1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass converts selects to conditional jumps when profitable.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/BlockFrequencyInfo.h"
16 #include "llvm/Analysis/BranchProbabilityInfo.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
19 #include "llvm/Analysis/ProfileSummaryInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSchedule.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ProfDataUtils.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/ScaledNumber.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Transforms/Utils/SizeOpts.h"
46 #define DEBUG_TYPE "select-optimize"
48 STATISTIC(NumSelectOptAnalyzed
,
49 "Number of select groups considered for conversion to branch");
50 STATISTIC(NumSelectConvertedExpColdOperand
,
51 "Number of select groups converted due to expensive cold operand");
52 STATISTIC(NumSelectConvertedHighPred
,
53 "Number of select groups converted due to high-predictability");
54 STATISTIC(NumSelectUnPred
,
55 "Number of select groups not converted due to unpredictability");
56 STATISTIC(NumSelectColdBB
,
57 "Number of select groups not converted due to cold basic block");
58 STATISTIC(NumSelectConvertedLoop
,
59 "Number of select groups converted due to loop-level analysis");
60 STATISTIC(NumSelectsConverted
, "Number of selects converted");
62 static cl::opt
<unsigned> ColdOperandThreshold(
63 "cold-operand-threshold",
64 cl::desc("Maximum frequency of path for an operand to be considered cold."),
65 cl::init(20), cl::Hidden
);
67 static cl::opt
<unsigned> ColdOperandMaxCostMultiplier(
68 "cold-operand-max-cost-multiplier",
69 cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
70 "slice of a cold operand to be considered inexpensive."),
71 cl::init(1), cl::Hidden
);
73 static cl::opt
<unsigned>
74 GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
75 cl::desc("Gradient gain threshold (%)."),
76 cl::init(25), cl::Hidden
);
78 static cl::opt
<unsigned>
79 GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
80 cl::desc("Minimum gain per loop (in cycles) threshold."),
81 cl::init(4), cl::Hidden
);
83 static cl::opt
<unsigned> GainRelativeThreshold(
84 "select-opti-loop-relative-gain-threshold",
86 "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
87 cl::init(8), cl::Hidden
);
89 static cl::opt
<unsigned> MispredictDefaultRate(
90 "mispredict-default-rate", cl::Hidden
, cl::init(25),
91 cl::desc("Default mispredict rate (initialized to 25%)."));
94 DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden
,
96 cl::desc("Disable loop-level heuristics."));
100 class SelectOptimize
: public FunctionPass
{
101 const TargetMachine
*TM
= nullptr;
102 const TargetSubtargetInfo
*TSI
= nullptr;
103 const TargetLowering
*TLI
= nullptr;
104 const TargetTransformInfo
*TTI
= nullptr;
105 const LoopInfo
*LI
= nullptr;
106 DominatorTree
*DT
= nullptr;
107 std::unique_ptr
<BlockFrequencyInfo
> BFI
;
108 std::unique_ptr
<BranchProbabilityInfo
> BPI
;
109 ProfileSummaryInfo
*PSI
= nullptr;
110 OptimizationRemarkEmitter
*ORE
= nullptr;
111 TargetSchedModel TSchedModel
;
116 SelectOptimize() : FunctionPass(ID
) {
117 initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
120 bool runOnFunction(Function
&F
) override
;
122 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
123 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
124 AU
.addRequired
<TargetPassConfig
>();
125 AU
.addRequired
<TargetTransformInfoWrapperPass
>();
126 AU
.addRequired
<DominatorTreeWrapperPass
>();
127 AU
.addRequired
<LoopInfoWrapperPass
>();
128 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
132 // Select groups consist of consecutive select instructions with the same
134 using SelectGroup
= SmallVector
<SelectInst
*, 2>;
135 using SelectGroups
= SmallVector
<SelectGroup
, 2>;
137 using Scaled64
= ScaledNumber
<uint64_t>;
140 /// Predicated cost (with selects as conditional moves).
142 /// Non-predicated cost (with selects converted to branches).
143 Scaled64 NonPredCost
;
146 // Converts select instructions of a function to conditional jumps when deemed
147 // profitable. Returns true if at least one select was converted.
148 bool optimizeSelects(Function
&F
);
150 // Heuristics for determining which select instructions can be profitably
151 // conveted to branches. Separate heuristics for selects in inner-most loops
152 // and the rest of code regions (base heuristics for non-inner-most loop
154 void optimizeSelectsBase(Function
&F
, SelectGroups
&ProfSIGroups
);
155 void optimizeSelectsInnerLoops(Function
&F
, SelectGroups
&ProfSIGroups
);
157 // Converts to branches the select groups that were deemed
158 // profitable-to-convert.
159 void convertProfitableSIGroups(SelectGroups
&ProfSIGroups
);
161 // Splits selects of a given basic block into select groups.
162 void collectSelectGroups(BasicBlock
&BB
, SelectGroups
&SIGroups
);
164 // Determines for which select groups it is profitable converting to branches
165 // (base and inner-most-loop heuristics).
166 void findProfitableSIGroupsBase(SelectGroups
&SIGroups
,
167 SelectGroups
&ProfSIGroups
);
168 void findProfitableSIGroupsInnerLoops(const Loop
*L
, SelectGroups
&SIGroups
,
169 SelectGroups
&ProfSIGroups
);
171 // Determines if a select group should be converted to a branch (base
173 bool isConvertToBranchProfitableBase(const SmallVector
<SelectInst
*, 2> &ASI
);
175 // Returns true if there are expensive instructions in the cold value
176 // operand's (if any) dependence slice of any of the selects of the given
178 bool hasExpensiveColdOperand(const SmallVector
<SelectInst
*, 2> &ASI
);
180 // For a given source instruction, collect its backwards dependence slice
181 // consisting of instructions exclusively computed for producing the operands
182 // of the source instruction.
