1 //===- RegisterCoalescer.cpp - Generic Register Coalescing Interface ------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the generic RegisterCoalescer interface which
10 // is used as the common interface used by all clients and
11 // implementations of register coalescing.
13 //===----------------------------------------------------------------------===//
15 #include "RegisterCoalescer.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveInterval.h"
25 #include "llvm/CodeGen/LiveIntervals.h"
26 #include "llvm/CodeGen/LiveRangeEdit.h"
27 #include "llvm/CodeGen/MachineBasicBlock.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineFunctionPass.h"
30 #include "llvm/CodeGen/MachineInstr.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/Passes.h"
36 #include "llvm/CodeGen/RegisterClassInfo.h"
37 #include "llvm/CodeGen/SlotIndexes.h"
38 #include "llvm/CodeGen/TargetInstrInfo.h"
39 #include "llvm/CodeGen/TargetOpcodes.h"
40 #include "llvm/CodeGen/TargetRegisterInfo.h"
41 #include "llvm/CodeGen/TargetSubtargetInfo.h"
42 #include "llvm/IR/DebugLoc.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/LaneBitmask.h"
45 #include "llvm/MC/MCInstrDesc.h"
46 #include "llvm/MC/MCRegisterInfo.h"
47 #include "llvm/Pass.h"
48 #include "llvm/Support/CommandLine.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/raw_ostream.h"
63 #define DEBUG_TYPE "regalloc"
65 STATISTIC(numJoins
, "Number of interval joins performed");
66 STATISTIC(numCrossRCs
, "Number of cross class joins performed");
67 STATISTIC(numCommutes
, "Number of instruction commuting performed");
68 STATISTIC(numExtends
, "Number of copies extended");
69 STATISTIC(NumReMats
, "Number of instructions re-materialized");
70 STATISTIC(NumInflated
, "Number of register classes inflated");
71 STATISTIC(NumLaneConflicts
, "Number of dead lane conflicts tested");
72 STATISTIC(NumLaneResolves
, "Number of dead lane conflicts resolved");
73 STATISTIC(NumShrinkToUses
, "Number of shrinkToUses called");
75 static cl::opt
<bool> EnableJoining("join-liveintervals",
76 cl::desc("Coalesce copies (default=true)"),
77 cl::init(true), cl::Hidden
);
79 static cl::opt
<bool> UseTerminalRule("terminal-rule",
80 cl::desc("Apply the terminal rule"),
81 cl::init(false), cl::Hidden
);
83 /// Temporary flag to test critical edge unsplitting.
85 EnableJoinSplits("join-splitedges",
86 cl::desc("Coalesce copies on split edges (default=subtarget)"), cl::Hidden
);
88 /// Temporary flag to test global copy optimization.
89 static cl::opt
<cl::boolOrDefault
>
90 EnableGlobalCopies("join-globalcopies",
91 cl::desc("Coalesce copies that span blocks (default=subtarget)"),
92 cl::init(cl::BOU_UNSET
), cl::Hidden
);
95 VerifyCoalescing("verify-coalescing",
96 cl::desc("Verify machine instrs before and after register coalescing"),
99 static cl::opt
<unsigned> LateRematUpdateThreshold(
100 "late-remat-update-threshold", cl::Hidden
,
101 cl::desc("During rematerialization for a copy, if the def instruction has "
102 "many other copy uses to be rematerialized, delay the multiple "
103 "separate live interval update work and do them all at once after "
104 "all those rematerialization are done. It will save a lot of "
108 static cl::opt
<unsigned> LargeIntervalSizeThreshold(
109 "large-interval-size-threshold", cl::Hidden
,
110 cl::desc("If the valnos size of an interval is larger than the threshold, "
111 "it is regarded as a large interval. "),
114 static cl::opt
<unsigned> LargeIntervalFreqThreshold(
115 "large-interval-freq-threshold", cl::Hidden
,
116 cl::desc("For a large interval, if it is coalesed with other live "
117 "intervals many times more than the threshold, stop its "
118 "coalescing to control the compile time. "),
125 class RegisterCoalescer
: public MachineFunctionPass
,
126 private LiveRangeEdit::Delegate
{
127 MachineFunction
* MF
= nullptr;
128 MachineRegisterInfo
* MRI
= nullptr;
129 const TargetRegisterInfo
* TRI
= nullptr;
130 const TargetInstrInfo
* TII
= nullptr;
131 LiveIntervals
*LIS
= nullptr;
132 const MachineLoopInfo
* Loops
= nullptr;
133 AliasAnalysis
*AA
= nullptr;
134 RegisterClassInfo RegClassInfo
;
136 /// Position and VReg of a PHI instruction during coalescing.
138 SlotIndex SI
; ///< Slot where this PHI occurs.
139 Register Reg
; ///< VReg the PHI occurs in.
140 unsigned SubReg
; ///< Qualifying subregister for Reg.
143 /// Map from debug instruction number to PHI position during coalescing.
144 DenseMap
<unsigned, PHIValPos
> PHIValToPos
;
145 /// Index of, for each VReg, which debug instruction numbers and
146 /// corresponding PHIs are sensitive to coalescing. Each VReg may have
147 /// multiple PHI defs, at different positions.
148 DenseMap
<Register
, SmallVector
<unsigned, 2>> RegToPHIIdx
;
150 /// Debug variable location tracking -- for each VReg, maintain an
151 /// ordered-by-slot-index set of DBG_VALUEs, to help quick
152 /// identification of whether coalescing may change location validity.
153 using DbgValueLoc
= std::pair
<SlotIndex
, MachineInstr
*>;
154 DenseMap
<Register
, std::vector
<DbgValueLoc
>> DbgVRegToValues
;
156 /// A LaneMask to remember on which subregister live ranges we need to call
157 /// shrinkToUses() later.
158 LaneBitmask ShrinkMask
;
160 /// True if the main range of the currently coalesced intervals should be
161 /// checked for smaller live intervals.
162 bool ShrinkMainRange
= false;
164 /// True if the coalescer should aggressively coalesce global copies
165 /// in favor of keeping local copies.
166 bool JoinGlobalCopies
= false;
168 /// True if the coalescer should aggressively coalesce fall-thru
169 /// blocks exclusively containing copies.
170 bool JoinSplitEdges
= false;
172 /// Copy instructions yet to be coalesced.
173 SmallVector
<MachineInstr
*, 8> WorkList
;
174 SmallVector
<MachineInstr
*, 8> LocalWorkList
;
176 /// Set of instruction pointers that have been erased, and
177 /// that may be present in WorkList.
178 SmallPtrSet
<MachineInstr
*, 8> ErasedInstrs
;
180 /// Dead instructions that are about to be deleted.
181 SmallVector
<MachineInstr
*, 8> DeadDefs
;
183 /// Virtual registers to be considered for register class inflation.
184 SmallVector
<Register
, 8> InflateRegs
;
186 /// The collection of live intervals which should have been updated
187 /// immediately after rematerialiation but delayed until
188 /// lateLiveIntervalUpdate is called.
189 DenseSet
<Register
> ToBeUpdated
;
191 /// Record how many times the large live interval with many valnos
192 /// has been tried to join with other live interval.
193 DenseMap
<Register
, unsigned long> LargeLIVisitCounter
;
195 /// Recursively eliminate dead defs in DeadDefs.
196 void eliminateDeadDefs(LiveRangeEdit
*Edit
= nullptr);
198 /// LiveRangeEdit callback for eliminateDeadDefs().
199 void LRE_WillEraseInstruction(MachineInstr
*MI
) override
;
201 /// Coalesce the LocalWorkList.
202 void coalesceLocals();
204 /// Join compatible live intervals
205 void joinAllIntervals();
207 /// Coalesce copies in the specified MBB, putting
208 /// copies that cannot yet be coalesced into WorkList.
209 void copyCoalesceInMBB(MachineBasicBlock
*MBB
);
211 /// Tries to coalesce all copies in CurrList. Returns true if any progress
213 bool copyCoalesceWorkList(MutableArrayRef
<MachineInstr
*> CurrList
);
215 /// If one def has many copy like uses, and those copy uses are all
216 /// rematerialized, the live interval update needed for those
217 /// rematerializations will be delayed and done all at once instead
218 /// of being done multiple times. This is to save compile cost because
219 /// live interval update is costly.
220 void lateLiveIntervalUpdate();
222 /// Check if the incoming value defined by a COPY at \p SLRQ in the subrange
223 /// has no value defined in the predecessors. If the incoming value is the
224 /// same as defined by the copy itself, the value is considered undefined.
225 bool copyValueUndefInPredecessors(LiveRange
&S
,
226 const MachineBasicBlock
*MBB
,
227 LiveQueryResult SLRQ
);
229 /// Set necessary undef flags on subregister uses after pruning out undef
230 /// lane segments from the subrange.
231 void setUndefOnPrunedSubRegUses(LiveInterval
&LI
, Register Reg
,
232 LaneBitmask PrunedLanes
);
234 /// Attempt to join intervals corresponding to SrcReg/DstReg, which are the
235 /// src/dst of the copy instruction CopyMI. This returns true if the copy
236 /// was successfully coalesced away. If it is not currently possible to
237 /// coalesce this interval, but it may be possible if other things get
238 /// coalesced, then it returns true by reference in 'Again'.
239 bool joinCopy(MachineInstr
*CopyMI
, bool &Again
);
241 /// Attempt to join these two intervals. On failure, this
242 /// returns false. The output "SrcInt" will not have been modified, so we
243 /// can use this information below to update aliases.
244 bool joinIntervals(CoalescerPair
&CP
);
246 /// Attempt joining two virtual registers. Return true on success.
247 bool joinVirtRegs(CoalescerPair
&CP
);
249 /// If a live interval has many valnos and is coalesced with other
250 /// live intervals many times, we regard such live interval as having
251 /// high compile time cost.
252 bool isHighCostLiveInterval(LiveInterval
&LI
);
254 /// Attempt joining with a reserved physreg.
255 bool joinReservedPhysReg(CoalescerPair
&CP
);
257 /// Add the LiveRange @p ToMerge as a subregister liverange of @p LI.
258 /// Subranges in @p LI which only partially interfere with the desired
259 /// LaneMask are split as necessary. @p LaneMask are the lanes that
260 /// @p ToMerge will occupy in the coalescer register. @p LI has its subrange
261 /// lanemasks already adjusted to the coalesced register.
262 void mergeSubRangeInto(LiveInterval
&LI
, const LiveRange
&ToMerge
,
263 LaneBitmask LaneMask
, CoalescerPair
&CP
,
266 /// Join the liveranges of two subregisters. Joins @p RRange into
267 /// @p LRange, @p RRange may be invalid afterwards.
268 void joinSubRegRanges(LiveRange
&LRange
, LiveRange
&RRange
,
269 LaneBitmask LaneMask
, const CoalescerPair
&CP
);
271 /// We found a non-trivially-coalescable copy. If the source value number is
272 /// defined by a copy from the destination reg see if we can merge these two
273 /// destination reg valno# into a single value number, eliminating a copy.
274 /// This returns true if an interval was modified.
275 bool adjustCopiesBackFrom(const CoalescerPair
&CP
, MachineInstr
*CopyMI
);
277 /// Return true if there are definitions of IntB
278 /// other than BValNo val# that can reach uses of AValno val# of IntA.
279 bool hasOtherReachingDefs(LiveInterval
&IntA
, LiveInterval
&IntB
,
280 VNInfo
*AValNo
, VNInfo
*BValNo
);
282 /// We found a non-trivially-coalescable copy.
283 /// If the source value number is defined by a commutable instruction and
284 /// its other operand is coalesced to the copy dest register, see if we
285 /// can transform the copy into a noop by commuting the definition.
286 /// This returns a pair of two flags:
287 /// - the first element is true if an interval was modified,
288 /// - the second element is true if the destination interval needs
289 /// to be shrunk after deleting the copy.
290 std::pair
<bool,bool> removeCopyByCommutingDef(const CoalescerPair
&CP
,
291 MachineInstr
*CopyMI
);
293 /// We found a copy which can be moved to its less frequent predecessor.
294 bool removePartialRedundancy(const CoalescerPair
&CP
, MachineInstr
&CopyMI
);
296 /// If the source of a copy is defined by a
297 /// trivial computation, replace the copy by rematerialize the definition.
298 bool reMaterializeTrivialDef(const CoalescerPair
&CP
, MachineInstr
*CopyMI
,
301 /// Return true if a copy involving a physreg should be joined.
302 bool canJoinPhys(const CoalescerPair
&CP
);
304 /// Replace all defs and uses of SrcReg to DstReg and update the subregister
305 /// number if it is not zero. If DstReg is a physical register and the
306 /// existing subregister number of the def / use being updated is not zero,
307 /// make sure to set it to the correct physical subregister.
308 void updateRegDefsUses(Register SrcReg
, Register DstReg
, unsigned SubIdx
);
310 /// If the given machine operand reads only undefined lanes add an undef
312 /// This can happen when undef uses were previously concealed by a copy
313 /// which we coalesced. Example:
314 /// %0:sub0<def,read-undef> = ...
315 /// %1 = COPY %0 <-- Coalescing COPY reveals undef
316 /// = use %1:sub1 <-- hidden undef use
317 void addUndefFlag(const LiveInterval
&Int
, SlotIndex UseIdx
,
318 MachineOperand
&MO
, unsigned SubRegIdx
);
320 /// Handle copies of undef values. If the undef value is an incoming
321 /// PHI value, it will convert @p CopyMI to an IMPLICIT_DEF.
322 /// Returns nullptr if @p CopyMI was not in any way eliminable. Otherwise,
323 /// it returns @p CopyMI (which could be an IMPLICIT_DEF at this point).
324 MachineInstr
*eliminateUndefCopy(MachineInstr
*CopyMI
);
326 /// Check whether or not we should apply the terminal rule on the
327 /// destination (Dst) of \p Copy.
328 /// When the terminal rule applies, Copy is not profitable to
330 /// Dst is terminal if it has exactly one affinity (Dst, Src) and
331 /// at least one interference (Dst, Dst2). If Dst is terminal, the
332 /// terminal rule consists in checking that at least one of
333 /// interfering node, say Dst2, has an affinity of equal or greater
335 /// In that case, Dst2 and Dst will not be able to be both coalesced
336 /// with Src. Since Dst2 exposes more coalescing opportunities than
337 /// Dst, we can drop \p Copy.
338 bool applyTerminalRule(const MachineInstr
&Copy
) const;
340 /// Wrapper method for \see LiveIntervals::shrinkToUses.
341 /// This method does the proper fixing of the live-ranges when the afore
342 /// mentioned method returns true.
343 void shrinkToUses(LiveInterval
*LI
,
344 SmallVectorImpl
<MachineInstr
* > *Dead
= nullptr) {
346 if (LIS
->shrinkToUses(LI
, Dead
)) {
347 /// Check whether or not \p LI is composed by multiple connected
348 /// components and if that is the case, fix that.
349 SmallVector
<LiveInterval
*, 8> SplitLIs
;
350 LIS
->splitSeparateComponents(*LI
, SplitLIs
);
354 /// Wrapper Method to do all the necessary work when an Instruction is
356 /// Optimizations should use this to make sure that deleted instructions
357 /// are always accounted for.
358 void deleteInstr(MachineInstr
* MI
) {
359 ErasedInstrs
.insert(MI
);
360 LIS
->RemoveMachineInstrFromMaps(*MI
);
361 MI
->eraseFromParent();
364 /// Walk over function and initialize the DbgVRegToValues map.
365 void buildVRegToDbgValueMap(MachineFunction
&MF
);
367 /// Test whether, after merging, any DBG_VALUEs would refer to a
368 /// different value number than before merging, and whether this can
369 /// be resolved. If not, mark the DBG_VALUE as being undef.
370 void checkMergingChangesDbgValues(CoalescerPair
&CP
, LiveRange
&LHS
,
371 JoinVals
&LHSVals
, LiveRange
&RHS
,
374 void checkMergingChangesDbgValuesImpl(Register Reg
, LiveRange
&OtherRange
,
375 LiveRange
&RegRange
, JoinVals
&Vals2
);
378 static char ID
; ///< Class identification, replacement for typeinfo
380 RegisterCoalescer() : MachineFunctionPass(ID
) {
381 initializeRegisterCoalescerPass(*PassRegistry::getPassRegistry());
384 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
386 void releaseMemory() override
;
388 /// This is the pass entry point.
389 bool runOnMachineFunction(MachineFunction
&) override
;
391 /// Implement the dump method.
392 void print(raw_ostream
&O
, const Module
* = nullptr) const override
;
395 } // end anonymous namespace
397 char RegisterCoalescer::ID
= 0;
399 char &llvm::RegisterCoalescerID
= RegisterCoalescer::ID
;
401 INITIALIZE_PASS_BEGIN(RegisterCoalescer
, "register-coalescer",
402 "Register Coalescer", false, false)
403 INITIALIZE_PASS_DEPENDENCY(LiveIntervals
)
404 INITIALIZE_PASS_DEPENDENCY(SlotIndexes
)
405 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
406 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
407 INITIALIZE_PASS_END(RegisterCoalescer
, "register-coalescer",
408 "Register Coalescer", false, false)
410 [[nodiscard
]] static bool isMoveInstr(const TargetRegisterInfo
&tri
,
411 const MachineInstr
*MI
, Register
&Src
,
412 Register
&Dst
, unsigned &SrcSub
,
415 Dst
= MI
->getOperand(0).getReg();
416 DstSub
= MI
->getOperand(0).getSubReg();
417 Src
= MI
->getOperand(1).getReg();
418 SrcSub
= MI
->getOperand(1).getSubReg();
419 } else if (MI
->isSubregToReg()) {
420 Dst
= MI
->getOperand(0).getReg();
421 DstSub
= tri
.composeSubRegIndices(MI
->getOperand(0).getSubReg(),
422 MI
->getOperand(3).getImm());
423 Src
= MI
->getOperand(2).getReg();
424 SrcSub
= MI
->getOperand(2).getSubReg();
430 /// Return true if this block should be vacated by the coalescer to eliminate
431 /// branches. The important cases to handle in the coalescer are critical edges
432 /// split during phi elimination which contain only copies. Simple blocks that
433 /// contain non-branches should also be vacated, but this can be handled by an
434 /// earlier pass similar to early if-conversion.
435 static bool isSplitEdge(const MachineBasicBlock
*MBB
) {
436 if (MBB
->pred_size() != 1 || MBB
->succ_size() != 1)
439 for (const auto &MI
: *MBB
) {
440 if (!MI
.isCopyLike() && !MI
.isUnconditionalBranch())
446 bool CoalescerPair::setRegisters(const MachineInstr
*MI
) {
447 SrcReg
= DstReg
= Register();
450 Flipped
= CrossClass
= false;
453 unsigned SrcSub
= 0, DstSub
= 0;
454 if (!isMoveInstr(TRI
, MI
, Src
, Dst
, SrcSub
, DstSub
))
456 Partial
= SrcSub
|| DstSub
;
458 // If one register is a physreg, it must be Dst.
459 if (Src
.isPhysical()) {
460 if (Dst
.isPhysical())
463 std::swap(SrcSub
, DstSub
);
467 const MachineRegisterInfo
&MRI
= MI
->getMF()->getRegInfo();
469 if (Dst
.isPhysical()) {
470 // Eliminate DstSub on a physreg.
472 Dst
= TRI
.getSubReg(Dst
, DstSub
);
473 if (!Dst
) return false;
477 // Eliminate SrcSub by picking a corresponding Dst superregister.
479 Dst
= TRI
.getMatchingSuperReg(Dst
, SrcSub
, MRI
.getRegClass(Src
));
480 if (!Dst
) return false;
481 } else if (!MRI
.getRegClass(Src
)->contains(Dst
)) {
485 // Both registers are virtual.
486 const TargetRegisterClass
*SrcRC
= MRI
.getRegClass(Src
);
487 const TargetRegisterClass
*DstRC
= MRI
.getRegClass(Dst
);
489 // Both registers have subreg indices.
490 if (SrcSub
&& DstSub
) {
491 // Copies between different sub-registers are never coalescable.
492 if (Src
== Dst
&& SrcSub
!= DstSub
)
495 NewRC
= TRI
.getCommonSuperRegClass(SrcRC
, SrcSub
, DstRC
, DstSub
,
500 // SrcReg will be merged with a sub-register of DstReg.
502 NewRC
= TRI
.getMatchingSuperRegClass(DstRC
, SrcRC
, DstSub
);
504 // DstReg will be merged with a sub-register of SrcReg.
506 NewRC
= TRI
.getMatchingSuperRegClass(SrcRC
, DstRC
, SrcSub
);
508 // This is a straight copy without sub-registers.
509 NewRC
= TRI
.getCommonSubClass(DstRC
, SrcRC
);
512 // The combined constraint may be impossible to satisfy.
516 // Prefer SrcReg to be a sub-register of DstReg.
517 // FIXME: Coalescer should support subregs symmetrically.
518 if (DstIdx
&& !SrcIdx
) {
520 std::swap(SrcIdx
, DstIdx
);
524 CrossClass
= NewRC
!= DstRC
|| NewRC
!= SrcRC
;
526 // Check our invariants
527 assert(Src
.isVirtual() && "Src must be virtual");
528 assert(!(Dst
.isPhysical() && DstSub
) && "Cannot have a physical SubIdx");
534 bool CoalescerPair::flip() {
535 if (DstReg
.isPhysical())
537 std::swap(SrcReg
, DstReg
);
538 std::swap(SrcIdx
, DstIdx
);
543 bool CoalescerPair::isCoalescable(const MachineInstr
*MI
) const {
547 unsigned SrcSub
= 0, DstSub
= 0;
548 if (!isMoveInstr(TRI
, MI
, Src
, Dst
, SrcSub
, DstSub
))
551 // Find the virtual register that is SrcReg.
554 std::swap(SrcSub
, DstSub
);
555 } else if (Src
!= SrcReg
) {
559 // Now check that Dst matches DstReg.
560 if (DstReg
.isPhysical()) {
561 if (!Dst
.isPhysical())
563 assert(!DstIdx
&& !SrcIdx
&& "Inconsistent CoalescerPair state.");
564 // DstSub could be set for a physreg from INSERT_SUBREG.
566 Dst
= TRI
.getSubReg(Dst
, DstSub
);
569 return DstReg
== Dst
;
570 // This is a partial register copy. Check that the parts match.
571 return Register(TRI
.getSubReg(DstReg
, SrcSub
)) == Dst
;
573 // DstReg is virtual.
576 // Registers match, do the subregisters line up?
