1 //===- llvm/CodeGen/GlobalISel/RegisterBankInfo.cpp --------------*- C++ -*-==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// This file implements the RegisterBankInfo class.
10 //===----------------------------------------------------------------------===//
12 #include "llvm/CodeGen/RegisterBankInfo.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/ADT/iterator_range.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/RegisterBank.h"
20 #include "llvm/CodeGen/TargetOpcodes.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/Config/llvm-config.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
27 #include <algorithm> // For std::max.
29 #define DEBUG_TYPE "registerbankinfo"
33 STATISTIC(NumPartialMappingsCreated
,
34 "Number of partial mappings dynamically created");
35 STATISTIC(NumPartialMappingsAccessed
,
36 "Number of partial mappings dynamically accessed");
37 STATISTIC(NumValueMappingsCreated
,
38 "Number of value mappings dynamically created");
39 STATISTIC(NumValueMappingsAccessed
,
40 "Number of value mappings dynamically accessed");
41 STATISTIC(NumOperandsMappingsCreated
,
42 "Number of operands mappings dynamically created");
43 STATISTIC(NumOperandsMappingsAccessed
,
44 "Number of operands mappings dynamically accessed");
45 STATISTIC(NumInstructionMappingsCreated
,
46 "Number of instruction mappings dynamically created");
47 STATISTIC(NumInstructionMappingsAccessed
,
48 "Number of instruction mappings dynamically accessed");
50 const unsigned RegisterBankInfo::DefaultMappingID
= UINT_MAX
;
51 const unsigned RegisterBankInfo::InvalidMappingID
= UINT_MAX
- 1;
53 //------------------------------------------------------------------------------
54 // RegisterBankInfo implementation.
55 //------------------------------------------------------------------------------
56 RegisterBankInfo::RegisterBankInfo(const RegisterBank
**RegBanks
,
57 unsigned NumRegBanks
, const unsigned *Sizes
,
59 : RegBanks(RegBanks
), NumRegBanks(NumRegBanks
), Sizes(Sizes
),
62 for (unsigned Idx
= 0, End
= getNumRegBanks(); Idx
!= End
; ++Idx
) {
63 assert(RegBanks
[Idx
] != nullptr && "Invalid RegisterBank");
64 assert(RegBanks
[Idx
]->isValid() && "RegisterBank should be valid");
69 bool RegisterBankInfo::verify(const TargetRegisterInfo
&TRI
) const {
71 for (unsigned Idx
= 0, End
= getNumRegBanks(); Idx
!= End
; ++Idx
) {
72 const RegisterBank
&RegBank
= getRegBank(Idx
);
73 assert(Idx
== RegBank
.getID() &&
74 "ID does not match the index in the array");
75 LLVM_DEBUG(dbgs() << "Verify " << RegBank
<< '\n');
76 assert(RegBank
.verify(*this, TRI
) && "RegBank is invalid");
83 RegisterBankInfo::getRegBank(Register Reg
, const MachineRegisterInfo
&MRI
,
84 const TargetRegisterInfo
&TRI
) const {
85 if (!Reg
.isVirtual()) {
86 // FIXME: This was probably a copy to a virtual register that does have a
88 const TargetRegisterClass
*RC
= getMinimalPhysRegClass(Reg
, TRI
);
89 return RC
? &getRegBankFromRegClass(*RC
, LLT()) : nullptr;
92 const RegClassOrRegBank
&RegClassOrBank
= MRI
.getRegClassOrRegBank(Reg
);
93 if (auto *RB
= dyn_cast_if_present
<const RegisterBank
*>(RegClassOrBank
))
96 dyn_cast_if_present
<const TargetRegisterClass
*>(RegClassOrBank
))
97 return &getRegBankFromRegClass(*RC
, MRI
.getType(Reg
));
101 const TargetRegisterClass
*
102 RegisterBankInfo::getMinimalPhysRegClass(Register Reg
,
103 const TargetRegisterInfo
&TRI
) const {
104 assert(Reg
.isPhysical() && "Reg must be a physreg");
105 const auto &RegRCIt
= PhysRegMinimalRCs
.find(Reg
);
106 if (RegRCIt
!= PhysRegMinimalRCs
.end())
107 return RegRCIt
->second
;
108 const TargetRegisterClass
*PhysRC
= TRI
.getMinimalPhysRegClassLLT(Reg
, LLT());
109 PhysRegMinimalRCs
[Reg
] = PhysRC
;
113 const RegisterBank
*RegisterBankInfo::getRegBankFromConstraints(
114 const MachineInstr
&MI
, unsigned OpIdx
, const TargetInstrInfo
&TII
,
115 const MachineRegisterInfo
&MRI
) const {
116 const TargetRegisterInfo
*TRI
= MRI
.getTargetRegisterInfo();
118 // The mapping of the registers may be available via the
119 // register class constraints.