183 void getExclBackwardsSlice(Instruction
*I
, std::stack
<Instruction
*> &Slice
,
184 Instruction
*SI
, bool ForSinking
= false);
186 // Returns true if the condition of the select is highly predictable.
187 bool isSelectHighlyPredictable(const SelectInst
*SI
);
189 // Loop-level checks to determine if a non-predicated version (with branches)
190 // of the given loop is more profitable than its predicated version.
191 bool checkLoopHeuristics(const Loop
*L
, const CostInfo LoopDepth
[2]);
193 // Computes instruction and loop-critical-path costs for both the predicated
194 // and non-predicated version of the given loop.
195 bool computeLoopCosts(const Loop
*L
, const SelectGroups
&SIGroups
,
196 DenseMap
<const Instruction
*, CostInfo
> &InstCostMap
,
199 // Returns a set of all the select instructions in the given select groups.
200 SmallPtrSet
<const Instruction
*, 2> getSIset(const SelectGroups
&SIGroups
);
202 // Returns the latency cost of a given instruction.
203 std::optional
<uint64_t> computeInstCost(const Instruction
*I
);
205 // Returns the misprediction cost of a given select when converted to branch.
206 Scaled64
getMispredictionCost(const SelectInst
*SI
, const Scaled64 CondCost
);
208 // Returns the cost of a branch when the prediction is correct.
209 Scaled64
getPredictedPathCost(Scaled64 TrueCost
, Scaled64 FalseCost
,
210 const SelectInst
*SI
);
212 // Returns true if the target architecture supports lowering a given select.
213 bool isSelectKindSupported(SelectInst
*SI
);
217 char SelectOptimize::ID
= 0;
219 INITIALIZE_PASS_BEGIN(SelectOptimize
, DEBUG_TYPE
, "Optimize selects", false,
221 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
222 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
223 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
224 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig
)
225 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass
)
226 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
227 INITIALIZE_PASS_END(SelectOptimize
, DEBUG_TYPE
, "Optimize selects", false,
230 FunctionPass
*llvm::createSelectOptimizePass() { return new SelectOptimize(); }
232 bool SelectOptimize::runOnFunction(Function
&F
) {
233 TM
= &getAnalysis
<TargetPassConfig
>().getTM
<TargetMachine
>();
234 TSI
= TM
->getSubtargetImpl(F
);
235 TLI
= TSI
->getTargetLowering();
237 // If none of the select types is supported then skip this pass.
238 // This is an optimization pass. Legality issues will be handled by
239 // instruction selection.
240 if (!TLI
->isSelectSupported(TargetLowering::ScalarValSelect
) &&
241 !TLI
->isSelectSupported(TargetLowering::ScalarCondVectorVal
) &&
242 !TLI
->isSelectSupported(TargetLowering::VectorMaskSelect
))
245 TTI
= &getAnalysis
<TargetTransformInfoWrapperPass
>().getTTI(F
);
247 if (!TTI
->enableSelectOptimize())
250 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
251 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
252 BPI
.reset(new BranchProbabilityInfo(F
, *LI
));
253 BFI
.reset(new BlockFrequencyInfo(F
, *BPI
, *LI
));
254 PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
255 ORE
= &getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
256 TSchedModel
.init(TSI
);
258 // When optimizing for size, selects are preferable over branches.
259 if (F
.hasOptSize() || llvm::shouldOptimizeForSize(&F
, PSI
, BFI
.get()))
262 return optimizeSelects(F
);
265 bool SelectOptimize::optimizeSelects(Function
&F
) {
266 // Determine for which select groups it is profitable converting to branches.
267 SelectGroups ProfSIGroups
;
268 // Base heuristics apply only to non-loops and outer loops.
269 optimizeSelectsBase(F
, ProfSIGroups
);
270 // Separate heuristics for inner-most loops.
271 optimizeSelectsInnerLoops(F
, ProfSIGroups
);
273 // Convert to branches the select groups that were deemed
274 // profitable-to-convert.
275 convertProfitableSIGroups(ProfSIGroups
);
277 // Code modified if at least one select group was converted.
278 return !ProfSIGroups
.empty();
281 void SelectOptimize::optimizeSelectsBase(Function
&F
,
282 SelectGroups
&ProfSIGroups
) {
283 // Collect all the select groups.
284 SelectGroups SIGroups
;
285 for (BasicBlock
&BB
: F
) {
286 // Base heuristics apply only to non-loops and outer loops.
287 Loop
*L
= LI
->getLoopFor(&BB
);
288 if (L
&& L
->isInnermost())
290 collectSelectGroups(BB
, SIGroups
);
293 // Determine for which select groups it is profitable converting to branches.
294 findProfitableSIGroupsBase(SIGroups
, ProfSIGroups
);
297 void SelectOptimize::optimizeSelectsInnerLoops(Function
&F
,
298 SelectGroups
&ProfSIGroups
) {
299 SmallVector
<Loop
*, 4> Loops(LI
->begin(), LI
->end());
300 // Need to check size on each iteration as we accumulate child loops.
