218 /// constant physical register to a virtual register, track it in the
219 /// set CopySrcMIs. If this virtual register was previously seen as a
220 /// copy, replace the uses of this copy with the previously seen copy's
221 /// destination register.
222 bool foldRedundantCopy(MachineInstr &MI);
224 /// Is the register \p Reg a non-allocatable physical register?
225 bool isNAPhysCopy(Register Reg);
227 /// If copy instruction \p MI is a non-allocatable virtual<->physical
228 /// register copy, track it in the \p NAPhysToVirtMIs map. If this
229 /// non-allocatable physical register was previously copied to a virtual
230 /// registered and hasn't been clobbered, the virt->phys copy can be
231 /// deleted.
232 bool foldRedundantNAPhysCopy(
233 MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs);
235 bool isLoadFoldable(MachineInstr &MI,
236 SmallSet<Register, 16> &FoldAsLoadDefCandidates);
238 /// Check whether \p MI is understood by the register coalescer
239 /// but may require some rewriting.
240 bool isCoalescableCopy(const MachineInstr &MI) {
241 // SubregToRegs are not interesting, because they are already register
242 // coalescer friendly.
243 return MI.isCopy() || (!DisableAdvCopyOpt &&
244 (MI.isRegSequence() || MI.isInsertSubreg() ||
245 MI.isExtractSubreg()));
248 /// Check whether \p MI is a copy like instruction that is
249 /// not recognized by the register coalescer.
250 bool isUncoalescableCopy(const MachineInstr &MI) {
251 return MI.isBitcast() ||
252 (!DisableAdvCopyOpt &&
253 (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
254 MI.isExtractSubregLike()));
257 MachineInstr &rewriteSource(MachineInstr &CopyLike,
258 RegSubRegPair Def, RewriteMapTy &RewriteMap);
260 // Set of copies to virtual registers keyed by source register. Never
261 // holds any physreg which requires def tracking.
262 DenseMap<RegSubRegPair, MachineInstr *> CopySrcMIs;
264 // MachineFunction::Delegate implementation. Used to maintain CopySrcMIs.
265 void MF_HandleInsertion(MachineInstr &MI) override {
266 return;
269 bool getCopySrc(MachineInstr &MI, RegSubRegPair &SrcPair) {
270 if (!MI.isCopy())
271 return false;
273 Register SrcReg = MI.getOperand(1).getReg();
274 unsigned SrcSubReg = MI.getOperand(1).getSubReg();
275 if (!SrcReg.isVirtual() && !MRI->isConstantPhysReg(SrcReg))
276 return false;
278 SrcPair = RegSubRegPair(SrcReg, SrcSubReg);
279 return true;
282 // If a COPY instruction is to be deleted or changed, we should also remove
283 // it from CopySrcMIs.
284 void deleteChangedCopy(MachineInstr &MI) {
285 RegSubRegPair SrcPair;
286 if (!getCopySrc(MI, SrcPair))
287 return;
289 auto It = CopySrcMIs.find(SrcPair);
290 if (It != CopySrcMIs.end() && It->second == &MI)
291 CopySrcMIs.erase(It);
294 void MF_HandleRemoval(MachineInstr &MI) override {
295 deleteChangedCopy(MI);
298 void MF_HandleChangeDesc(MachineInstr &MI, const MCInstrDesc &TID) override
300 deleteChangedCopy(MI);
304 /// Helper class to hold instructions that are inside recurrence cycles.
305 /// The recurrence cycle is formulated around 1) a def operand and its
306 /// tied use operand, or 2) a def operand and a use operand that is commutable
307 /// with another use operand which is tied to the def operand. In the latter
308 /// case, index of the tied use operand and the commutable use operand are
309 /// maintained with CommutePair.
310 class RecurrenceInstr {
311 public:
312 using IndexPair = std::pair<unsigned, unsigned>;
314 RecurrenceInstr(MachineInstr *MI) : MI(MI) {}
315 RecurrenceInstr(MachineInstr *MI, unsigned Idx1, unsigned Idx2)
316 : MI(MI), CommutePair(std::make_pair(Idx1, Idx2)) {}
318 MachineInstr *getMI() const { return MI; }
319 std::optional<IndexPair> getCommutePair() const { return CommutePair; }
321 private:
322 MachineInstr *MI;
323 std::optional<IndexPair> CommutePair;
326 /// Helper class to hold a reply for ValueTracker queries.
327 /// Contains the returned sources for a given search and the instructions
328 /// where the sources were tracked from.
329 class ValueTrackerResult {
330 private:
331 /// Track all sources found by one ValueTracker query.
332 SmallVector<RegSubRegPair, 2> RegSrcs;
334 /// Instruction using the sources in 'RegSrcs'.
335 const MachineInstr *Inst = nullptr;
337 public:
338 ValueTrackerResult() = default;
340 ValueTrackerResult(Register Reg, unsigned SubReg) {
341 addSource(Reg, SubReg);
344 bool isValid() const { return getNumSources() > 0; }
346 void setInst(const MachineInstr *I) { Inst = I; }
347 const MachineInstr *getInst() const { return Inst; }
349 void clear() {
350 RegSrcs.clear();
351 Inst = nullptr;
354 void addSource(Register SrcReg, unsigned SrcSubReg) {
355 RegSrcs.push_back(RegSubRegPair(SrcReg, SrcSubReg));
358 void setSource(int Idx, Register SrcReg, unsigned SrcSubReg) {
359 assert(Idx < getNumSources() && "Reg pair source out of index");
360 RegSrcs[Idx] = RegSubRegPair(SrcReg, SrcSubReg);
363 int getNumSources() const { return RegSrcs.size(); }
365 RegSubRegPair getSrc(int Idx) const {
366 return RegSrcs[Idx];
369 Register getSrcReg(int Idx) const {
370 assert(Idx < getNumSources() && "Reg source out of index");
371 return RegSrcs[Idx].Reg;
374 unsigned getSrcSubReg(int Idx) const {
375 assert(Idx < getNumSources() && "SubReg source out of index");
376 return RegSrcs[Idx].SubReg;
379 bool operator==(const ValueTrackerResult &Other) const {
380 if (Other.getInst() != getInst())
381 return false;
383 if (Other.getNumSources() != getNumSources())
384 return false;
386 for (int i = 0, e = Other.getNumSources(); i != e; ++i)
387 if (Other.getSrcReg(i) != getSrcReg(i) ||
388 Other.getSrcSubReg(i) != getSrcSubReg(i))
389 return false;
390 return true;
394 /// Helper class to track the possible sources of a value defined by
395 /// a (chain of) copy related instructions.
396 /// Given a definition (instruction and definition index), this class
397 /// follows the use-def chain to find successive suitable sources.
398 /// The given source can be used to rewrite the definition into
399 /// def = COPY src.
401 /// For instance, let us consider the following snippet:
402 /// v0 =
403 /// v2 = INSERT_SUBREG v1, v0, sub0
404 /// def = COPY v2.sub0
406 /// Using a ValueTracker for def = COPY v2.sub0 will give the following
407 /// suitable sources:
408 /// v2.sub0 and v0.
409 /// Then, def can be rewritten into def = COPY v0.
410 class ValueTracker {
411 private:
412 /// The current point into the use-def chain.
413 const MachineInstr *Def = nullptr;
415 /// The index of the definition in Def.
416 unsigned DefIdx = 0;
418 /// The sub register index of the definition.
419 unsigned DefSubReg;
421 /// The register where the value can be found.
422 Register Reg;
424 /// MachineRegisterInfo used to perform tracking.
425 const MachineRegisterInfo &MRI;
427 /// Optional TargetInstrInfo used to perform some complex tracking.
428 const TargetInstrInfo *TII;
430 /// Dispatcher to the right underlying implementation of getNextSource.
431 ValueTrackerResult getNextSourceImpl();
433 /// Specialized version of getNextSource for Copy instructions.
434 ValueTrackerResult getNextSourceFromCopy();
436 /// Specialized version of getNextSource for Bitcast instructions.
437 ValueTrackerResult getNextSourceFromBitcast();
439 /// Specialized version of getNextSource for RegSequence instructions.
440 ValueTrackerResult getNextSourceFromRegSequence();
442 /// Specialized version of getNextSource for InsertSubreg instructions.
443 ValueTrackerResult getNextSourceFromInsertSubreg();
445 /// Specialized version of getNextSource for ExtractSubreg instructions.
446 ValueTrackerResult getNextSourceFromExtractSubreg();
448 /// Specialized version of getNextSource for SubregToReg instructions.
449 ValueTrackerResult getNextSourceFromSubregToReg();
451 /// Specialized version of getNextSource for PHI instructions.
452 ValueTrackerResult getNextSourceFromPHI();
454 public:
455 /// Create a ValueTracker instance for the value defined by \p Reg.
456 /// \p DefSubReg represents the sub register index the value tracker will
457 /// track. It does not need to match the sub register index used in the
458 /// definition of \p Reg.
459 /// If \p Reg is a physical register, a value tracker constructed with
460 /// this constructor will not find any alternative source.
461 /// Indeed, when \p Reg is a physical register that constructor does not
462 /// know which definition of \p Reg it should track.
463 /// Use the next constructor to track a physical register.
464 ValueTracker(Register Reg, unsigned DefSubReg,
465 const MachineRegisterInfo &MRI,
466 const TargetInstrInfo *TII = nullptr)
467 : DefSubReg(DefSubReg), Reg(Reg), MRI(MRI), TII(TII) {
468 if (!Reg.isPhysical()) {
469 Def = MRI.getVRegDef(Reg);
470 DefIdx = MRI.def_begin(Reg).getOperandNo();
474 /// Following the use-def chain, get the next available source
475 /// for the tracked value.