577 return TRI
.composeSubRegIndices(SrcIdx
, SrcSub
) ==
578 TRI
.composeSubRegIndices(DstIdx
, DstSub
);
582 void RegisterCoalescer::getAnalysisUsage(AnalysisUsage
&AU
) const {
583 AU
.setPreservesCFG();
584 AU
.addRequired
<AAResultsWrapperPass
>();
585 AU
.addRequired
<LiveIntervals
>();
586 AU
.addPreserved
<LiveIntervals
>();
587 AU
.addPreserved
<SlotIndexes
>();
588 AU
.addRequired
<MachineLoopInfo
>();
589 AU
.addPreserved
<MachineLoopInfo
>();
590 AU
.addPreservedID(MachineDominatorsID
);
591 MachineFunctionPass::getAnalysisUsage(AU
);
594 void RegisterCoalescer::eliminateDeadDefs(LiveRangeEdit
*Edit
) {
596 Edit
->eliminateDeadDefs(DeadDefs
);
599 SmallVector
<Register
, 8> NewRegs
;
600 LiveRangeEdit(nullptr, NewRegs
, *MF
, *LIS
,
601 nullptr, this).eliminateDeadDefs(DeadDefs
);
604 void RegisterCoalescer::LRE_WillEraseInstruction(MachineInstr
*MI
) {
605 // MI may be in WorkList. Make sure we don't visit it.
606 ErasedInstrs
.insert(MI
);
609 bool RegisterCoalescer::adjustCopiesBackFrom(const CoalescerPair
&CP
,
610 MachineInstr
*CopyMI
) {
611 assert(!CP
.isPartial() && "This doesn't work for partial copies.");
612 assert(!CP
.isPhys() && "This doesn't work for physreg copies.");
615 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
617 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
618 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
620 // We have a non-trivially-coalescable copy with IntA being the source and
621 // IntB being the dest, thus this defines a value number in IntB. If the
622 // source value number (in IntA) is defined by a copy from B, see if we can
623 // merge these two pieces of B into a single value number, eliminating a copy.
628 // B1 = A3 <- this copy
630 // In this case, B0 can be extended to where the B1 copy lives, allowing the
631 // B1 value number to be replaced with B0 (which simplifies the B
634 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
635 // the example above.
636 LiveInterval::iterator BS
= IntB
.FindSegmentContaining(CopyIdx
);
637 if (BS
== IntB
.end()) return false;
638 VNInfo
*BValNo
= BS
->valno
;
640 // Get the location that B is defined at. Two options: either this value has
641 // an unknown definition point or it is defined at CopyIdx. If unknown, we
643 if (BValNo
->def
!= CopyIdx
) return false;
645 // AValNo is the value number in A that defines the copy, A3 in the example.
646 SlotIndex CopyUseIdx
= CopyIdx
.getRegSlot(true);
647 LiveInterval::iterator AS
= IntA
.FindSegmentContaining(CopyUseIdx
);
648 // The live segment might not exist after fun with physreg coalescing.
649 if (AS
== IntA
.end()) return false;
650 VNInfo
*AValNo
= AS
->valno
;
652 // If AValNo is defined as a copy from IntB, we can potentially process this.
653 // Get the instruction that defines this value number.
654 MachineInstr
*ACopyMI
= LIS
->getInstructionFromIndex(AValNo
->def
);
655 // Don't allow any partial copies, even if isCoalescable() allows them.
656 if (!CP
.isCoalescable(ACopyMI
) || !ACopyMI
->isFullCopy())
659 // Get the Segment in IntB that this value number starts with.
660 LiveInterval::iterator ValS
=
661 IntB
.FindSegmentContaining(AValNo
->def
.getPrevSlot());
662 if (ValS
== IntB
.end())
665 // Make sure that the end of the live segment is inside the same block as
667 MachineInstr
*ValSEndInst
=
668 LIS
->getInstructionFromIndex(ValS
->end
.getPrevSlot());
669 if (!ValSEndInst
|| ValSEndInst
->getParent() != CopyMI
->getParent())
672 // Okay, we now know that ValS ends in the same block that the CopyMI
673 // live-range starts. If there are no intervening live segments between them
674 // in IntB, we can merge them.
675 if (ValS
+1 != BS
) return false;
677 LLVM_DEBUG(dbgs() << "Extending: " << printReg(IntB
.reg(), TRI
));
679 SlotIndex FillerStart
= ValS
->end
, FillerEnd
= BS
->start
;
680 // We are about to delete CopyMI, so need to remove it as the 'instruction
681 // that defines this value #'. Update the valnum with the new defining
683 BValNo
->def
= FillerStart
;
685 // Okay, we can merge them. We need to insert a new liverange:
686 // [ValS.end, BS.begin) of either value number, then we merge the
687 // two value numbers.
688 IntB
.addSegment(LiveInterval::Segment(FillerStart
, FillerEnd
, BValNo
));
690 // Okay, merge "B1" into the same value number as "B0".
691 if (BValNo
!= ValS
->valno
)
692 IntB
.MergeValueNumberInto(BValNo
, ValS
->valno
);
694 // Do the same for the subregister segments.
695 for (LiveInterval::SubRange
&S
: IntB
.subranges()) {
696 // Check for SubRange Segments of the form [1234r,1234d:0) which can be
697 // removed to prevent creating bogus SubRange Segments.
698 LiveInterval::iterator SS
= S
.FindSegmentContaining(CopyIdx
);
699 if (SS
!= S
.end() && SlotIndex::isSameInstr(SS
->start
, SS
->end
)) {
700 S
.removeSegment(*SS
, true);
703 // The subrange may have ended before FillerStart. If so, extend it.
704 if (!S
.getVNInfoAt(FillerStart
)) {
706 LIS
->getMBBStartIdx(LIS
->getMBBFromIndex(FillerStart
));
707 S
.extendInBlock(BBStart
, FillerStart
);
709 VNInfo
*SubBValNo
= S
.getVNInfoAt(CopyIdx
);
710 S
.addSegment(LiveInterval::Segment(FillerStart
, FillerEnd
, SubBValNo
));
711 VNInfo
*SubValSNo
= S
.getVNInfoAt(AValNo
->def
.getPrevSlot());
712 if (SubBValNo
!= SubValSNo
)
713 S
.MergeValueNumberInto(SubBValNo
, SubValSNo
);
716 LLVM_DEBUG(dbgs() << " result = " << IntB
<< '\n');
718 // If the source instruction was killing the source register before the
719 // merge, unset the isKill marker given the live range has been extended.
720 int UIdx
= ValSEndInst
->findRegisterUseOperandIdx(IntB
.reg(), true);
722 ValSEndInst
->getOperand(UIdx
).setIsKill(false);
726 CopyMI
->substituteRegister(IntA
.reg(), IntB
.reg(), 0, *TRI
);
727 // If the copy instruction was killing the destination register or any
728 // subrange before the merge trim the live range.
729 bool RecomputeLiveRange
= AS
->end
== CopyIdx
;
730 if (!RecomputeLiveRange
) {
731 for (LiveInterval::SubRange
&S
: IntA
.subranges()) {
732 LiveInterval::iterator SS
= S
.FindSegmentContaining(CopyUseIdx
);
733 if (SS
!= S
.end() && SS
->end
== CopyIdx
) {
734 RecomputeLiveRange
= true;
739 if (RecomputeLiveRange
)
746 bool RegisterCoalescer::hasOtherReachingDefs(LiveInterval
&IntA
,
750 // If AValNo has PHI kills, conservatively assume that IntB defs can reach
752 if (LIS
->hasPHIKill(IntA
, AValNo
))
755 for (LiveRange::Segment
&ASeg
: IntA
.segments
) {
756 if (ASeg
.valno
!= AValNo
) continue;
757 LiveInterval::iterator BI
= llvm::upper_bound(IntB
, ASeg
.start
);
758 if (BI
!= IntB
.begin())
760 for (; BI
!= IntB
.end() && ASeg
.end
>= BI
->start
; ++BI
) {
761 if (BI
->valno
== BValNo
)
763 if (BI
->start
<= ASeg
.start
&& BI
->end
> ASeg
.start
)
765 if (BI
->start
> ASeg
.start
&& BI
->start
< ASeg
.end
)
772 /// Copy segments with value number @p SrcValNo from liverange @p Src to live
773 /// range @Dst and use value number @p DstValNo there.
774 static std::pair
<bool,bool>
775 addSegmentsWithValNo(LiveRange
&Dst
, VNInfo
*DstValNo
, const LiveRange
&Src
,
776 const VNInfo
*SrcValNo
) {
777 bool Changed
= false;
778 bool MergedWithDead
= false;
779 for (const LiveRange::Segment
&S
: Src
.segments
) {
780 if (S
.valno
!= SrcValNo
)
782 // This is adding a segment from Src that ends in a copy that is about
783 // to be removed. This segment is going to be merged with a pre-existing
784 // segment in Dst. This works, except in cases when the corresponding
785 // segment in Dst is dead. For example: adding [192r,208r:1) from Src
786 // to [208r,208d:1) in Dst would create [192r,208d:1) in Dst.
787 // Recognized such cases, so that the segments can be shrunk.
788 LiveRange::Segment Added
= LiveRange::Segment(S
.start
, S
.end
, DstValNo
);
789 LiveRange::Segment
&Merged
= *Dst
.addSegment(Added
);
790 if (Merged
.end
.isDead())
791 MergedWithDead
= true;
794 return std::make_pair(Changed
, MergedWithDead
);
798 RegisterCoalescer::removeCopyByCommutingDef(const CoalescerPair
&CP
,
799 MachineInstr
*CopyMI
) {
800 assert(!CP
.isPhys());
803 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
805 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
807 // We found a non-trivially-coalescable copy with IntA being the source and
808 // IntB being the dest, thus this defines a value number in IntB. If the
809 // source value number (in IntA) is defined by a commutable instruction and
810 // its other operand is coalesced to the copy dest register, see if we can
811 // transform the copy into a noop by commuting the definition. For example,
813 // A3 = op A2 killed B0
815 // B1 = A3 <- this copy
817 // = op A3 <- more uses
821 // B2 = op B0 killed A2
823 // B1 = B2 <- now an identity copy
825 // = op B2 <- more uses
827 // BValNo is a value number in B that is defined by a copy from A. 'B1' in
828 // the example above.
829 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
830 VNInfo
*BValNo
= IntB
.getVNInfoAt(CopyIdx
);
831 assert(BValNo
!= nullptr && BValNo
->def
== CopyIdx
);
833 // AValNo is the value number in A that defines the copy, A3 in the example.
834 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
.getRegSlot(true));
835 assert(AValNo
&& !AValNo
->isUnused() && "COPY source not live");
836 if (AValNo
->isPHIDef())
837 return { false, false };
838 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(AValNo
->def
);
840 return { false, false };
841 if (!DefMI
->isCommutable())
842 return { false, false };
843 // If DefMI is a two-address instruction then commuting it will change the
844 // destination register.
845 int DefIdx
= DefMI
->findRegisterDefOperandIdx(IntA
.reg());
846 assert(DefIdx
!= -1);
848 if (!DefMI
->isRegTiedToUseOperand(DefIdx
, &UseOpIdx
))
849 return { false, false };
851 // FIXME: The code below tries to commute 'UseOpIdx' operand with some other
852 // commutable operand which is expressed by 'CommuteAnyOperandIndex'value
853 // passed to the method. That _other_ operand is chosen by
854 // the findCommutedOpIndices() method.
856 // That is obviously an area for improvement in case of instructions having
857 // more than 2 operands. For example, if some instruction has 3 commutable
858 // operands then all possible variants (i.e. op#1<->op#2, op#1<->op#3,
859 // op#2<->op#3) of commute transformation should be considered/tried here.
860 unsigned NewDstIdx
= TargetInstrInfo::CommuteAnyOperandIndex
;
861 if (!TII
->findCommutedOpIndices(*DefMI
, UseOpIdx
, NewDstIdx
))
862 return { false, false };
864 MachineOperand
&NewDstMO
= DefMI
->getOperand(NewDstIdx
);
865 Register NewReg
= NewDstMO
.getReg();
866 if (NewReg
!= IntB
.reg() || !IntB
.Query(AValNo
->def
).isKill())
867 return { false, false };
869 // Make sure there are no other definitions of IntB that would reach the
870 // uses which the new definition can reach.
871 if (hasOtherReachingDefs(IntA
, IntB
, AValNo
, BValNo
))
872 return { false, false };
874 // If some of the uses of IntA.reg is already coalesced away, return false.
875 // It's not possible to determine whether it's safe to perform the coalescing.
876 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(IntA
.reg())) {
877 MachineInstr
*UseMI
= MO
.getParent();
878 unsigned OpNo
= &MO
- &UseMI
->getOperand(0);
879 SlotIndex UseIdx
= LIS
->getInstructionIndex(*UseMI
);
880 LiveInterval::iterator US
= IntA
.FindSegmentContaining(UseIdx
);
881 if (US
== IntA
.end() || US
->valno
!= AValNo
)
883 // If this use is tied to a def, we can't rewrite the register.
884 if (UseMI
->isRegTiedToDefOperand(OpNo
))
885 return { false, false };
888 LLVM_DEBUG(dbgs() << "\tremoveCopyByCommutingDef: " << AValNo
->def
<< '\t'
891 // At this point we have decided that it is legal to do this
892 // transformation. Start by commuting the instruction.
893 MachineBasicBlock
*MBB
= DefMI
->getParent();
894 MachineInstr
*NewMI
=
895 TII
->commuteInstruction(*DefMI
, false, UseOpIdx
, NewDstIdx
);
897 return { false, false };
898 if (IntA
.reg().isVirtual() && IntB
.reg().isVirtual() &&
899 !MRI
->constrainRegClass(IntB
.reg(), MRI
->getRegClass(IntA
.reg())))
900 return { false, false };
901 if (NewMI
!= DefMI
) {
902 LIS
->ReplaceMachineInstrInMaps(*DefMI
, *NewMI
);
903 MachineBasicBlock::iterator Pos
= DefMI
;
904 MBB
->insert(Pos
, NewMI
);
908 // If ALR and BLR overlaps and end of BLR extends beyond end of ALR, e.g.
917 // Update uses of IntA of the specific Val# with IntB.
918 for (MachineOperand
&UseMO
:
919 llvm::make_early_inc_range(MRI
->use_operands(IntA
.reg()))) {
922 MachineInstr
*UseMI
= UseMO
.getParent();
923 if (UseMI
->isDebugInstr()) {
924 // FIXME These don't have an instruction index. Not clear we have enough
925 // info to decide whether to do this replacement or not. For now do it.
926 UseMO
.setReg(NewReg
);
929 SlotIndex UseIdx
= LIS
->getInstructionIndex(*UseMI
).getRegSlot(true);
930 LiveInterval::iterator US
= IntA
.FindSegmentContaining(UseIdx
);
931 assert(US
!= IntA
.end() && "Use must be live");
932 if (US
->valno
!= AValNo
)
934 // Kill flags are no longer accurate. They are recomputed after RA.
935 UseMO
.setIsKill(false);
936 if (NewReg
.isPhysical())
937 UseMO
.substPhysReg(NewReg
, *TRI
);
939 UseMO
.setReg(NewReg
);
942 if (!UseMI
->isCopy())
944 if (UseMI
->getOperand(0).getReg() != IntB
.reg() ||
945 UseMI
->getOperand(0).getSubReg())
948 // This copy will become a noop. If it's defining a new val#, merge it into
950 SlotIndex DefIdx
= UseIdx
.getRegSlot();
951 VNInfo
*DVNI
= IntB
.getVNInfoAt(DefIdx
);
954 LLVM_DEBUG(dbgs() << "\t\tnoop: " << DefIdx
<< '\t' << *UseMI
);
955 assert(DVNI
->def
== DefIdx
);
956 BValNo
= IntB
.MergeValueNumberInto(DVNI
, BValNo
);
957 for (LiveInterval::SubRange
&S
: IntB
.subranges()) {
958 VNInfo
*SubDVNI
= S
.getVNInfoAt(DefIdx
);
961 VNInfo
*SubBValNo
= S
.getVNInfoAt(CopyIdx
);
962 assert(SubBValNo
->def
== CopyIdx
);
963 S
.MergeValueNumberInto(SubDVNI
, SubBValNo
);
969 // Extend BValNo by merging in IntA live segments of AValNo. Val# definition
971 bool ShrinkB
= false;
972 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
973 if (IntA
.hasSubRanges() || IntB
.hasSubRanges()) {
974 if (!IntA
.hasSubRanges()) {
975 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(IntA
.reg());
976 IntA
.createSubRangeFrom(Allocator
, Mask
, IntA
);
977 } else if (!IntB
.hasSubRanges()) {
978 LaneBitmask Mask
= MRI
->getMaxLaneMaskForVReg(IntB
.reg());
979 IntB
.createSubRangeFrom(Allocator
, Mask
, IntB
);
981 SlotIndex AIdx
= CopyIdx
.getRegSlot(true);
983 const SlotIndexes
&Indexes
= *LIS
->getSlotIndexes();
984 for (LiveInterval::SubRange
&SA
: IntA
.subranges()) {
985 VNInfo
*ASubValNo
= SA
.getVNInfoAt(AIdx
);
986 // Even if we are dealing with a full copy, some lanes can
987 // still be undefined.
989 // undef A.subLow = ...
990 // B = COPY A <== A.subHigh is undefined here and does
991 // not have a value number.
994 MaskA
|= SA
.LaneMask
;
996 IntB
.refineSubRanges(
997 Allocator
, SA
.LaneMask
,
998 [&Allocator
, &SA
, CopyIdx
, ASubValNo
,
999 &ShrinkB
](LiveInterval::SubRange
&SR
) {
1000 VNInfo
*BSubValNo
= SR
.empty() ? SR
.getNextValue(CopyIdx
, Allocator
)
1001 : SR
.getVNInfoAt(CopyIdx
);
1002 assert(BSubValNo
!= nullptr);
1003 auto P
= addSegmentsWithValNo(SR
, BSubValNo
, SA
, ASubValNo
);
1004 ShrinkB
|= P
.second
;
1006 BSubValNo
->def
= ASubValNo
->def
;
1010 // Go over all subranges of IntB that have not been covered by IntA,
1011 // and delete the segments starting at CopyIdx. This can happen if
1012 // IntA has undef lanes that are defined in IntB.
1013 for (LiveInterval::SubRange
&SB
: IntB
.subranges()) {
1014 if ((SB
.LaneMask
& MaskA
).any())
1016 if (LiveRange::Segment
*S
= SB
.getSegmentContaining(CopyIdx
))
1017 if (S
->start
.getBaseIndex() == CopyIdx
.getBaseIndex())
1018 SB
.removeSegment(*S
, true);
1022 BValNo
->def
= AValNo
->def
;
1023 auto P
= addSegmentsWithValNo(IntB
, BValNo
, IntA
, AValNo
);
1024 ShrinkB
|= P
.second
;
1025 LLVM_DEBUG(dbgs() << "\t\textended: " << IntB
<< '\n');
1027 LIS
->removeVRegDefAt(IntA
, AValNo
->def
);
1029 LLVM_DEBUG(dbgs() << "\t\ttrimmed: " << IntA
<< '\n');
1031 return { true, ShrinkB
};
1034 /// For copy B = A in BB2, if A is defined by A = B in BB0 which is a
1035 /// predecessor of BB2, and if B is not redefined on the way from A = B
1036 /// in BB0 to B = A in BB2, B = A in BB2 is partially redundant if the
1037 /// execution goes through the path from BB0 to BB2. We may move B = A
1038 /// to the predecessor without such reversed copy.
1039 /// So we will transform the program from:
1057 /// A special case is when BB0 and BB2 are the same BB which is the only
1067 /// We may hoist B = A from BB0/BB2 to BB1.
1069 /// The major preconditions for correctness to remove such partial
1070 /// redundancy include:
1071 /// 1. A in B = A in BB2 is defined by a PHI in BB2, and one operand of
1072 /// the PHI is defined by the reversed copy A = B in BB0.
1073 /// 2. No B is referenced from the start of BB2 to B = A.
1074 /// 3. No B is defined from A = B to the end of BB0.
1075 /// 4. BB1 has only one successor.
1077 /// 2 and 4 implicitly ensure B is not live at the end of BB1.
1078 /// 4 guarantees BB2 is hotter than BB1, so we can only move a copy to a
1079 /// colder place, which not only prevent endless loop, but also make sure
1080 /// the movement of copy is beneficial.
1081 bool RegisterCoalescer::removePartialRedundancy(const CoalescerPair
&CP
,
1082 MachineInstr
&CopyMI
) {
1083 assert(!CP
.isPhys());
1084 if (!CopyMI
.isFullCopy())
1087 MachineBasicBlock
&MBB
= *CopyMI
.getParent();
1088 // If this block is the target of an invoke/inlineasm_br, moving the copy into
1089 // the predecessor is tricker, and we don't handle it.
1090 if (MBB
.isEHPad() || MBB
.isInlineAsmBrIndirectTarget())
1093 if (MBB
.pred_size() != 2)
1096 LiveInterval
&IntA
=
1097 LIS
->getInterval(CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg());
1098 LiveInterval
&IntB
=
1099 LIS
->getInterval(CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg());
1101 // A is defined by PHI at the entry of MBB.
1102 SlotIndex CopyIdx
= LIS
->getInstructionIndex(CopyMI
).getRegSlot(true);
1103 VNInfo
*AValNo
= IntA
.getVNInfoAt(CopyIdx
);
1104 assert(AValNo
&& !AValNo
->isUnused() && "COPY source not live");
1105 if (!AValNo
->isPHIDef())
1108 // No B is referenced before CopyMI in MBB.
1109 if (IntB
.overlaps(LIS
->getMBBStartIdx(&MBB
), CopyIdx
))
1112 // MBB has two predecessors: one contains A = B so no copy will be inserted
1113 // for it. The other one will have a copy moved from MBB.
1114 bool FoundReverseCopy
= false;
1115 MachineBasicBlock
*CopyLeftBB
= nullptr;
1116 for (MachineBasicBlock
*Pred
: MBB
.predecessors()) {
1117 VNInfo
*PVal
= IntA
.getVNInfoBefore(LIS
->getMBBEndIdx(Pred
));
1118 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(PVal
->def
);
1119 if (!DefMI
|| !DefMI
->isFullCopy()) {
1123 // Check DefMI is a reverse copy and it is in BB Pred.