301 for (unsigned long i
= 0; i
< Loops
.size(); ++i
)
302 for (Loop
*ChildL
: Loops
[i
]->getSubLoops())
303 Loops
.push_back(ChildL
);
305 for (Loop
*L
: Loops
) {
306 if (!L
->isInnermost())
309 SelectGroups SIGroups
;
310 for (BasicBlock
*BB
: L
->getBlocks())
311 collectSelectGroups(*BB
, SIGroups
);
313 findProfitableSIGroupsInnerLoops(L
, SIGroups
, ProfSIGroups
);
317 /// If \p isTrue is true, return the true value of \p SI, otherwise return
318 /// false value of \p SI. If the true/false value of \p SI is defined by any
319 /// select instructions in \p Selects, look through the defining select
320 /// instruction until the true/false value is not defined in \p Selects.
322 getTrueOrFalseValue(SelectInst
*SI
, bool isTrue
,
323 const SmallPtrSet
<const Instruction
*, 2> &Selects
) {
325 for (SelectInst
*DefSI
= SI
; DefSI
!= nullptr && Selects
.count(DefSI
);
326 DefSI
= dyn_cast
<SelectInst
>(V
)) {
327 assert(DefSI
->getCondition() == SI
->getCondition() &&
328 "The condition of DefSI does not match with SI");
329 V
= (isTrue
? DefSI
->getTrueValue() : DefSI
->getFalseValue());
331 assert(V
&& "Failed to get select true/false value");
335 void SelectOptimize::convertProfitableSIGroups(SelectGroups
&ProfSIGroups
) {
336 for (SelectGroup
&ASI
: ProfSIGroups
) {
337 // The code transformation here is a modified version of the sinking
338 // transformation in CodeGenPrepare::optimizeSelectInst with a more
339 // aggressive strategy of which instructions to sink.
341 // TODO: eliminate the redundancy of logic transforming selects to branches
342 // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
343 // selects for all cases (with and without profile information).
345 // Transform a sequence like this:
347 // %cmp = cmp uge i32 %a, %b
348 // %sel = select i1 %cmp, i32 %c, i32 %d
352 // %cmp = cmp uge i32 %a, %b
353 // %cmp.frozen = freeze %cmp
354 // br i1 %cmp.frozen, label %select.true, label %select.false
356 // br label %select.end
358 // br label %select.end
360 // %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
362 // %cmp should be frozen, otherwise it may introduce undefined behavior.
363 // In addition, we may sink instructions that produce %c or %d into the
364 // destination(s) of the new branch.
365 // If the true or false blocks do not contain a sunken instruction, that
366 // block and its branch may be optimized away. In that case, one side of the
367 // first branch will point directly to select.end, and the corresponding PHI
368 // predecessor block will be the start block.
370 // Find all the instructions that can be soundly sunk to the true/false
371 // blocks. These are instructions that are computed solely for producing the
372 // operands of the select instructions in the group and can be sunk without
373 // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
374 // with side effects).
375 SmallVector
<std::stack
<Instruction
*>, 2> TrueSlices
, FalseSlices
;
376 typedef std::stack
<Instruction
*>::size_type StackSizeType
;
377 StackSizeType maxTrueSliceLen
= 0, maxFalseSliceLen
= 0;
378 for (SelectInst
*SI
: ASI
) {
379 // For each select, compute the sinkable dependence chains of the true and
381 if (auto *TI
= dyn_cast
<Instruction
>(SI
->getTrueValue())) {
382 std::stack
<Instruction
*> TrueSlice
;
383 getExclBackwardsSlice(TI
, TrueSlice
, SI
, true);
384 maxTrueSliceLen
= std::max(maxTrueSliceLen
, TrueSlice
.size());
385 TrueSlices
.push_back(TrueSlice
);
387 if (auto *FI
= dyn_cast
<Instruction
>(SI
->getFalseValue())) {
388 std::stack
<Instruction
*> FalseSlice
;
389 getExclBackwardsSlice(FI
, FalseSlice
, SI
, true);
390 maxFalseSliceLen
= std::max(maxFalseSliceLen
, FalseSlice
.size());
391 FalseSlices
.push_back(FalseSlice
);
394 // In the case of multiple select instructions in the same group, the order
395 // of non-dependent instructions (instructions of different dependence
396 // slices) in the true/false blocks appears to affect performance.
397 // Interleaving the slices seems to experimentally be the optimal approach.
398 // This interleaving scheduling allows for more ILP (with a natural downside
399 // of increasing a bit register pressure) compared to a simple ordering of
400 // one whole chain after another. One would expect that this ordering would
401 // not matter since the scheduling in the backend of the compiler would
402 // take care of it, but apparently the scheduler fails to deliver optimal
403 // ILP with a naive ordering here.
404 SmallVector
<Instruction
*, 2> TrueSlicesInterleaved
, FalseSlicesInterleaved
;
405 for (StackSizeType IS
= 0; IS
< maxTrueSliceLen
; ++IS
) {
406 for (auto &S
: TrueSlices
) {
408 TrueSlicesInterleaved
.push_back(S
.top());
413 for (StackSizeType IS
= 0; IS
< maxFalseSliceLen
; ++IS
) {
414 for (auto &S
: FalseSlices
) {
416 FalseSlicesInterleaved
.push_back(S
.top());
422 // We split the block containing the select(s) into two blocks.