476 /// \return A ValueTrackerResult containing a set of registers
477 /// and sub registers with tracked values. A ValueTrackerResult with
478 /// an empty set of registers means no source was found.
479 ValueTrackerResult getNextSource();
482 } // end anonymous namespace
484 char PeepholeOptimizer::ID = 0;
486 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
488 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, DEBUG_TYPE,
489 "Peephole Optimizations", false, false)
490 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
491 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
492 INITIALIZE_PASS_END(PeepholeOptimizer, DEBUG_TYPE,
493 "Peephole Optimizations", false, false)
495 /// If instruction is a copy-like instruction, i.e. it reads a single register
496 /// and writes a single register and it does not modify the source, and if the
497 /// source value is preserved as a sub-register of the result, then replace all
498 /// reachable uses of the source with the subreg of the result.
500 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
501 /// the code. Since this code does not currently share EXTRACTs, just ignore all
502 /// debug uses.
503 bool PeepholeOptimizer::
504 optimizeExtInstr(MachineInstr &MI, MachineBasicBlock &MBB,
505 SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
506 Register SrcReg, DstReg;
507 unsigned SubIdx;
508 if (!TII->isCoalescableExtInstr(MI, SrcReg, DstReg, SubIdx))
509 return false;
511 if (DstReg.isPhysical() || SrcReg.isPhysical())
512 return false;
514 if (MRI->hasOneNonDBGUse(SrcReg))
515 // No other uses.
516 return false;
518 // Ensure DstReg can get a register class that actually supports
519 // sub-registers. Don't change the class until we commit.
520 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
521 DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
522 if (!DstRC)
523 return false;
525 // The ext instr may be operating on a sub-register of SrcReg as well.
526 // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
527 // register.
528 // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
529 // SrcReg:SubIdx should be replaced.
530 bool UseSrcSubIdx =
531 TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
533 // The source has other uses. See if we can replace the other uses with use of
534 // the result of the extension.
535 SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
536 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
537 ReachedBBs.insert(UI.getParent());
539 // Uses that are in the same BB of uses of the result of the instruction.
540 SmallVector<MachineOperand*, 8> Uses;
542 // Uses that the result of the instruction can reach.
543 SmallVector<MachineOperand*, 8> ExtendedUses;
545 bool ExtendLife = true;
546 for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
547 MachineInstr *UseMI = UseMO.getParent();
548 if (UseMI == &MI)
549 continue;
551 if (UseMI->isPHI()) {
552 ExtendLife = false;
553 continue;
556 // Only accept uses of SrcReg:SubIdx.
557 if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
558 continue;
560 // It's an error to translate this:
562 // %reg1025 = <sext> %reg1024
563 // ...
564 // %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
566 // into this:
568 // %reg1025 = <sext> %reg1024
569 // ...
570 // %reg1027 = COPY %reg1025:4
571 // %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
573 // The problem here is that SUBREG_TO_REG is there to assert that an
574 // implicit zext occurs. It doesn't insert a zext instruction. If we allow
575 // the COPY here, it will give us the value after the <sext>, not the
576 // original value of %reg1024 before <sext>.
577 if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
578 continue;
580 MachineBasicBlock *UseMBB = UseMI->getParent();
581 if (UseMBB == &MBB) {
582 // Local uses that come after the extension.
583 if (!LocalMIs.count(UseMI))
584 Uses.push_back(&UseMO);
585 } else if (ReachedBBs.count(UseMBB)) {
586 // Non-local uses where the result of the extension is used. Always
587 // replace these unless it's a PHI.
588 Uses.push_back(&UseMO);
589 } else if (Aggressive && DT->dominates(&MBB, UseMBB)) {
590 // We may want to extend the live range of the extension result in order
591 // to replace these uses.
592 ExtendedUses.push_back(&UseMO);
593 } else {
594 // Both will be live out of the def MBB anyway. Don't extend live range of
595 // the extension result.
596 ExtendLife = false;
597 break;
601 if (ExtendLife && !ExtendedUses.empty())
602 // Extend the liveness of the extension result.
603 Uses.append(ExtendedUses.begin(), ExtendedUses.end());
605 // Now replace all uses.
606 bool Changed = false;
607 if (!Uses.empty()) {
608 SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
610 // Look for PHI uses of the extended result, we don't want to extend the
611 // liveness of a PHI input. It breaks all kinds of assumptions down
612 // stream. A PHI use is expected to be the kill of its source values.
613 for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
614 if (UI.isPHI())
615 PHIBBs.insert(UI.getParent());
617 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
618 for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
619 MachineOperand *UseMO = Uses[i];
620 MachineInstr *UseMI = UseMO->getParent();
621 MachineBasicBlock *UseMBB = UseMI->getParent();
622 if (PHIBBs.count(UseMBB))
623 continue;
625 // About to add uses of DstReg, clear DstReg's kill flags.
626 if (!Changed) {
627 MRI->clearKillFlags(DstReg);
628 MRI->constrainRegClass(DstReg, DstRC);
631 // SubReg defs are illegal in machine SSA phase,
632 // we should not generate SubReg defs.
634 // For example, for the instructions:
636 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
637 // %3:gprc_and_gprc_nor0 = COPY %0.sub_32:g8rc
639 // We should generate:
641 // %1:g8rc_and_g8rc_nox0 = EXTSW %0:g8rc
642 // %6:gprc_and_gprc_nor0 = COPY %1.sub_32:g8rc_and_g8rc_nox0
643 // %3:gprc_and_gprc_nor0 = COPY %6:gprc_and_gprc_nor0
645 if (UseSrcSubIdx)
646 RC = MRI->getRegClass(UseMI->getOperand(0).getReg());
648 Register NewVR = MRI->createVirtualRegister(RC);
649 BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
650 TII->get(TargetOpcode::COPY), NewVR)
651 .addReg(DstReg, 0, SubIdx);
652 if (UseSrcSubIdx)
653 UseMO->setSubReg(0);
655 UseMO->setReg(NewVR);
656 ++NumReuse;
657 Changed = true;
661 return Changed;
664 /// If the instruction is a compare and the previous instruction it's comparing
665 /// against already sets (or could be modified to set) the same flag as the
666 /// compare, then we can remove the comparison and use the flag from the
667 /// previous instruction.
668 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr &MI) {
669 // If this instruction is a comparison against zero and isn't comparing a
670 // physical register, we can try to optimize it.
671 Register SrcReg, SrcReg2;
672 int64_t CmpMask, CmpValue;
673 if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
674 SrcReg.isPhysical() || SrcReg2.isPhysical())
675 return false;
677 // Attempt to optimize the comparison instruction.
678 LLVM_DEBUG(dbgs() << "Attempting to optimize compare: " << MI);
679 if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
680 LLVM_DEBUG(dbgs() << " -> Successfully optimized compare!\n");
681 ++NumCmps;
682 return true;
685 return false;
688 /// Optimize a select instruction.
689 bool PeepholeOptimizer::optimizeSelect(MachineInstr &MI,
690 SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
691 unsigned TrueOp = 0;
692 unsigned FalseOp = 0;
693 bool Optimizable = false;
694 SmallVector<MachineOperand, 4> Cond;
695 if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
696 return false;
697 if (!Optimizable)
698 return false;
699 if (!TII->optimizeSelect(MI, LocalMIs))
700 return false;
701 LLVM_DEBUG(dbgs() << "Deleting select: " << MI);
702 MI.eraseFromParent();
703 ++NumSelects;
704 return true;
707 /// Check if a simpler conditional branch can be generated.
708 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr &MI) {
709 return TII->optimizeCondBranch(MI);
712 /// Try to find the next source that share the same register file
713 /// for the value defined by \p Reg and \p SubReg.
714 /// When true is returned, the \p RewriteMap can be used by the client to
715 /// retrieve all Def -> Use along the way up to the next source. Any found
716 /// Use that is not itself a key for another entry, is the next source to
717 /// use. During the search for the next source, multiple sources can be found
718 /// given multiple incoming sources of a PHI instruction. In this case, we
719 /// look in each PHI source for the next source; all found next sources must
720 /// share the same register file as \p Reg and \p SubReg. The client should
721 /// then be capable to rewrite all intermediate PHIs to get the next source.
722 /// \return False if no alternative sources are available. True otherwise.
723 bool PeepholeOptimizer::findNextSource(RegSubRegPair RegSubReg,
724 RewriteMapTy &RewriteMap) {
725 // Do not try to find a new source for a physical register.
726 // So far we do not have any motivating example for doing that.
727 // Thus, instead of maintaining untested code, we will revisit that if
728 // that changes at some point.
729 Register Reg = RegSubReg.Reg;
730 if (Reg.isPhysical())
731 return false;
732 const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
734 SmallVector<RegSubRegPair, 4> SrcToLook;
735 RegSubRegPair CurSrcPair = RegSubReg;
736 SrcToLook.push_back(CurSrcPair);
738 unsigned PHICount = 0;
739 do {
740 CurSrcPair = SrcToLook.pop_back_val();
741 // As explained above, do not handle physical registers
742 if (CurSrcPair.Reg.isPhysical())
743 return false;
745 ValueTracker ValTracker(CurSrcPair.Reg, CurSrcPair.SubReg, *MRI, TII);
747 // Follow the chain of copies until we find a more suitable source, a phi
748 // or have to abort.
749 while (true) {
750 ValueTrackerResult Res = ValTracker.getNextSource();
751 // Abort at the end of a chain (without finding a suitable source).
752 if (!Res.isValid())
753 return false;
755 // Insert the Def -> Use entry for the recently found source.
756 ValueTrackerResult CurSrcRes = RewriteMap.lookup(CurSrcPair);
757 if (CurSrcRes.isValid()) {
758 assert(CurSrcRes == Res && "ValueTrackerResult found must match");
759 // An existent entry with multiple sources is a PHI cycle we must avoid.