1124 if (DefMI
->getOperand(0).getReg() != IntA
.reg() ||
1125 DefMI
->getOperand(1).getReg() != IntB
.reg() ||
1126 DefMI
->getParent() != Pred
) {
1130 // If there is any other def of B after DefMI and before the end of Pred,
1131 // we need to keep the copy of B = A at the end of Pred if we remove
1133 bool ValB_Changed
= false;
1134 for (auto *VNI
: IntB
.valnos
) {
1135 if (VNI
->isUnused())
1137 if (PVal
->def
< VNI
->def
&& VNI
->def
< LIS
->getMBBEndIdx(Pred
)) {
1138 ValB_Changed
= true;
1146 FoundReverseCopy
= true;
1149 // If no reverse copy is found in predecessors, nothing to do.
1150 if (!FoundReverseCopy
)
1153 // If CopyLeftBB is nullptr, it means every predecessor of MBB contains
1154 // reverse copy, CopyMI can be removed trivially if only IntA/IntB is updated.
1155 // If CopyLeftBB is not nullptr, move CopyMI from MBB to CopyLeftBB and
1156 // update IntA/IntB.
1158 // If CopyLeftBB is not nullptr, ensure CopyLeftBB has a single succ so
1159 // MBB is hotter than CopyLeftBB.
1160 if (CopyLeftBB
&& CopyLeftBB
->succ_size() > 1)
1163 // Now (almost sure it's) ok to move copy.
1165 // Position in CopyLeftBB where we should insert new copy.
1166 auto InsPos
= CopyLeftBB
->getFirstTerminator();
1168 // Make sure that B isn't referenced in the terminators (if any) at the end
1169 // of the predecessor since we're about to insert a new definition of B
1171 if (InsPos
!= CopyLeftBB
->end()) {
1172 SlotIndex InsPosIdx
= LIS
->getInstructionIndex(*InsPos
).getRegSlot(true);
1173 if (IntB
.overlaps(InsPosIdx
, LIS
->getMBBEndIdx(CopyLeftBB
)))
1177 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Move the copy to "
1178 << printMBBReference(*CopyLeftBB
) << '\t' << CopyMI
);
1180 // Insert new copy to CopyLeftBB.
1181 MachineInstr
*NewCopyMI
= BuildMI(*CopyLeftBB
, InsPos
, CopyMI
.getDebugLoc(),
1182 TII
->get(TargetOpcode::COPY
), IntB
.reg())
1183 .addReg(IntA
.reg());
1184 SlotIndex NewCopyIdx
=
1185 LIS
->InsertMachineInstrInMaps(*NewCopyMI
).getRegSlot();
1186 IntB
.createDeadDef(NewCopyIdx
, LIS
->getVNInfoAllocator());
1187 for (LiveInterval::SubRange
&SR
: IntB
.subranges())
1188 SR
.createDeadDef(NewCopyIdx
, LIS
->getVNInfoAllocator());
1190 // If the newly created Instruction has an address of an instruction that was
1191 // deleted before (object recycled by the allocator) it needs to be removed from
1192 // the deleted list.
1193 ErasedInstrs
.erase(NewCopyMI
);
1195 LLVM_DEBUG(dbgs() << "\tremovePartialRedundancy: Remove the copy from "
1196 << printMBBReference(MBB
) << '\t' << CopyMI
);
1200 // Note: This is fine to remove the copy before updating the live-ranges.
1201 // While updating the live-ranges, we only look at slot indices and
1202 // never go back to the instruction.
1203 // Mark instructions as deleted.
1204 deleteInstr(&CopyMI
);
1206 // Update the liveness.
1207 SmallVector
<SlotIndex
, 8> EndPoints
;
1208 VNInfo
*BValNo
= IntB
.Query(CopyIdx
).valueOutOrDead();
1209 LIS
->pruneValue(*static_cast<LiveRange
*>(&IntB
), CopyIdx
.getRegSlot(),
1211 BValNo
->markUnused();
1212 // Extend IntB to the EndPoints of its original live interval.
1213 LIS
->extendToIndices(IntB
, EndPoints
);
1215 // Now, do the same for its subranges.
1216 for (LiveInterval::SubRange
&SR
: IntB
.subranges()) {
1218 VNInfo
*BValNo
= SR
.Query(CopyIdx
).valueOutOrDead();
1219 assert(BValNo
&& "All sublanes should be live");
1220 LIS
->pruneValue(SR
, CopyIdx
.getRegSlot(), &EndPoints
);
1221 BValNo
->markUnused();
1222 // We can have a situation where the result of the original copy is live,
1223 // but is immediately dead in this subrange, e.g. [336r,336d:0). That makes
1224 // the copy appear as an endpoint from pruneValue(), but we don't want it
1225 // to because the copy has been removed. We can go ahead and remove that
1226 // endpoint; there is no other situation here that there could be a use at
1227 // the same place as we know that the copy is a full copy.
1228 for (unsigned I
= 0; I
!= EndPoints
.size(); ) {
1229 if (SlotIndex::isSameInstr(EndPoints
[I
], CopyIdx
)) {
1230 EndPoints
[I
] = EndPoints
.back();
1231 EndPoints
.pop_back();
1236 SmallVector
<SlotIndex
, 8> Undefs
;
1237 IntB
.computeSubRangeUndefs(Undefs
, SR
.LaneMask
, *MRI
,
1238 *LIS
->getSlotIndexes());
1239 LIS
->extendToIndices(SR
, EndPoints
, Undefs
);
1241 // If any dead defs were extended, truncate them.
1242 shrinkToUses(&IntB
);
1244 // Finally, update the live-range of IntA.
1245 shrinkToUses(&IntA
);
1249 /// Returns true if @p MI defines the full vreg @p Reg, as opposed to just
1250 /// defining a subregister.
1251 static bool definesFullReg(const MachineInstr
&MI
, Register Reg
) {
1252 assert(!Reg
.isPhysical() && "This code cannot handle physreg aliasing");
1254 for (const MachineOperand
&Op
: MI
.all_defs()) {
1255 if (Op
.getReg() != Reg
)
1257 // Return true if we define the full register or don't care about the value
1258 // inside other subregisters.
1259 if (Op
.getSubReg() == 0 || Op
.isUndef())
1265 bool RegisterCoalescer::reMaterializeTrivialDef(const CoalescerPair
&CP
,
1266 MachineInstr
*CopyMI
,
1269 Register SrcReg
= CP
.isFlipped() ? CP
.getDstReg() : CP
.getSrcReg();
1270 unsigned SrcIdx
= CP
.isFlipped() ? CP
.getDstIdx() : CP
.getSrcIdx();
1271 Register DstReg
= CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg();
1272 unsigned DstIdx
= CP
.isFlipped() ? CP
.getSrcIdx() : CP
.getDstIdx();
1273 if (SrcReg
.isPhysical())
1276 LiveInterval
&SrcInt
= LIS
->getInterval(SrcReg
);
1277 SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
);
1278 VNInfo
*ValNo
= SrcInt
.Query(CopyIdx
).valueIn();
1281 if (ValNo
->isPHIDef() || ValNo
->isUnused())
1283 MachineInstr
*DefMI
= LIS
->getInstructionFromIndex(ValNo
->def
);
1286 if (DefMI
->isCopyLike()) {
1290 if (!TII
->isAsCheapAsAMove(*DefMI
))
1293 SmallVector
<Register
, 8> NewRegs
;
1294 LiveRangeEdit
Edit(&SrcInt
, NewRegs
, *MF
, *LIS
, nullptr, this);
1295 if (!Edit
.checkRematerializable(ValNo
, DefMI
))
1298 if (!definesFullReg(*DefMI
, SrcReg
))
1300 bool SawStore
= false;
1301 if (!DefMI
->isSafeToMove(AA
, SawStore
))
1303 const MCInstrDesc
&MCID
= DefMI
->getDesc();
1304 if (MCID
.getNumDefs() != 1)
1306 // Only support subregister destinations when the def is read-undef.
1307 MachineOperand
&DstOperand
= CopyMI
->getOperand(0);
1308 Register CopyDstReg
= DstOperand
.getReg();
1309 if (DstOperand
.getSubReg() && !DstOperand
.isUndef())
1312 // If both SrcIdx and DstIdx are set, correct rematerialization would widen
1313 // the register substantially (beyond both source and dest size). This is bad
1314 // for performance since it can cascade through a function, introducing many
1315 // extra spills and fills (e.g. ARM can easily end up copying QQQQPR registers
1316 // around after a few subreg copies).
1317 if (SrcIdx
&& DstIdx
)
1320 [[maybe_unused
]] const unsigned DefSubIdx
= DefMI
->getOperand(0).getSubReg();
1321 const TargetRegisterClass
*DefRC
= TII
->getRegClass(MCID
, 0, TRI
, *MF
);
1322 if (!DefMI
->isImplicitDef()) {
1323 if (DstReg
.isPhysical()) {
1324 Register NewDstReg
= DstReg
;
1326 unsigned NewDstIdx
= TRI
->composeSubRegIndices(CP
.getSrcIdx(),
1327 DefMI
->getOperand(0).getSubReg());
1329 NewDstReg
= TRI
->getSubReg(DstReg
, NewDstIdx
);
1331 // Finally, make sure that the physical subregister that will be
1332 // constructed later is permitted for the instruction.
1333 if (!DefRC
->contains(NewDstReg
))
1336 // Theoretically, some stack frame reference could exist. Just make sure
1337 // it hasn't actually happened.
1338 assert(DstReg
.isVirtual() &&
1339 "Only expect to deal with virtual or physical registers");
1343 LiveRangeEdit::Remat
RM(ValNo
);
1345 if (!Edit
.canRematerializeAt(RM
, ValNo
, CopyIdx
, true))
1348 DebugLoc DL
= CopyMI
->getDebugLoc();
1349 MachineBasicBlock
*MBB
= CopyMI
->getParent();
1350 MachineBasicBlock::iterator MII
=
1351 std::next(MachineBasicBlock::iterator(CopyMI
));
1352 Edit
.rematerializeAt(*MBB
, MII
, DstReg
, RM
, *TRI
, false, SrcIdx
, CopyMI
);
1353 MachineInstr
&NewMI
= *std::prev(MII
);
1354 NewMI
.setDebugLoc(DL
);
1356 // In a situation like the following:
1357 // %0:subreg = instr ; DefMI, subreg = DstIdx
1358 // %1 = copy %0:subreg ; CopyMI, SrcIdx = 0
1359 // instead of widening %1 to the register class of %0 simply do:
1361 const TargetRegisterClass
*NewRC
= CP
.getNewRC();
1363 MachineOperand
&DefMO
= NewMI
.getOperand(0);
1364 if (DefMO
.getSubReg() == DstIdx
) {
1365 assert(SrcIdx
== 0 && CP
.isFlipped()
1366 && "Shouldn't have SrcIdx+DstIdx at this point");
1367 const TargetRegisterClass
*DstRC
= MRI
->getRegClass(DstReg
);
1368 const TargetRegisterClass
*CommonRC
=
1369 TRI
->getCommonSubClass(DefRC
, DstRC
);
1370 if (CommonRC
!= nullptr) {
1373 // Instruction might contain "undef %0:subreg" as use operand:
1374 // %0:subreg = instr op_1, ..., op_N, undef %0:subreg, op_N+2, ...
1376 // Need to check all operands.
1377 for (MachineOperand
&MO
: NewMI
.operands()) {
1378 if (MO
.isReg() && MO
.getReg() == DstReg
&& MO
.getSubReg() == DstIdx
) {
1384 DefMO
.setIsUndef(false); // Only subregs can have def+undef.
1389 // CopyMI may have implicit operands, save them so that we can transfer them
1390 // over to the newly materialized instruction after CopyMI is removed.
1391 SmallVector
<MachineOperand
, 4> ImplicitOps
;
1392 ImplicitOps
.reserve(CopyMI
->getNumOperands() -
1393 CopyMI
->getDesc().getNumOperands());
1394 for (unsigned I
= CopyMI
->getDesc().getNumOperands(),
1395 E
= CopyMI
->getNumOperands();
1397 MachineOperand
&MO
= CopyMI
->getOperand(I
);
1399 assert(MO
.isImplicit() && "No explicit operands after implicit operands.");
1400 assert((MO
.getReg().isPhysical() ||
1401 (MO
.getSubReg() == 0 && MO
.getReg() == DstOperand
.getReg())) &&
1402 "unexpected implicit virtual register def");
1403 ImplicitOps
.push_back(MO
);
1407 CopyMI
->eraseFromParent();
1408 ErasedInstrs
.insert(CopyMI
);
1410 // NewMI may have dead implicit defs (E.g. EFLAGS for MOV<bits>r0 on X86).
1411 // We need to remember these so we can add intervals once we insert
1412 // NewMI into SlotIndexes.
1414 // We also expect to have tied implicit-defs of super registers originating
1415 // from SUBREG_TO_REG, such as:
1416 // $edi = MOV32r0 implicit-def dead $eflags, implicit-def $rdi
1417 // undef %0.sub_32bit = MOV32r0 implicit-def dead $eflags, implicit-def %0
1419 // The implicit-def of the super register may have been reduced to
1420 // subregisters depending on the uses.
1422 bool NewMIDefinesFullReg
= false;
1424 SmallVector
<MCRegister
, 4> NewMIImplDefs
;
1425 for (unsigned i
= NewMI
.getDesc().getNumOperands(),
1426 e
= NewMI
.getNumOperands();
1428 MachineOperand
&MO
= NewMI
.getOperand(i
);
1429 if (MO
.isReg() && MO
.isDef()) {
1430 assert(MO
.isImplicit());
1431 if (MO
.getReg().isPhysical()) {
1432 if (MO
.getReg() == DstReg
)
1433 NewMIDefinesFullReg
= true;
1435 assert(MO
.isImplicit() && MO
.getReg().isPhysical() &&
1438 ((TRI
->getSubReg(MO
.getReg(), DefSubIdx
) ==
1439 MCRegister((unsigned)NewMI
.getOperand(0).getReg())) ||
1440 TRI
->isSubRegisterEq(NewMI
.getOperand(0).getReg(),
1442 NewMIImplDefs
.push_back(MO
.getReg().asMCReg());
1444 assert(MO
.getReg() == NewMI
.getOperand(0).getReg());
1446 // We're only expecting another def of the main output, so the range
1447 // should get updated with the regular output range.
1449 // FIXME: The range updating below probably needs updating to look at
1450 // the super register if subranges are tracked.
1451 assert(!MRI
->shouldTrackSubRegLiveness(DstReg
) &&
1452 "subrange update for implicit-def of super register may not be "
1453 "properly handled");
1458 if (DstReg
.isVirtual()) {
1459 unsigned NewIdx
= NewMI
.getOperand(0).getSubReg();
1461 if (DefRC
!= nullptr) {
1463 NewRC
= TRI
->getMatchingSuperRegClass(NewRC
, DefRC
, NewIdx
);
1465 NewRC
= TRI
->getCommonSubClass(NewRC
, DefRC
);
1466 assert(NewRC
&& "subreg chosen for remat incompatible with instruction");
1468 // Remap subranges to new lanemask and change register class.
1469 LiveInterval
&DstInt
= LIS
->getInterval(DstReg
);
1470 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1471 SR
.LaneMask
= TRI
->composeSubRegIndexLaneMask(DstIdx
, SR
.LaneMask
);
1473 MRI
->setRegClass(DstReg
, NewRC
);
1475 // Update machine operands and add flags.
1476 updateRegDefsUses(DstReg
, DstReg
, DstIdx
);
1477 NewMI
.getOperand(0).setSubReg(NewIdx
);
1478 // updateRegDefUses can add an "undef" flag to the definition, since
1479 // it will replace DstReg with DstReg.DstIdx. If NewIdx is 0, make
1480 // sure that "undef" is not set.
1482 NewMI
.getOperand(0).setIsUndef(false);
1483 // Add dead subregister definitions if we are defining the whole register
1484 // but only part of it is live.
1485 // This could happen if the rematerialization instruction is rematerializing
1486 // more than actually is used in the register.
1487 // An example would be:
1488 // %1 = LOAD CONSTANTS 5, 8 ; Loading both 5 and 8 in different subregs
1489 // ; Copying only part of the register here, but the rest is undef.
1490 // %2:sub_16bit<def, read-undef> = COPY %1:sub_16bit
1492 // ; Materialize all the constants but only using one
1493 // %2 = LOAD_CONSTANTS 5, 8
1495 // at this point for the part that wasn't defined before we could have
1496 // subranges missing the definition.
1497 if (NewIdx
== 0 && DstInt
.hasSubRanges()) {
1498 SlotIndex CurrIdx
= LIS
->getInstructionIndex(NewMI
);
1499 SlotIndex DefIndex
=
1500 CurrIdx
.getRegSlot(NewMI
.getOperand(0).isEarlyClobber());
1501 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(DstReg
);
1502 VNInfo::Allocator
& Alloc
= LIS
->getVNInfoAllocator();
1503 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1504 if (!SR
.liveAt(DefIndex
))
1505 SR
.createDeadDef(DefIndex
, Alloc
);
1506 MaxMask
&= ~SR
.LaneMask
;
1508 if (MaxMask
.any()) {
1509 LiveInterval::SubRange
*SR
= DstInt
.createSubRange(Alloc
, MaxMask
);
1510 SR
->createDeadDef(DefIndex
, Alloc
);
1514 // Make sure that the subrange for resultant undef is removed
1516 // %1:sub1<def,read-undef> = LOAD CONSTANT 1
1519 // %2:sub1<def, read-undef> = LOAD CONSTANT 1
1520 // ; Correct but need to remove the subrange for %2:sub0
1521 // ; as it is now undef
1522 if (NewIdx
!= 0 && DstInt
.hasSubRanges()) {
1523 // The affected subregister segments can be removed.
1524 SlotIndex CurrIdx
= LIS
->getInstructionIndex(NewMI
);
1525 LaneBitmask DstMask
= TRI
->getSubRegIndexLaneMask(NewIdx
);
1526 bool UpdatedSubRanges
= false;
1527 SlotIndex DefIndex
=
1528 CurrIdx
.getRegSlot(NewMI
.getOperand(0).isEarlyClobber());
1529 VNInfo::Allocator
&Alloc
= LIS
->getVNInfoAllocator();
1530 for (LiveInterval::SubRange
&SR
: DstInt
.subranges()) {
1531 if ((SR
.LaneMask
& DstMask
).none()) {
1533 << "Removing undefined SubRange "
1534 << PrintLaneMask(SR
.LaneMask
) << " : " << SR
<< "\n");
1536 if (VNInfo
*RmValNo
= SR
.getVNInfoAt(CurrIdx
.getRegSlot())) {
1537 // VNI is in ValNo - remove any segments in this SubRange that have
1539 SR
.removeValNo(RmValNo
);
1542 // We may not have a defined value at this point, but still need to
1543 // clear out any empty subranges tentatively created by
1544 // updateRegDefUses. The original subrange def may have only undefed
1546 UpdatedSubRanges
= true;
1548 // We know that this lane is defined by this instruction,
1549 // but at this point it may be empty because it is not used by
1550 // anything. This happens when updateRegDefUses adds the missing
1551 // lanes. Assign that lane a dead def so that the interferences
1552 // are properly modeled.
1554 SR
.createDeadDef(DefIndex
, Alloc
);
1557 if (UpdatedSubRanges
)
1558 DstInt
.removeEmptySubRanges();
1560 } else if (NewMI
.getOperand(0).getReg() != CopyDstReg
) {
1561 // The New instruction may be defining a sub-register of what's actually
1562 // been asked for. If so it must implicitly define the whole thing.
1563 assert(DstReg
.isPhysical() &&
1564 "Only expect virtual or physical registers in remat");
1565 NewMI
.getOperand(0).setIsDead(true);
1567 if (!NewMIDefinesFullReg
) {
1568 NewMI
.addOperand(MachineOperand::CreateReg(
1569 CopyDstReg
, true /*IsDef*/, true /*IsImp*/, false /*IsKill*/));
1572 // Record small dead def live-ranges for all the subregisters
1573 // of the destination register.
1574 // Otherwise, variables that live through may miss some
1575 // interferences, thus creating invalid allocation.
1577 // %1 = somedef ; %1 GR8
1578 // %2 = remat ; %2 GR32
1579 // CL = COPY %2.sub_8bit
1580 // = somedef %1 ; %1 GR8
1582 // %1 = somedef ; %1 GR8
1583 // dead ECX = remat ; implicit-def CL
1584 // = somedef %1 ; %1 GR8
1585 // %1 will see the interferences with CL but not with CH since
1586 // no live-ranges would have been created for ECX.
1588 SlotIndex NewMIIdx
= LIS
->getInstructionIndex(NewMI
);
1589 for (MCRegUnit Unit
: TRI
->regunits(NewMI
.getOperand(0).getReg()))
1590 if (LiveRange
*LR
= LIS
->getCachedRegUnit(Unit
))
1591 LR
->createDeadDef(NewMIIdx
.getRegSlot(), LIS
->getVNInfoAllocator());
1594 if (NewMI
.getOperand(0).getSubReg())
1595 NewMI
.getOperand(0).setIsUndef();
1597 // Transfer over implicit operands to the rematerialized instruction.
1598 for (MachineOperand
&MO
: ImplicitOps
)
1599 NewMI
.addOperand(MO
);
1601 SlotIndex NewMIIdx
= LIS
->getInstructionIndex(NewMI
);
1602 for (unsigned i
= 0, e
= NewMIImplDefs
.size(); i
!= e
; ++i
) {
1603 MCRegister Reg
= NewMIImplDefs
[i
];
1604 for (MCRegUnit Unit
: TRI
->regunits(Reg
))
1605 if (LiveRange
*LR
= LIS
->getCachedRegUnit(Unit
))
1606 LR
->createDeadDef(NewMIIdx
.getRegSlot(), LIS
->getVNInfoAllocator());
1609 LLVM_DEBUG(dbgs() << "Remat: " << NewMI
);
1612 // If the virtual SrcReg is completely eliminated, update all DBG_VALUEs
1613 // to describe DstReg instead.
1614 if (MRI
->use_nodbg_empty(SrcReg
)) {
1615 for (MachineOperand
&UseMO
:
1616 llvm::make_early_inc_range(MRI
->use_operands(SrcReg
))) {
1617 MachineInstr
*UseMI
= UseMO
.getParent();
1618 if (UseMI
->isDebugInstr()) {
1619 if (DstReg
.isPhysical())
1620 UseMO
.substPhysReg(DstReg
, *TRI
);
1622 UseMO
.setReg(DstReg
);
1623 // Move the debug value directly after the def of the rematerialized
1625 MBB
->splice(std::next(NewMI
.getIterator()), UseMI
->getParent(), UseMI
);
1626 LLVM_DEBUG(dbgs() << "\t\tupdated: " << *UseMI
);
1631 if (ToBeUpdated
.count(SrcReg
))
1634 unsigned NumCopyUses
= 0;
1635 for (MachineOperand
&UseMO
: MRI
->use_nodbg_operands(SrcReg
)) {
1636 if (UseMO
.getParent()->isCopyLike())
1639 if (NumCopyUses
< LateRematUpdateThreshold
) {
1640 // The source interval can become smaller because we removed a use.