423 SelectInst
*SI
= ASI
.front();
424 SelectInst
*LastSI
= ASI
.back();
425 BasicBlock
*StartBlock
= SI
->getParent();
426 BasicBlock::iterator SplitPt
= ++(BasicBlock::iterator(LastSI
));
427 BasicBlock
*EndBlock
= StartBlock
->splitBasicBlock(SplitPt
, "select.end");
428 BFI
->setBlockFreq(EndBlock
, BFI
->getBlockFreq(StartBlock
));
429 // Delete the unconditional branch that was just created by the split.
430 StartBlock
->getTerminator()->eraseFromParent();
432 // Move any debug/pseudo instructions that were in-between the select
433 // group to the newly-created end block.
434 SmallVector
<Instruction
*, 2> DebugPseudoINS
;
435 auto DIt
= SI
->getIterator();
436 while (&*DIt
!= LastSI
) {
437 if (DIt
->isDebugOrPseudoInst())
438 DebugPseudoINS
.push_back(&*DIt
);
441 for (auto *DI
: DebugPseudoINS
) {
442 DI
->moveBeforePreserving(&*EndBlock
->getFirstInsertionPt());
445 // These are the new basic blocks for the conditional branch.
446 // At least one will become an actual new basic block.
447 BasicBlock
*TrueBlock
= nullptr, *FalseBlock
= nullptr;
448 BranchInst
*TrueBranch
= nullptr, *FalseBranch
= nullptr;
449 if (!TrueSlicesInterleaved
.empty()) {
450 TrueBlock
= BasicBlock::Create(LastSI
->getContext(), "select.true.sink",
451 EndBlock
->getParent(), EndBlock
);
452 TrueBranch
= BranchInst::Create(EndBlock
, TrueBlock
);
453 TrueBranch
->setDebugLoc(LastSI
->getDebugLoc());
454 for (Instruction
*TrueInst
: TrueSlicesInterleaved
)
455 TrueInst
->moveBefore(TrueBranch
);
457 if (!FalseSlicesInterleaved
.empty()) {
458 FalseBlock
= BasicBlock::Create(LastSI
->getContext(), "select.false.sink",
459 EndBlock
->getParent(), EndBlock
);
460 FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
461 FalseBranch
->setDebugLoc(LastSI
->getDebugLoc());
462 for (Instruction
*FalseInst
: FalseSlicesInterleaved
)
463 FalseInst
->moveBefore(FalseBranch
);
465 // If there was nothing to sink, then arbitrarily choose the 'false' side
466 // for a new input value to the PHI.
467 if (TrueBlock
== FalseBlock
) {
468 assert(TrueBlock
== nullptr &&
469 "Unexpected basic block transform while optimizing select");
471 FalseBlock
= BasicBlock::Create(SI
->getContext(), "select.false",
472 EndBlock
->getParent(), EndBlock
);
473 auto *FalseBranch
= BranchInst::Create(EndBlock
, FalseBlock
);
474 FalseBranch
->setDebugLoc(SI
->getDebugLoc());
477 // Insert the real conditional branch based on the original condition.
478 // If we did not create a new block for one of the 'true' or 'false' paths
479 // of the condition, it means that side of the branch goes to the end block
480 // directly and the path originates from the start block from the point of
481 // view of the new PHI.
483 if (TrueBlock
== nullptr) {
486 TrueBlock
= StartBlock
;
487 } else if (FalseBlock
== nullptr) {
490 FalseBlock
= StartBlock
;
497 IB
.CreateFreeze(SI
->getCondition(), SI
->getName() + ".frozen");
498 IB
.CreateCondBr(CondFr
, TT
, FT
, SI
);
500 SmallPtrSet
<const Instruction
*, 2> INS
;
501 INS
.insert(ASI
.begin(), ASI
.end());
502 // Use reverse iterator because later select may use the value of the
503 // earlier select, and we need to propagate value through earlier select
504 // to get the PHI operand.
505 for (auto It
= ASI
.rbegin(); It
!= ASI
.rend(); ++It
) {
506 SelectInst
*SI
= *It
;
507 // The select itself is replaced with a PHI Node.
508 PHINode
*PN
= PHINode::Create(SI
->getType(), 2, "");
509 PN
->insertBefore(EndBlock
->begin());
511 PN
->addIncoming(getTrueOrFalseValue(SI
, true, INS
), TrueBlock
);
512 PN
->addIncoming(getTrueOrFalseValue(SI
, false, INS
), FalseBlock
);
513 PN
->setDebugLoc(SI
->getDebugLoc());
515 SI
->replaceAllUsesWith(PN
);
516 SI
->eraseFromParent();
518 ++NumSelectsConverted
;
523 static bool isSpecialSelect(SelectInst
*SI
) {
524 using namespace llvm::PatternMatch
;
526 // If the select is a logical-and/logical-or then it is better treated as a
527 // and/or by the backend.
528 if (match(SI
, m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
529 m_LogicalOr(m_Value(), m_Value()))))
535 void SelectOptimize::collectSelectGroups(BasicBlock
&BB
,
536 SelectGroups
&SIGroups
) {
537 BasicBlock::iterator BBIt
= BB
.begin();
538 while (BBIt
!= BB
.end()) {
539 Instruction
*I
= &*BBIt
++;
540 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(I
)) {
541 if (isSpecialSelect(SI
))
545 SIGroup
.push_back(SI
);
546 while (BBIt
!= BB
.end()) {
547 Instruction
*NI
= &*BBIt
;
548 SelectInst
*NSI
= dyn_cast
<SelectInst
>(NI
);
549 if (NSI
&& SI
->getCondition() == NSI
->getCondition()) {
550 SIGroup
.push_back(NSI
);
551 } else if (!NI
->isDebugOrPseudoInst()) {
552 // Debug/pseudo instructions should be skipped and not prevent the
553 // formation of a select group.