120 const TargetRegisterClass
*RC
= MI
.getRegClassConstraint(OpIdx
, &TII
, TRI
);
125 Register Reg
= MI
.getOperand(OpIdx
).getReg();
126 const RegisterBank
&RegBank
= getRegBankFromRegClass(*RC
, MRI
.getType(Reg
));
127 // Check that the target properly implemented getRegBankFromRegClass.
128 assert(RegBank
.covers(*RC
) &&
129 "The mapping of the register bank does not make sense");
133 const TargetRegisterClass
*RegisterBankInfo::constrainGenericRegister(
134 Register Reg
, const TargetRegisterClass
&RC
, MachineRegisterInfo
&MRI
) {
136 // If the register already has a class, fallback to MRI::constrainRegClass.
137 auto &RegClassOrBank
= MRI
.getRegClassOrRegBank(Reg
);
138 if (isa
<const TargetRegisterClass
*>(RegClassOrBank
))
139 return MRI
.constrainRegClass(Reg
, &RC
);
141 const RegisterBank
*RB
= cast
<const RegisterBank
*>(RegClassOrBank
);
142 // Otherwise, all we can do is ensure the bank covers the class, and set it.
143 if (RB
&& !RB
->covers(RC
))
146 // If nothing was set or the class is simply compatible, set it.
147 MRI
.setRegClass(Reg
, &RC
);
151 /// Check whether or not \p MI should be treated like a copy
152 /// for the mappings.
153 /// Copy like instruction are special for mapping because
154 /// they don't have actual register constraints. Moreover,
155 /// they sometimes have register classes assigned and we can
156 /// just use that instead of failing to provide a generic mapping.
157 static bool isCopyLike(const MachineInstr
&MI
) {
158 return MI
.isCopy() || MI
.isPHI() ||
159 MI
.getOpcode() == TargetOpcode::REG_SEQUENCE
;
162 const RegisterBankInfo::InstructionMapping
&
163 RegisterBankInfo::getInstrMappingImpl(const MachineInstr
&MI
) const {
164 // For copies we want to walk over the operands and try to find one
165 // that has a register bank since the instruction itself will not get
166 // us any constraint.
167 bool IsCopyLike
= isCopyLike(MI
);
168 // For copy like instruction, only the mapping of the definition
169 // is important. The rest is not constrained.
170 unsigned NumOperandsForMapping
= IsCopyLike
? 1 : MI
.getNumOperands();
172 const MachineFunction
&MF
= *MI
.getMF();
173 const TargetSubtargetInfo
&STI
= MF
.getSubtarget();
174 const TargetRegisterInfo
&TRI
= *STI
.getRegisterInfo();
175 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
176 // We may need to query the instruction encoding to guess the mapping.
177 const TargetInstrInfo
&TII
= *STI
.getInstrInfo();
179 // Before doing anything complicated check if the mapping is not
180 // directly available.
181 bool CompleteMapping
= true;
183 SmallVector
<const ValueMapping
*, 8> OperandsMapping(NumOperandsForMapping
);
184 for (unsigned OpIdx
= 0, EndIdx
= MI
.getNumOperands(); OpIdx
!= EndIdx
;
186 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
189 Register Reg
= MO
.getReg();
192 // The register bank of Reg is just a side effect of the current
193 // excution and in particular, there is no reason to believe this
194 // is the best default mapping for the current instruction. Keep
195 // it as an alternative register bank if we cannot figure out
197 const RegisterBank
*AltRegBank
= getRegBank(Reg
, MRI
, TRI
);
198 // For copy-like instruction, we want to reuse the register bank
199 // that is already set on Reg, if any, since those instructions do
200 // not have any constraints.