1641 shrinkToUses(&SrcInt
, &DeadDefs
);
1642 if (!DeadDefs
.empty())
1643 eliminateDeadDefs(&Edit
);
1645 ToBeUpdated
.insert(SrcReg
);
1650 MachineInstr
*RegisterCoalescer::eliminateUndefCopy(MachineInstr
*CopyMI
) {
1651 // ProcessImplicitDefs may leave some copies of <undef> values, it only
1652 // removes local variables. When we have a copy like:
1654 // %1 = COPY undef %2
1656 // We delete the copy and remove the corresponding value number from %1.
1657 // Any uses of that value number are marked as <undef>.
1659 // Note that we do not query CoalescerPair here but redo isMoveInstr as the
1660 // CoalescerPair may have a new register class with adjusted subreg indices
1662 Register SrcReg
, DstReg
;
1663 unsigned SrcSubIdx
= 0, DstSubIdx
= 0;
1664 if(!isMoveInstr(*TRI
, CopyMI
, SrcReg
, DstReg
, SrcSubIdx
, DstSubIdx
))
1667 SlotIndex Idx
= LIS
->getInstructionIndex(*CopyMI
);
1668 const LiveInterval
&SrcLI
= LIS
->getInterval(SrcReg
);
1669 // CopyMI is undef iff SrcReg is not live before the instruction.
1670 if (SrcSubIdx
!= 0 && SrcLI
.hasSubRanges()) {
1671 LaneBitmask SrcMask
= TRI
->getSubRegIndexLaneMask(SrcSubIdx
);
1672 for (const LiveInterval::SubRange
&SR
: SrcLI
.subranges()) {
1673 if ((SR
.LaneMask
& SrcMask
).none())
1678 } else if (SrcLI
.liveAt(Idx
))
1681 // If the undef copy defines a live-out value (i.e. an input to a PHI def),
1682 // then replace it with an IMPLICIT_DEF.
1683 LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
1684 SlotIndex RegIndex
= Idx
.getRegSlot();
1685 LiveRange::Segment
*Seg
= DstLI
.getSegmentContaining(RegIndex
);
1686 assert(Seg
!= nullptr && "No segment for defining instruction");
1687 VNInfo
*V
= DstLI
.getVNInfoAt(Seg
->end
);
1689 // The source interval may also have been on an undef use, in which case the
1690 // copy introduced a live value.
1691 if (((V
&& V
->isPHIDef()) || (!V
&& !DstLI
.liveAt(Idx
)))) {
1692 CopyMI
->setDesc(TII
->get(TargetOpcode::IMPLICIT_DEF
));
1693 for (unsigned i
= CopyMI
->getNumOperands(); i
!= 0; --i
) {
1694 MachineOperand
&MO
= CopyMI
->getOperand(i
-1);
1695 if (MO
.isReg() && MO
.isUse())
1696 CopyMI
->removeOperand(i
-1);
1698 LLVM_DEBUG(dbgs() << "\tReplaced copy of <undef> value with an "
1703 // Remove any DstReg segments starting at the instruction.
1704 LLVM_DEBUG(dbgs() << "\tEliminating copy of <undef> value\n");
1706 // Remove value or merge with previous one in case of a subregister def.
1707 if (VNInfo
*PrevVNI
= DstLI
.getVNInfoAt(Idx
)) {
1708 VNInfo
*VNI
= DstLI
.getVNInfoAt(RegIndex
);
1709 DstLI
.MergeValueNumberInto(VNI
, PrevVNI
);
1711 // The affected subregister segments can be removed.
1712 LaneBitmask DstMask
= TRI
->getSubRegIndexLaneMask(DstSubIdx
);
1713 for (LiveInterval::SubRange
&SR
: DstLI
.subranges()) {
1714 if ((SR
.LaneMask
& DstMask
).none())
1717 VNInfo
*SVNI
= SR
.getVNInfoAt(RegIndex
);
1718 assert(SVNI
!= nullptr && SlotIndex::isSameInstr(SVNI
->def
, RegIndex
));
1719 SR
.removeValNo(SVNI
);
1721 DstLI
.removeEmptySubRanges();
1723 LIS
->removeVRegDefAt(DstLI
, RegIndex
);
1725 // Mark uses as undef.
1726 for (MachineOperand
&MO
: MRI
->reg_nodbg_operands(DstReg
)) {
1727 if (MO
.isDef() /*|| MO.isUndef()*/)
1729 const MachineInstr
&MI
= *MO
.getParent();
1730 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
);
1731 LaneBitmask UseMask
= TRI
->getSubRegIndexLaneMask(MO
.getSubReg());
1733 if (!UseMask
.all() && DstLI
.hasSubRanges()) {
1735 for (const LiveInterval::SubRange
&SR
: DstLI
.subranges()) {
1736 if ((SR
.LaneMask
& UseMask
).none())
1738 if (SR
.liveAt(UseIdx
)) {
1744 isLive
= DstLI
.liveAt(UseIdx
);
1747 MO
.setIsUndef(true);
1748 LLVM_DEBUG(dbgs() << "\tnew undef: " << UseIdx
<< '\t' << MI
);
1751 // A def of a subregister may be a use of the other subregisters, so
1752 // deleting a def of a subregister may also remove uses. Since CopyMI
1753 // is still part of the function (but about to be erased), mark all
1754 // defs of DstReg in it as <undef>, so that shrinkToUses would
1756 for (MachineOperand
&MO
: CopyMI
->all_defs())
1757 if (MO
.getReg() == DstReg
)
1758 MO
.setIsUndef(true);
1759 LIS
->shrinkToUses(&DstLI
);
1764 void RegisterCoalescer::addUndefFlag(const LiveInterval
&Int
, SlotIndex UseIdx
,
1765 MachineOperand
&MO
, unsigned SubRegIdx
) {
1766 LaneBitmask Mask
= TRI
->getSubRegIndexLaneMask(SubRegIdx
);
1769 bool IsUndef
= true;
1770 for (const LiveInterval::SubRange
&S
: Int
.subranges()) {
1771 if ((S
.LaneMask
& Mask
).none())
1773 if (S
.liveAt(UseIdx
)) {
1779 MO
.setIsUndef(true);
1780 // We found out some subregister use is actually reading an undefined
1781 // value. In some cases the whole vreg has become undefined at this
1782 // point so we have to potentially shrink the main range if the
1783 // use was ending a live segment there.
1784 LiveQueryResult Q
= Int
.Query(UseIdx
);
1785 if (Q
.valueOut() == nullptr)
1786 ShrinkMainRange
= true;
1790 void RegisterCoalescer::updateRegDefsUses(Register SrcReg
, Register DstReg
,
1792 bool DstIsPhys
= DstReg
.isPhysical();
1793 LiveInterval
*DstInt
= DstIsPhys
? nullptr : &LIS
->getInterval(DstReg
);
1795 if (DstInt
&& DstInt
->hasSubRanges() && DstReg
!= SrcReg
) {
1796 for (MachineOperand
&MO
: MRI
->reg_operands(DstReg
)) {
1797 unsigned SubReg
= MO
.getSubReg();
1798 if (SubReg
== 0 || MO
.isUndef())
1800 MachineInstr
&MI
= *MO
.getParent();
1801 if (MI
.isDebugInstr())
1803 SlotIndex UseIdx
= LIS
->getInstructionIndex(MI
).getRegSlot(true);
1804 addUndefFlag(*DstInt
, UseIdx
, MO
, SubReg
);
1808 SmallPtrSet
<MachineInstr
*, 8> Visited
;
1809 for (MachineRegisterInfo::reg_instr_iterator
1810 I
= MRI
->reg_instr_begin(SrcReg
), E
= MRI
->reg_instr_end();
1812 MachineInstr
*UseMI
= &*(I
++);
1814 // Each instruction can only be rewritten once because sub-register
1815 // composition is not always idempotent. When SrcReg != DstReg, rewriting
1816 // the UseMI operands removes them from the SrcReg use-def chain, but when
1817 // SrcReg is DstReg we could encounter UseMI twice if it has multiple
1818 // operands mentioning the virtual register.
1819 if (SrcReg
== DstReg
&& !Visited
.insert(UseMI
).second
)
1822 SmallVector
<unsigned,8> Ops
;
1824 std::tie(Reads
, Writes
) = UseMI
->readsWritesVirtualRegister(SrcReg
, &Ops
);
1826 // If SrcReg wasn't read, it may still be the case that DstReg is live-in
1827 // because SrcReg is a sub-register.
1828 if (DstInt
&& !Reads
&& SubIdx
&& !UseMI
->isDebugInstr())
1829 Reads
= DstInt
->liveAt(LIS
->getInstructionIndex(*UseMI
));
1831 // Replace SrcReg with DstReg in all UseMI operands.
1832 for (unsigned i
= 0, e
= Ops
.size(); i
!= e
; ++i
) {
1833 MachineOperand
&MO
= UseMI
->getOperand(Ops
[i
]);
1835 // Adjust <undef> flags in case of sub-register joins. We don't want to
1836 // turn a full def into a read-modify-write sub-register def and vice
1838 if (SubIdx
&& MO
.isDef())
1839 MO
.setIsUndef(!Reads
);
1841 // A subreg use of a partially undef (super) register may be a complete
1842 // undef use now and then has to be marked that way.
1843 if (MO
.isUse() && !DstIsPhys
) {
1844 unsigned SubUseIdx
= TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg());
1845 if (SubUseIdx
!= 0 && MRI
->shouldTrackSubRegLiveness(DstReg
)) {
1846 if (!DstInt
->hasSubRanges()) {
1847 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
1848 LaneBitmask FullMask
= MRI
->getMaxLaneMaskForVReg(DstInt
->reg());
1849 LaneBitmask UsedLanes
= TRI
->getSubRegIndexLaneMask(SubIdx
);
1850 LaneBitmask UnusedLanes
= FullMask
& ~UsedLanes
;
1851 DstInt
->createSubRangeFrom(Allocator
, UsedLanes
, *DstInt
);
1852 // The unused lanes are just empty live-ranges at this point.
1853 // It is the caller responsibility to set the proper
1854 // dead segments if there is an actual dead def of the
1855 // unused lanes. This may happen with rematerialization.
1856 DstInt
->createSubRange(Allocator
, UnusedLanes
);
1858 SlotIndex MIIdx
= UseMI
->isDebugInstr()
1859 ? LIS
->getSlotIndexes()->getIndexBefore(*UseMI
)
1860 : LIS
->getInstructionIndex(*UseMI
);
1861 SlotIndex UseIdx
= MIIdx
.getRegSlot(true);
1862 addUndefFlag(*DstInt
, UseIdx
, MO
, SubUseIdx
);
1867 MO
.substPhysReg(DstReg
, *TRI
);
1869 MO
.substVirtReg(DstReg
, SubIdx
, *TRI
);
1873 dbgs() << "\t\tupdated: ";
1874 if (!UseMI
->isDebugInstr())
1875 dbgs() << LIS
->getInstructionIndex(*UseMI
) << "\t";
1881 bool RegisterCoalescer::canJoinPhys(const CoalescerPair
&CP
) {
1882 // Always join simple intervals that are defined by a single copy from a
1883 // reserved register. This doesn't increase register pressure, so it is
1884 // always beneficial.
1885 if (!MRI
->isReserved(CP
.getDstReg())) {
1886 LLVM_DEBUG(dbgs() << "\tCan only merge into reserved registers.\n");
1890 LiveInterval
&JoinVInt
= LIS
->getInterval(CP
.getSrcReg());
1891 if (JoinVInt
.containsOneValue())
1895 dbgs() << "\tCannot join complex intervals into reserved register.\n");
1899 bool RegisterCoalescer::copyValueUndefInPredecessors(
1900 LiveRange
&S
, const MachineBasicBlock
*MBB
, LiveQueryResult SLRQ
) {
1901 for (const MachineBasicBlock
*Pred
: MBB
->predecessors()) {
1902 SlotIndex PredEnd
= LIS
->getMBBEndIdx(Pred
);
1903 if (VNInfo
*V
= S
.getVNInfoAt(PredEnd
.getPrevSlot())) {
1904 // If this is a self loop, we may be reading the same value.
1905 if (V
->id
!= SLRQ
.valueOutOrDead()->id
)
1913 void RegisterCoalescer::setUndefOnPrunedSubRegUses(LiveInterval
&LI
,
1915 LaneBitmask PrunedLanes
) {
1916 // If we had other instructions in the segment reading the undef sublane
1917 // value, we need to mark them with undef.
1918 for (MachineOperand
&MO
: MRI
->use_nodbg_operands(Reg
)) {
1919 unsigned SubRegIdx
= MO
.getSubReg();
1920 if (SubRegIdx
== 0 || MO
.isUndef())
1923 LaneBitmask SubRegMask
= TRI
->getSubRegIndexLaneMask(SubRegIdx
);
1924 SlotIndex Pos
= LIS
->getInstructionIndex(*MO
.getParent());
1925 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
1926 if (!S
.liveAt(Pos
) && (PrunedLanes
& SubRegMask
).any()) {
1933 LI
.removeEmptySubRanges();
1935 // A def of a subregister may be a use of other register lanes. Replacing
1936 // such a def with a def of a different register will eliminate the use,
1937 // and may cause the recorded live range to be larger than the actual
1938 // liveness in the program IR.
1939 LIS
->shrinkToUses(&LI
);
1942 bool RegisterCoalescer::joinCopy(MachineInstr
*CopyMI
, bool &Again
) {
1944 LLVM_DEBUG(dbgs() << LIS
->getInstructionIndex(*CopyMI
) << '\t' << *CopyMI
);
1946 CoalescerPair
CP(*TRI
);
1947 if (!CP
.setRegisters(CopyMI
)) {
1948 LLVM_DEBUG(dbgs() << "\tNot coalescable.\n");
1952 if (CP
.getNewRC()) {
1953 auto SrcRC
= MRI
->getRegClass(CP
.getSrcReg());
1954 auto DstRC
= MRI
->getRegClass(CP
.getDstReg());
1955 unsigned SrcIdx
= CP
.getSrcIdx();
1956 unsigned DstIdx
= CP
.getDstIdx();
1957 if (CP
.isFlipped()) {
1958 std::swap(SrcIdx
, DstIdx
);
1959 std::swap(SrcRC
, DstRC
);
1961 if (!TRI
->shouldCoalesce(CopyMI
, SrcRC
, SrcIdx
, DstRC
, DstIdx
,
1962 CP
.getNewRC(), *LIS
)) {
1963 LLVM_DEBUG(dbgs() << "\tSubtarget bailed on coalescing.\n");
1968 // Dead code elimination. This really should be handled by MachineDCE, but
1969 // sometimes dead copies slip through, and we can't generate invalid live
1971 if (!CP
.isPhys() && CopyMI
->allDefsAreDead()) {
1972 LLVM_DEBUG(dbgs() << "\tCopy is dead.\n");
1973 DeadDefs
.push_back(CopyMI
);
1974 eliminateDeadDefs();
1978 // Eliminate undefs.
1980 // If this is an IMPLICIT_DEF, leave it alone, but don't try to coalesce.
1981 if (MachineInstr
*UndefMI
= eliminateUndefCopy(CopyMI
)) {
1982 if (UndefMI
->isImplicitDef())
1984 deleteInstr(CopyMI
);
1985 return false; // Not coalescable.
1989 // Coalesced copies are normally removed immediately, but transformations
1990 // like removeCopyByCommutingDef() can inadvertently create identity copies.
1991 // When that happens, just join the values and remove the copy.
1992 if (CP
.getSrcReg() == CP
.getDstReg()) {
1993 LiveInterval
&LI
= LIS
->getInterval(CP
.getSrcReg());
1994 LLVM_DEBUG(dbgs() << "\tCopy already coalesced: " << LI
<< '\n');
1995 const SlotIndex CopyIdx
= LIS
->getInstructionIndex(*CopyMI
);
1996 LiveQueryResult LRQ
= LI
.Query(CopyIdx
);
1997 if (VNInfo
*DefVNI
= LRQ
.valueDefined()) {
1998 VNInfo
*ReadVNI
= LRQ
.valueIn();
1999 assert(ReadVNI
&& "No value before copy and no <undef> flag.");
2000 assert(ReadVNI
!= DefVNI
&& "Cannot read and define the same value.");
2002 // Track incoming undef lanes we need to eliminate from the subrange.
2003 LaneBitmask PrunedLanes
;
2004 MachineBasicBlock
*MBB
= CopyMI
->getParent();
2006 // Process subregister liveranges.
2007 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
2008 LiveQueryResult SLRQ
= S
.Query(CopyIdx
);
2009 if (VNInfo
*SDefVNI
= SLRQ
.valueDefined()) {
2010 if (VNInfo
*SReadVNI
= SLRQ
.valueIn())
2011 SDefVNI
= S
.MergeValueNumberInto(SDefVNI
, SReadVNI
);
2013 // If this copy introduced an undef subrange from an incoming value,
2014 // we need to eliminate the undef live in values from the subrange.
2015 if (copyValueUndefInPredecessors(S
, MBB
, SLRQ
)) {
2016 LLVM_DEBUG(dbgs() << "Incoming sublane value is undef at copy\n");
2017 PrunedLanes
|= S
.LaneMask
;
2018 S
.removeValNo(SDefVNI
);
2023 LI
.MergeValueNumberInto(DefVNI
, ReadVNI
);
2024 if (PrunedLanes
.any()) {
2025 LLVM_DEBUG(dbgs() << "Pruning undef incoming lanes: "
2026 << PrunedLanes
<< '\n');
2027 setUndefOnPrunedSubRegUses(LI
, CP
.getSrcReg(), PrunedLanes
);
2030 LLVM_DEBUG(dbgs() << "\tMerged values: " << LI
<< '\n');
2032 deleteInstr(CopyMI
);
2036 // Enforce policies.
2038 LLVM_DEBUG(dbgs() << "\tConsidering merging "
2039 << printReg(CP
.getSrcReg(), TRI
) << " with "
2040 << printReg(CP
.getDstReg(), TRI
, CP
.getSrcIdx()) << '\n');
2041 if (!canJoinPhys(CP
)) {
2042 // Before giving up coalescing, if definition of source is defined by
2043 // trivial computation, try rematerializing it.
2044 bool IsDefCopy
= false;
2045 if (reMaterializeTrivialDef(CP
, CopyMI
, IsDefCopy
))
2048 Again
= true; // May be possible to coalesce later.
2052 // When possible, let DstReg be the larger interval.
2053 if (!CP
.isPartial() && LIS
->getInterval(CP
.getSrcReg()).size() >
2054 LIS
->getInterval(CP
.getDstReg()).size())
2058 dbgs() << "\tConsidering merging to "
2059 << TRI
->getRegClassName(CP
.getNewRC()) << " with ";
2060 if (CP
.getDstIdx() && CP
.getSrcIdx())
2061 dbgs() << printReg(CP
.getDstReg()) << " in "
2062 << TRI
->getSubRegIndexName(CP
.getDstIdx()) << " and "
2063 << printReg(CP
.getSrcReg()) << " in "
2064 << TRI
->getSubRegIndexName(CP
.getSrcIdx()) << '\n';
2066 dbgs() << printReg(CP
.getSrcReg(), TRI
) << " in "
2067 << printReg(CP
.getDstReg(), TRI
, CP
.getSrcIdx()) << '\n';
2071 ShrinkMask
= LaneBitmask::getNone();
2072 ShrinkMainRange
= false;
2074 // Okay, attempt to join these two intervals. On failure, this returns false.
2075 // Otherwise, if one of the intervals being joined is a physreg, this method
2076 // always canonicalizes DstInt to be it. The output "SrcInt" will not have
2077 // been modified, so we can use this information below to update aliases.
2078 if (!joinIntervals(CP
)) {
2079 // Coalescing failed.
2081 // If definition of source is defined by trivial computation, try
2082 // rematerializing it.
2083 bool IsDefCopy
= false;
2084 if (reMaterializeTrivialDef(CP
, CopyMI
, IsDefCopy
))
2087 // If we can eliminate the copy without merging the live segments, do so
2089 if (!CP
.isPartial() && !CP
.isPhys()) {
2090 bool Changed
= adjustCopiesBackFrom(CP
, CopyMI
);
2091 bool Shrink
= false;
2093 std::tie(Changed
, Shrink
) = removeCopyByCommutingDef(CP
, CopyMI
);
2095 deleteInstr(CopyMI
);
2097 Register DstReg
= CP
.isFlipped() ? CP
.getSrcReg() : CP
.getDstReg();
2098 LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
2099 shrinkToUses(&DstLI
);
2100 LLVM_DEBUG(dbgs() << "\t\tshrunk: " << DstLI
<< '\n');
2102 LLVM_DEBUG(dbgs() << "\tTrivial!\n");
2107 // Try and see if we can partially eliminate the copy by moving the copy to
2109 if (!CP
.isPartial() && !CP
.isPhys())
2110 if (removePartialRedundancy(CP
, *CopyMI
))
2113 // Otherwise, we are unable to join the intervals.
2114 LLVM_DEBUG(dbgs() << "\tInterference!\n");
2115 Again
= true; // May be possible to coalesce later.
2119 // Coalescing to a virtual register that is of a sub-register class of the
2120 // other. Make sure the resulting register is set to the right register class.
2121 if (CP
.isCrossClass()) {
2123 MRI
->setRegClass(CP
.getDstReg(), CP
.getNewRC());
2126 // Removing sub-register copies can ease the register class constraints.
2127 // Make sure we attempt to inflate the register class of DstReg.
2128 if (!CP
.isPhys() && RegClassInfo
.isProperSubClass(CP
.getNewRC()))
2129 InflateRegs
.push_back(CP
.getDstReg());
2131 // CopyMI has been erased by joinIntervals at this point. Remove it from
2132 // ErasedInstrs since copyCoalesceWorkList() won't add a successful join back
2133 // to the work list. This keeps ErasedInstrs from growing needlessly.
2134 ErasedInstrs
.erase(CopyMI
);
2136 // Rewrite all SrcReg operands to DstReg.
2137 // Also update DstReg operands to include DstIdx if it is set.
2139 updateRegDefsUses(CP
.getDstReg(), CP
.getDstReg(), CP
.getDstIdx());
2140 updateRegDefsUses(CP
.getSrcReg(), CP
.getDstReg(), CP
.getSrcIdx());
2142 // Shrink subregister ranges if necessary.