559 // If the select type is not supported, no point optimizing it.
560 // Instruction selection will take care of it.
561 if (!isSelectKindSupported(SI
))
564 SIGroups
.push_back(SIGroup
);
569 void SelectOptimize::findProfitableSIGroupsBase(SelectGroups
&SIGroups
,
570 SelectGroups
&ProfSIGroups
) {
571 for (SelectGroup
&ASI
: SIGroups
) {
572 ++NumSelectOptAnalyzed
;
573 if (isConvertToBranchProfitableBase(ASI
))
574 ProfSIGroups
.push_back(ASI
);
578 static void EmitAndPrintRemark(OptimizationRemarkEmitter
*ORE
,
579 DiagnosticInfoOptimizationBase
&Rem
) {
580 LLVM_DEBUG(dbgs() << Rem
.getMsg() << "\n");
584 void SelectOptimize::findProfitableSIGroupsInnerLoops(
585 const Loop
*L
, SelectGroups
&SIGroups
, SelectGroups
&ProfSIGroups
) {
586 NumSelectOptAnalyzed
+= SIGroups
.size();
587 // For each select group in an inner-most loop,
588 // a branch is more preferable than a select/conditional-move if:
589 // i) conversion to branches for all the select groups of the loop satisfies
590 // loop-level heuristics including reducing the loop's critical path by
591 // some threshold (see SelectOptimize::checkLoopHeuristics); and
592 // ii) the total cost of the select group is cheaper with a branch compared
593 // to its predicated version. The cost is in terms of latency and the cost
594 // of a select group is the cost of its most expensive select instruction
595 // (assuming infinite resources and thus fully leveraging available ILP).
597 DenseMap
<const Instruction
*, CostInfo
> InstCostMap
;
598 CostInfo LoopCost
[2] = {{Scaled64::getZero(), Scaled64::getZero()},
599 {Scaled64::getZero(), Scaled64::getZero()}};
600 if (!computeLoopCosts(L
, SIGroups
, InstCostMap
, LoopCost
) ||
601 !checkLoopHeuristics(L
, LoopCost
)) {
605 for (SelectGroup
&ASI
: SIGroups
) {
606 // Assuming infinite resources, the cost of a group of instructions is the
607 // cost of the most expensive instruction of the group.
608 Scaled64 SelectCost
= Scaled64::getZero(), BranchCost
= Scaled64::getZero();
609 for (SelectInst
*SI
: ASI
) {
610 SelectCost
= std::max(SelectCost
, InstCostMap
[SI
].PredCost
);
611 BranchCost
= std::max(BranchCost
, InstCostMap
[SI
].NonPredCost
);
613 if (BranchCost
< SelectCost
) {
614 OptimizationRemark
OR(DEBUG_TYPE
, "SelectOpti", ASI
.front());
615 OR
<< "Profitable to convert to branch (loop analysis). BranchCost="
616 << BranchCost
.toString() << ", SelectCost=" << SelectCost
.toString()
618 EmitAndPrintRemark(ORE
, OR
);
619 ++NumSelectConvertedLoop
;
620 ProfSIGroups
.push_back(ASI
);
622 OptimizationRemarkMissed
ORmiss(DEBUG_TYPE
, "SelectOpti", ASI
.front());
623 ORmiss
<< "Select is more profitable (loop analysis). BranchCost="
624 << BranchCost
.toString()
625 << ", SelectCost=" << SelectCost
.toString() << ". ";
626 EmitAndPrintRemark(ORE
, ORmiss
);
631 bool SelectOptimize::isConvertToBranchProfitableBase(
632 const SmallVector
<SelectInst
*, 2> &ASI
) {
633 SelectInst
*SI
= ASI
.front();
634 LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI
<< "\n");
635 OptimizationRemark
OR(DEBUG_TYPE
, "SelectOpti", SI
);
636 OptimizationRemarkMissed
ORmiss(DEBUG_TYPE
, "SelectOpti", SI
);
638 // Skip cold basic blocks. Better to optimize for size for cold blocks.
639 if (PSI
->isColdBlock(SI
->getParent(), BFI
.get())) {
641 ORmiss
<< "Not converted to branch because of cold basic block. ";
642 EmitAndPrintRemark(ORE
, ORmiss
);
646 // If unpredictable, branch form is less profitable.
647 if (SI
->getMetadata(LLVMContext::MD_unpredictable
)) {
649 ORmiss
<< "Not converted to branch because of unpredictable branch. ";
650 EmitAndPrintRemark(ORE
, ORmiss
);
654 // If highly predictable, branch form is more profitable, unless a
655 // predictable select is inexpensive in the target architecture.
656 if (isSelectHighlyPredictable(SI
) && TLI
->isPredictableSelectExpensive()) {
657 ++NumSelectConvertedHighPred
;
658 OR
<< "Converted to branch because of highly predictable branch. ";
659 EmitAndPrintRemark(ORE
, OR
);
663 // Look for expensive instructions in the cold operand's (if any) dependence
664 // slice of any of the selects in the group.