201 const RegisterBank
*CurRegBank
= IsCopyLike
? AltRegBank
: nullptr;
203 // If this is a target specific instruction, we can deduce
204 // the register bank from the encoding constraints.
205 CurRegBank
= getRegBankFromConstraints(MI
, OpIdx
, TII
, MRI
);
207 // All our attempts failed, give up.
208 CompleteMapping
= false;
211 // MI does not carry enough information to guess the mapping.
212 return getInvalidInstructionMapping();
217 unsigned Size
= getSizeInBits(Reg
, MRI
, TRI
);
218 const ValueMapping
*ValMapping
= &getValueMapping(0, Size
, *CurRegBank
);
220 if (!OperandsMapping
[0]) {
221 if (MI
.isRegSequence()) {
222 // For reg_sequence, the result size does not match the input.
223 unsigned ResultSize
= getSizeInBits(MI
.getOperand(0).getReg(),
225 OperandsMapping
[0] = &getValueMapping(0, ResultSize
, *CurRegBank
);
227 OperandsMapping
[0] = ValMapping
;
231 // The default handling assumes any register bank can be copied to any
232 // other. If this isn't the case, the target should specially deal with
233 // reg_sequence/phi. There may also be unsatisfiable copies.
234 for (; OpIdx
!= EndIdx
; ++OpIdx
) {
235 const MachineOperand
&MO
= MI
.getOperand(OpIdx
);
238 Register Reg
= MO
.getReg();
242 const RegisterBank
*AltRegBank
= getRegBank(Reg
, MRI
, TRI
);
244 cannotCopy(*CurRegBank
, *AltRegBank
, getSizeInBits(Reg
, MRI
, TRI
)))
245 return getInvalidInstructionMapping();
248 CompleteMapping
= true;
252 OperandsMapping
[OpIdx
] = ValMapping
;
255 if (IsCopyLike
&& !CompleteMapping
) {
256 // No way to deduce the type from what we have.
257 return getInvalidInstructionMapping();
260 assert(CompleteMapping
&& "Setting an uncomplete mapping");
261 return getInstructionMapping(
262 DefaultMappingID
, /*Cost*/ 1,
263 /*OperandsMapping*/ getOperandsMapping(OperandsMapping
),
264 NumOperandsForMapping
);
267 /// Hashing function for PartialMapping.
268 static hash_code
hashPartialMapping(unsigned StartIdx
, unsigned Length
,
269 const RegisterBank
*RegBank
) {
270 return hash_combine(StartIdx
, Length
, RegBank
? RegBank
->getID() : 0);
273 /// Overloaded version of hash_value for a PartialMapping.
275 llvm::hash_value(const RegisterBankInfo::PartialMapping
&PartMapping
) {
276 return hashPartialMapping(PartMapping
.StartIdx
, PartMapping
.Length
,
277 PartMapping
.RegBank
);
280 const RegisterBankInfo::PartialMapping
&
281 RegisterBankInfo::getPartialMapping(unsigned StartIdx
, unsigned Length
,
282 const RegisterBank
&RegBank
) const {
283 ++NumPartialMappingsAccessed
;
285 hash_code Hash
= hashPartialMapping(StartIdx
, Length
, &RegBank
);
286 const auto &It
= MapOfPartialMappings
.find(Hash
);
287 if (It
!= MapOfPartialMappings
.end())
290 ++NumPartialMappingsCreated
;
292 auto &PartMapping
= MapOfPartialMappings
[Hash
];
293 PartMapping
= std::make_unique
<PartialMapping
>(StartIdx
, Length
, RegBank
);
297 const RegisterBankInfo::ValueMapping
&
298 RegisterBankInfo::getValueMapping(unsigned StartIdx
, unsigned Length
,
299 const RegisterBank
&RegBank
) const {
300 return getValueMapping(&getPartialMapping(StartIdx
, Length
, RegBank
), 1);
304 hashValueMapping(const RegisterBankInfo::PartialMapping
*BreakDown
,
305 unsigned NumBreakDowns
) {
306 if (LLVM_LIKELY(NumBreakDowns
== 1))
307 return hash_value(*BreakDown
);
308 SmallVector
<size_t, 8> Hashes(NumBreakDowns
);
309 for (unsigned Idx
= 0; Idx
!= NumBreakDowns
; ++Idx
)
310 Hashes
.push_back(hash_value(BreakDown
[Idx
]));
311 return hash_combine_range(Hashes
.begin(), Hashes