2143 if (ShrinkMask
.any()) {
2144 LiveInterval
&LI
= LIS
->getInterval(CP
.getDstReg());
2145 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
2146 if ((S
.LaneMask
& ShrinkMask
).none())
2148 LLVM_DEBUG(dbgs() << "Shrink LaneUses (Lane " << PrintLaneMask(S
.LaneMask
)
2150 LIS
->shrinkToUses(S
, LI
.reg());
2151 ShrinkMainRange
= true;
2153 LI
.removeEmptySubRanges();
2156 // CP.getSrcReg()'s live interval has been merged into CP.getDstReg's live
2157 // interval. Since CP.getSrcReg() is in ToBeUpdated set and its live interval
2158 // is not up-to-date, need to update the merged live interval here.
2159 if (ToBeUpdated
.count(CP
.getSrcReg()))
2160 ShrinkMainRange
= true;
2162 if (ShrinkMainRange
) {
2163 LiveInterval
&LI
= LIS
->getInterval(CP
.getDstReg());
2167 // SrcReg is guaranteed to be the register whose live interval that is
2169 LIS
->removeInterval(CP
.getSrcReg());
2171 // Update regalloc hint.
2172 TRI
->updateRegAllocHint(CP
.getSrcReg(), CP
.getDstReg(), *MF
);
2175 dbgs() << "\tSuccess: " << printReg(CP
.getSrcReg(), TRI
, CP
.getSrcIdx())
2176 << " -> " << printReg(CP
.getDstReg(), TRI
, CP
.getDstIdx()) << '\n';
2177 dbgs() << "\tResult = ";
2179 dbgs() << printReg(CP
.getDstReg(), TRI
);
2181 dbgs() << LIS
->getInterval(CP
.getDstReg());
2189 bool RegisterCoalescer::joinReservedPhysReg(CoalescerPair
&CP
) {
2190 Register DstReg
= CP
.getDstReg();
2191 Register SrcReg
= CP
.getSrcReg();
2192 assert(CP
.isPhys() && "Must be a physreg copy");
2193 assert(MRI
->isReserved(DstReg
) && "Not a reserved register");
2194 LiveInterval
&RHS
= LIS
->getInterval(SrcReg
);
2195 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS
<< '\n');
2197 assert(RHS
.containsOneValue() && "Invalid join with reserved register");
2199 // Optimization for reserved registers like ESP. We can only merge with a
2200 // reserved physreg if RHS has a single value that is a copy of DstReg.
2201 // The live range of the reserved register will look like a set of dead defs
2202 // - we don't properly track the live range of reserved registers.
2204 // Deny any overlapping intervals. This depends on all the reserved
2205 // register live ranges to look like dead defs.
2206 if (!MRI
->isConstantPhysReg(DstReg
)) {
2207 for (MCRegUnit Unit
: TRI
->regunits(DstReg
)) {
2208 // Abort if not all the regunits are reserved.
2209 for (MCRegUnitRootIterator
RI(Unit
, TRI
); RI
.isValid(); ++RI
) {
2210 if (!MRI
->isReserved(*RI
))
2213 if (RHS
.overlaps(LIS
->getRegUnit(Unit
))) {
2214 LLVM_DEBUG(dbgs() << "\t\tInterference: " << printRegUnit(Unit
, TRI
)
2220 // We must also check for overlaps with regmask clobbers.
2221 BitVector RegMaskUsable
;
2222 if (LIS
->checkRegMaskInterference(RHS
, RegMaskUsable
) &&
2223 !RegMaskUsable
.test(DstReg
)) {
2224 LLVM_DEBUG(dbgs() << "\t\tRegMask interference\n");
2229 // Skip any value computations, we are not adding new values to the
2230 // reserved register. Also skip merging the live ranges, the reserved
2231 // register live range doesn't need to be accurate as long as all the
2234 // Delete the identity copy.
2235 MachineInstr
*CopyMI
;
2236 if (CP
.isFlipped()) {
2237 // Physreg is copied into vreg
2238 // %y = COPY %physreg_x
2239 // ... //< no other def of %physreg_x here
2244 CopyMI
= MRI
->getVRegDef(SrcReg
);
2245 deleteInstr(CopyMI
);
2247 // VReg is copied into physreg:
2249 // ... //< no other def or use of %physreg_x here
2250 // %physreg_x = COPY %y
2254 if (!MRI
->hasOneNonDBGUse(SrcReg
)) {
2255 LLVM_DEBUG(dbgs() << "\t\tMultiple vreg uses!\n");
2259 if (!LIS
->intervalIsInOneMBB(RHS
)) {
2260 LLVM_DEBUG(dbgs() << "\t\tComplex control flow!\n");
2264 MachineInstr
&DestMI
= *MRI
->getVRegDef(SrcReg
);
2265 CopyMI
= &*MRI
->use_instr_nodbg_begin(SrcReg
);
2266 SlotIndex CopyRegIdx
= LIS
->getInstructionIndex(*CopyMI
).getRegSlot();
2267 SlotIndex DestRegIdx
= LIS
->getInstructionIndex(DestMI
).getRegSlot();
2269 if (!MRI
->isConstantPhysReg(DstReg
)) {
2270 // We checked above that there are no interfering defs of the physical
2271 // register. However, for this case, where we intend to move up the def of
2272 // the physical register, we also need to check for interfering uses.
2273 SlotIndexes
*Indexes
= LIS
->getSlotIndexes();
2274 for (SlotIndex SI
= Indexes
->getNextNonNullIndex(DestRegIdx
);
2275 SI
!= CopyRegIdx
; SI
= Indexes
->getNextNonNullIndex(SI
)) {
2276 MachineInstr
*MI
= LIS
->getInstructionFromIndex(SI
);
2277 if (MI
->readsRegister(DstReg
, TRI
)) {
2278 LLVM_DEBUG(dbgs() << "\t\tInterference (read): " << *MI
);
2284 // We're going to remove the copy which defines a physical reserved
2285 // register, so remove its valno, etc.
2286 LLVM_DEBUG(dbgs() << "\t\tRemoving phys reg def of "
2287 << printReg(DstReg
, TRI
) << " at " << CopyRegIdx
<< "\n");
2289 LIS
->removePhysRegDefAt(DstReg
.asMCReg(), CopyRegIdx
);
2290 deleteInstr(CopyMI
);
2292 // Create a new dead def at the new def location.
2293 for (MCRegUnit Unit
: TRI
->regunits(DstReg
)) {
2294 LiveRange
&LR
= LIS
->getRegUnit(Unit
);
2295 LR
.createDeadDef(DestRegIdx
, LIS
->getVNInfoAllocator());
2299 // We don't track kills for reserved registers.
2300 MRI
->clearKillFlags(CP
.getSrcReg());
2305 //===----------------------------------------------------------------------===//
2306 // Interference checking and interval joining
2307 //===----------------------------------------------------------------------===//
2309 // In the easiest case, the two live ranges being joined are disjoint, and
2310 // there is no interference to consider. It is quite common, though, to have
2311 // overlapping live ranges, and we need to check if the interference can be
2314 // The live range of a single SSA value forms a sub-tree of the dominator tree.
2315 // This means that two SSA values overlap if and only if the def of one value
2316 // is contained in the live range of the other value. As a special case, the
2317 // overlapping values can be defined at the same index.
2319 // The interference from an overlapping def can be resolved in these cases:
2321 // 1. Coalescable copies. The value is defined by a copy that would become an
2322 // identity copy after joining SrcReg and DstReg. The copy instruction will
2323 // be removed, and the value will be merged with the source value.
2325 // There can be several copies back and forth, causing many values to be
2326 // merged into one. We compute a list of ultimate values in the joined live
2327 // range as well as a mappings from the old value numbers.
2329 // 2. IMPLICIT_DEF. This instruction is only inserted to ensure all PHI
2330 // predecessors have a live out value. It doesn't cause real interference,
2331 // and can be merged into the value it overlaps. Like a coalescable copy, it
2332 // can be erased after joining.
2334 // 3. Copy of external value. The overlapping def may be a copy of a value that
2335 // is already in the other register. This is like a coalescable copy, but
2336 // the live range of the source register must be trimmed after erasing the
2337 // copy instruction:
2340 // %dst = COPY %ext <-- Remove this COPY, trim the live range of %ext.
2342 // 4. Clobbering undefined lanes. Vector registers are sometimes built by
2343 // defining one lane at a time:
2345 // %dst:ssub0<def,read-undef> = FOO
2347 // %dst:ssub1 = COPY %src
2349 // The live range of %src overlaps the %dst value defined by FOO, but
2350 // merging %src into %dst:ssub1 is only going to clobber the ssub1 lane
2351 // which was undef anyway.
2353 // The value mapping is more complicated in this case. The final live range
2354 // will have different value numbers for both FOO and BAR, but there is no
2355 // simple mapping from old to new values. It may even be necessary to add
2358 // 5. Clobbering dead lanes. A def may clobber a lane of a vector register that
2359 // is live, but never read. This can happen because we don't compute
2360 // individual live ranges per lane.
2364 // %dst:ssub1 = COPY %src
2366 // This kind of interference is only resolved locally. If the clobbered
2367 // lane value escapes the block, the join is aborted.
2371 /// Track information about values in a single virtual register about to be
2372 /// joined. Objects of this class are always created in pairs - one for each
2373 /// side of the CoalescerPair (or one for each lane of a side of the coalescer
2376 /// Live range we work on.
2379 /// (Main) register we work on.
2382 /// Reg (and therefore the values in this liverange) will end up as
2383 /// subregister SubIdx in the coalesced register. Either CP.DstIdx or
2385 const unsigned SubIdx
;
2387 /// The LaneMask that this liverange will occupy the coalesced register. May
2388 /// be smaller than the lanemask produced by SubIdx when merging subranges.
2389 const LaneBitmask LaneMask
;
2391 /// This is true when joining sub register ranges, false when joining main
2393 const bool SubRangeJoin
;
2395 /// Whether the current LiveInterval tracks subregister liveness.
2396 const bool TrackSubRegLiveness
;
2398 /// Values that will be present in the final live range.
2399 SmallVectorImpl
<VNInfo
*> &NewVNInfo
;
2401 const CoalescerPair
&CP
;
2403 SlotIndexes
*Indexes
;
2404 const TargetRegisterInfo
*TRI
;
2406 /// Value number assignments. Maps value numbers in LI to entries in
2407 /// NewVNInfo. This is suitable for passing to LiveInterval::join().
2408 SmallVector
<int, 8> Assignments
;
2411 /// Conflict resolution for overlapping values.
2412 enum ConflictResolution
{
2413 /// No overlap, simply keep this value.
2416 /// Merge this value into OtherVNI and erase the defining instruction.
2417 /// Used for IMPLICIT_DEF, coalescable copies, and copies from external
2421 /// Merge this value into OtherVNI but keep the defining instruction.
2422 /// This is for the special case where OtherVNI is defined by the same
2426 /// Keep this value, and have it replace OtherVNI where possible. This
2427 /// complicates value mapping since OtherVNI maps to two different values
2428 /// before and after this def.
2429 /// Used when clobbering undefined or dead lanes.
2432 /// Unresolved conflict. Visit later when all values have been mapped.
2435 /// Unresolvable conflict. Abort the join.
2440 /// Per-value info for LI. The lane bit masks are all relative to the final
2441 /// joined register, so they can be compared directly between SrcReg and
2444 ConflictResolution Resolution
= CR_Keep
;
2446 /// Lanes written by this def, 0 for unanalyzed values.
2447 LaneBitmask WriteLanes
;
2449 /// Lanes with defined values in this register. Other lanes are undef and
2450 /// safe to clobber.
2451 LaneBitmask ValidLanes
;
2453 /// Value in LI being redefined by this def.
2454 VNInfo
*RedefVNI
= nullptr;
2456 /// Value in the other live range that overlaps this def, if any.
2457 VNInfo
*OtherVNI
= nullptr;
2459 /// Is this value an IMPLICIT_DEF that can be erased?
2461 /// IMPLICIT_DEF values should only exist at the end of a basic block that
2462 /// is a predecessor to a phi-value. These IMPLICIT_DEF instructions can be
2463 /// safely erased if they are overlapping a live value in the other live
2466 /// Weird control flow graphs and incomplete PHI handling in
2467 /// ProcessImplicitDefs can very rarely create IMPLICIT_DEF values with
2468 /// longer live ranges. Such IMPLICIT_DEF values should be treated like
2470 bool ErasableImplicitDef
= false;
2472 /// True when the live range of this value will be pruned because of an
2473 /// overlapping CR_Replace value in the other live range.
2474 bool Pruned
= false;
2476 /// True once Pruned above has been computed.
2477 bool PrunedComputed
= false;
2479 /// True if this value is determined to be identical to OtherVNI
2480 /// (in valuesIdentical). This is used with CR_Erase where the erased
2481 /// copy is redundant, i.e. the source value is already the same as
2482 /// the destination. In such cases the subranges need to be updated
2483 /// properly. See comment at pruneSubRegValues for more info.
2484 bool Identical
= false;
2488 bool isAnalyzed() const { return WriteLanes
.any(); }
2490 /// Mark this value as an IMPLICIT_DEF which must be kept as if it were an
2492 void mustKeepImplicitDef(const TargetRegisterInfo
&TRI
,
2493 const MachineInstr
&ImpDef
) {
2494 assert(ImpDef
.isImplicitDef());
2495 ErasableImplicitDef
= false;
2496 ValidLanes
= TRI
.getSubRegIndexLaneMask(ImpDef
.getOperand(0).getSubReg());
2500 /// One entry per value number in LI.
2501 SmallVector
<Val
, 8> Vals
;
2503 /// Compute the bitmask of lanes actually written by DefMI.
2504 /// Set Redef if there are any partial register definitions that depend on the
2505 /// previous value of the register.
2506 LaneBitmask
computeWriteLanes(const MachineInstr
*DefMI
, bool &Redef
) const;
2508 /// Find the ultimate value that VNI was copied from.
2509 std::pair
<const VNInfo
*, Register
> followCopyChain(const VNInfo
*VNI
) const;
2511 bool valuesIdentical(VNInfo
*Value0
, VNInfo
*Value1
, const JoinVals
&Other
) const;
2513 /// Analyze ValNo in this live range, and set all fields of Vals[ValNo].
2514 /// Return a conflict resolution when possible, but leave the hard cases as
2516 /// Recursively calls computeAssignment() on this and Other, guaranteeing that
2517 /// both OtherVNI and RedefVNI have been analyzed and mapped before returning.
2518 /// The recursion always goes upwards in the dominator tree, making loops
2520 ConflictResolution
analyzeValue(unsigned ValNo
, JoinVals
&Other
);
2522 /// Compute the value assignment for ValNo in RI.
2523 /// This may be called recursively by analyzeValue(), but never for a ValNo on
2525 void computeAssignment(unsigned ValNo
, JoinVals
&Other
);
2527 /// Assuming ValNo is going to clobber some valid lanes in Other.LR, compute
2528 /// the extent of the tainted lanes in the block.
2530 /// Multiple values in Other.LR can be affected since partial redefinitions
2531 /// can preserve previously tainted lanes.
2533 /// 1 %dst = VLOAD <-- Define all lanes in %dst
2534 /// 2 %src = FOO <-- ValNo to be joined with %dst:ssub0
2535 /// 3 %dst:ssub1 = BAR <-- Partial redef doesn't clear taint in ssub0
2536 /// 4 %dst:ssub0 = COPY %src <-- Conflict resolved, ssub0 wasn't read
2538 /// For each ValNo in Other that is affected, add an (EndIndex, TaintedLanes)
2539 /// entry to TaintedVals.
2541 /// Returns false if the tainted lanes extend beyond the basic block.
2543 taintExtent(unsigned ValNo
, LaneBitmask TaintedLanes
, JoinVals
&Other
,
2544 SmallVectorImpl
<std::pair
<SlotIndex
, LaneBitmask
>> &TaintExtent
);
2546 /// Return true if MI uses any of the given Lanes from Reg.
2547 /// This does not include partial redefinitions of Reg.
2548 bool usesLanes(const MachineInstr
&MI
, Register
, unsigned, LaneBitmask
) const;
2550 /// Determine if ValNo is a copy of a value number in LR or Other.LR that will
2553 /// %dst = COPY %src
2554 /// %src = COPY %dst <-- This value to be pruned.
2555 /// %dst = COPY %src <-- This value is a copy of a pruned value.
2556 bool isPrunedValue(unsigned ValNo
, JoinVals
&Other
);
2559 JoinVals(LiveRange
&LR
, Register Reg
, unsigned SubIdx
, LaneBitmask LaneMask
,
2560 SmallVectorImpl
<VNInfo
*> &newVNInfo
, const CoalescerPair
&cp
,
2561 LiveIntervals
*lis
, const TargetRegisterInfo
*TRI
, bool SubRangeJoin
,
2562 bool TrackSubRegLiveness
)
2563 : LR(LR
), Reg(Reg
), SubIdx(SubIdx
), LaneMask(LaneMask
),
2564 SubRangeJoin(SubRangeJoin
), TrackSubRegLiveness(TrackSubRegLiveness
),
2565 NewVNInfo(newVNInfo
), CP(cp
), LIS(lis
), Indexes(LIS
->getSlotIndexes()),
2566 TRI(TRI
), Assignments(LR
.getNumValNums(), -1),
2567 Vals(LR
.getNumValNums()) {}
2569 /// Analyze defs in LR and compute a value mapping in NewVNInfo.
2570 /// Returns false if any conflicts were impossible to resolve.
2571 bool mapValues(JoinVals
&Other
);
2573 /// Try to resolve conflicts that require all values to be mapped.
2574 /// Returns false if any conflicts were impossible to resolve.
2575 bool resolveConflicts(JoinVals
&Other
);
2577 /// Prune the live range of values in Other.LR where they would conflict with
2578 /// CR_Replace values in LR. Collect end points for restoring the live range
2580 void pruneValues(JoinVals
&Other
, SmallVectorImpl
<SlotIndex
> &EndPoints
,
2583 /// Removes subranges starting at copies that get removed. This sometimes
2584 /// happens when undefined subranges are copied around. These ranges contain
2585 /// no useful information and can be removed.
2586 void pruneSubRegValues(LiveInterval
&LI
, LaneBitmask
&ShrinkMask
);
2588 /// Pruning values in subranges can lead to removing segments in these
2589 /// subranges started by IMPLICIT_DEFs. The corresponding segments in
2590 /// the main range also need to be removed. This function will mark
2591 /// the corresponding values in the main range as pruned, so that
2592 /// eraseInstrs can do the final cleanup.
2593 /// The parameter @p LI must be the interval whose main range is the
2595 void pruneMainSegments(LiveInterval
&LI
, bool &ShrinkMainRange
);
2597 /// Erase any machine instructions that have been coalesced away.
2598 /// Add erased instructions to ErasedInstrs.
2599 /// Add foreign virtual registers to ShrinkRegs if their live range ended at
2600 /// the erased instrs.
2601 void eraseInstrs(SmallPtrSetImpl
<MachineInstr
*> &ErasedInstrs
,
2602 SmallVectorImpl
<Register
> &ShrinkRegs
,
2603 LiveInterval
*LI
= nullptr);
2605 /// Remove liverange defs at places where implicit defs will be removed.
2606 void removeImplicitDefs();
2608 /// Get the value assignments suitable for passing to LiveInterval::join.
2609 const int *getAssignments() const { return Assignments
.data(); }
2611 /// Get the conflict resolution for a value number.
2612 ConflictResolution
getResolution(unsigned Num
) const {
2613 return Vals
[Num
].Resolution
;
2617 } // end anonymous namespace
2619 LaneBitmask
JoinVals::computeWriteLanes(const MachineInstr
*DefMI
, bool &Redef
)
2622 for (const MachineOperand
&MO
: DefMI
->all_defs()) {
2623 if (MO
.getReg() != Reg
)
2625 L
|= TRI
->getSubRegIndexLaneMask(
2626 TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg()));
2633 std::pair
<const VNInfo
*, Register
>
2634 JoinVals::followCopyChain(const VNInfo
*VNI
) const {
2635 Register TrackReg
= Reg
;
2637 while (!VNI
->isPHIDef()) {
2638 SlotIndex Def
= VNI
->def
;
2639 MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Def
);
2640 assert(MI
&& "No defining instruction");
2641 if (!MI
->isFullCopy())
2642 return std::make_pair(VNI
, TrackReg
);
2643 Register SrcReg
= MI
->getOperand(1).getReg();
2644 if (!SrcReg
.isVirtual())
2645 return std::make_pair(VNI
, TrackReg
);
2647 const LiveInterval
&LI
= LIS
->getInterval(SrcReg
);
2648 const VNInfo
*ValueIn
;
2649 // No subrange involved.
2650 if (!SubRangeJoin
|| !LI
.hasSubRanges()) {
2651 LiveQueryResult LRQ
= LI
.Query(Def
);
2652 ValueIn
= LRQ
.valueIn();
2654 // Query subranges. Ensure that all matching ones take us to the same def
2655 // (allowing some of them to be undef).
2657 for (const LiveInterval::SubRange
&S
: LI
.subranges()) {
2658 // Transform lanemask to a mask in the joined live interval.
2659 LaneBitmask SMask
= TRI
->composeSubRegIndexLaneMask(SubIdx
, S
.LaneMask
);
2660 if ((SMask
& LaneMask
).none())
2662 LiveQueryResult LRQ
= S
.Query(Def
);
2664 ValueIn
= LRQ
.valueIn();
2667 if (LRQ
.valueIn() && ValueIn
!= LRQ
.valueIn())
2668 return std::make_pair(VNI
, TrackReg
);
2671 if (ValueIn
== nullptr) {
2672 // Reaching an undefined value is legitimate, for example:
2674 // 1 undef %0.sub1 = ... ;; %0.sub0 == undef
2675 // 2 %1 = COPY %0 ;; %1 is defined here.
2676 // 3 %0 = COPY %1 ;; Now %0.sub0 has a definition,
2677 // ;; but it's equivalent to "undef".
2678 return std::make_pair(nullptr, SrcReg
);
2683 return std::make_pair(VNI
, TrackReg
);
2686 bool JoinVals::valuesIdentical(VNInfo
*Value0
, VNInfo
*Value1
,
2687 const JoinVals
&Other
) const {
2688 const VNInfo
*Orig0
;
2690 std::tie(Orig0
, Reg0
) = followCopyChain(Value0
);
2691 if (Orig0
== Value1
&& Reg0
== Other
.Reg
)
2694 const VNInfo
*Orig1
;
2696 std::tie(Orig1
, Reg1
) = Other
.followCopyChain(Value1
);
2697 // If both values are undefined, and the source registers are the same
2698 // register, the values are identical. Filter out cases where only one
2699 // value is defined.