665 if (hasExpensiveColdOperand(ASI
)) {
666 ++NumSelectConvertedExpColdOperand
;
667 OR
<< "Converted to branch because of expensive cold operand.";
668 EmitAndPrintRemark(ORE
, OR
);
672 ORmiss
<< "Not profitable to convert to branch (base heuristic).";
673 EmitAndPrintRemark(ORE
, ORmiss
);
677 static InstructionCost
divideNearest(InstructionCost Numerator
,
678 uint64_t Denominator
) {
679 return (Numerator
+ (Denominator
/ 2)) / Denominator
;
682 bool SelectOptimize::hasExpensiveColdOperand(
683 const SmallVector
<SelectInst
*, 2> &ASI
) {
684 bool ColdOperand
= false;
685 uint64_t TrueWeight
, FalseWeight
, TotalWeight
;
686 if (extractBranchWeights(*ASI
.front(), TrueWeight
, FalseWeight
)) {
687 uint64_t MinWeight
= std::min(TrueWeight
, FalseWeight
);
688 TotalWeight
= TrueWeight
+ FalseWeight
;
689 // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
690 ColdOperand
= TotalWeight
* ColdOperandThreshold
> 100 * MinWeight
;
691 } else if (PSI
->hasProfileSummary()) {
692 OptimizationRemarkMissed
ORmiss(DEBUG_TYPE
, "SelectOpti", ASI
.front());
693 ORmiss
<< "Profile data available but missing branch-weights metadata for "
694 "select instruction. ";
695 EmitAndPrintRemark(ORE
, ORmiss
);
699 // Check if the cold path's dependence slice is expensive for any of the
700 // selects of the group.
701 for (SelectInst
*SI
: ASI
) {
702 Instruction
*ColdI
= nullptr;
704 if (TrueWeight
< FalseWeight
) {
705 ColdI
= dyn_cast
<Instruction
>(SI
->getTrueValue());
706 HotWeight
= FalseWeight
;
708 ColdI
= dyn_cast
<Instruction
>(SI
->getFalseValue());
709 HotWeight
= TrueWeight
;
712 std::stack
<Instruction
*> ColdSlice
;
713 getExclBackwardsSlice(ColdI
, ColdSlice
, SI
);
714 InstructionCost SliceCost
= 0;
715 while (!ColdSlice
.empty()) {
716 SliceCost
+= TTI
->getInstructionCost(ColdSlice
.top(),
717 TargetTransformInfo::TCK_Latency
);
720 // The colder the cold value operand of the select is the more expensive
721 // the cmov becomes for computing the cold value operand every time. Thus,
722 // the colder the cold operand is the more its cost counts.
723 // Get nearest integer cost adjusted for coldness.
724 InstructionCost AdjSliceCost
=
725 divideNearest(SliceCost
* HotWeight
, TotalWeight
);
727 ColdOperandMaxCostMultiplier
* TargetTransformInfo::TCC_Expensive
)
734 // Check if it is safe to move LoadI next to the SI.
735 // Conservatively assume it is safe only if there is no instruction
736 // modifying memory in-between the load and the select instruction.
737 static bool isSafeToSinkLoad(Instruction
*LoadI
, Instruction
*SI
) {
738 // Assume loads from different basic blocks are unsafe to move.
739 if (LoadI
->getParent() != SI
->getParent())
741 auto It
= LoadI
->getIterator();
743 if (It
->mayWriteToMemory())
750 // For a given source instruction, collect its backwards dependence slice
751 // consisting of instructions exclusively computed for the purpose of producing
752 // the operands of the source instruction. As an approximation
753 // (sufficiently-accurate in practice), we populate this set with the
754 // instructions of the backwards dependence slice that only have one-use and
755 // form an one-use chain that leads to the source instruction.
756 void SelectOptimize::getExclBackwardsSlice(Instruction
*I
,
757 std::stack
<Instruction
*> &Slice
,
758 Instruction
*SI
, bool ForSinking
) {
759 SmallPtrSet
<Instruction
*, 2> Visited
;
760 std::queue
<Instruction
*> Worklist
;
762 while (!Worklist
.empty()) {
763 Instruction
*II
= Worklist
.front();
767 if (!Visited
.insert(II
).second
)
770 if (!II
->hasOneUse())
773 // Cannot soundly sink instructions with side-effects.
774 // Terminator or phi instructions cannot be sunk.
775 // Avoid sinking other select instructions (should be handled separetely).
776 if (ForSinking
&& (II
->isTerminator() || II
->mayHaveSideEffects() ||
777 isa
<SelectInst
>(II
) || isa
<PHINode
>(II
)))
780 // Avoid sinking loads in order not to skip state-modifying instructions,
781 // that may alias with the loaded address.
782 // Only allow sinking of loads within the same basic block that are
783 // conservatively proven to be safe.
784 if (ForSinking
&& II
->mayReadFromMemory() && !isSafeToSinkLoad(II
, SI
))
787 // Avoid considering instructions with less frequency than the source
788 // instruction (i.e., avoid colder code regions of the dependence slice).
789 if (BFI
->getBlockFreq(II
->getParent()) < BFI
->getBlockFreq(I
->getParent()))
792 // Eligible one-use instruction added to the dependence slice.
795 // Explore all the operands of the current instruction to expand the slice.
796 for (unsigned k
= 0; k
< II
->getNumOperands(); ++k
)
797 if (auto *OpI
= dyn_cast
<Instruction
>(II
->getOperand(k
)))
802 bool SelectOptimize::isSelectHighlyPredictable(const SelectInst
*SI
) {
803 uint64_t TrueWeight
, FalseWeight
;
804 if (extractBranchWeights(*SI
, TrueWeight
, FalseWeight
)) {
805 uint64_t Max
= std::max(TrueWeight
, FalseWeight
);
806 uint64_t Sum
= TrueWeight
+ FalseWeight
;
808 auto Probability
= BranchProbability::getBranchProbability(Max
, Sum
);
809 if (Probability
> TTI
->getPredictableBranchThreshold())
816 bool SelectOptimize::checkLoopHeuristics(const Loop
*L
,
817 const CostInfo LoopCost
[2]) {
818 // Loop-level checks to determine if a non-predicated version (with branches)
819 // of the loop is more profitable than its predicated version.