.end());
314 const RegisterBankInfo::ValueMapping
&
315 RegisterBankInfo::getValueMapping(const PartialMapping
*BreakDown
,
316 unsigned NumBreakDowns
) const {
317 ++NumValueMappingsAccessed
;
319 hash_code Hash
= hashValueMapping(BreakDown
, NumBreakDowns
);
320 const auto &It
= MapOfValueMappings
.find(Hash
);
321 if (It
!= MapOfValueMappings
.end())
324 ++NumValueMappingsCreated
;
326 auto &ValMapping
= MapOfValueMappings
[Hash
];
327 ValMapping
= std::make_unique
<ValueMapping
>(BreakDown
, NumBreakDowns
);
331 template <typename Iterator
>
332 const RegisterBankInfo::ValueMapping
*
333 RegisterBankInfo::getOperandsMapping(Iterator Begin
, Iterator End
) const {
335 ++NumOperandsMappingsAccessed
;
337 // The addresses of the value mapping are unique.
338 // Therefore, we can use them directly to hash the operand mapping.
339 hash_code Hash
= hash_combine_range(Begin
, End
);
340 auto &Res
= MapOfOperandsMappings
[Hash
];
344 ++NumOperandsMappingsCreated
;
346 // Create the array of ValueMapping.
347 // Note: this array will not hash to this instance of operands
348 // mapping, because we use the pointer of the ValueMapping
349 // to hash and we expect them to uniquely identify an instance
351 Res
= std::make_unique
<ValueMapping
[]>(std::distance(Begin
, End
));
353 for (Iterator It
= Begin
; It
!= End
; ++It
, ++Idx
) {
354 const ValueMapping
*ValMap
= *It
;
362 const RegisterBankInfo::ValueMapping
*RegisterBankInfo::getOperandsMapping(
363 const SmallVectorImpl
<const RegisterBankInfo::ValueMapping
*> &OpdsMapping
)
365 return getOperandsMapping(OpdsMapping
.begin(), OpdsMapping
.end());
368 const RegisterBankInfo::ValueMapping
*RegisterBankInfo::getOperandsMapping(
369 std::initializer_list
<const RegisterBankInfo::ValueMapping
*> OpdsMapping
)
371 return getOperandsMapping(OpdsMapping
.begin(), OpdsMapping
.end());
375 hashInstructionMapping(unsigned ID
, unsigned Cost
,
376 const RegisterBankInfo::ValueMapping
*OperandsMapping
,
377 unsigned NumOperands
) {
378 return hash_combine(ID
, Cost
, OperandsMapping
, NumOperands
);
381 const RegisterBankInfo::InstructionMapping
&
382 RegisterBankInfo::getInstructionMappingImpl(
383 bool IsInvalid
, unsigned ID
, unsigned Cost
,
384 const RegisterBankInfo::ValueMapping
*OperandsMapping
,
385 unsigned NumOperands
) const {
386 assert(((IsInvalid
&& ID
== InvalidMappingID
&& Cost
== 0 &&
387 OperandsMapping
== nullptr && NumOperands
== 0) ||
389 "Mismatch argument for invalid input");
390 ++NumInstructionMappingsAccessed
;
393 hashInstructionMapping(ID
, Cost
, OperandsMapping
, NumOperands
);
394 const auto &It
= MapOfInstructionMappings
.find(Hash
);
395 if (It
!= MapOfInstructionMappings
.end())
398 ++NumInstructionMappingsCreated
;
400 auto &InstrMapping
= MapOfInstructionMappings
[Hash
];
401 InstrMapping
= std::make_unique
<InstructionMapping
>(
402 ID
, Cost
, OperandsMapping
, NumOperands
);
403 return *InstrMapping
;
406 const RegisterBankInfo::InstructionMapping
&
407 RegisterBankInfo::getInstrMapping(const MachineInstr
&MI
) const {
408 const RegisterBankInfo::InstructionMapping
&Mapping
= getInstrMappingImpl(MI
);
409 if (Mapping
.isValid())
411 llvm_unreachable("The target must implement this");
414 RegisterBankInfo::InstructionMappings
415 RegisterBankInfo::getInstrPossibleMappings(const MachineInstr
&MI
) const {
416 InstructionMappings PossibleMappings
;
417 const auto &Mapping
= getInstrMapping(MI
);
418 if (Mapping
.isValid()) {
419 // Put the default mapping first.