760 // Otherwise it's an entry with a valid next source we already found.
761 if (CurSrcRes.getNumSources() > 1) {
762 LLVM_DEBUG(dbgs()
763 << "findNextSource: found PHI cycle, aborting...\n");
764 return false;
766 break;
768 RewriteMap.insert(std::make_pair(CurSrcPair, Res));
770 // ValueTrackerResult usually have one source unless it's the result from
771 // a PHI instruction. Add the found PHI edges to be looked up further.
772 unsigned NumSrcs = Res.getNumSources();
773 if (NumSrcs > 1) {
774 PHICount++;
775 if (PHICount >= RewritePHILimit) {
776 LLVM_DEBUG(dbgs() << "findNextSource: PHI limit reached\n");
777 return false;
780 for (unsigned i = 0; i < NumSrcs; ++i)
781 SrcToLook.push_back(Res.getSrc(i));
782 break;
785 CurSrcPair = Res.getSrc(0);
786 // Do not extend the live-ranges of physical registers as they add
787 // constraints to the register allocator. Moreover, if we want to extend
788 // the live-range of a physical register, unlike SSA virtual register,
789 // we will have to check that they aren't redefine before the related use.
790 if (CurSrcPair.Reg.isPhysical())
791 return false;
793 // Keep following the chain if the value isn't any better yet.
794 const TargetRegisterClass *SrcRC = MRI->getRegClass(CurSrcPair.Reg);
795 if (!TRI->shouldRewriteCopySrc(DefRC, RegSubReg.SubReg, SrcRC,
796 CurSrcPair.SubReg))
797 continue;
799 // We currently cannot deal with subreg operands on PHI instructions
800 // (see insertPHI()).
801 if (PHICount > 0 && CurSrcPair.SubReg != 0)
802 continue;
804 // We found a suitable source, and are done with this chain.
805 break;
807 } while (!SrcToLook.empty());
809 // If we did not find a more suitable source, there is nothing to optimize.
810 return CurSrcPair.Reg != Reg;
813 /// Insert a PHI instruction with incoming edges \p SrcRegs that are
814 /// guaranteed to have the same register class. This is necessary whenever we
815 /// successfully traverse a PHI instruction and find suitable sources coming
816 /// from its edges. By inserting a new PHI, we provide a rewritten PHI def
817 /// suitable to be used in a new COPY instruction.
818 static MachineInstr &
819 insertPHI(MachineRegisterInfo &MRI, const TargetInstrInfo &TII,
820 const SmallVectorImpl<RegSubRegPair> &SrcRegs,
821 MachineInstr &OrigPHI) {
822 assert(!SrcRegs.empty() && "No sources to create a PHI instruction?");
824 const TargetRegisterClass *NewRC = MRI.getRegClass(SrcRegs[0].Reg);
825 // NewRC is only correct if no subregisters are involved. findNextSource()
826 // should have rejected those cases already.
827 assert(SrcRegs[0].SubReg == 0 && "should not have subreg operand");
828 Register NewVR = MRI.createVirtualRegister(NewRC);
829 MachineBasicBlock *MBB = OrigPHI.getParent();
830 MachineInstrBuilder MIB = BuildMI(*MBB, &OrigPHI, OrigPHI.getDebugLoc(),
831 TII.get(TargetOpcode::PHI), NewVR);
833 unsigned MBBOpIdx = 2;
834 for (const RegSubRegPair &RegPair : SrcRegs) {
835 MIB.addReg(RegPair.Reg, 0, RegPair.SubReg);
836 MIB.addMBB(OrigPHI.getOperand(MBBOpIdx).getMBB());
837 // Since we're extended the lifetime of RegPair.Reg, clear the
838 // kill flags to account for that and make RegPair.Reg reaches
839 // the new PHI.
840 MRI.clearKillFlags(RegPair.Reg);
841 MBBOpIdx += 2;
844 return *MIB;
847 namespace {
849 /// Interface to query instructions amenable to copy rewriting.
850 class Rewriter {
851 protected:
852 MachineInstr &CopyLike;
853 unsigned CurrentSrcIdx = 0; ///< The index of the source being rewritten.
854 public:
855 Rewriter(MachineInstr &CopyLike) : CopyLike(CopyLike) {}
856 virtual ~Rewriter() = default;
858 /// Get the next rewritable source (SrcReg, SrcSubReg) and
859 /// the related value that it affects (DstReg, DstSubReg).
860 /// A source is considered rewritable if its register class and the
861 /// register class of the related DstReg may not be register
862 /// coalescer friendly. In other words, given a copy-like instruction
863 /// not all the arguments may be returned at rewritable source, since
864 /// some arguments are none to be register coalescer friendly.
866 /// Each call of this method moves the current source to the next
867 /// rewritable source.
868 /// For instance, let CopyLike be the instruction to rewrite.
869 /// CopyLike has one definition and one source:
870 /// dst.dstSubIdx = CopyLike src.srcSubIdx.
872 /// The first call will give the first rewritable source, i.e.,
873 /// the only source this instruction has:
874 /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
875 /// This source defines the whole definition, i.e.,
876 /// (DstReg, DstSubReg) = (dst, dstSubIdx).
878 /// The second and subsequent calls will return false, as there is only one
879 /// rewritable source.
881 /// \return True if a rewritable source has been found, false otherwise.
882 /// The output arguments are valid if and only if true is returned.
883 virtual bool getNextRewritableSource(RegSubRegPair &Src,
884 RegSubRegPair &Dst) = 0;
886 /// Rewrite the current source with \p NewReg and \p NewSubReg if possible.
887 /// \return True if the rewriting was possible, false otherwise.
888 virtual bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) = 0;
891 /// Rewriter for COPY instructions.
892 class CopyRewriter : public Rewriter {
893 public:
894 CopyRewriter(MachineInstr &MI) : Rewriter(MI) {
895 assert(MI.isCopy() && "Expected copy instruction");
897 virtual ~CopyRewriter() = default;
899 bool getNextRewritableSource(RegSubRegPair &Src,
900 RegSubRegPair &Dst) override {
901 // CurrentSrcIdx > 0 means this function has already been called.
902 if (CurrentSrcIdx > 0)
903 return false;
904 // This is the first call to getNextRewritableSource.
905 // Move the CurrentSrcIdx to remember that we made that call.
906 CurrentSrcIdx = 1;
907 // The rewritable source is the argument.
908 const MachineOperand &MOSrc = CopyLike.getOperand(1);
909 Src = RegSubRegPair(MOSrc.getReg(), MOSrc.getSubReg());
910 // What we track are the alternative sources of the definition.
911 const MachineOperand &MODef = CopyLike.getOperand(0);
912 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
913 return true;
916 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
917 if (CurrentSrcIdx != 1)
918 return false;
919 MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
920 MOSrc.setReg(NewReg);
921 MOSrc.setSubReg(NewSubReg);
922 return true;
926 /// Helper class to rewrite uncoalescable copy like instructions
927 /// into new COPY (coalescable friendly) instructions.
928 class UncoalescableRewriter : public Rewriter {
929 unsigned NumDefs; ///< Number of defs in the bitcast.
931 public:
932 UncoalescableRewriter(MachineInstr &MI) : Rewriter(MI) {
933 NumDefs = MI.getDesc().getNumDefs();
936 /// \see See Rewriter::getNextRewritableSource()
937 /// All such sources need to be considered rewritable in order to
938 /// rewrite a uncoalescable copy-like instruction. This method return
939 /// each definition that must be checked if rewritable.
940 bool getNextRewritableSource(RegSubRegPair &Src,
941 RegSubRegPair &Dst) override {
942 // Find the next non-dead definition and continue from there.
943 if (CurrentSrcIdx == NumDefs)
944 return false;
946 while (CopyLike.getOperand(CurrentSrcIdx).isDead()) {
947 ++CurrentSrcIdx;
948 if (CurrentSrcIdx == NumDefs)
949 return false;
952 // What we track are the alternative sources of the definition.
953 Src = RegSubRegPair(0, 0);
954 const MachineOperand &MODef = CopyLike.getOperand(CurrentSrcIdx);
955 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
957 CurrentSrcIdx++;
958 return true;
961 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
962 return false;
966 /// Specialized rewriter for INSERT_SUBREG instruction.
967 class InsertSubregRewriter : public Rewriter {
968 public:
969 InsertSubregRewriter(MachineInstr &MI) : Rewriter(MI) {
970 assert(MI.isInsertSubreg() && "Invalid instruction");
973 /// \see See Rewriter::getNextRewritableSource()
974 /// Here CopyLike has the following form:
975 /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
976 /// Src1 has the same register class has dst, hence, there is
977 /// nothing to rewrite.
978 /// Src2.src2SubIdx, may not be register coalescer friendly.
979 /// Therefore, the first call to this method returns:
980 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
981 /// (DstReg, DstSubReg) = (dst, subIdx).
983 /// Subsequence calls will return false.
984 bool getNextRewritableSource(RegSubRegPair &Src,
985 RegSubRegPair &Dst) override {
986 // If we already get the only source we can rewrite, return false.
987 if (CurrentSrcIdx == 2)
988 return false;
989 // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
990 CurrentSrcIdx = 2;
991 const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
992 Src = RegSubRegPair(MOInsertedReg.getReg(), MOInsertedReg.getSubReg());
993 const MachineOperand &MODef = CopyLike.getOperand(0);
995 // We want to track something that is compatible with the
996 // partial definition.
997 if (MODef.getSubReg())
998 // Bail if we have to compose sub-register indices.
999 return false;
1000 Dst = RegSubRegPair(MODef.getReg(),
1001 (unsigned)CopyLike.getOperand(3).getImm());
1002 return true;
1005 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1006 if (CurrentSrcIdx != 2)
1007 return false;
1008 // We are rewriting the inserted reg.