821 if (DisableLoopLevelHeuristics
)
824 OptimizationRemarkMissed
ORmissL(DEBUG_TYPE
, "SelectOpti",
825 L
->getHeader()->getFirstNonPHI());
827 if (LoopCost
[0].NonPredCost
> LoopCost
[0].PredCost
||
828 LoopCost
[1].NonPredCost
>= LoopCost
[1].PredCost
) {
829 ORmissL
<< "No select conversion in the loop due to no reduction of loop's "
831 EmitAndPrintRemark(ORE
, ORmissL
);
835 Scaled64 Gain
[2] = {LoopCost
[0].PredCost
- LoopCost
[0].NonPredCost
,
836 LoopCost
[1].PredCost
- LoopCost
[1].NonPredCost
};
838 // Profitably converting to branches need to reduce the loop's critical path
839 // by at least some threshold (absolute gain of GainCycleThreshold cycles and
840 // relative gain of 12.5%).
841 if (Gain
[1] < Scaled64::get(GainCycleThreshold
) ||
842 Gain
[1] * Scaled64::get(GainRelativeThreshold
) < LoopCost
[1].PredCost
) {
843 Scaled64 RelativeGain
= Scaled64::get(100) * Gain
[1] / LoopCost
[1].PredCost
;
844 ORmissL
<< "No select conversion in the loop due to small reduction of "
845 "loop's critical path. Gain="
846 << Gain
[1].toString()
847 << ", RelativeGain=" << RelativeGain
.toString() << "%. ";
848 EmitAndPrintRemark(ORE
, ORmissL
);
852 // If the loop's critical path involves loop-carried dependences, the gradient
853 // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
854 // This check ensures that the latency reduction for the loop's critical path
855 // keeps decreasing with sufficient rate beyond the two analyzed loop
857 if (Gain
[1] > Gain
[0]) {
858 Scaled64 GradientGain
= Scaled64::get(100) * (Gain
[1] - Gain
[0]) /
859 (LoopCost
[1].PredCost
- LoopCost
[0].PredCost
);
860 if (GradientGain
< Scaled64::get(GainGradientThreshold
)) {
861 ORmissL
<< "No select conversion in the loop due to small gradient gain. "
863 << GradientGain
.toString() << "%. ";
864 EmitAndPrintRemark(ORE
, ORmissL
);
868 // If the gain decreases it is not profitable to convert.
869 else if (Gain
[1] < Gain
[0]) {
871 << "No select conversion in the loop due to negative gradient gain. ";
872 EmitAndPrintRemark(ORE
, ORmissL
);
876 // Non-predicated version of the loop is more profitable than its
877 // predicated version.
881 // Computes instruction and loop-critical-path costs for both the predicated
882 // and non-predicated version of the given loop.
883 // Returns false if unable to compute these costs due to invalid cost of loop
885 bool SelectOptimize::computeLoopCosts(
886 const Loop
*L
, const SelectGroups
&SIGroups
,
887 DenseMap
<const Instruction
*, CostInfo
> &InstCostMap
, CostInfo
*LoopCost
) {
888 LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
889 << L
->getHeader()->getName() << "\n");
890 const auto &SIset
= getSIset(SIGroups
);
891 // Compute instruction and loop-critical-path costs across two iterations for
892 // both predicated and non-predicated version.
893 const unsigned Iterations
= 2;
894 for (unsigned Iter
= 0; Iter
< Iterations
; ++Iter
) {
895 // Cost of the loop's critical path.
896 CostInfo
&MaxCost
= LoopCost
[Iter
];
897 for (BasicBlock
*BB
: L
->getBlocks()) {
898 for (const Instruction
&I
: *BB
) {
899 if (I
.isDebugOrPseudoInst())
901 // Compute the predicated and non-predicated cost of the instruction.
902 Scaled64 IPredCost
= Scaled64::getZero(),
903 INonPredCost
= Scaled64::getZero();
905 // Assume infinite resources that allow to fully exploit the available
906 // instruction-level parallelism.
907 // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
908 for (const Use
&U
: I
.operands()) {
909 auto UI
= dyn_cast
<Instruction
>(U
.get());
912 if (InstCostMap
.count(UI
)) {
913 IPredCost
= std::max(IPredCost
, InstCostMap
[UI
].PredCost
);
914 INonPredCost
= std::max(INonPredCost
, InstCostMap
[UI
].NonPredCost
);
917 auto ILatency
= computeInstCost(&I
);
919 OptimizationRemarkMissed
ORmissL(DEBUG_TYPE
, "SelectOpti", &I
);
920 ORmissL
<< "Invalid instruction cost preventing analysis and "
921 "optimization of the inner-most loop containing this "
923 EmitAndPrintRemark(ORE
, ORmissL
);
926 IPredCost
+= Scaled64::get(*ILatency
);
927 INonPredCost
+= Scaled64::get(*ILatency
);
929 // For a select that can be converted to branch,
930 // compute its cost as a branch (non-predicated cost).