420 PossibleMappings
.push_back(&Mapping
);
423 // Then the alternative mapping, if any.
424 InstructionMappings AltMappings
= getInstrAlternativeMappings(MI
);
425 append_range(PossibleMappings
, AltMappings
);
427 for (const InstructionMapping
*Mapping
: PossibleMappings
)
428 assert(Mapping
->verify(MI
) && "Mapping is invalid");
430 return PossibleMappings
;
433 RegisterBankInfo::InstructionMappings
434 RegisterBankInfo::getInstrAlternativeMappings(const MachineInstr
&MI
) const {
435 // No alternative for MI.
436 return InstructionMappings();
439 void RegisterBankInfo::applyDefaultMapping(const OperandsMapper
&OpdMapper
) {
440 MachineInstr
&MI
= OpdMapper
.getMI();
441 MachineRegisterInfo
&MRI
= OpdMapper
.getMRI();
442 LLVM_DEBUG(dbgs() << "Applying default-like mapping\n");
443 for (unsigned OpIdx
= 0,
444 EndIdx
= OpdMapper
.getInstrMapping().getNumOperands();
445 OpIdx
!= EndIdx
; ++OpIdx
) {
446 LLVM_DEBUG(dbgs() << "OpIdx " << OpIdx
);
447 MachineOperand
&MO
= MI
.getOperand(OpIdx
);
449 LLVM_DEBUG(dbgs() << " is not a register, nothing to be done\n");
453 LLVM_DEBUG(dbgs() << " is $noreg, nothing to be done\n");
456 LLT Ty
= MRI
.getType(MO
.getReg());
459 assert(OpdMapper
.getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
!=
462 assert(OpdMapper
.getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
==
464 "This mapping is too complex for this function");
465 iterator_range
<SmallVectorImpl
<Register
>::const_iterator
> NewRegs
=
466 OpdMapper
.getVRegs(OpIdx
);
467 if (NewRegs
.empty()) {
468 LLVM_DEBUG(dbgs() << " has not been repaired, nothing to be done\n");
471 Register OrigReg
= MO
.getReg();
472 Register NewReg
= *NewRegs
.begin();
473 LLVM_DEBUG(dbgs() << " changed, replace " << printReg(OrigReg
, nullptr));
475 LLVM_DEBUG(dbgs() << " with " << printReg(NewReg
, nullptr));
477 // The OperandsMapper creates plain scalar, we may have to fix that.
478 // Check if the types match and if not, fix that.
479 LLT OrigTy
= MRI
.getType(OrigReg
);
480 LLT NewTy
= MRI
.getType(NewReg
);
481 if (OrigTy
!= NewTy
) {
482 // The default mapping is not supposed to change the size of
483 // the storage. However, right now we don't necessarily bump all
484 // the types to storage size. For instance, we can consider
485 // s16 G_AND legal whereas the storage size is going to be 32.
486 assert(OrigTy
.getSizeInBits() <= NewTy
.getSizeInBits() &&
487 "Types with difference size cannot be handled by the default "
489 LLVM_DEBUG(dbgs() << "\nChange type of new opd from " << NewTy
<< " to "
491 MRI
.setType(NewReg
, OrigTy
);
493 LLVM_DEBUG(dbgs() << '\n');
497 unsigned RegisterBankInfo::getSizeInBits(Register Reg
,
498 const MachineRegisterInfo
&MRI
,
499 const TargetRegisterInfo
&TRI
) const {
500 if (Reg
.isPhysical()) {
501 // The size is not directly available for physical registers.
502 // Instead, we need to access a register class that contains Reg and
503 // get the size of that register class.