1009 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1010 MO.setReg(NewReg);
1011 MO.setSubReg(NewSubReg);
1012 return true;
1016 /// Specialized rewriter for EXTRACT_SUBREG instruction.
1017 class ExtractSubregRewriter : public Rewriter {
1018 const TargetInstrInfo &TII;
1020 public:
1021 ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
1022 : Rewriter(MI), TII(TII) {
1023 assert(MI.isExtractSubreg() && "Invalid instruction");
1026 /// \see Rewriter::getNextRewritableSource()
1027 /// Here CopyLike has the following form:
1028 /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
1029 /// There is only one rewritable source: Src.subIdx,
1030 /// which defines dst.dstSubIdx.
1031 bool getNextRewritableSource(RegSubRegPair &Src,
1032 RegSubRegPair &Dst) override {
1033 // If we already get the only source we can rewrite, return false.
1034 if (CurrentSrcIdx == 1)
1035 return false;
1036 // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
1037 CurrentSrcIdx = 1;
1038 const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
1039 // If we have to compose sub-register indices, bail out.
1040 if (MOExtractedReg.getSubReg())
1041 return false;
1043 Src = RegSubRegPair(MOExtractedReg.getReg(),
1044 CopyLike.getOperand(2).getImm());
1046 // We want to track something that is compatible with the definition.
1047 const MachineOperand &MODef = CopyLike.getOperand(0);
1048 Dst = RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1049 return true;
1052 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1053 // The only source we can rewrite is the input register.
1054 if (CurrentSrcIdx != 1)
1055 return false;
1057 CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
1059 // If we find a source that does not require to extract something,
1060 // rewrite the operation with a copy.
1061 if (!NewSubReg) {
1062 // Move the current index to an invalid position.
1063 // We do not want another call to this method to be able
1064 // to do any change.
1065 CurrentSrcIdx = -1;
1066 // Rewrite the operation as a COPY.
1067 // Get rid of the sub-register index.
1068 CopyLike.removeOperand(2);
1069 // Morph the operation into a COPY.
1070 CopyLike.setDesc(TII.get(TargetOpcode::COPY));
1071 return true;
1073 CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
1074 return true;
1078 /// Specialized rewriter for REG_SEQUENCE instruction.
1079 class RegSequenceRewriter : public Rewriter {
1080 public:
1081 RegSequenceRewriter(MachineInstr &MI) : Rewriter(MI) {
1082 assert(MI.isRegSequence() && "Invalid instruction");
1085 /// \see Rewriter::getNextRewritableSource()
1086 /// Here CopyLike has the following form:
1087 /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
1088 /// Each call will return a different source, walking all the available
1089 /// source.
1091 /// The first call returns:
1092 /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
1093 /// (DstReg, DstSubReg) = (dst, subIdx1).
1095 /// The second call returns:
1096 /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
1097 /// (DstReg, DstSubReg) = (dst, subIdx2).
1099 /// And so on, until all the sources have been traversed, then
1100 /// it returns false.
1101 bool getNextRewritableSource(RegSubRegPair &Src,
1102 RegSubRegPair &Dst) override {
1103 // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
1105 // If this is the first call, move to the first argument.
1106 if (CurrentSrcIdx == 0) {
1107 CurrentSrcIdx = 1;
1108 } else {
1109 // Otherwise, move to the next argument and check that it is valid.
1110 CurrentSrcIdx += 2;
1111 if (CurrentSrcIdx >= CopyLike.getNumOperands())
1112 return false;
1114 const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
1115 Src.Reg = MOInsertedReg.getReg();
1116 // If we have to compose sub-register indices, bail out.
1117 if ((Src.SubReg = MOInsertedReg.getSubReg()))
1118 return false;
1120 // We want to track something that is compatible with the related
1121 // partial definition.
1122 Dst.SubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
1124 const MachineOperand &MODef = CopyLike.getOperand(0);
1125 Dst.Reg = MODef.getReg();
1126 // If we have to compose sub-registers, bail.
1127 return MODef.getSubReg() == 0;
1130 bool RewriteCurrentSource(Register NewReg, unsigned NewSubReg) override {
1131 // We cannot rewrite out of bound operands.
1132 // Moreover, rewritable sources are at odd positions.
1133 if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
1134 return false;
1136 MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
1137 MO.setReg(NewReg);
1138 MO.setSubReg(NewSubReg);
1139 return true;
1143 } // end anonymous namespace
1145 /// Get the appropriated Rewriter for \p MI.
1146 /// \return A pointer to a dynamically allocated Rewriter or nullptr if no
1147 /// rewriter works for \p MI.
1148 static Rewriter *getCopyRewriter(MachineInstr &MI, const TargetInstrInfo &TII) {
1149 // Handle uncoalescable copy-like instructions.
1150 if (MI.isBitcast() || MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
1151 MI.isExtractSubregLike())
1152 return new UncoalescableRewriter(MI);
1154 switch (MI.getOpcode()) {
1155 default:
1156 return nullptr;
1157 case TargetOpcode::COPY:
1158 return new CopyRewriter(MI);
1159 case TargetOpcode::INSERT_SUBREG:
1160 return new InsertSubregRewriter(MI);
1161 case TargetOpcode::EXTRACT_SUBREG:
1162 return new ExtractSubregRewriter(MI, TII);
1163 case TargetOpcode::REG_SEQUENCE:
1164 return new RegSequenceRewriter(MI);
1168 /// Given a \p Def.Reg and Def.SubReg pair, use \p RewriteMap to find
1169 /// the new source to use for rewrite. If \p HandleMultipleSources is true and
1170 /// multiple sources for a given \p Def are found along the way, we found a
1171 /// PHI instructions that needs to be rewritten.
1172 /// TODO: HandleMultipleSources should be removed once we test PHI handling
1173 /// with coalescable copies.
1174 static RegSubRegPair
1175 getNewSource(MachineRegisterInfo *MRI, const TargetInstrInfo *TII,
1176 RegSubRegPair Def,
1177 const PeepholeOptimizer::RewriteMapTy &RewriteMap,
1178 bool HandleMultipleSources = true) {
1179 RegSubRegPair LookupSrc(Def.Reg, Def.SubReg);
1180 while (true) {
1181 ValueTrackerResult Res = RewriteMap.lookup(LookupSrc);
1182 // If there are no entries on the map, LookupSrc is the new source.
1183 if (!Res.isValid())
1184 return LookupSrc;
1186 // There's only one source for this definition, keep searching...
1187 unsigned NumSrcs = Res.getNumSources();
1188 if (NumSrcs == 1) {
1189 LookupSrc.Reg = Res.getSrcReg(0);
1190 LookupSrc.SubReg = Res.getSrcSubReg(0);
1191 continue;
1194 // TODO: Remove once multiple srcs w/ coalescable copies are supported.
1195 if (!HandleMultipleSources)
1196 break;
1198 // Multiple sources, recurse into each source to find a new source
1199 // for it. Then, rewrite the PHI accordingly to its new edges.
1200 SmallVector<RegSubRegPair, 4> NewPHISrcs;
1201 for (unsigned i = 0; i < NumSrcs; ++i) {
1202 RegSubRegPair PHISrc(Res.getSrcReg(i), Res.getSrcSubReg(i));
1203 NewPHISrcs.push_back(
1204 getNewSource(MRI, TII, PHISrc, RewriteMap, HandleMultipleSources));
1207 // Build the new PHI node and return its def register as the new source.
1208 MachineInstr &OrigPHI = const_cast<MachineInstr &>(*Res.getInst());
1209 MachineInstr &NewPHI = insertPHI(*MRI, *TII, NewPHISrcs, OrigPHI);
1210 LLVM_DEBUG(dbgs() << "-- getNewSource\n");
1211 LLVM_DEBUG(dbgs() << " Replacing: " << OrigPHI);
1212 LLVM_DEBUG(dbgs() << " With: " << NewPHI);
1213 const MachineOperand &MODef = NewPHI.getOperand(0);
1214 return RegSubRegPair(MODef.getReg(), MODef.getSubReg());
1217 return RegSubRegPair(0, 0);
1220 /// Optimize generic copy instructions to avoid cross register bank copy.
1221 /// The optimization looks through a chain of copies and tries to find a source
1222 /// that has a compatible register class.
1223 /// Two register classes are considered to be compatible if they share the same
1224 /// register bank.
1225 /// New copies issued by this optimization are register allocator
1226 /// friendly. This optimization does not remove any copy as it may
1227 /// overconstrain the register allocator, but replaces some operands
1228 /// when possible.
1229 /// \pre isCoalescableCopy(*MI) is true.
1230 /// \return True, when \p MI has been rewritten. False otherwise.
1231 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr &MI) {
1232 assert(isCoalescableCopy(MI) && "Invalid argument");
1233 assert(MI.getDesc().getNumDefs() == 1 &&
1234 "Coalescer can understand multiple defs?!");
1235 const MachineOperand &MODef = MI.getOperand(0);
1236 // Do not rewrite physical definitions.
1237 if (MODef.getReg().isPhysical())
1238 return false;
1240 bool Changed = false;
1241 // Get the right rewriter for the current copy.
1242 std::unique_ptr<Rewriter> CpyRewriter(getCopyRewriter(MI, *TII));
1243 // If none exists, bail out.
1244 if (!CpyRewriter)
1245 return false;
1246 // Rewrite each rewritable source.
1247 RegSubRegPair Src;
1248 RegSubRegPair TrackPair;
1249 while (CpyRewriter->getNextRewritableSource(Src, TrackPair)) {
1250 // Keep track of PHI nodes and its incoming edges when looking for sources.