932 // BranchCost = PredictedPathCost + MispredictCost
933 // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
934 // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
935 if (SIset
.contains(&I
)) {
936 auto SI
= cast
<SelectInst
>(&I
);
938 Scaled64 TrueOpCost
= Scaled64::getZero(),
939 FalseOpCost
= Scaled64::getZero();
940 if (auto *TI
= dyn_cast
<Instruction
>(SI
->getTrueValue()))
941 if (InstCostMap
.count(TI
))
942 TrueOpCost
= InstCostMap
[TI
].NonPredCost
;
943 if (auto *FI
= dyn_cast
<Instruction
>(SI
->getFalseValue()))
944 if (InstCostMap
.count(FI
))
945 FalseOpCost
= InstCostMap
[FI
].NonPredCost
;
946 Scaled64 PredictedPathCost
=
947 getPredictedPathCost(TrueOpCost
, FalseOpCost
, SI
);
949 Scaled64 CondCost
= Scaled64::getZero();
950 if (auto *CI
= dyn_cast
<Instruction
>(SI
->getCondition()))
951 if (InstCostMap
.count(CI
))
952 CondCost
= InstCostMap
[CI
].NonPredCost
;
953 Scaled64 MispredictCost
= getMispredictionCost(SI
, CondCost
);
955 INonPredCost
= PredictedPathCost
+ MispredictCost
;
957 LLVM_DEBUG(dbgs() << " " << ILatency
<< "/" << IPredCost
<< "/"
958 << INonPredCost
<< " for " << I
<< "\n");
960 InstCostMap
[&I
] = {IPredCost
, INonPredCost
};
961 MaxCost
.PredCost
= std::max(MaxCost
.PredCost
, IPredCost
);
962 MaxCost
.NonPredCost
= std::max(MaxCost
.NonPredCost
, INonPredCost
);
965 LLVM_DEBUG(dbgs() << "Iteration " << Iter
+ 1
966 << " MaxCost = " << MaxCost
.PredCost
<< " "
967 << MaxCost
.NonPredCost
<< "\n");
972 SmallPtrSet
<const Instruction
*, 2>
973 SelectOptimize::getSIset(const SelectGroups
&SIGroups
) {
974 SmallPtrSet
<const Instruction
*, 2> SIset
;
975 for (const SelectGroup
&ASI
: SIGroups
)
976 for (const SelectInst
*SI
: ASI
)
981 std::optional
<uint64_t> SelectOptimize::computeInstCost(const Instruction
*I
) {
982 InstructionCost ICost
=
983 TTI
->getInstructionCost(I
, TargetTransformInfo::TCK_Latency
);
984 if (auto OC
= ICost
.getValue())
985 return std::optional
<uint64_t>(*OC
);
989 ScaledNumber
<uint64_t>
990 SelectOptimize::getMispredictionCost(const SelectInst
*SI
,
991 const Scaled64 CondCost
) {
992 uint64_t MispredictPenalty
= TSchedModel
.getMCSchedModel()->MispredictPenalty
;
994 // Account for the default misprediction rate when using a branch
995 // (conservatively set to 25% by default).
996 uint64_t MispredictRate
= MispredictDefaultRate
;
997 // If the select condition is obviously predictable, then the misprediction
999 if (isSelectHighlyPredictable(SI
))
1002 // CondCost is included to account for cases where the computation of the
1003 // condition is part of a long dependence chain (potentially loop-carried)
1004 // that would delay detection of a misprediction and increase its cost.
1005 Scaled64 MispredictCost
=
1006 std::max(Scaled64::get(MispredictPenalty
), CondCost
) *
1007 Scaled64::get(MispredictRate
);
1008 MispredictCost
/= Scaled64::get(100);
1010 return MispredictCost
;
1013 // Returns the cost of a branch when the prediction is correct.
1014 // TrueCost * TrueProbability + FalseCost * FalseProbability.
1015 ScaledNumber
<uint64_t>
1016 SelectOptimize::getPredictedPathCost(Scaled64 TrueCost
, Scaled64 FalseCost
,
1017 const SelectInst
*SI
) {
1018 Scaled64 PredPathCost
;
1019 uint64_t TrueWeight
, FalseWeight
;
1020 if (extractBranchWeights(*SI
, TrueWeight
, FalseWeight
)) {
1021 uint64_t SumWeight
= TrueWeight
+ FalseWeight
;
1022 if (SumWeight
!= 0) {
1023 PredPathCost
= TrueCost
* Scaled64::get(TrueWeight
) +
1024 FalseCost
* Scaled64::get(FalseWeight
);
1025 PredPathCost
/= Scaled64::get(SumWeight
);
1026 return PredPathCost
;
1029 // Without branch weight metadata, we assume 75% for the one path and 25% for
1030 // the other, and pick the result with the biggest cost.
1031 PredPathCost
= std::max(TrueCost
* Scaled64::get(3) + FalseCost
,
1032 FalseCost
* Scaled64::get(3) + TrueCost
);
1033 PredPathCost
/= Scaled64::get(4);
1034 return PredPathCost
;
1037 bool SelectOptimize::isSelectKindSupported(SelectInst
*SI
) {
1038 bool VectorCond
= !SI
->getCondition()->getType()->isIntegerTy(1);
1041 TargetLowering::SelectSupportKind SelectKind
;
1042 if (SI
->getType()->isVectorTy())
1043 SelectKind
= TargetLowering::ScalarCondVectorVal
;
1045 SelectKind
= TargetLowering::ScalarValSelect
;
1046 return TLI
->isSelectSupported(SelectKind
);