504 // Because this is expensive, we'll cache the register class by calling
505 auto *RC
= getMinimalPhysRegClass(Reg
, TRI
);
506 assert(RC
&& "Expecting Register class");
507 return TRI
.getRegSizeInBits(*RC
);
509 return TRI
.getRegSizeInBits(Reg
, MRI
);
512 //------------------------------------------------------------------------------
513 // Helper classes implementation.
514 //------------------------------------------------------------------------------
515 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
516 LLVM_DUMP_METHOD
void RegisterBankInfo::PartialMapping::dump() const {
522 bool RegisterBankInfo::PartialMapping::verify(
523 const RegisterBankInfo
&RBI
) const {
524 assert(RegBank
&& "Register bank not set");
525 assert(Length
&& "Empty mapping");
526 assert((StartIdx
<= getHighBitIdx()) && "Overflow, switch to APInt?");
527 // Check if the minimum width fits into RegBank.
528 assert(RBI
.getMaximumSize(RegBank
->getID()) >= Length
&&
529 "Register bank too small for Mask");
533 void RegisterBankInfo::PartialMapping::print(raw_ostream
&OS
) const {
534 OS
<< "[" << StartIdx
<< ", " << getHighBitIdx() << "], RegBank = ";
541 bool RegisterBankInfo::ValueMapping::partsAllUniform() const {
542 if (NumBreakDowns
< 2)
545 const PartialMapping
*First
= begin();
546 for (const PartialMapping
*Part
= First
+ 1; Part
!= end(); ++Part
) {
547 if (Part
->Length
!= First
->Length
|| Part
->RegBank
!= First
->RegBank
)
554 bool RegisterBankInfo::ValueMapping::verify(const RegisterBankInfo
&RBI
,
555 unsigned MeaningfulBitWidth
) const {
556 assert(NumBreakDowns
&& "Value mapped nowhere?!");
557 unsigned OrigValueBitWidth
= 0;
558 for (const RegisterBankInfo::PartialMapping
&PartMap
: *this) {
559 // Check that each register bank is big enough to hold the partial value:
560 // this check is done by PartialMapping::verify
561 assert(PartMap
.verify(RBI
) && "Partial mapping is invalid");
562 // The original value should completely be mapped.
563 // Thus the maximum accessed index + 1 is the size of the original value.
565 std::max(OrigValueBitWidth
, PartMap
.getHighBitIdx() + 1);
567 assert(OrigValueBitWidth
>= MeaningfulBitWidth
&&
568 "Meaningful bits not covered by the mapping");
569 APInt
ValueMask(OrigValueBitWidth
, 0);
570 for (const RegisterBankInfo::PartialMapping
&PartMap
: *this) {
571 // Check that the union of the partial mappings covers the whole value,
573 // The high bit is exclusive in the APInt API, thus getHighBitIdx + 1.
574 APInt PartMapMask
= APInt::getBitsSet(OrigValueBitWidth
, PartMap
.StartIdx
,
575 PartMap
.getHighBitIdx() + 1);
576 ValueMask
^= PartMapMask
;
577 assert((ValueMask
& PartMapMask
) == PartMapMask
&&
578 "Some partial mappings overlap");
580 assert(ValueMask
.isAllOnes() && "Value is not fully mapped");
584 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
585 LLVM_DUMP_METHOD
void RegisterBankInfo::ValueMapping::dump() const {
591 void RegisterBankInfo::ValueMapping::print(raw_ostream
&OS
) const {
592 OS
<< "#BreakDown: " << NumBreakDowns
<< " ";
594 for (const PartialMapping
&PartMap
: *this) {
597 OS
<< '[' << PartMap
<< ']';
602 bool RegisterBankInfo::InstructionMapping::verify(
603 const MachineInstr
&MI
) const {
604 // Check that all the register operands are properly mapped.
605 // Check the constructor invariant.
606 // For PHI, we only care about mapping the definition.