1251 RewriteMapTy RewriteMap;
1252 // Try to find a more suitable source. If we failed to do so, or get the
1253 // actual source, move to the next source.
1254 if (!findNextSource(TrackPair, RewriteMap))
1255 continue;
1257 // Get the new source to rewrite. TODO: Only enable handling of multiple
1258 // sources (PHIs) once we have a motivating example and testcases for it.
1259 RegSubRegPair NewSrc = getNewSource(MRI, TII, TrackPair, RewriteMap,
1260 /*HandleMultipleSources=*/false);
1261 if (Src.Reg == NewSrc.Reg || NewSrc.Reg == 0)
1262 continue;
1264 // Rewrite source.
1265 if (CpyRewriter->RewriteCurrentSource(NewSrc.Reg, NewSrc.SubReg)) {
1266 // We may have extended the live-range of NewSrc, account for that.
1267 MRI->clearKillFlags(NewSrc.Reg);
1268 Changed = true;
1271 // TODO: We could have a clean-up method to tidy the instruction.
1272 // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
1273 // => v0 = COPY v1
1274 // Currently we haven't seen motivating example for that and we
1275 // want to avoid untested code.
1276 NumRewrittenCopies += Changed;
1277 return Changed;
1280 /// Rewrite the source found through \p Def, by using the \p RewriteMap
1281 /// and create a new COPY instruction. More info about RewriteMap in
1282 /// PeepholeOptimizer::findNextSource. Right now this is only used to handle
1283 /// Uncoalescable copies, since they are copy like instructions that aren't
1284 /// recognized by the register allocator.
1285 MachineInstr &
1286 PeepholeOptimizer::rewriteSource(MachineInstr &CopyLike,
1287 RegSubRegPair Def, RewriteMapTy &RewriteMap) {
1288 assert(!Def.Reg.isPhysical() && "We do not rewrite physical registers");
1290 // Find the new source to use in the COPY rewrite.
1291 RegSubRegPair NewSrc = getNewSource(MRI, TII, Def, RewriteMap);
1293 // Insert the COPY.
1294 const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
1295 Register NewVReg = MRI->createVirtualRegister(DefRC);
1297 MachineInstr *NewCopy =
1298 BuildMI(*CopyLike.getParent(), &CopyLike, CopyLike.getDebugLoc(),
1299 TII->get(TargetOpcode::COPY), NewVReg)
1300 .addReg(NewSrc.Reg, 0, NewSrc.SubReg);
1302 if (Def.SubReg) {
1303 NewCopy->getOperand(0).setSubReg(Def.SubReg);
1304 NewCopy->getOperand(0).setIsUndef();
1307 LLVM_DEBUG(dbgs() << "-- RewriteSource\n");
1308 LLVM_DEBUG(dbgs() << " Replacing: " << CopyLike);
1309 LLVM_DEBUG(dbgs() << " With: " << *NewCopy);
1310 MRI->replaceRegWith(Def.Reg, NewVReg);
1311 MRI->clearKillFlags(NewVReg);
1313 // We extended the lifetime of NewSrc.Reg, clear the kill flags to
1314 // account for that.
1315 MRI->clearKillFlags(NewSrc.Reg);
1317 return *NewCopy;
1320 /// Optimize copy-like instructions to create
1321 /// register coalescer friendly instruction.
1322 /// The optimization tries to kill-off the \p MI by looking
1323 /// through a chain of copies to find a source that has a compatible
1324 /// register class.
1325 /// If such a source is found, it replace \p MI by a generic COPY
1326 /// operation.
1327 /// \pre isUncoalescableCopy(*MI) is true.
1328 /// \return True, when \p MI has been optimized. In that case, \p MI has
1329 /// been removed from its parent.
1330 /// All COPY instructions created, are inserted in \p LocalMIs.
1331 bool PeepholeOptimizer::optimizeUncoalescableCopy(
1332 MachineInstr &MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
1333 assert(isUncoalescableCopy(MI) && "Invalid argument");
1334 UncoalescableRewriter CpyRewriter(MI);
1336 // Rewrite each rewritable source by generating new COPYs. This works
1337 // differently from optimizeCoalescableCopy since it first makes sure that all
1338 // definitions can be rewritten.
1339 RewriteMapTy RewriteMap;
1340 RegSubRegPair Src;
1341 RegSubRegPair Def;
1342 SmallVector<RegSubRegPair, 4> RewritePairs;
1343 while (CpyRewriter.getNextRewritableSource(Src, Def)) {
1344 // If a physical register is here, this is probably for a good reason.
1345 // Do not rewrite that.
1346 if (Def.Reg.isPhysical())
1347 return false;
1349 // If we do not know how to rewrite this definition, there is no point
1350 // in trying to kill this instruction.
1351 if (!findNextSource(Def, RewriteMap))
1352 return false;
1354 RewritePairs.push_back(Def);
1357 // The change is possible for all defs, do it.
1358 for (const RegSubRegPair &Def : RewritePairs) {
1359 // Rewrite the "copy" in a way the register coalescer understands.
1360 MachineInstr &NewCopy = rewriteSource(MI, Def, RewriteMap);
1361 LocalMIs.insert(&NewCopy);
1364 // MI is now dead.
1365 LLVM_DEBUG(dbgs() << "Deleting uncoalescable copy: " << MI);
1366 MI.eraseFromParent();
1367 ++NumUncoalescableCopies;
1368 return true;
1371 /// Check whether MI is a candidate for folding into a later instruction.
1372 /// We only fold loads to virtual registers and the virtual register defined
1373 /// has a single user.
1374 bool PeepholeOptimizer::isLoadFoldable(
1375 MachineInstr &MI, SmallSet<Register, 16> &FoldAsLoadDefCandidates) {
1376 if (!MI.canFoldAsLoad() || !MI.mayLoad())
1377 return false;
1378 const MCInstrDesc &MCID = MI.getDesc();
1379 if (MCID.getNumDefs() != 1)
1380 return false;
1382 Register Reg = MI.getOperand(0).getReg();
1383 // To reduce compilation time, we check MRI->hasOneNonDBGUser when inserting
1384 // loads. It should be checked when processing uses of the load, since
1385 // uses can be removed during peephole.
1386 if (Reg.isVirtual() && !MI.getOperand(0).getSubReg() &&
1387 MRI->hasOneNonDBGUser(Reg)) {
1388 FoldAsLoadDefCandidates.insert(Reg);
1389 return true;
1391 return false;
1394 bool PeepholeOptimizer::isMoveImmediate(
1395 MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1396 DenseMap<Register, MachineInstr *> &ImmDefMIs) {
1397 const MCInstrDesc &MCID = MI.getDesc();
1398 if (MCID.getNumDefs() != 1 || !MI.getOperand(0).isReg())
1399 return false;
1400 Register Reg = MI.getOperand(0).getReg();
1401 if (!Reg.isVirtual())
1402 return false;
1404 int64_t ImmVal;
1405 if (!MI.isMoveImmediate() && !TII->getConstValDefinedInReg(MI, Reg, ImmVal))
1406 return false;
1408 ImmDefMIs.insert(std::make_pair(Reg, &MI));
1409 ImmDefRegs.insert(Reg);
1410 return true;
1413 /// Try folding register operands that are defined by move immediate
1414 /// instructions, i.e. a trivial constant folding optimization, if
1415 /// and only if the def and use are in the same BB.
1416 bool PeepholeOptimizer::foldImmediate(
1417 MachineInstr &MI, SmallSet<Register, 4> &ImmDefRegs,
1418 DenseMap<Register, MachineInstr *> &ImmDefMIs, bool &Deleted) {
1419 Deleted = false;
1420 for (unsigned i = 0, e = MI.getDesc().getNumOperands(); i != e; ++i) {
1421 MachineOperand &MO = MI.getOperand(i);
1422 if (!MO.isReg() || MO.isDef())
1423 continue;
1424 Register Reg = MO.getReg();
1425 if (!Reg.isVirtual())
1426 continue;
1427 if (ImmDefRegs.count(Reg) == 0)
1428 continue;
1429 DenseMap<Register, MachineInstr *>::iterator II = ImmDefMIs.find(Reg);
1430 assert(II != ImmDefMIs.end() && "couldn't find immediate definition");
1431 if (TII->FoldImmediate(MI, *II->second, Reg, MRI)) {
1432 ++NumImmFold;
1433 // FoldImmediate can delete ImmDefMI if MI was its only user. If ImmDefMI
1434 // is not deleted, and we happened to get a same MI, we can delete MI and
1435 // replace its users.
1436 if (MRI->getVRegDef(Reg) &&
1437 MI.isIdenticalTo(*II->second, MachineInstr::IgnoreVRegDefs)) {
1438 Register DstReg = MI.getOperand(0).getReg();
1439 if (DstReg.isVirtual() &&
1440 MRI->getRegClass(DstReg) == MRI->getRegClass(Reg)) {
1441 MRI->replaceRegWith(DstReg, Reg);
1442 MI.eraseFromParent();
1443 Deleted = true;
1446 return true;
1449 return false;
1452 // FIXME: This is very simple and misses some cases which should be handled when
1453 // motivating examples are found.
1455 // The copy rewriting logic should look at uses as well as defs and be able to
1456 // eliminate copies across blocks.
1458 // Later copies that are subregister extracts will also not be eliminated since
1459 // only the first copy is considered.
1461 // e.g.
1462 // %1 = COPY %0
1463 // %2 = COPY %0:sub1
1465 // Should replace %2 uses with %1:sub1
1466 bool PeepholeOptimizer::foldRedundantCopy(MachineInstr &MI) {
1467 assert(MI.isCopy() && "expected a COPY machine instruction");
1469 RegSubRegPair SrcPair;
1470 if (!getCopySrc(MI, SrcPair))
1471 return false;
1473 Register DstReg = MI.getOperand(0).getReg();
1474 if (!DstReg.isVirtual())
1475 return false;
1477 if (CopySrcMIs.insert(std::make_pair(SrcPair, &MI)).second) {
1478 // First copy of this reg seen.