2700 if (Orig0
== nullptr || Orig1
== nullptr)
2701 return Orig0
== Orig1
&& Reg0
== Reg1
;
2703 // The values are equal if they are defined at the same place and use the
2704 // same register. Note that we cannot compare VNInfos directly as some of
2705 // them might be from a copy created in mergeSubRangeInto() while the other
2706 // is from the original LiveInterval.
2707 return Orig0
->def
== Orig1
->def
&& Reg0
== Reg1
;
2710 JoinVals::ConflictResolution
2711 JoinVals::analyzeValue(unsigned ValNo
, JoinVals
&Other
) {
2712 Val
&V
= Vals
[ValNo
];
2713 assert(!V
.isAnalyzed() && "Value has already been analyzed!");
2714 VNInfo
*VNI
= LR
.getValNumInfo(ValNo
);
2715 if (VNI
->isUnused()) {
2716 V
.WriteLanes
= LaneBitmask::getAll();
2720 // Get the instruction defining this value, compute the lanes written.
2721 const MachineInstr
*DefMI
= nullptr;
2722 if (VNI
->isPHIDef()) {
2723 // Conservatively assume that all lanes in a PHI are valid.
2724 LaneBitmask Lanes
= SubRangeJoin
? LaneBitmask::getLane(0)
2725 : TRI
->getSubRegIndexLaneMask(SubIdx
);
2726 V
.ValidLanes
= V
.WriteLanes
= Lanes
;
2728 DefMI
= Indexes
->getInstructionFromIndex(VNI
->def
);
2729 assert(DefMI
!= nullptr);
2731 // We don't care about the lanes when joining subregister ranges.
2732 V
.WriteLanes
= V
.ValidLanes
= LaneBitmask::getLane(0);
2733 if (DefMI
->isImplicitDef()) {
2734 V
.ValidLanes
= LaneBitmask::getNone();
2735 V
.ErasableImplicitDef
= true;
2739 V
.ValidLanes
= V
.WriteLanes
= computeWriteLanes(DefMI
, Redef
);
2741 // If this is a read-modify-write instruction, there may be more valid
2742 // lanes than the ones written by this instruction.
2743 // This only covers partial redef operands. DefMI may have normal use
2744 // operands reading the register. They don't contribute valid lanes.
2746 // This adds ssub1 to the set of valid lanes in %src:
2750 // This leaves only ssub1 valid, making any other lanes undef:
2752 // %src:ssub1<def,read-undef> = FOO %src:ssub2
2754 // The <read-undef> flag on the def operand means that old lane values are
2757 V
.RedefVNI
= LR
.Query(VNI
->def
).valueIn();
2758 assert((TrackSubRegLiveness
|| V
.RedefVNI
) &&
2759 "Instruction is reading nonexistent value");
2760 if (V
.RedefVNI
!= nullptr) {
2761 computeAssignment(V
.RedefVNI
->id
, Other
);
2762 V
.ValidLanes
|= Vals
[V
.RedefVNI
->id
].ValidLanes
;
2766 // An IMPLICIT_DEF writes undef values.
2767 if (DefMI
->isImplicitDef()) {
2768 // We normally expect IMPLICIT_DEF values to be live only until the end
2769 // of their block. If the value is really live longer and gets pruned in
2770 // another block, this flag is cleared again.
2772 // Clearing the valid lanes is deferred until it is sure this can be
2774 V
.ErasableImplicitDef
= true;
2779 // Find the value in Other that overlaps VNI->def, if any.
2780 LiveQueryResult OtherLRQ
= Other
.LR
.Query(VNI
->def
);
2782 // It is possible that both values are defined by the same instruction, or
2783 // the values are PHIs defined in the same block. When that happens, the two
2784 // values should be merged into one, but not into any preceding value.
2785 // The first value defined or visited gets CR_Keep, the other gets CR_Merge.
2786 if (VNInfo
*OtherVNI
= OtherLRQ
.valueDefined()) {
2787 assert(SlotIndex::isSameInstr(VNI
->def
, OtherVNI
->def
) && "Broken LRQ");
2789 // One value stays, the other is merged. Keep the earlier one, or the first
2791 if (OtherVNI
->def
< VNI
->def
)
2792 Other
.computeAssignment(OtherVNI
->id
, *this);
2793 else if (VNI
->def
< OtherVNI
->def
&& OtherLRQ
.valueIn()) {
2794 // This is an early-clobber def overlapping a live-in value in the other
2795 // register. Not mergeable.
2796 V
.OtherVNI
= OtherLRQ
.valueIn();
2797 return CR_Impossible
;
2799 V
.OtherVNI
= OtherVNI
;
2800 Val
&OtherV
= Other
.Vals
[OtherVNI
->id
];
2801 // Keep this value, check for conflicts when analyzing OtherVNI. Avoid
2802 // revisiting OtherVNI->id in JoinVals::computeAssignment() below before it
2804 if (!OtherV
.isAnalyzed() || Other
.Assignments
[OtherVNI
->id
] == -1)
2806 // Both sides have been analyzed now.
2807 // Allow overlapping PHI values. Any real interference would show up in a
2808 // predecessor, the PHI itself can't introduce any conflicts.
2809 if (VNI
->isPHIDef())
2811 if ((V
.ValidLanes
& OtherV
.ValidLanes
).any())
2812 // Overlapping lanes can't be resolved.
2813 return CR_Impossible
;
2818 // No simultaneous def. Is Other live at the def?
2819 V
.OtherVNI
= OtherLRQ
.valueIn();
2821 // No overlap, no conflict.
2824 assert(!SlotIndex::isSameInstr(VNI
->def
, V
.OtherVNI
->def
) && "Broken LRQ");
2826 // We have overlapping values, or possibly a kill of Other.
2827 // Recursively compute assignments up the dominator tree.
2828 Other
.computeAssignment(V
.OtherVNI
->id
, *this);
2829 Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
2831 if (OtherV
.ErasableImplicitDef
) {
2832 // Check if OtherV is an IMPLICIT_DEF that extends beyond its basic block.
2833 // This shouldn't normally happen, but ProcessImplicitDefs can leave such
2834 // IMPLICIT_DEF instructions behind, and there is nothing wrong with it
2837 // When it happens, treat that IMPLICIT_DEF as a normal value, and don't try
2838 // to erase the IMPLICIT_DEF instruction.
2840 // Additionally we must keep an IMPLICIT_DEF if we're redefining an incoming
2843 MachineInstr
*OtherImpDef
=
2844 Indexes
->getInstructionFromIndex(V
.OtherVNI
->def
);
2845 MachineBasicBlock
*OtherMBB
= OtherImpDef
->getParent();
2847 (DefMI
->getParent() != OtherMBB
|| LIS
->isLiveInToMBB(LR
, OtherMBB
))) {
2848 LLVM_DEBUG(dbgs() << "IMPLICIT_DEF defined at " << V
.OtherVNI
->def
2850 << printMBBReference(*DefMI
->getParent())
2851 << ", keeping it.\n");
2852 OtherV
.mustKeepImplicitDef(*TRI
, *OtherImpDef
);
2853 } else if (OtherMBB
->hasEHPadSuccessor()) {
2854 // If OtherV is defined in a basic block that has EH pad successors then
2855 // we get the same problem not just if OtherV is live beyond its basic
2856 // block, but beyond the last call instruction in its basic block. Handle
2857 // this case conservatively.
2859 dbgs() << "IMPLICIT_DEF defined at " << V
.OtherVNI
->def
2860 << " may be live into EH pad successors, keeping it.\n");
2861 OtherV
.mustKeepImplicitDef(*TRI
, *OtherImpDef
);
2863 // We deferred clearing these lanes in case we needed to save them
2864 OtherV
.ValidLanes
&= ~OtherV
.WriteLanes
;
2868 // Allow overlapping PHI values. Any real interference would show up in a
2869 // predecessor, the PHI itself can't introduce any conflicts.
2870 if (VNI
->isPHIDef())
2873 // Check for simple erasable conflicts.
2874 if (DefMI
->isImplicitDef())
2877 // Include the non-conflict where DefMI is a coalescable copy that kills
2878 // OtherVNI. We still want the copy erased and value numbers merged.
2879 if (CP
.isCoalescable(DefMI
)) {
2880 // Some of the lanes copied from OtherVNI may be undef, making them undef
2882 V
.ValidLanes
&= ~V
.WriteLanes
| OtherV
.ValidLanes
;
2886 // This may not be a real conflict if DefMI simply kills Other and defines
2888 if (OtherLRQ
.isKill() && OtherLRQ
.endPoint() <= VNI
->def
)
2891 // Handle the case where VNI and OtherVNI can be proven to be identical:
2893 // %other = COPY %ext
2894 // %this = COPY %ext <-- Erase this copy
2896 if (DefMI
->isFullCopy() && !CP
.isPartial() &&
2897 valuesIdentical(VNI
, V
.OtherVNI
, Other
)) {
2902 // The remaining checks apply to the lanes, which aren't tracked here. This
2903 // was already decided to be OK via the following CR_Replace condition.
2908 // If the lanes written by this instruction were all undef in OtherVNI, it is
2909 // still safe to join the live ranges. This can't be done with a simple value
2910 // mapping, though - OtherVNI will map to multiple values:
2912 // 1 %dst:ssub0 = FOO <-- OtherVNI
2913 // 2 %src = BAR <-- VNI
2914 // 3 %dst:ssub1 = COPY killed %src <-- Eliminate this copy.
2915 // 4 BAZ killed %dst
2916 // 5 QUUX killed %src
2918 // Here OtherVNI will map to itself in [1;2), but to VNI in [2;5). CR_Replace
2919 // handles this complex value mapping.
2920 if ((V
.WriteLanes
& OtherV
.ValidLanes
).none())
2923 // If the other live range is killed by DefMI and the live ranges are still
2924 // overlapping, it must be because we're looking at an early clobber def:
2926 // %dst<def,early-clobber> = ASM killed %src
2928 // In this case, it is illegal to merge the two live ranges since the early
2929 // clobber def would clobber %src before it was read.
2930 if (OtherLRQ
.isKill()) {
2931 // This case where the def doesn't overlap the kill is handled above.
2932 assert(VNI
->def
.isEarlyClobber() &&
2933 "Only early clobber defs can overlap a kill");
2934 return CR_Impossible
;
2937 // VNI is clobbering live lanes in OtherVNI, but there is still the
2938 // possibility that no instructions actually read the clobbered lanes.
2939 // If we're clobbering all the lanes in OtherVNI, at least one must be read.
2940 // Otherwise Other.RI wouldn't be live here.
2941 if ((TRI
->getSubRegIndexLaneMask(Other
.SubIdx
) & ~V
.WriteLanes
).none())
2942 return CR_Impossible
;
2944 if (TrackSubRegLiveness
) {
2945 auto &OtherLI
= LIS
->getInterval(Other
.Reg
);
2946 // If OtherVNI does not have subranges, it means all the lanes of OtherVNI
2947 // share the same live range, so we just need to check whether they have
2948 // any conflict bit in their LaneMask.
2949 if (!OtherLI
.hasSubRanges()) {
2950 LaneBitmask OtherMask
= TRI
->getSubRegIndexLaneMask(Other
.SubIdx
);
2951 return (OtherMask
& V
.WriteLanes
).none() ? CR_Replace
: CR_Impossible
;
2954 // If we are clobbering some active lanes of OtherVNI at VNI->def, it is
2955 // impossible to resolve the conflict. Otherwise, we can just replace
2956 // OtherVNI because of no real conflict.
2957 for (LiveInterval::SubRange
&OtherSR
: OtherLI
.subranges()) {
2958 LaneBitmask OtherMask
=
2959 TRI
->composeSubRegIndexLaneMask(Other
.SubIdx
, OtherSR
.LaneMask
);
2960 if ((OtherMask
& V
.WriteLanes
).none())
2963 auto OtherSRQ
= OtherSR
.Query(VNI
->def
);
2964 if (OtherSRQ
.valueIn() && OtherSRQ
.endPoint() > VNI
->def
) {
2965 // VNI is clobbering some lanes of OtherVNI, they have real conflict.
2966 return CR_Impossible
;
2970 // VNI is NOT clobbering any lane of OtherVNI, just replace OtherVNI.
2974 // We need to verify that no instructions are reading the clobbered lanes.
2975 // To save compile time, we'll only check that locally. Don't allow the
2976 // tainted value to escape the basic block.
2977 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
2978 if (OtherLRQ
.endPoint() >= Indexes
->getMBBEndIdx(MBB
))
2979 return CR_Impossible
;
2981 // There are still some things that could go wrong besides clobbered lanes
2982 // being read, for example OtherVNI may be only partially redefined in MBB,
2983 // and some clobbered lanes could escape the block. Save this analysis for
2984 // resolveConflicts() when all values have been mapped. We need to know
2985 // RedefVNI and WriteLanes for any later defs in MBB, and we can't compute
2986 // that now - the recursive analyzeValue() calls must go upwards in the
2988 return CR_Unresolved
;
2991 void JoinVals::computeAssignment(unsigned ValNo
, JoinVals
&Other
) {
2992 Val
&V
= Vals
[ValNo
];
2993 if (V
.isAnalyzed()) {
2994 // Recursion should always move up the dominator tree, so ValNo is not
2995 // supposed to reappear before it has been assigned.
2996 assert(Assignments
[ValNo
] != -1 && "Bad recursion?");
2999 switch ((V
.Resolution
= analyzeValue(ValNo
, Other
))) {
3002 // Merge this ValNo into OtherVNI.
3003 assert(V
.OtherVNI
&& "OtherVNI not assigned, can't merge.");
3004 assert(Other
.Vals
[V
.OtherVNI
->id
].isAnalyzed() && "Missing recursion");
3005 Assignments
[ValNo
] = Other
.Assignments
[V
.OtherVNI
->id
];
3006 LLVM_DEBUG(dbgs() << "\t\tmerge " << printReg(Reg
) << ':' << ValNo
<< '@'
3007 << LR
.getValNumInfo(ValNo
)->def
<< " into "
3008 << printReg(Other
.Reg
) << ':' << V
.OtherVNI
->id
<< '@'
3009 << V
.OtherVNI
->def
<< " --> @"
3010 << NewVNInfo
[Assignments
[ValNo
]]->def
<< '\n');
3013 case CR_Unresolved
: {
3014 // The other value is going to be pruned if this join is successful.
3015 assert(V
.OtherVNI
&& "OtherVNI not assigned, can't prune");
3016 Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
3017 OtherV
.Pruned
= true;
3021 // This value number needs to go in the final joined live range.
3022 Assignments
[ValNo
] = NewVNInfo
.size();
3023 NewVNInfo
.push_back(LR
.getValNumInfo(ValNo
));
3028 bool JoinVals::mapValues(JoinVals
&Other
) {
3029 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3030 computeAssignment(i
, Other
);
3031 if (Vals
[i
].Resolution
== CR_Impossible
) {
3032 LLVM_DEBUG(dbgs() << "\t\tinterference at " << printReg(Reg
) << ':' << i
3033 << '@' << LR
.getValNumInfo(i
)->def
<< '\n');
3041 taintExtent(unsigned ValNo
, LaneBitmask TaintedLanes
, JoinVals
&Other
,
3042 SmallVectorImpl
<std::pair
<SlotIndex
, LaneBitmask
>> &TaintExtent
) {
3043 VNInfo
*VNI
= LR
.getValNumInfo(ValNo
);
3044 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
3045 SlotIndex MBBEnd
= Indexes
->getMBBEndIdx(MBB
);
3047 // Scan Other.LR from VNI.def to MBBEnd.
3048 LiveInterval::iterator OtherI
= Other
.LR
.find(VNI
->def
);
3049 assert(OtherI
!= Other
.LR
.end() && "No conflict?");
3051 // OtherI is pointing to a tainted value. Abort the join if the tainted
3052 // lanes escape the block.
3053 SlotIndex End
= OtherI
->end
;
3054 if (End
>= MBBEnd
) {
3055 LLVM_DEBUG(dbgs() << "\t\ttaints global " << printReg(Other
.Reg
) << ':'
3056 << OtherI
->valno
->id
<< '@' << OtherI
->start
<< '\n');
3059 LLVM_DEBUG(dbgs() << "\t\ttaints local " << printReg(Other
.Reg
) << ':'
3060 << OtherI
->valno
->id
<< '@' << OtherI
->start
<< " to "
3062 // A dead def is not a problem.
3065 TaintExtent
.push_back(std::make_pair(End
, TaintedLanes
));
3067 // Check for another def in the MBB.
3068 if (++OtherI
== Other
.LR
.end() || OtherI
->start
>= MBBEnd
)
3071 // Lanes written by the new def are no longer tainted.
3072 const Val
&OV
= Other
.Vals
[OtherI
->valno
->id
];
3073 TaintedLanes
&= ~OV
.WriteLanes
;
3076 } while (TaintedLanes
.any());
3080 bool JoinVals::usesLanes(const MachineInstr
&MI
, Register Reg
, unsigned SubIdx
,
3081 LaneBitmask Lanes
) const {
3082 if (MI
.isDebugOrPseudoInstr())
3084 for (const MachineOperand
&MO
: MI
.all_uses()) {
3085 if (MO
.getReg() != Reg
)
3089 unsigned S
= TRI
->composeSubRegIndices(SubIdx
, MO
.getSubReg());
3090 if ((Lanes
& TRI
->getSubRegIndexLaneMask(S
)).any())
3096 bool JoinVals::resolveConflicts(JoinVals
&Other
) {
3097 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3099 assert(V
.Resolution
!= CR_Impossible
&& "Unresolvable conflict");
3100 if (V
.Resolution
!= CR_Unresolved
)
3102 LLVM_DEBUG(dbgs() << "\t\tconflict at " << printReg(Reg
) << ':' << i
<< '@'
3103 << LR
.getValNumInfo(i
)->def
3104 << ' ' << PrintLaneMask(LaneMask
) << '\n');
3109 assert(V
.OtherVNI
&& "Inconsistent conflict resolution.");
3110 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3111 const Val
&OtherV
= Other
.Vals
[V
.OtherVNI
->id
];
3113 // VNI is known to clobber some lanes in OtherVNI. If we go ahead with the
3114 // join, those lanes will be tainted with a wrong value. Get the extent of
3115 // the tainted lanes.
3116 LaneBitmask TaintedLanes
= V
.WriteLanes
& OtherV
.ValidLanes
;
3117 SmallVector
<std::pair
<SlotIndex
, LaneBitmask
>, 8> TaintExtent
;
3118 if (!taintExtent(i
, TaintedLanes
, Other
, TaintExtent
))
3119 // Tainted lanes would extend beyond the basic block.
3122 assert(!TaintExtent
.empty() && "There should be at least one conflict.");
3124 // Now look at the instructions from VNI->def to TaintExtent (inclusive).
3125 MachineBasicBlock
*MBB
= Indexes
->getMBBFromIndex(VNI
->def
);
3126 MachineBasicBlock::iterator MI
= MBB
->begin();
3127 if (!VNI
->isPHIDef()) {
3128 MI
= Indexes
->getInstructionFromIndex(VNI
->def
);
3129 if (!VNI
->def
.isEarlyClobber()) {
3130 // No need to check the instruction defining VNI for reads.
3134 assert(!SlotIndex::isSameInstr(VNI
->def
, TaintExtent
.front().first
) &&
3135 "Interference ends on VNI->def. Should have been handled earlier");
3136 MachineInstr
*LastMI
=
3137 Indexes
->getInstructionFromIndex(TaintExtent
.front().first
);
3138 assert(LastMI
&& "Range must end at a proper instruction");
3139 unsigned TaintNum
= 0;
3141 assert(MI
!= MBB
->end() && "Bad LastMI");
3142 if (usesLanes(*MI
, Other
.Reg
, Other
.SubIdx
, TaintedLanes
)) {
3143 LLVM_DEBUG(dbgs() << "\t\ttainted lanes used by: " << *MI
);
3146 // LastMI is the last instruction to use the current value.
3147 if (&*MI
== LastMI
) {
3148 if (++TaintNum
== TaintExtent
.size())
3150 LastMI
= Indexes
->getInstructionFromIndex(TaintExtent
[TaintNum
].first
);
3151 assert(LastMI
&& "Range must end at a proper instruction");
3152 TaintedLanes
= TaintExtent
[TaintNum
].second
;
3157 // The tainted lanes are unused.
3158 V
.Resolution
= CR_Replace
;
3164 bool JoinVals::isPrunedValue(unsigned ValNo
, JoinVals
&Other
) {
3165 Val
&V
= Vals
[ValNo
];
3166 if (V
.Pruned
|| V
.PrunedComputed
)
3169 if (V
.Resolution
!= CR_Erase
&& V
.Resolution
!= CR_Merge
)
3172 // Follow copies up the dominator tree and check if any intermediate value
3174 V
.PrunedComputed
= true;
3175 V
.Pruned
= Other
.isPrunedValue(V
.OtherVNI
->id
, *this);
3179 void JoinVals::pruneValues(JoinVals
&Other
,
3180 SmallVectorImpl
<SlotIndex
> &EndPoints
,
3181 bool changeInstrs
) {
3182 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3183 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
3184 switch (Vals
[i
].Resolution
) {
3188 // This value takes precedence over the value in Other.LR.
3189 LIS
->pruneValue(Other
.LR
, Def
, &EndPoints
);
3190 // Check if we're replacing an IMPLICIT_DEF value. The IMPLICIT_DEF
3191 // instructions are only inserted to provide a live-out value for PHI
3192 // predecessors, so the instruction should simply go away once its value
3193 // has been replaced.
3194 Val
&OtherV
= Other
.Vals
[Vals
[i
].OtherVNI
->id
];
3195 bool EraseImpDef
= OtherV
.ErasableImplicitDef
&&
3196 OtherV
.Resolution
== CR_Keep
;
3197 if (!Def
.isBlock()) {
3199 // Remove <def,read-undef> flags. This def is now a partial redef.
3200 // Also remove dead flags since the joined live range will
3201 // continue past this instruction.
3202 for (MachineOperand
&MO
:
3203 Indexes
->getInstructionFromIndex(Def
)->operands()) {
3204 if (MO
.isReg() && MO
.isDef() && MO
.getReg() == Reg
) {
3205 if (MO
.getSubReg() != 0 && MO
.isUndef() && !EraseImpDef
)
3206 MO
.setIsUndef(false);
3207 MO
.setIsDead(false);
3211 // This value will reach instructions below, but we need to make sure
3212 // the live range also reaches the instruction at Def.