607 assert(NumOperands
== (isCopyLike(MI
) ? 1 : MI
.getNumOperands()) &&
608 "NumOperands must match, see constructor");
609 assert(MI
.getParent() && MI
.getMF() &&
610 "MI must be connected to a MachineFunction");
611 const MachineFunction
&MF
= *MI
.getMF();
612 const RegisterBankInfo
*RBI
= MF
.getSubtarget().getRegBankInfo();
614 const MachineRegisterInfo
&MRI
= MF
.getRegInfo();
616 for (unsigned Idx
= 0; Idx
< NumOperands
; ++Idx
) {
617 const MachineOperand
&MO
= MI
.getOperand(Idx
);
619 assert(!getOperandMapping(Idx
).isValid() &&
620 "We should not care about non-reg mapping");
623 Register Reg
= MO
.getReg();
626 LLT Ty
= MRI
.getType(Reg
);
629 assert(getOperandMapping(Idx
).isValid() &&
630 "We must have a mapping for reg operands");
631 const RegisterBankInfo::ValueMapping
&MOMapping
= getOperandMapping(Idx
);
633 // Register size in bits.
634 // This size must match what the mapping expects.
635 assert(MOMapping
.verify(*RBI
, RBI
->getSizeInBits(
636 Reg
, MF
.getRegInfo(),
637 *MF
.getSubtarget().getRegisterInfo())) &&
638 "Value mapping is invalid");
643 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
644 LLVM_DUMP_METHOD
void RegisterBankInfo::InstructionMapping::dump() const {
650 void RegisterBankInfo::InstructionMapping::print(raw_ostream
&OS
) const {
651 OS
<< "ID: " << getID() << " Cost: " << getCost() << " Mapping: ";
653 for (unsigned OpIdx
= 0; OpIdx
!= NumOperands
; ++OpIdx
) {
654 const ValueMapping
&ValMapping
= getOperandMapping(OpIdx
);
657 OS
<< "{ Idx: " << OpIdx
<< " Map: " << ValMapping
<< '}';
661 const int RegisterBankInfo::OperandsMapper::DontKnowIdx
= -1;
663 RegisterBankInfo::OperandsMapper::OperandsMapper(
664 MachineInstr
&MI
, const InstructionMapping
&InstrMapping
,
665 MachineRegisterInfo
&MRI
)
666 : MRI(MRI
), MI(MI
), InstrMapping(InstrMapping
) {
667 unsigned NumOpds
= InstrMapping
.getNumOperands();
668 OpToNewVRegIdx
.resize(NumOpds
, OperandsMapper::DontKnowIdx
);
669 assert(InstrMapping
.verify(MI
) && "Invalid mapping for MI");
672 iterator_range
<SmallVectorImpl
<Register
>::iterator
>
673 RegisterBankInfo::OperandsMapper::getVRegsMem(unsigned OpIdx
) {
674 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
675 unsigned NumPartialVal
=
676 getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
;
677 int StartIdx
= OpToNewVRegIdx
[OpIdx
];
679 if (StartIdx
== OperandsMapper::DontKnowIdx
) {
680 // This is the first time we try to access OpIdx.
681 // Create the cells that will hold all the partial values at the
682 // end of the list of NewVReg.
683 StartIdx
= NewVRegs
.size();
684 OpToNewVRegIdx
[OpIdx
] = StartIdx
;
685 for (unsigned i
= 0; i
< NumPartialVal
; ++i
)
686 NewVRegs
.push_back(0);
688 SmallVectorImpl
<Register
>::iterator End
=
689 getNewVRegsEnd(StartIdx
, NumPartialVal
);
691 return make_range(&NewVRegs
[StartIdx
], End
);
694 SmallVectorImpl
<Register
>::const_iterator
695 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx
,
696 unsigned NumVal
) const {
697 return const_cast<OperandsMapper
*>(this)->getNewVRegsEnd(StartIdx
, NumVal
);
699 SmallVectorImpl
<Register
>::iterator
700 RegisterBankInfo::OperandsMapper::getNewVRegsEnd(unsigned StartIdx
,
702 assert((NewVRegs
.size() == StartIdx
+ NumVal
||
703 NewVRegs
.size() > StartIdx
+ NumVal
) &&
704 "NewVRegs too small to contain all the partial mapping");
705 return NewVRegs
.size() <= StartIdx
+ NumVal
? NewVRegs
.end()
706 : &NewVRegs
[StartIdx
+ NumVal
];
709 void RegisterBankInfo::OperandsMapper::createVRegs(unsigned OpIdx
) {
710 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
711 iterator_range
<SmallVectorImpl
<Register
>::iterator
> NewVRegsForOpIdx
=
713 const ValueMapping
&ValMapping
= getInstrMapping().getOperandMapping(OpIdx
);
714 const PartialMapping
*PartMap
= ValMapping
.begin();
715 for (Register
&NewVReg
: NewVRegsForOpIdx
) {
716 assert(PartMap
!= ValMapping
.end() && "Out-of-bound access");
717 assert(NewVReg
== 0 && "Register has already been created");
718 // The new registers are always bound to scalar with the right size.