1479 return false;
1482 MachineInstr *PrevCopy = CopySrcMIs.find(SrcPair)->second;
1484 assert(SrcPair.SubReg == PrevCopy->getOperand(1).getSubReg() &&
1485 "Unexpected mismatching subreg!");
1487 Register PrevDstReg = PrevCopy->getOperand(0).getReg();
1489 // Only replace if the copy register class is the same.
1491 // TODO: If we have multiple copies to different register classes, we may want
1492 // to track multiple copies of the same source register.
1493 if (MRI->getRegClass(DstReg) != MRI->getRegClass(PrevDstReg))
1494 return false;
1496 MRI->replaceRegWith(DstReg, PrevDstReg);
1498 // Lifetime of the previous copy has been extended.
1499 MRI->clearKillFlags(PrevDstReg);
1500 return true;
1503 bool PeepholeOptimizer::isNAPhysCopy(Register Reg) {
1504 return Reg.isPhysical() && !MRI->isAllocatable(Reg);
1507 bool PeepholeOptimizer::foldRedundantNAPhysCopy(
1508 MachineInstr &MI, DenseMap<Register, MachineInstr *> &NAPhysToVirtMIs) {
1509 assert(MI.isCopy() && "expected a COPY machine instruction");
1511 if (DisableNAPhysCopyOpt)
1512 return false;
1514 Register DstReg = MI.getOperand(0).getReg();
1515 Register SrcReg = MI.getOperand(1).getReg();
1516 if (isNAPhysCopy(SrcReg) && DstReg.isVirtual()) {
1517 // %vreg = COPY $physreg
1518 // Avoid using a datastructure which can track multiple live non-allocatable
1519 // phys->virt copies since LLVM doesn't seem to do this.
1520 NAPhysToVirtMIs.insert({SrcReg, &MI});
1521 return false;
1524 if (!(SrcReg.isVirtual() && isNAPhysCopy(DstReg)))
1525 return false;
1527 // $physreg = COPY %vreg
1528 auto PrevCopy = NAPhysToVirtMIs.find(DstReg);
1529 if (PrevCopy == NAPhysToVirtMIs.end()) {
1530 // We can't remove the copy: there was an intervening clobber of the
1531 // non-allocatable physical register after the copy to virtual.
1532 LLVM_DEBUG(dbgs() << "NAPhysCopy: intervening clobber forbids erasing "
1533 << MI);
1534 return false;
1537 Register PrevDstReg = PrevCopy->second->getOperand(0).getReg();
1538 if (PrevDstReg == SrcReg) {
1539 // Remove the virt->phys copy: we saw the virtual register definition, and
1540 // the non-allocatable physical register's state hasn't changed since then.
1541 LLVM_DEBUG(dbgs() << "NAPhysCopy: erasing " << MI);
1542 ++NumNAPhysCopies;
1543 return true;
1546 // Potential missed optimization opportunity: we saw a different virtual
1547 // register get a copy of the non-allocatable physical register, and we only
1548 // track one such copy. Avoid getting confused by this new non-allocatable
1549 // physical register definition, and remove it from the tracked copies.
1550 LLVM_DEBUG(dbgs() << "NAPhysCopy: missed opportunity " << MI);
1551 NAPhysToVirtMIs.erase(PrevCopy);
1552 return false;
1555 /// \bried Returns true if \p MO is a virtual register operand.
1556 static bool isVirtualRegisterOperand(MachineOperand &MO) {
1557 return MO.isReg() && MO.getReg().isVirtual();
1560 bool PeepholeOptimizer::findTargetRecurrence(
1561 Register Reg, const SmallSet<Register, 2> &TargetRegs,
1562 RecurrenceCycle &RC) {
1563 // Recurrence found if Reg is in TargetRegs.
1564 if (TargetRegs.count(Reg))
1565 return true;
1567 // TODO: Curerntly, we only allow the last instruction of the recurrence
1568 // cycle (the instruction that feeds the PHI instruction) to have more than
1569 // one uses to guarantee that commuting operands does not tie registers
1570 // with overlapping live range. Once we have actual live range info of
1571 // each register, this constraint can be relaxed.
1572 if (!MRI->hasOneNonDBGUse(Reg))
1573 return false;
1575 // Give up if the reccurrence chain length is longer than the limit.
1576 if (RC.size() >= MaxRecurrenceChain)
1577 return false;
1579 MachineInstr &MI = *(MRI->use_instr_nodbg_begin(Reg));
1580 unsigned Idx = MI.findRegisterUseOperandIdx(Reg);
1582 // Only interested in recurrences whose instructions have only one def, which
1583 // is a virtual register.
1584 if (MI.getDesc().getNumDefs() != 1)
1585 return false;
1587 MachineOperand &DefOp = MI.getOperand(0);
1588 if (!isVirtualRegisterOperand(DefOp))
1589 return false;
1591 // Check if def operand of MI is tied to any use operand. We are only
1592 // interested in the case that all the instructions in the recurrence chain
1593 // have there def operand tied with one of the use operand.
1594 unsigned TiedUseIdx;
1595 if (!MI.isRegTiedToUseOperand(0, &TiedUseIdx))
1596 return false;
1598 if (Idx == TiedUseIdx) {
1599 RC.push_back(RecurrenceInstr(&MI));
1600 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1601 } else {
1602 // If Idx is not TiedUseIdx, check if Idx is commutable with TiedUseIdx.
1603 unsigned CommIdx = TargetInstrInfo::CommuteAnyOperandIndex;
1604 if (TII->findCommutedOpIndices(MI, Idx, CommIdx) && CommIdx == TiedUseIdx) {
1605 RC.push_back(RecurrenceInstr(&MI, Idx, CommIdx));
1606 return findTargetRecurrence(DefOp.getReg(), TargetRegs, RC);
1610 return false;
1613 /// Phi instructions will eventually be lowered to copy instructions.
1614 /// If phi is in a loop header, a recurrence may formulated around the source
1615 /// and destination of the phi. For such case commuting operands of the
1616 /// instructions in the recurrence may enable coalescing of the copy instruction
1617 /// generated from the phi. For example, if there is a recurrence of
1619 /// LoopHeader:
1620 /// %1 = phi(%0, %100)
1621 /// LoopLatch:
1622 /// %0<def, tied1> = ADD %2<def, tied0>, %1
1624 /// , the fact that %0 and %2 are in the same tied operands set makes
1625 /// the coalescing of copy instruction generated from the phi in
1626 /// LoopHeader(i.e. %1 = COPY %0) impossible, because %1 and
1627 /// %2 have overlapping live range. This introduces additional move
1628 /// instruction to the final assembly. However, if we commute %2 and
1629 /// %1 of ADD instruction, the redundant move instruction can be
1630 /// avoided.
1631 bool PeepholeOptimizer::optimizeRecurrence(MachineInstr &PHI) {
1632 SmallSet<Register, 2> TargetRegs;
1633 for (unsigned Idx = 1; Idx < PHI.getNumOperands(); Idx += 2) {
1634 MachineOperand &MO = PHI.getOperand(Idx);
1635 assert(isVirtualRegisterOperand(MO) && "Invalid PHI instruction");
1636 TargetRegs.insert(MO.getReg());
1639 bool Changed = false;
1640 RecurrenceCycle RC;
1641 if (findTargetRecurrence(PHI.getOperand(0).getReg(), TargetRegs, RC)) {
1642 // Commutes operands of instructions in RC if necessary so that the copy to
1643 // be generated from PHI can be coalesced.
1644 LLVM_DEBUG(dbgs() << "Optimize recurrence chain from " << PHI);
1645 for (auto &RI : RC) {
1646 LLVM_DEBUG(dbgs() << "\tInst: " << *(RI.getMI()));
1647 auto CP = RI.getCommutePair();
1648 if (CP) {
1649 Changed = true;
1650 TII->commuteInstruction(*(RI.getMI()), false, (*CP).first,
1651 (*CP).second);
1652 LLVM_DEBUG(dbgs() << "\t\tCommuted: " << *(RI.getMI()));
1657 return Changed;
1660 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1661 if (skipFunction(MF.getFunction()))
1662 return false;
1664 LLVM_DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1665 LLVM_DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1667 if (DisablePeephole)
1668 return false;
1670 TII = MF.getSubtarget().getInstrInfo();
1671 TRI = MF.getSubtarget().getRegisterInfo();
1672 MRI = &MF.getRegInfo();
1673 DT = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1674 MLI = &getAnalysis<MachineLoopInfo>();
1675 MF.setDelegate(this);
1677 bool Changed = false;
1679 for (MachineBasicBlock &MBB : MF) {
1680 bool SeenMoveImm = false;
1682 // During this forward scan, at some point it needs to answer the question
1683 // "given a pointer to an MI in the current BB, is it located before or
1684 // after the current instruction".
1685 // To perform this, the following set keeps track of the MIs already seen
1686 // during the scan, if a MI is not in the set, it is assumed to be located
1687 // after. Newly created MIs have to be inserted in the set as well.
1688 SmallPtrSet<MachineInstr*, 16> LocalMIs;
1689 SmallSet<Register, 4> ImmDefRegs;
1690 DenseMap<Register, MachineInstr *> ImmDefMIs;
1691 SmallSet<Register, 16> FoldAsLoadDefCandidates;
1693 // Track when a non-allocatable physical register is copied to a virtual
1694 // register so that useless moves can be removed.
1696 // $physreg is the map index; MI is the last valid `%vreg = COPY $physreg`
1697 // without any intervening re-definition of $physreg.