3214 EndPoints
.push_back(Def
);
3216 LLVM_DEBUG(dbgs() << "\t\tpruned " << printReg(Other
.Reg
) << " at " << Def
3217 << ": " << Other
.LR
<< '\n');
3222 if (isPrunedValue(i
, Other
)) {
3223 // This value is ultimately a copy of a pruned value in LR or Other.LR.
3224 // We can no longer trust the value mapping computed by
3225 // computeAssignment(), the value that was originally copied could have
3227 LIS
->pruneValue(LR
, Def
, &EndPoints
);
3228 LLVM_DEBUG(dbgs() << "\t\tpruned all of " << printReg(Reg
) << " at "
3229 << Def
<< ": " << LR
<< '\n');
3234 llvm_unreachable("Unresolved conflicts");
3239 // Check if the segment consists of a copied live-through value (i.e. the copy
3240 // in the block only extended the liveness, of an undef value which we may need
3242 static bool isLiveThrough(const LiveQueryResult Q
) {
3243 return Q
.valueIn() && Q
.valueIn()->isPHIDef() && Q
.valueIn() == Q
.valueOut();
3246 /// Consider the following situation when coalescing the copy between
3247 /// %31 and %45 at 800. (The vertical lines represent live range segments.)
3249 /// Main range Subrange 0004 (sub2)
3251 /// 544 %45 = COPY %28 + +
3254 /// 624 = %45.sub2 | v2 | v2
3255 /// 800 %31 = COPY %45 + + + +
3257 /// 816 %31.sub1 = ... + |
3258 /// 880 %30 = COPY %31 | v1 +
3259 /// 928 %45 = COPY %30 | + +
3260 /// | | v0 | v0 <--+
3261 /// 992B ; backedge -> bb.1 | + + |
3262 /// 1040 = %31.sub0 + |
3263 /// This value must remain
3266 /// Assuming that %31 is coalesced into %45, the copy at 928 becomes
3267 /// redundant, since it copies the value from %45 back into it. The
3268 /// conflict resolution for the main range determines that %45.v0 is
3269 /// to be erased, which is ok since %31.v1 is identical to it.
3270 /// The problem happens with the subrange for sub2: it has to be live
3271 /// on exit from the block, but since 928 was actually a point of
3272 /// definition of %45.sub2, %45.sub2 was not live immediately prior
3273 /// to that definition. As a result, when 928 was erased, the value v0
3274 /// for %45.sub2 was pruned in pruneSubRegValues. Consequently, an
3275 /// IMPLICIT_DEF was inserted as a "backedge" definition for %45.sub2,
3276 /// providing an incorrect value to the use at 624.
3278 /// Since the main-range values %31.v1 and %45.v0 were proved to be
3279 /// identical, the corresponding values in subranges must also be the
3280 /// same. A redundant copy is removed because it's not needed, and not
3281 /// because it copied an undefined value, so any liveness that originated
3282 /// from that copy cannot disappear. When pruning a value that started
3283 /// at the removed copy, the corresponding identical value must be
3284 /// extended to replace it.
3285 void JoinVals::pruneSubRegValues(LiveInterval
&LI
, LaneBitmask
&ShrinkMask
) {
3286 // Look for values being erased.
3287 bool DidPrune
= false;
3288 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3290 // We should trigger in all cases in which eraseInstrs() does something.
3291 // match what eraseInstrs() is doing, print a message so
3292 if (V
.Resolution
!= CR_Erase
&&
3293 (V
.Resolution
!= CR_Keep
|| !V
.ErasableImplicitDef
|| !V
.Pruned
))
3296 // Check subranges at the point where the copy will be removed.
3297 SlotIndex Def
= LR
.getValNumInfo(i
)->def
;
3300 OtherDef
= V
.OtherVNI
->def
;
3302 // Print message so mismatches with eraseInstrs() can be diagnosed.
3303 LLVM_DEBUG(dbgs() << "\t\tExpecting instruction removal at " << Def
3305 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
3306 LiveQueryResult Q
= S
.Query(Def
);
3308 // If a subrange starts at the copy then an undefined value has been
3309 // copied and we must remove that subrange value as well.
3310 VNInfo
*ValueOut
= Q
.valueOutOrDead();
3311 if (ValueOut
!= nullptr && (Q
.valueIn() == nullptr ||
3312 (V
.Identical
&& V
.Resolution
== CR_Erase
&&
3313 ValueOut
->def
== Def
))) {
3314 LLVM_DEBUG(dbgs() << "\t\tPrune sublane " << PrintLaneMask(S
.LaneMask
)
3315 << " at " << Def
<< "\n");
3316 SmallVector
<SlotIndex
,8> EndPoints
;
3317 LIS
->pruneValue(S
, Def
, &EndPoints
);
3319 // Mark value number as unused.
3320 ValueOut
->markUnused();
3322 if (V
.Identical
&& S
.Query(OtherDef
).valueOutOrDead()) {
3323 // If V is identical to V.OtherVNI (and S was live at OtherDef),
3324 // then we can't simply prune V from S. V needs to be replaced
3326 LIS
->extendToIndices(S
, EndPoints
);
3329 // We may need to eliminate the subrange if the copy introduced a live
3331 if (ValueOut
->isPHIDef())
3332 ShrinkMask
|= S
.LaneMask
;
3336 // If a subrange ends at the copy, then a value was copied but only
3337 // partially used later. Shrink the subregister range appropriately.
3339 // Ultimately this calls shrinkToUses, so assuming ShrinkMask is
3340 // conservatively correct.
3341 if ((Q
.valueIn() != nullptr && Q
.valueOut() == nullptr) ||
3342 (V
.Resolution
== CR_Erase
&& isLiveThrough(Q
))) {
3343 LLVM_DEBUG(dbgs() << "\t\tDead uses at sublane "
3344 << PrintLaneMask(S
.LaneMask
) << " at " << Def
3346 ShrinkMask
|= S
.LaneMask
;
3351 LI
.removeEmptySubRanges();
3354 /// Check if any of the subranges of @p LI contain a definition at @p Def.
3355 static bool isDefInSubRange(LiveInterval
&LI
, SlotIndex Def
) {
3356 for (LiveInterval::SubRange
&SR
: LI
.subranges()) {
3357 if (VNInfo
*VNI
= SR
.Query(Def
).valueOutOrDead())
3358 if (VNI
->def
== Def
)
3364 void JoinVals::pruneMainSegments(LiveInterval
&LI
, bool &ShrinkMainRange
) {
3365 assert(&static_cast<LiveRange
&>(LI
) == &LR
);
3367 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3368 if (Vals
[i
].Resolution
!= CR_Keep
)
3370 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3371 if (VNI
->isUnused() || VNI
->isPHIDef() || isDefInSubRange(LI
, VNI
->def
))
3373 Vals
[i
].Pruned
= true;
3374 ShrinkMainRange
= true;
3378 void JoinVals::removeImplicitDefs() {
3379 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3381 if (V
.Resolution
!= CR_Keep
|| !V
.ErasableImplicitDef
|| !V
.Pruned
)
3384 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3386 LR
.removeValNo(VNI
);
3390 void JoinVals::eraseInstrs(SmallPtrSetImpl
<MachineInstr
*> &ErasedInstrs
,
3391 SmallVectorImpl
<Register
> &ShrinkRegs
,
3393 for (unsigned i
= 0, e
= LR
.getNumValNums(); i
!= e
; ++i
) {
3394 // Get the def location before markUnused() below invalidates it.
3395 VNInfo
*VNI
= LR
.getValNumInfo(i
);
3396 SlotIndex Def
= VNI
->def
;
3397 switch (Vals
[i
].Resolution
) {
3399 // If an IMPLICIT_DEF value is pruned, it doesn't serve a purpose any
3400 // longer. The IMPLICIT_DEF instructions are only inserted by
3401 // PHIElimination to guarantee that all PHI predecessors have a value.
3402 if (!Vals
[i
].ErasableImplicitDef
|| !Vals
[i
].Pruned
)
3404 // Remove value number i from LR.
3405 // For intervals with subranges, removing a segment from the main range
3406 // may require extending the previous segment: for each definition of
3407 // a subregister, there will be a corresponding def in the main range.
3408 // That def may fall in the middle of a segment from another subrange.
3409 // In such cases, removing this def from the main range must be
3410 // complemented by extending the main range to account for the liveness
3411 // of the other subrange.
3412 // The new end point of the main range segment to be extended.
3414 if (LI
!= nullptr) {
3415 LiveRange::iterator I
= LR
.FindSegmentContaining(Def
);
3416 assert(I
!= LR
.end());
3417 // Do not extend beyond the end of the segment being removed.
3418 // The segment may have been pruned in preparation for joining
3423 LR
.removeValNo(VNI
);
3424 // Note that this VNInfo is reused and still referenced in NewVNInfo,
3425 // make it appear like an unused value number.
3428 if (LI
!= nullptr && LI
->hasSubRanges()) {
3429 assert(static_cast<LiveRange
*>(LI
) == &LR
);
3430 // Determine the end point based on the subrange information:
3431 // minimum of (earliest def of next segment,
3432 // latest end point of containing segment)
3434 for (LiveInterval::SubRange
&SR
: LI
->subranges()) {
3435 LiveRange::iterator I
= SR
.find(Def
);
3439 ED
= ED
.isValid() ? std::min(ED
, I
->start
) : I
->start
;
3441 LE
= LE
.isValid() ? std::max(LE
, I
->end
) : I
->end
;
3444 NewEnd
= std::min(NewEnd
, LE
);
3446 NewEnd
= std::min(NewEnd
, ED
);
3448 // We only want to do the extension if there was a subrange that
3449 // was live across Def.
3451 LiveRange::iterator S
= LR
.find(Def
);
3452 if (S
!= LR
.begin())
3453 std::prev(S
)->end
= NewEnd
;
3457 dbgs() << "\t\tremoved " << i
<< '@' << Def
<< ": " << LR
<< '\n';
3459 dbgs() << "\t\t LHS = " << *LI
<< '\n';
3465 MachineInstr
*MI
= Indexes
->getInstructionFromIndex(Def
);
3466 assert(MI
&& "No instruction to erase");
3468 Register Reg
= MI
->getOperand(1).getReg();
3469 if (Reg
.isVirtual() && Reg
!= CP
.getSrcReg() && Reg
!= CP
.getDstReg())
3470 ShrinkRegs
.push_back(Reg
);
3472 ErasedInstrs
.insert(MI
);
3473 LLVM_DEBUG(dbgs() << "\t\terased:\t" << Def
<< '\t' << *MI
);
3474 LIS
->RemoveMachineInstrFromMaps(*MI
);
3475 MI
->eraseFromParent();
3484 void RegisterCoalescer::joinSubRegRanges(LiveRange
&LRange
, LiveRange
&RRange
,
3485 LaneBitmask LaneMask
,
3486 const CoalescerPair
&CP
) {
3487 SmallVector
<VNInfo
*, 16> NewVNInfo
;
3488 JoinVals
RHSVals(RRange
, CP
.getSrcReg(), CP
.getSrcIdx(), LaneMask
,
3489 NewVNInfo
, CP
, LIS
, TRI
, true, true);
3490 JoinVals
LHSVals(LRange
, CP
.getDstReg(), CP
.getDstIdx(), LaneMask
,
3491 NewVNInfo
, CP
, LIS
, TRI
, true, true);
3493 // Compute NewVNInfo and resolve conflicts (see also joinVirtRegs())
3494 // We should be able to resolve all conflicts here as we could successfully do
3495 // it on the mainrange already. There is however a problem when multiple
3496 // ranges get mapped to the "overflow" lane mask bit which creates unexpected
3498 if (!LHSVals
.mapValues(RHSVals
) || !RHSVals
.mapValues(LHSVals
)) {
3499 // We already determined that it is legal to merge the intervals, so this
3500 // should never fail.
3501 llvm_unreachable("*** Couldn't join subrange!\n");
3503 if (!LHSVals
.resolveConflicts(RHSVals
) ||
3504 !RHSVals
.resolveConflicts(LHSVals
)) {
3505 // We already determined that it is legal to merge the intervals, so this
3506 // should never fail.
3507 llvm_unreachable("*** Couldn't join subrange!\n");
3510 // The merging algorithm in LiveInterval::join() can't handle conflicting
3511 // value mappings, so we need to remove any live ranges that overlap a
3512 // CR_Replace resolution. Collect a set of end points that can be used to
3513 // restore the live range after joining.
3514 SmallVector
<SlotIndex
, 8> EndPoints
;
3515 LHSVals
.pruneValues(RHSVals
, EndPoints
, false);
3516 RHSVals
.pruneValues(LHSVals
, EndPoints
, false);
3518 LHSVals
.removeImplicitDefs();
3519 RHSVals
.removeImplicitDefs();
3524 // Join RRange into LHS.
3525 LRange
.join(RRange
, LHSVals
.getAssignments(), RHSVals
.getAssignments(),
3528 LLVM_DEBUG(dbgs() << "\t\tjoined lanes: " << PrintLaneMask(LaneMask
)
3529 << ' ' << LRange
<< "\n");
3530 if (EndPoints
.empty())
3533 // Recompute the parts of the live range we had to remove because of
3534 // CR_Replace conflicts.
3536 dbgs() << "\t\trestoring liveness to " << EndPoints
.size() << " points: ";
3537 for (unsigned i
= 0, n
= EndPoints
.size(); i
!= n
; ++i
) {
3538 dbgs() << EndPoints
[i
];
3542 dbgs() << ": " << LRange
<< '\n';
3544 LIS
->extendToIndices(LRange
, EndPoints
);
3547 void RegisterCoalescer::mergeSubRangeInto(LiveInterval
&LI
,
3548 const LiveRange
&ToMerge
,
3549 LaneBitmask LaneMask
,
3551 unsigned ComposeSubRegIdx
) {
3552 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
3554 Allocator
, LaneMask
,
3555 [this, &Allocator
, &ToMerge
, &CP
](LiveInterval::SubRange
&SR
) {
3557 SR
.assign(ToMerge
, Allocator
);
3559 // joinSubRegRange() destroys the merged range, so we need a copy.
3560 LiveRange
RangeCopy(ToMerge
, Allocator
);
3561 joinSubRegRanges(SR
, RangeCopy
, SR
.LaneMask
, CP
);
3564 *LIS
->getSlotIndexes(), *TRI
, ComposeSubRegIdx
);
3567 bool RegisterCoalescer::isHighCostLiveInterval(LiveInterval
&LI
) {
3568 if (LI
.valnos
.size() < LargeIntervalSizeThreshold
)
3570 auto &Counter
= LargeLIVisitCounter
[LI
.reg()];
3571 if (Counter
< LargeIntervalFreqThreshold
) {
3578 bool RegisterCoalescer::joinVirtRegs(CoalescerPair
&CP
) {
3579 SmallVector
<VNInfo
*, 16> NewVNInfo
;
3580 LiveInterval
&RHS
= LIS
->getInterval(CP
.getSrcReg());
3581 LiveInterval
&LHS
= LIS
->getInterval(CP
.getDstReg());
3582 bool TrackSubRegLiveness
= MRI
->shouldTrackSubRegLiveness(*CP
.getNewRC());
3583 JoinVals
RHSVals(RHS
, CP
.getSrcReg(), CP
.getSrcIdx(), LaneBitmask::getNone(),
3584 NewVNInfo
, CP
, LIS
, TRI
, false, TrackSubRegLiveness
);
3585 JoinVals
LHSVals(LHS
, CP
.getDstReg(), CP
.getDstIdx(), LaneBitmask::getNone(),
3586 NewVNInfo
, CP
, LIS
, TRI
, false, TrackSubRegLiveness
);
3588 LLVM_DEBUG(dbgs() << "\t\tRHS = " << RHS
<< "\n\t\tLHS = " << LHS
<< '\n');
3590 if (isHighCostLiveInterval(LHS
) || isHighCostLiveInterval(RHS
))
3593 // First compute NewVNInfo and the simple value mappings.
3594 // Detect impossible conflicts early.
3595 if (!LHSVals
.mapValues(RHSVals
) || !RHSVals
.mapValues(LHSVals
))
3598 // Some conflicts can only be resolved after all values have been mapped.
3599 if (!LHSVals
.resolveConflicts(RHSVals
) || !RHSVals
.resolveConflicts(LHSVals
))
3602 // All clear, the live ranges can be merged.
3603 if (RHS
.hasSubRanges() || LHS
.hasSubRanges()) {
3604 BumpPtrAllocator
&Allocator
= LIS
->getVNInfoAllocator();
3606 // Transform lanemasks from the LHS to masks in the coalesced register and
3607 // create initial subranges if necessary.
3608 unsigned DstIdx
= CP
.getDstIdx();
3609 if (!LHS
.hasSubRanges()) {
3610 LaneBitmask Mask
= DstIdx
== 0 ? CP
.getNewRC()->getLaneMask()
3611 : TRI
->getSubRegIndexLaneMask(DstIdx
);
3612 // LHS must support subregs or we wouldn't be in this codepath.
3614 LHS
.createSubRangeFrom(Allocator
, Mask
, LHS
);
3615 } else if (DstIdx
!= 0) {
3616 // Transform LHS lanemasks to new register class if necessary.
3617 for (LiveInterval::SubRange
&R
: LHS
.subranges()) {
3618 LaneBitmask Mask
= TRI
->composeSubRegIndexLaneMask(DstIdx
, R
.LaneMask
);
3622 LLVM_DEBUG(dbgs() << "\t\tLHST = " << printReg(CP
.getDstReg()) << ' ' << LHS
3625 // Determine lanemasks of RHS in the coalesced register and merge subranges.
3626 unsigned SrcIdx
= CP
.getSrcIdx();
3627 if (!RHS
.hasSubRanges()) {
3628 LaneBitmask Mask
= SrcIdx
== 0 ? CP
.getNewRC()->getLaneMask()
3629 : TRI
->getSubRegIndexLaneMask(SrcIdx
);
3630 mergeSubRangeInto(LHS
, RHS
, Mask
, CP
, DstIdx
);
3632 // Pair up subranges and merge.
3633 for (LiveInterval::SubRange
&R
: RHS
.subranges()) {
3634 LaneBitmask Mask
= TRI
->composeSubRegIndexLaneMask(SrcIdx
, R
.LaneMask
);
3635 mergeSubRangeInto(LHS
, R
, Mask
, CP
, DstIdx
);
3638 LLVM_DEBUG(dbgs() << "\tJoined SubRanges " << LHS
<< "\n");
3640 // Pruning implicit defs from subranges may result in the main range
3641 // having stale segments.
3642 LHSVals
.pruneMainSegments(LHS
, ShrinkMainRange
);
3644 LHSVals
.pruneSubRegValues(LHS
, ShrinkMask
);
3645 RHSVals
.pruneSubRegValues(LHS
, ShrinkMask
);
3648 // The merging algorithm in LiveInterval::join() can't handle conflicting
3649 // value mappings, so we need to remove any live ranges that overlap a
3650 // CR_Replace resolution. Collect a set of end points that can be used to
3651 // restore the live range after joining.
3652 SmallVector
<SlotIndex
, 8> EndPoints
;
3653 LHSVals
.pruneValues(RHSVals
, EndPoints
, true);
3654 RHSVals
.pruneValues(LHSVals
, EndPoints
, true);
3656 // Erase COPY and IMPLICIT_DEF instructions. This may cause some external
3657 // registers to require trimming.
3658 SmallVector
<Register
, 8> ShrinkRegs
;
3659 LHSVals
.eraseInstrs(ErasedInstrs
, ShrinkRegs
, &LHS
);
3660 RHSVals
.eraseInstrs(ErasedInstrs
, ShrinkRegs
);
3661 while (!ShrinkRegs
.empty())
3662 shrinkToUses(&LIS
->getInterval(ShrinkRegs
.pop_back_val()));
3664 // Scan and mark undef any DBG_VALUEs that would refer to a different value.
3665 checkMergingChangesDbgValues(CP
, LHS
, LHSVals
, RHS
, RHSVals
);
3667 // If the RHS covers any PHI locations that were tracked for debug-info, we
3668 // must update tracking information to reflect the join.
3669 auto RegIt
= RegToPHIIdx
.find(CP
.getSrcReg());
3670 if (RegIt
!= RegToPHIIdx
.end()) {
3671 // Iterate over all the debug instruction numbers assigned this register.
3672 for (unsigned InstID
: RegIt
->second
) {
3673 auto PHIIt
= PHIValToPos
.find(InstID
);
3674 assert(PHIIt
!= PHIValToPos
.end());
3675 const SlotIndex
&SI
= PHIIt
->second
.SI
;
3677 // Does the RHS cover the position of this PHI?
3678 auto LII
= RHS
.find(SI
);
3679 if (LII
== RHS
.end() || LII
->start
> SI
)
3682 // Accept two kinds of subregister movement:
3683 // * When we merge from one register class into a larger register:
3684 // %1:gr16 = some-inst
3686 // %2:gr32.sub_16bit = some-inst
3687 // * When the PHI is already in a subregister, and the larger class
3689 // %2:gr32.sub_16bit = some-inst
3690 // %3:gr32 = COPY %2
3692 // %3:gr32.sub_16bit = some-inst
3693 // Test for subregister move:
3694 if (CP
.getSrcIdx() != 0 || CP
.getDstIdx() != 0)
3695 // If we're moving between different subregisters, ignore this join.
3696 // The PHI will not get a location, dropping variable locations.
3697 if (PHIIt
->second
.SubReg
&& PHIIt
->second
.SubReg
!= CP
.getSrcIdx())
3700 // Update our tracking of where the PHI is.
3701 PHIIt
->second
.Reg
= CP
.getDstReg();
3703 // If we merge into a sub-register of a larger class (test above),
3705 if (CP
.getSrcIdx() != 0)
3706 PHIIt
->second
.SubReg
= CP
.getSrcIdx();
3709 // Rebuild the register index in RegToPHIIdx to account for PHIs tracking
3710 // different VRegs now. Copy old collection of debug instruction numbers and
3711 // erase the old one:
3712 auto InstrNums
= RegIt
->second
;
3713 RegToPHIIdx
.erase(RegIt
);
3715 // There might already be PHIs being tracked in the destination VReg. Insert
3716 // into an existing tracking collection, or insert a new one.
3717 RegIt
= RegToPHIIdx
.find(CP
.getDstReg());
3718 if (RegIt
!= RegToPHIIdx
.end())
3719 RegIt
->second
.insert(RegIt
->second
.end(), InstrNums
.begin(),
3722 RegToPHIIdx
.insert({CP
.getDstReg(), InstrNums
});
3725 // Join RHS into LHS.