719 // The actual type has to be set when the target does the mapping
720 // of the instruction.
721 // The rationale is that this generic code cannot guess how the
722 // target plans to split the input type.
723 NewVReg
= MRI
.createGenericVirtualRegister(LLT::scalar(PartMap
->Length
));
724 MRI
.setRegBank(NewVReg
, *PartMap
->RegBank
);
729 void RegisterBankInfo::OperandsMapper::setVRegs(unsigned OpIdx
,
730 unsigned PartialMapIdx
,
732 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
733 assert(getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
>
735 "Out-of-bound access for partial mapping");
736 // Make sure the memory is initialized for that operand.
737 (void)getVRegsMem(OpIdx
);
738 assert(NewVRegs
[OpToNewVRegIdx
[OpIdx
] + PartialMapIdx
] == 0 &&
739 "This value is already set");
740 NewVRegs
[OpToNewVRegIdx
[OpIdx
] + PartialMapIdx
] = NewVReg
;
743 iterator_range
<SmallVectorImpl
<Register
>::const_iterator
>
744 RegisterBankInfo::OperandsMapper::getVRegs(unsigned OpIdx
,
745 bool ForDebug
) const {
747 assert(OpIdx
< getInstrMapping().getNumOperands() && "Out-of-bound access");
748 int StartIdx
= OpToNewVRegIdx
[OpIdx
];
750 if (StartIdx
== OperandsMapper::DontKnowIdx
)
751 return make_range(NewVRegs
.end(), NewVRegs
.end());
753 unsigned PartMapSize
=
754 getInstrMapping().getOperandMapping(OpIdx
).NumBreakDowns
;
755 SmallVectorImpl
<Register
>::const_iterator End
=
756 getNewVRegsEnd(StartIdx
, PartMapSize
);
757 iterator_range
<SmallVectorImpl
<Register
>::const_iterator
> Res
=
758 make_range(&NewVRegs
[StartIdx
], End
);
760 for (Register VReg
: Res
)
761 assert((VReg
|| ForDebug
) && "Some registers are uninitialized");
766 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
767 LLVM_DUMP_METHOD
void RegisterBankInfo::OperandsMapper::dump() const {
773 void RegisterBankInfo::OperandsMapper::print(raw_ostream
&OS
,
774 bool ForDebug
) const {
775 unsigned NumOpds
= getInstrMapping().getNumOperands();
777 OS
<< "Mapping for " << getMI() << "\nwith " << getInstrMapping() << '\n';
778 // Print out the internal state of the index table.
779 OS
<< "Populated indices (CellNumber, IndexInNewVRegs): ";
781 for (unsigned Idx
= 0; Idx
!= NumOpds
; ++Idx
) {
782 if (OpToNewVRegIdx
[Idx
] != DontKnowIdx
) {
785 OS
<< '(' << Idx
<< ", " << OpToNewVRegIdx
[Idx
] << ')';
791 OS
<< "Mapping ID: " << getInstrMapping().getID() << ' ';
793 OS
<< "Operand Mapping: ";
794 // If we have a function, we can pretty print the name of the registers.
795 // Otherwise we will print the raw numbers.
796 const TargetRegisterInfo
*TRI
=
797 getMI().getParent() && getMI().getMF()
798 ? getMI().getMF()->getSubtarget().getRegisterInfo()
801 for (unsigned Idx
= 0; Idx
!= NumOpds
; ++Idx
) {
802 if (OpToNewVRegIdx
[Idx
] == DontKnowIdx
)
807 OS
<< '(' << printReg(getMI().getOperand(Idx
).getReg(), TRI
) << ", [";
808 bool IsFirstNewVReg
= true;
809 for (Register VReg
: getVRegs(Idx
)) {
812 IsFirstNewVReg
= false;
813 OS
<< printReg(VReg
, TRI
);