1698 DenseMap<Register, MachineInstr *> NAPhysToVirtMIs;
1700 CopySrcMIs.clear();
1702 bool IsLoopHeader = MLI->isLoopHeader(&MBB);
1704 for (MachineBasicBlock::iterator MII = MBB.begin(), MIE = MBB.end();
1705 MII != MIE; ) {
1706 MachineInstr *MI = &*MII;
1707 // We may be erasing MI below, increment MII now.
1708 ++MII;
1709 LocalMIs.insert(MI);
1711 // Skip debug instructions. They should not affect this peephole
1712 // optimization.
1713 if (MI->isDebugInstr())
1714 continue;
1716 if (MI->isPosition())
1717 continue;
1719 if (IsLoopHeader && MI->isPHI()) {
1720 if (optimizeRecurrence(*MI)) {
1721 Changed = true;
1722 continue;
1726 if (!MI->isCopy()) {
1727 for (const MachineOperand &MO : MI->operands()) {
1728 // Visit all operands: definitions can be implicit or explicit.
1729 if (MO.isReg()) {
1730 Register Reg = MO.getReg();
1731 if (MO.isDef() && isNAPhysCopy(Reg)) {
1732 const auto &Def = NAPhysToVirtMIs.find(Reg);
1733 if (Def != NAPhysToVirtMIs.end()) {
1734 // A new definition of the non-allocatable physical register
1735 // invalidates previous copies.
1736 LLVM_DEBUG(dbgs()
1737 << "NAPhysCopy: invalidating because of " << *MI);
1738 NAPhysToVirtMIs.erase(Def);
1741 } else if (MO.isRegMask()) {
1742 const uint32_t *RegMask = MO.getRegMask();
1743 for (auto &RegMI : NAPhysToVirtMIs) {
1744 Register Def = RegMI.first;
1745 if (MachineOperand::clobbersPhysReg(RegMask, Def)) {
1746 LLVM_DEBUG(dbgs()
1747 << "NAPhysCopy: invalidating because of " << *MI);
1748 NAPhysToVirtMIs.erase(Def);
1755 if (MI->isImplicitDef() || MI->isKill())
1756 continue;
1758 if (MI->isInlineAsm() || MI->hasUnmodeledSideEffects()) {
1759 // Blow away all non-allocatable physical registers knowledge since we
1760 // don't know what's correct anymore.
1762 // FIXME: handle explicit asm clobbers.
1763 LLVM_DEBUG(dbgs() << "NAPhysCopy: blowing away all info due to "
1764 << *MI);
1765 NAPhysToVirtMIs.clear();
1768 if ((isUncoalescableCopy(*MI) &&
1769 optimizeUncoalescableCopy(*MI, LocalMIs)) ||
1770 (MI->isCompare() && optimizeCmpInstr(*MI)) ||
1771 (MI->isSelect() && optimizeSelect(*MI, LocalMIs))) {
1772 // MI is deleted.
1773 LocalMIs.erase(MI);
1774 Changed = true;
1775 continue;
1778 if (MI->isConditionalBranch() && optimizeCondBranch(*MI)) {
1779 Changed = true;
1780 continue;
1783 if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(*MI)) {
1784 // MI is just rewritten.
1785 Changed = true;
1786 continue;
1789 if (MI->isCopy() && (foldRedundantCopy(*MI) ||
1790 foldRedundantNAPhysCopy(*MI, NAPhysToVirtMIs))) {
1791 LocalMIs.erase(MI);
1792 LLVM_DEBUG(dbgs() << "Deleting redundant copy: " << *MI << "\n");
1793 MI->eraseFromParent();
1794 Changed = true;
1795 continue;
1798 if (isMoveImmediate(*MI, ImmDefRegs, ImmDefMIs)) {
1799 SeenMoveImm = true;
1800 } else {
1801 Changed |= optimizeExtInstr(*MI, MBB, LocalMIs);
1802 // optimizeExtInstr might have created new instructions after MI
1803 // and before the already incremented MII. Adjust MII so that the
1804 // next iteration sees the new instructions.
1805 MII = MI;
1806 ++MII;
1807 if (SeenMoveImm) {
1808 bool Deleted;
1809 Changed |= foldImmediate(*MI, ImmDefRegs, ImmDefMIs, Deleted);
1810 if (Deleted) {
1811 LocalMIs.erase(MI);
1812 continue;
1817 // Check whether MI is a load candidate for folding into a later
1818 // instruction. If MI is not a candidate, check whether we can fold an
1819 // earlier load into MI.
1820 if (!isLoadFoldable(*MI, FoldAsLoadDefCandidates) &&
1821 !FoldAsLoadDefCandidates.empty()) {
1823 // We visit each operand even after successfully folding a previous
1824 // one. This allows us to fold multiple loads into a single
1825 // instruction. We do assume that optimizeLoadInstr doesn't insert
1826 // foldable uses earlier in the argument list. Since we don't restart
1827 // iteration, we'd miss such cases.
1828 const MCInstrDesc &MIDesc = MI->getDesc();
1829 for (unsigned i = MIDesc.getNumDefs(); i != MI->getNumOperands();
1830 ++i) {
1831 const MachineOperand &MOp = MI->getOperand(i);
1832 if (!MOp.isReg())
1833 continue;
1834 Register FoldAsLoadDefReg = MOp.getReg();
1835 if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1836 // We need to fold load after optimizeCmpInstr, since
1837 // optimizeCmpInstr can enable folding by converting SUB to CMP.
1838 // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1839 // we need it for markUsesInDebugValueAsUndef().
1840 Register FoldedReg = FoldAsLoadDefReg;
1841 MachineInstr *DefMI = nullptr;
1842 if (MachineInstr *FoldMI =
1843 TII->optimizeLoadInstr(*MI, MRI, FoldAsLoadDefReg, DefMI)) {
1844 // Update LocalMIs since we replaced MI with FoldMI and deleted
1845 // DefMI.
1846 LLVM_DEBUG(dbgs() << "Replacing: " << *MI);
1847 LLVM_DEBUG(dbgs() << " With: " << *FoldMI);
1848 LocalMIs.erase(MI);
1849 LocalMIs.erase(DefMI);
1850 LocalMIs.insert(FoldMI);
1851 // Update the call site info.
1852 if (MI->shouldUpdateCallSiteInfo())
1853 MI->getMF()->moveCallSiteInfo(MI, FoldMI);
1854 MI->eraseFromParent();
1855 DefMI->eraseFromParent();
1856 MRI->markUsesInDebugValueAsUndef(FoldedReg);
1857 FoldAsLoadDefCandidates.erase(FoldedReg);
1858 ++NumLoadFold;
1860 // MI is replaced with FoldMI so we can continue trying to fold
1861 Changed = true;
1862 MI = FoldMI;
1868 // If we run into an instruction we can't fold across, discard
1869 // the load candidates. Note: We might be able to fold *into* this
1870 // instruction, so this needs to be after the folding logic.
1871 if (MI->isLoadFoldBarrier()) {
1872 LLVM_DEBUG(dbgs() << "Encountered load fold barrier on " << *MI);
1873 FoldAsLoadDefCandidates.clear();
1878 MF.resetDelegate(this);
1879 return Changed;
1882 ValueTrackerResult ValueTracker::getNextSourceFromCopy() {
1883 assert(Def->isCopy() && "Invalid definition");
1884 // Copy instruction are supposed to be: Def = Src.
1885 // If someone breaks this assumption, bad things will happen everywhere.
1886 // There may be implicit uses preventing the copy to be moved across
1887 // some target specific register definitions
1888 assert(Def->getNumOperands() - Def->getNumImplicitOperands() == 2 &&
1889 "Invalid number of operands");
1890 assert(!Def->hasImplicitDef() && "Only implicit uses are allowed");
1892 if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1893 // If we look for a different subreg, it means we want a subreg of src.
1894 // Bails as we do not support composing subregs yet.
1895 return ValueTrackerResult();
1896 // Otherwise, we want the whole source.
1897 const MachineOperand &Src = Def->getOperand(1);
1898 if (Src.isUndef())
1899 return ValueTrackerResult();
1900 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1903 ValueTrackerResult ValueTracker::getNextSourceFromBitcast() {
1904 assert(Def->isBitcast() && "Invalid definition");
1906 // Bail if there are effects that a plain copy will not expose.
1907 if (Def->mayRaiseFPException() || Def->hasUnmodeledSideEffects())
1908 return ValueTrackerResult();
1910 // Bitcasts with more than one def are not supported.
1911 if (Def->getDesc().getNumDefs() != 1)
1912 return ValueTrackerResult();
1913 const MachineOperand DefOp = Def->getOperand(DefIdx);
1914 if (DefOp.getSubReg() != DefSubReg)
1915 // If we look for a different subreg, it means we want a subreg of the src.
1916 // Bails as we do not support composing subregs yet.
1917 return ValueTrackerResult();
1919 unsigned SrcIdx = Def->getNumOperands();
1920 for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1921 ++OpIdx) {
1922 const MachineOperand &MO = Def->getOperand(OpIdx);
1923 if (!MO.isReg() || !MO.getReg())
1924 continue;
1925 // Ignore dead implicit defs.
1926 if (MO.isImplicit() && MO.isDead())
1927 continue;
1928 assert(!MO.isDef() && "We should have skipped all the definitions by now");
1929 if (SrcIdx != EndOpIdx)
1930 // Multiple sources?
1931 return ValueTrackerResult();
1932 SrcIdx = OpIdx;
1935 // In some rare case, Def has no input, SrcIdx is out of bound,
1936 // getOperand(SrcIdx) will fail below.
1937 if (SrcIdx >= Def->getNumOperands())
1938 return ValueTrackerResult();
1940 // Stop when any user of the bitcast is a SUBREG_TO_REG, replacing with a COPY
1941 // will break the assumed guarantees for the upper bits.