3726 LHS
.join(RHS
, LHSVals
.getAssignments(), RHSVals
.getAssignments(), NewVNInfo
);
3728 // Kill flags are going to be wrong if the live ranges were overlapping.
3729 // Eventually, we should simply clear all kill flags when computing live
3730 // ranges. They are reinserted after register allocation.
3731 MRI
->clearKillFlags(LHS
.reg());
3732 MRI
->clearKillFlags(RHS
.reg());
3734 if (!EndPoints
.empty()) {
3735 // Recompute the parts of the live range we had to remove because of
3736 // CR_Replace conflicts.
3738 dbgs() << "\t\trestoring liveness to " << EndPoints
.size() << " points: ";
3739 for (unsigned i
= 0, n
= EndPoints
.size(); i
!= n
; ++i
) {
3740 dbgs() << EndPoints
[i
];
3744 dbgs() << ": " << LHS
<< '\n';
3746 LIS
->extendToIndices((LiveRange
&)LHS
, EndPoints
);
3752 bool RegisterCoalescer::joinIntervals(CoalescerPair
&CP
) {
3753 return CP
.isPhys() ? joinReservedPhysReg(CP
) : joinVirtRegs(CP
);
3756 void RegisterCoalescer::buildVRegToDbgValueMap(MachineFunction
&MF
)
3758 const SlotIndexes
&Slots
= *LIS
->getSlotIndexes();
3759 SmallVector
<MachineInstr
*, 8> ToInsert
;
3761 // After collecting a block of DBG_VALUEs into ToInsert, enter them into the
3762 // vreg => DbgValueLoc map.
3763 auto CloseNewDVRange
= [this, &ToInsert
](SlotIndex Slot
) {
3764 for (auto *X
: ToInsert
) {
3765 for (const auto &Op
: X
->debug_operands()) {
3766 if (Op
.isReg() && Op
.getReg().isVirtual())
3767 DbgVRegToValues
[Op
.getReg()].push_back({Slot
, X
});
3774 // Iterate over all instructions, collecting them into the ToInsert vector.
3775 // Once a non-debug instruction is found, record the slot index of the
3776 // collected DBG_VALUEs.
3777 for (auto &MBB
: MF
) {
3778 SlotIndex CurrentSlot
= Slots
.getMBBStartIdx(&MBB
);
3780 for (auto &MI
: MBB
) {
3781 if (MI
.isDebugValue()) {
3782 if (any_of(MI
.debug_operands(), [](const MachineOperand
&MO
) {
3783 return MO
.isReg() && MO
.getReg().isVirtual();
3785 ToInsert
.push_back(&MI
);
3786 } else if (!MI
.isDebugOrPseudoInstr()) {
3787 CurrentSlot
= Slots
.getInstructionIndex(MI
);
3788 CloseNewDVRange(CurrentSlot
);
3792 // Close range of DBG_VALUEs at the end of blocks.
3793 CloseNewDVRange(Slots
.getMBBEndIdx(&MBB
));
3796 // Sort all DBG_VALUEs we've seen by slot number.
3797 for (auto &Pair
: DbgVRegToValues
)
3798 llvm::sort(Pair
.second
);
3801 void RegisterCoalescer::checkMergingChangesDbgValues(CoalescerPair
&CP
,
3805 JoinVals
&RHSVals
) {
3806 auto ScanForDstReg
= [&](Register Reg
) {
3807 checkMergingChangesDbgValuesImpl(Reg
, RHS
, LHS
, LHSVals
);
3810 auto ScanForSrcReg
= [&](Register Reg
) {
3811 checkMergingChangesDbgValuesImpl(Reg
, LHS
, RHS
, RHSVals
);
3814 // Scan for unsound updates of both the source and destination register.
3815 ScanForSrcReg(CP
.getSrcReg());
3816 ScanForDstReg(CP
.getDstReg());
3819 void RegisterCoalescer::checkMergingChangesDbgValuesImpl(Register Reg
,
3822 JoinVals
&RegVals
) {
3823 // Are there any DBG_VALUEs to examine?
3824 auto VRegMapIt
= DbgVRegToValues
.find(Reg
);
3825 if (VRegMapIt
== DbgVRegToValues
.end())
3828 auto &DbgValueSet
= VRegMapIt
->second
;
3829 auto DbgValueSetIt
= DbgValueSet
.begin();
3830 auto SegmentIt
= OtherLR
.begin();
3832 bool LastUndefResult
= false;
3833 SlotIndex LastUndefIdx
;
3835 // If the "Other" register is live at a slot Idx, test whether Reg can
3836 // safely be merged with it, or should be marked undef.
3837 auto ShouldUndef
= [&RegVals
, &RegLR
, &LastUndefResult
,
3838 &LastUndefIdx
](SlotIndex Idx
) -> bool {
3839 // Our worst-case performance typically happens with asan, causing very
3840 // many DBG_VALUEs of the same location. Cache a copy of the most recent
3841 // result for this edge-case.
3842 if (LastUndefIdx
== Idx
)
3843 return LastUndefResult
;
3845 // If the other range was live, and Reg's was not, the register coalescer
3846 // will not have tried to resolve any conflicts. We don't know whether
3847 // the DBG_VALUE will refer to the same value number, so it must be made
3849 auto OtherIt
= RegLR
.find(Idx
);
3850 if (OtherIt
== RegLR
.end())
3853 // Both the registers were live: examine the conflict resolution record for
3854 // the value number Reg refers to. CR_Keep meant that this value number
3855 // "won" and the merged register definitely refers to that value. CR_Erase
3856 // means the value number was a redundant copy of the other value, which
3857 // was coalesced and Reg deleted. It's safe to refer to the other register
3858 // (which will be the source of the copy).
3859 auto Resolution
= RegVals
.getResolution(OtherIt
->valno
->id
);
3860 LastUndefResult
= Resolution
!= JoinVals::CR_Keep
&&
3861 Resolution
!= JoinVals::CR_Erase
;
3863 return LastUndefResult
;
3866 // Iterate over both the live-range of the "Other" register, and the set of
3867 // DBG_VALUEs for Reg at the same time. Advance whichever one has the lowest
3868 // slot index. This relies on the DbgValueSet being ordered.
3869 while (DbgValueSetIt
!= DbgValueSet
.end() && SegmentIt
!= OtherLR
.end()) {
3870 if (DbgValueSetIt
->first
< SegmentIt
->end
) {
3871 // "Other" is live and there is a DBG_VALUE of Reg: test if we should
3873 if (DbgValueSetIt
->first
>= SegmentIt
->start
) {
3874 bool HasReg
= DbgValueSetIt
->second
->hasDebugOperandForReg(Reg
);
3875 bool ShouldUndefReg
= ShouldUndef(DbgValueSetIt
->first
);
3876 if (HasReg
&& ShouldUndefReg
) {
3877 // Mark undef, erase record of this DBG_VALUE to avoid revisiting.
3878 DbgValueSetIt
->second
->setDebugValueUndef();
3891 /// Information concerning MBB coalescing priority.
3892 struct MBBPriorityInfo
{
3893 MachineBasicBlock
*MBB
;
3897 MBBPriorityInfo(MachineBasicBlock
*mbb
, unsigned depth
, bool issplit
)
3898 : MBB(mbb
), Depth(depth
), IsSplit(issplit
) {}
3901 } // end anonymous namespace
3903 /// C-style comparator that sorts first based on the loop depth of the basic
3904 /// block (the unsigned), and then on the MBB number.
3906 /// EnableGlobalCopies assumes that the primary sort key is loop depth.
3907 static int compareMBBPriority(const MBBPriorityInfo
*LHS
,
3908 const MBBPriorityInfo
*RHS
) {
3909 // Deeper loops first
3910 if (LHS
->Depth
!= RHS
->Depth
)
3911 return LHS
->Depth
> RHS
->Depth
? -1 : 1;
3913 // Try to unsplit critical edges next.
3914 if (LHS
->IsSplit
!= RHS
->IsSplit
)
3915 return LHS
->IsSplit
? -1 : 1;
3917 // Prefer blocks that are more connected in the CFG. This takes care of
3918 // the most difficult copies first while intervals are short.
3919 unsigned cl
= LHS
->MBB
->pred_size() + LHS
->MBB
->succ_size();
3920 unsigned cr
= RHS
->MBB
->pred_size() + RHS
->MBB
->succ_size();
3922 return cl
> cr
? -1 : 1;
3924 // As a last resort, sort by block number.
3925 return LHS
->MBB
->getNumber() < RHS
->MBB
->getNumber() ? -1 : 1;
3928 /// \returns true if the given copy uses or defines a local live range.
3929 static bool isLocalCopy(MachineInstr
*Copy
, const LiveIntervals
*LIS
) {
3930 if (!Copy
->isCopy())
3933 if (Copy
->getOperand(1).isUndef())
3936 Register SrcReg
= Copy
->getOperand(1).getReg();
3937 Register DstReg
= Copy
->getOperand(0).getReg();
3938 if (SrcReg
.isPhysical() || DstReg
.isPhysical())
3941 return LIS
->intervalIsInOneMBB(LIS
->getInterval(SrcReg
))
3942 || LIS
->intervalIsInOneMBB(LIS
->getInterval(DstReg
));
3945 void RegisterCoalescer::lateLiveIntervalUpdate() {
3946 for (Register reg
: ToBeUpdated
) {
3947 if (!LIS
->hasInterval(reg
))
3949 LiveInterval
&LI
= LIS
->getInterval(reg
);
3950 shrinkToUses(&LI
, &DeadDefs
);
3951 if (!DeadDefs
.empty())
3952 eliminateDeadDefs();
3954 ToBeUpdated
.clear();
3957 bool RegisterCoalescer::
3958 copyCoalesceWorkList(MutableArrayRef
<MachineInstr
*> CurrList
) {
3959 bool Progress
= false;
3960 for (MachineInstr
*&MI
: CurrList
) {
3963 // Skip instruction pointers that have already been erased, for example by
3964 // dead code elimination.
3965 if (ErasedInstrs
.count(MI
)) {
3970 bool Success
= joinCopy(MI
, Again
);
3971 Progress
|= Success
;
3972 if (Success
|| !Again
)
3978 /// Check if DstReg is a terminal node.
3979 /// I.e., it does not have any affinity other than \p Copy.
3980 static bool isTerminalReg(Register DstReg
, const MachineInstr
&Copy
,
3981 const MachineRegisterInfo
*MRI
) {
3982 assert(Copy
.isCopyLike());
3983 // Check if the destination of this copy as any other affinity.
3984 for (const MachineInstr
&MI
: MRI
->reg_nodbg_instructions(DstReg
))
3985 if (&MI
!= &Copy
&& MI
.isCopyLike())
3990 bool RegisterCoalescer::applyTerminalRule(const MachineInstr
&Copy
) const {
3991 assert(Copy
.isCopyLike());
3992 if (!UseTerminalRule
)
3994 Register SrcReg
, DstReg
;
3995 unsigned SrcSubReg
= 0, DstSubReg
= 0;
3996 if (!isMoveInstr(*TRI
, &Copy
, SrcReg
, DstReg
, SrcSubReg
, DstSubReg
))
3998 // Check if the destination of this copy has any other affinity.
3999 if (DstReg
.isPhysical() ||
4000 // If SrcReg is a physical register, the copy won't be coalesced.
4001 // Ignoring it may have other side effect (like missing
4002 // rematerialization). So keep it.
4003 SrcReg
.isPhysical() || !isTerminalReg(DstReg
, Copy
, MRI
))
4006 // DstReg is a terminal node. Check if it interferes with any other
4007 // copy involving SrcReg.
4008 const MachineBasicBlock
*OrigBB
= Copy
.getParent();
4009 const LiveInterval
&DstLI
= LIS
->getInterval(DstReg
);
4010 for (const MachineInstr
&MI
: MRI
->reg_nodbg_instructions(SrcReg
)) {
4011 // Technically we should check if the weight of the new copy is
4012 // interesting compared to the other one and update the weight
4013 // of the copies accordingly. However, this would only work if
4014 // we would gather all the copies first then coalesce, whereas
4015 // right now we interleave both actions.
4016 // For now, just consider the copies that are in the same block.
4017 if (&MI
== &Copy
|| !MI
.isCopyLike() || MI
.getParent() != OrigBB
)
4019 Register OtherSrcReg
, OtherReg
;
4020 unsigned OtherSrcSubReg
= 0, OtherSubReg
= 0;
4021 if (!isMoveInstr(*TRI
, &Copy
, OtherSrcReg
, OtherReg
, OtherSrcSubReg
,
4024 if (OtherReg
== SrcReg
)
4025 OtherReg
= OtherSrcReg
;
4026 // Check if OtherReg is a non-terminal.
4027 if (OtherReg
.isPhysical() || isTerminalReg(OtherReg
, MI
, MRI
))
4029 // Check that OtherReg interfere with DstReg.
4030 if (LIS
->getInterval(OtherReg
).overlaps(DstLI
)) {
4031 LLVM_DEBUG(dbgs() << "Apply terminal rule for: " << printReg(DstReg
)
4040 RegisterCoalescer::copyCoalesceInMBB(MachineBasicBlock
*MBB
) {
4041 LLVM_DEBUG(dbgs() << MBB
->getName() << ":\n");
4043 // Collect all copy-like instructions in MBB. Don't start coalescing anything
4044 // yet, it might invalidate the iterator.
4045 const unsigned PrevSize
= WorkList
.size();
4046 if (JoinGlobalCopies
) {
4047 SmallVector
<MachineInstr
*, 2> LocalTerminals
;
4048 SmallVector
<MachineInstr
*, 2> GlobalTerminals
;
4049 // Coalesce copies bottom-up to coalesce local defs before local uses. They
4050 // are not inherently easier to resolve, but slightly preferable until we
4051 // have local live range splitting. In particular this is required by
4052 // cmp+jmp macro fusion.
4053 for (MachineInstr
&MI
: *MBB
) {
4054 if (!MI
.isCopyLike())
4056 bool ApplyTerminalRule
= applyTerminalRule(MI
);
4057 if (isLocalCopy(&MI
, LIS
)) {
4058 if (ApplyTerminalRule
)
4059 LocalTerminals
.push_back(&MI
);
4061 LocalWorkList
.push_back(&MI
);
4063 if (ApplyTerminalRule
)
4064 GlobalTerminals
.push_back(&MI
);
4066 WorkList
.push_back(&MI
);
4069 // Append the copies evicted by the terminal rule at the end of the list.
4070 LocalWorkList
.append(LocalTerminals
.begin(), LocalTerminals
.end());
4071 WorkList
.append(GlobalTerminals
.begin(), GlobalTerminals
.end());
4074 SmallVector
<MachineInstr
*, 2> Terminals
;
4075 for (MachineInstr
&MII
: *MBB
)
4076 if (MII
.isCopyLike()) {
4077 if (applyTerminalRule(MII
))
4078 Terminals
.push_back(&MII
);
4080 WorkList
.push_back(&MII
);
4082 // Append the copies evicted by the terminal rule at the end of the list.
4083 WorkList
.append(Terminals
.begin(), Terminals
.end());
4085 // Try coalescing the collected copies immediately, and remove the nulls.
4086 // This prevents the WorkList from getting too large since most copies are
4087 // joinable on the first attempt.
4088 MutableArrayRef
<MachineInstr
*>
4089 CurrList(WorkList
.begin() + PrevSize
, WorkList
.end());
4090 if (copyCoalesceWorkList(CurrList
))
4091 WorkList
.erase(std::remove(WorkList
.begin() + PrevSize
, WorkList
.end(),
4092 nullptr), WorkList
.end());
4095 void RegisterCoalescer::coalesceLocals() {
4096 copyCoalesceWorkList(LocalWorkList
);
4097 for (unsigned j
= 0, je
= LocalWorkList
.size(); j
!= je
; ++j
) {
4098 if (LocalWorkList
[j
])
4099 WorkList
.push_back(LocalWorkList
[j
]);
4101 LocalWorkList
.clear();
4104 void RegisterCoalescer::joinAllIntervals() {
4105 LLVM_DEBUG(dbgs() << "********** JOINING INTERVALS ***********\n");
4106 assert(WorkList
.empty() && LocalWorkList
.empty() && "Old data still around.");
4108 std::vector
<MBBPriorityInfo
> MBBs
;
4109 MBBs
.reserve(MF
->size());
4110 for (MachineBasicBlock
&MBB
: *MF
) {
4111 MBBs
.push_back(MBBPriorityInfo(&MBB
, Loops
->getLoopDepth(&MBB
),
4112 JoinSplitEdges
&& isSplitEdge(&MBB
)));
4114 array_pod_sort(MBBs
.begin(), MBBs
.end(), compareMBBPriority
);
4116 // Coalesce intervals in MBB priority order.
4117 unsigned CurrDepth
= std::numeric_limits
<unsigned>::max();
4118 for (MBBPriorityInfo
&MBB
: MBBs
) {
4119 // Try coalescing the collected local copies for deeper loops.
4120 if (JoinGlobalCopies
&& MBB
.Depth
< CurrDepth
) {
4122 CurrDepth
= MBB
.Depth
;
4124 copyCoalesceInMBB(MBB
.MBB
);
4126 lateLiveIntervalUpdate();
4129 // Joining intervals can allow other intervals to be joined. Iteratively join
4130 // until we make no progress.
4131 while (copyCoalesceWorkList(WorkList
))
4133 lateLiveIntervalUpdate();
4136 void RegisterCoalescer::releaseMemory() {
4137 ErasedInstrs
.clear();
4140 InflateRegs
.clear();
4141 LargeLIVisitCounter
.clear();
4144 bool RegisterCoalescer::runOnMachineFunction(MachineFunction
&fn
) {
4145 LLVM_DEBUG(dbgs() << "********** REGISTER COALESCER **********\n"
4146 << "********** Function: " << fn
.getName() << '\n');
4148 // Variables changed between a setjmp and a longjump can have undefined value
4149 // after the longjmp. This behaviour can be observed if such a variable is
4150 // spilled, so longjmp won't restore the value in the spill slot.
4151 // RegisterCoalescer should not run in functions with a setjmp to avoid
4152 // merging such undefined variables with predictable ones.
4154 // TODO: Could specifically disable coalescing registers live across setjmp
4156 if (fn
.exposesReturnsTwice()) {
4158 dbgs() << "* Skipped as it exposes functions that returns twice.\n");
4163 MRI
= &fn
.getRegInfo();
4164 const TargetSubtargetInfo
&STI
= fn
.getSubtarget();
4165 TRI
= STI
.getRegisterInfo();
4166 TII
= STI
.getInstrInfo();
4167 LIS
= &getAnalysis
<LiveIntervals
>();
4168 AA
= &getAnalysis
<AAResultsWrapperPass
>().getAAResults();
4169 Loops
= &getAnalysis
<MachineLoopInfo
>();
4170 if (EnableGlobalCopies
== cl::BOU_UNSET
)
4171 JoinGlobalCopies
= STI
.enableJoinGlobalCopies();
4173 JoinGlobalCopies
= (EnableGlobalCopies
== cl::BOU_TRUE
);
4175 // If there are PHIs tracked by debug-info, they will need updating during
4176 // coalescing. Build an index of those PHIs to ease updating.
4177 SlotIndexes
*Slots
= LIS
->getSlotIndexes();
4178 for (const auto &DebugPHI
: MF
->DebugPHIPositions
) {
4179 MachineBasicBlock
*MBB
= DebugPHI
.second
.MBB
;
4180 Register Reg
= DebugPHI
.second
.Reg
;
4181 unsigned SubReg
= DebugPHI
.second
.SubReg
;
4182 SlotIndex SI
= Slots
->getMBBStartIdx(MBB
);
4183 PHIValPos P
= {SI
, Reg
, SubReg
};
4184 PHIValToPos
.insert(std::make_pair(DebugPHI
.first
, P
));
4185 RegToPHIIdx
[Reg
].push_back(DebugPHI
.first
);
4188 // The MachineScheduler does not currently require JoinSplitEdges. This will
4189 // either be enabled unconditionally or replaced by a more general live range
4190 // splitting optimization.
4191 JoinSplitEdges
= EnableJoinSplits
;
4193 if (VerifyCoalescing
)
4194 MF
->verify(this, "Before register coalescing");
4196 DbgVRegToValues
.clear();
4197 buildVRegToDbgValueMap(fn
);
4199 RegClassInfo
.runOnMachineFunction(fn
);
4201 // Join (coalesce) intervals if requested.
4205 // After deleting a lot of copies, register classes may be less constrained.
4206 // Removing sub-register operands may allow GR32_ABCD -> GR32 and DPR_VFP2 ->
4208 array_pod_sort(InflateRegs
.begin(), InflateRegs
.end());
4209 InflateRegs
.erase(std::unique(InflateRegs
.begin(), InflateRegs
.end()),
4211 LLVM_DEBUG(dbgs() << "Trying to inflate " << InflateRegs
.size()
4213 for (unsigned i
= 0, e
= InflateRegs
.size(); i
!= e
; ++i
) {
4214 Register Reg
= InflateRegs
[i
];
4215 if (MRI
->reg_nodbg_empty(Reg
))
4217 if (MRI
->recomputeRegClass(Reg
)) {
4218 LLVM_DEBUG(dbgs() << printReg(Reg
) << " inflated to "
4219 << TRI
->getRegClassName(MRI
->getRegClass(Reg
)) << '\n');
4222 LiveInterval
&LI
= LIS
->getInterval(Reg
);
4223 if (LI
.hasSubRanges()) {
4224 // If the inflated register class does not support subregisters anymore
4225 // remove the subranges.
4226 if (!MRI
->shouldTrackSubRegLiveness(Reg
)) {
4227 LI
.clearSubRanges();
4230 LaneBitmask MaxMask
= MRI
->getMaxLaneMaskForVReg(Reg
);
4231 // If subranges are still supported, then the same subregs
4232 // should still be supported.
4233 for (LiveInterval::SubRange
&S
: LI
.subranges()) {
4234 assert((S
.LaneMask
& ~MaxMask
).none());
4242 // After coalescing, update any PHIs that are being tracked by debug-info
4243 // with their new VReg locations.
4244 for (auto &p
: MF
->DebugPHIPositions
) {
4245 auto it
= PHIValToPos
.find(p
.first
);
4246 assert(it
!= PHIValToPos
.end());
4247 p
.second
.Reg
= it
->second
.Reg
;
4248 p
.second
.SubReg
= it
->second
.SubReg
;
4251 PHIValToPos
.clear();
4252 RegToPHIIdx
.clear();
4255 if (VerifyCoalescing
)
4256 MF
->verify(this, "After register coalescing");
4260 void RegisterCoalescer::print(raw_ostream
&O
, const Module
* m
) const {