1942 for (const MachineInstr &UseMI : MRI.use_nodbg_instructions(DefOp.getReg())) {
1943 if (UseMI.isSubregToReg())
1944 return ValueTrackerResult();
1947 const MachineOperand &Src = Def->getOperand(SrcIdx);
1948 if (Src.isUndef())
1949 return ValueTrackerResult();
1950 return ValueTrackerResult(Src.getReg(), Src.getSubReg());
1953 ValueTrackerResult ValueTracker::getNextSourceFromRegSequence() {
1954 assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1955 "Invalid definition");
1957 if (Def->getOperand(DefIdx).getSubReg())
1958 // If we are composing subregs, bail out.
1959 // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1960 // This should almost never happen as the SSA property is tracked at
1961 // the register level (as opposed to the subreg level).
1962 // I.e.,
1963 // Def.sub0 =
1964 // Def.sub1 =
1965 // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1966 // Def. Thus, it must not be generated.
1967 // However, some code could theoretically generates a single
1968 // Def.sub0 (i.e, not defining the other subregs) and we would
1969 // have this case.
1970 // If we can ascertain (or force) that this never happens, we could
1971 // turn that into an assertion.
1972 return ValueTrackerResult();
1974 if (!TII)
1975 // We could handle the REG_SEQUENCE here, but we do not want to
1976 // duplicate the code from the generic TII.
1977 return ValueTrackerResult();
1979 SmallVector<RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1980 if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1981 return ValueTrackerResult();
1983 // We are looking at:
1984 // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1985 // Check if one of the operand defines the subreg we are interested in.
1986 for (const RegSubRegPairAndIdx &RegSeqInput : RegSeqInputRegs) {
1987 if (RegSeqInput.SubIdx == DefSubReg)
1988 return ValueTrackerResult(RegSeqInput.Reg, RegSeqInput.SubReg);
1991 // If the subreg we are tracking is super-defined by another subreg,
1992 // we could follow this value. However, this would require to compose
1993 // the subreg and we do not do that for now.
1994 return ValueTrackerResult();
1997 ValueTrackerResult ValueTracker::getNextSourceFromInsertSubreg() {
1998 assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1999 "Invalid definition");
2001 if (Def->getOperand(DefIdx).getSubReg())
2002 // If we are composing subreg, bail out.
2003 // Same remark as getNextSourceFromRegSequence.
2004 // I.e., this may be turned into an assert.
2005 return ValueTrackerResult();
2007 if (!TII)
2008 // We could handle the REG_SEQUENCE here, but we do not want to
2009 // duplicate the code from the generic TII.
2010 return ValueTrackerResult();
2012 RegSubRegPair BaseReg;
2013 RegSubRegPairAndIdx InsertedReg;
2014 if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
2015 return ValueTrackerResult();
2017 // We are looking at:
2018 // Def = INSERT_SUBREG v0, v1, sub1
2019 // There are two cases:
2020 // 1. DefSubReg == sub1, get v1.
2021 // 2. DefSubReg != sub1, the value may be available through v0.
2023 // #1 Check if the inserted register matches the required sub index.
2024 if (InsertedReg.SubIdx == DefSubReg) {
2025 return ValueTrackerResult(InsertedReg.Reg, InsertedReg.SubReg);
2027 // #2 Otherwise, if the sub register we are looking for is not partial
2028 // defined by the inserted element, we can look through the main
2029 // register (v0).
2030 const MachineOperand &MODef = Def->getOperand(DefIdx);
2031 // If the result register (Def) and the base register (v0) do not
2032 // have the same register class or if we have to compose
2033 // subregisters, bail out.
2034 if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
2035 BaseReg.SubReg)
2036 return ValueTrackerResult();
2038 // Get the TRI and check if the inserted sub-register overlaps with the
2039 // sub-register we are tracking.
2040 const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
2041 if (!TRI ||
2042 !(TRI->getSubRegIndexLaneMask(DefSubReg) &
2043 TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)).none())
2044 return ValueTrackerResult();
2045 // At this point, the value is available in v0 via the same subreg
2046 // we used for Def.
2047 return ValueTrackerResult(BaseReg.Reg, DefSubReg);
2050 ValueTrackerResult ValueTracker::getNextSourceFromExtractSubreg() {
2051 assert((Def->isExtractSubreg() ||
2052 Def->isExtractSubregLike()) && "Invalid definition");
2053 // We are looking at:
2054 // Def = EXTRACT_SUBREG v0, sub0
2056 // Bail if we have to compose sub registers.
2057 // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
2058 if (DefSubReg)
2059 return ValueTrackerResult();
2061 if (!TII)
2062 // We could handle the EXTRACT_SUBREG here, but we do not want to
2063 // duplicate the code from the generic TII.
2064 return ValueTrackerResult();
2066 RegSubRegPairAndIdx ExtractSubregInputReg;
2067 if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
2068 return ValueTrackerResult();
2070 // Bail if we have to compose sub registers.
2071 // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
2072 if (ExtractSubregInputReg.SubReg)
2073 return ValueTrackerResult();
2074 // Otherwise, the value is available in the v0.sub0.
2075 return ValueTrackerResult(ExtractSubregInputReg.Reg,
2076 ExtractSubregInputReg.SubIdx);
2079 ValueTrackerResult ValueTracker::getNextSourceFromSubregToReg() {
2080 assert(Def->isSubregToReg() && "Invalid definition");
2081 // We are looking at:
2082 // Def = SUBREG_TO_REG Imm, v0, sub0
2084 // Bail if we have to compose sub registers.
2085 // If DefSubReg != sub0, we would have to check that all the bits
2086 // we track are included in sub0 and if yes, we would have to
2087 // determine the right subreg in v0.
2088 if (DefSubReg != Def->getOperand(3).getImm())
2089 return ValueTrackerResult();
2090 // Bail if we have to compose sub registers.
2091 // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
2092 if (Def->getOperand(2).getSubReg())
2093 return ValueTrackerResult();
2095 return ValueTrackerResult(Def->getOperand(2).getReg(),
2096 Def->getOperand(3).getImm());
2099 /// Explore each PHI incoming operand and return its sources.
2100 ValueTrackerResult ValueTracker::getNextSourceFromPHI() {
2101 assert(Def->isPHI() && "Invalid definition");
2102 ValueTrackerResult Res;
2104 // If we look for a different subreg, bail as we do not support composing
2105 // subregs yet.
2106 if (Def->getOperand(0).getSubReg() != DefSubReg)
2107 return ValueTrackerResult();
2109 // Return all register sources for PHI instructions.
2110 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) {
2111 const MachineOperand &MO = Def->getOperand(i);
2112 assert(MO.isReg() && "Invalid PHI instruction");
2113 // We have no code to deal with undef operands. They shouldn't happen in
2114 // normal programs anyway.
2115 if (MO.isUndef())
2116 return ValueTrackerResult();
2117 Res.addSource(MO.getReg(), MO.getSubReg());
2120 return Res;
2123 ValueTrackerResult ValueTracker::getNextSourceImpl() {
2124 assert(Def && "This method needs a valid definition");
2126 assert(((Def->getOperand(DefIdx).isDef() &&
2127 (DefIdx < Def->getDesc().getNumDefs() ||
2128 Def->getDesc().isVariadic())) ||
2129 Def->getOperand(DefIdx).isImplicit()) &&
2130 "Invalid DefIdx");
2131 if (Def->isCopy())
2132 return getNextSourceFromCopy();
2133 if (Def->isBitcast())
2134 return getNextSourceFromBitcast();
2135 // All the remaining cases involve "complex" instructions.
2136 // Bail if we did not ask for the advanced tracking.
2137 if (DisableAdvCopyOpt)
2138 return ValueTrackerResult();
2139 if (Def->isRegSequence() || Def->isRegSequenceLike())
2140 return getNextSourceFromRegSequence();
2141 if (Def->isInsertSubreg() || Def->isInsertSubregLike())
2142 return getNextSourceFromInsertSubreg();
2143 if (Def->isExtractSubreg() || Def->isExtractSubregLike())
2144 return getNextSourceFromExtractSubreg();
2145 if (Def->isSubregToReg())
2146 return getNextSourceFromSubregToReg();
2147 if (Def->isPHI())
2148 return getNextSourceFromPHI();
2149 return ValueTrackerResult();
2152 ValueTrackerResult ValueTracker::getNextSource() {
2153 // If we reach a point where we cannot move up in the use-def chain,
2154 // there is nothing we can get.
2155 if (!Def)
2156 return ValueTrackerResult();
2158 ValueTrackerResult Res = getNextSourceImpl();
2159 if (Res.isValid()) {
2160 // Update definition, definition index, and subregister for the
2161 // next call of getNextSource.
2162 // Update the current register.
2163 bool OneRegSrc = Res.getNumSources() == 1;
2164 if (OneRegSrc)
2165 Reg = Res.getSrcReg(0);
2166 // Update the result before moving up in the use-def chain
2167 // with the instruction containing the last found sources.
2168 Res.setInst(Def);
2170 // If we can still move up in the use-def chain, move to the next
2171 // definition.
2172 if (!Reg.isPhysical() && OneRegSrc) {
2173 MachineRegisterInfo::def_iterator DI = MRI.def_begin(Reg);
2174 if (DI != MRI.def_end()) {
2175 Def = DI->getParent();
2176 DefIdx = DI.getOperandNo();
2177 DefSubReg = Res.getSrcSubReg(0);
2178 } else {
2179 Def = nullptr;
2181 return Res;
2184 // If we end up here, this means we will not be able to find another source
2185 // for the next iteration. Make sure any new call to getNextSource bails out
2186 // early by cutting the use-def chain.
2187 Def = nullptr;
2188 return Res;