Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / CodeGen / SplitKit.cpp
blob1664c304f643c3feebfae09634de4abcc7b0fe35
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
12 //===----------------------------------------------------------------------===//
14 #include "SplitKit.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetOpcodes.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/Support/Allocator.h"
34 #include "llvm/Support/BlockFrequency.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <iterator>
41 #include <limits>
42 #include <tuple>
44 using namespace llvm;
46 #define DEBUG_TYPE "regalloc"
48 STATISTIC(NumFinished, "Number of splits finished");
49 STATISTIC(NumSimple, "Number of splits that were simple");
50 STATISTIC(NumCopies, "Number of copies inserted for splitting");
51 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
53 //===----------------------------------------------------------------------===//
54 // Last Insert Point Analysis
55 //===----------------------------------------------------------------------===//
57 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
58 unsigned BBNum)
59 : LIS(lis), LastInsertPoint(BBNum) {}
61 SlotIndex
62 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
63 const MachineBasicBlock &MBB) {
64 unsigned Num = MBB.getNumber();
65 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
66 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
68 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
69 bool EHPadSuccessor = false;
70 for (const MachineBasicBlock *SMBB : MBB.successors()) {
71 if (SMBB->isEHPad()) {
72 ExceptionalSuccessors.push_back(SMBB);
73 EHPadSuccessor = true;
74 } else if (SMBB->isInlineAsmBrIndirectTarget())
75 ExceptionalSuccessors.push_back(SMBB);
78 // Compute insert points on the first call. The pair is independent of the
79 // current live interval.
80 if (!LIP.first.isValid()) {
81 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
82 if (FirstTerm == MBB.end())
83 LIP.first = MBBEnd;
84 else
85 LIP.first = LIS.getInstructionIndex(*FirstTerm);
87 // If there is a landing pad or inlineasm_br successor, also find the
88 // instruction. If there is no such instruction, we don't need to do
89 // anything special. We assume there cannot be multiple instructions that
90 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
91 // assume that if there are any, they will be after any other call
92 // instructions in the block.
93 if (ExceptionalSuccessors.empty())
94 return LIP.first;
95 for (const MachineInstr &MI : llvm::reverse(MBB)) {
96 if ((EHPadSuccessor && MI.isCall()) ||
97 MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
98 LIP.second = LIS.getInstructionIndex(MI);
99 break;
104 // If CurLI is live into a landing pad successor, move the last insert point
105 // back to the call that may throw.
106 if (!LIP.second)
107 return LIP.first;
109 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
110 return LIS.isLiveInToMBB(CurLI, EHPad);
112 return LIP.first;
114 // Find the value leaving MBB.
115 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
116 if (!VNI)
117 return LIP.first;
119 // The def of statepoint instruction is a gc relocation and it should be alive
120 // in landing pad. So we cannot split interval after statepoint instruction.
121 if (SlotIndex::isSameInstr(VNI->def, LIP.second))
122 if (auto *I = LIS.getInstructionFromIndex(LIP.second))
123 if (I->getOpcode() == TargetOpcode::STATEPOINT)
124 return LIP.second;
126 // If the value leaving MBB was defined after the call in MBB, it can't
127 // really be live-in to the landing pad. This can happen if the landing pad
128 // has a PHI, and this register is undef on the exceptional edge.
129 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
130 return LIP.first;
132 // Value is properly live-in to the landing pad.
133 // Only allow inserts before the call.
134 return LIP.second;
137 MachineBasicBlock::iterator
138 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
139 MachineBasicBlock &MBB) {
140 SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
141 if (LIP == LIS.getMBBEndIdx(&MBB))
142 return MBB.end();
143 return LIS.getInstructionFromIndex(LIP);
146 //===----------------------------------------------------------------------===//
147 // Split Analysis
148 //===----------------------------------------------------------------------===//
150 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
151 const MachineLoopInfo &mli)
152 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
153 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
155 void SplitAnalysis::clear() {
156 UseSlots.clear();
157 UseBlocks.clear();
158 ThroughBlocks.clear();
159 CurLI = nullptr;
162 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
163 void SplitAnalysis::analyzeUses() {
164 assert(UseSlots.empty() && "Call clear first");
166 // First get all the defs from the interval values. This provides the correct
167 // slots for early clobbers.
168 for (const VNInfo *VNI : CurLI->valnos)
169 if (!VNI->isPHIDef() && !VNI->isUnused())
170 UseSlots.push_back(VNI->def);
172 // Get use slots form the use-def chain.
173 const MachineRegisterInfo &MRI = MF.getRegInfo();
174 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
175 if (!MO.isUndef())
176 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
178 array_pod_sort(UseSlots.begin(), UseSlots.end());
180 // Remove duplicates, keeping the smaller slot for each instruction.
181 // That is what we want for early clobbers.
182 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
183 SlotIndex::isSameInstr),
184 UseSlots.end());
186 // Compute per-live block info.
187 calcLiveBlockInfo();
189 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
190 << UseBlocks.size() << " blocks, through "
191 << NumThroughBlocks << " blocks.\n");
194 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
195 /// where CurLI is live.
196 void SplitAnalysis::calcLiveBlockInfo() {
197 ThroughBlocks.resize(MF.getNumBlockIDs());
198 NumThroughBlocks = NumGapBlocks = 0;
199 if (CurLI->empty())
200 return;
202 LiveInterval::const_iterator LVI = CurLI->begin();
203 LiveInterval::const_iterator LVE = CurLI->end();
205 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
206 UseI = UseSlots.begin();
207 UseE = UseSlots.end();
209 // Loop over basic blocks where CurLI is live.
210 MachineFunction::iterator MFI =
211 LIS.getMBBFromIndex(LVI->start)->getIterator();
212 while (true) {
213 BlockInfo BI;
214 BI.MBB = &*MFI;
215 SlotIndex Start, Stop;
216 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
218 // If the block contains no uses, the range must be live through. At one
219 // point, RegisterCoalescer could create dangling ranges that ended
220 // mid-block.
221 if (UseI == UseE || *UseI >= Stop) {
222 ++NumThroughBlocks;
223 ThroughBlocks.set(BI.MBB->getNumber());
224 // The range shouldn't end mid-block if there are no uses. This shouldn't
225 // happen.
226 assert(LVI->end >= Stop && "range ends mid block with no uses");
227 } else {
228 // This block has uses. Find the first and last uses in the block.
229 BI.FirstInstr = *UseI;
230 assert(BI.FirstInstr >= Start);
231 do ++UseI;
232 while (UseI != UseE && *UseI < Stop);
233 BI.LastInstr = UseI[-1];
234 assert(BI.LastInstr < Stop);
236 // LVI is the first live segment overlapping MBB.
237 BI.LiveIn = LVI->start <= Start;
239 // When not live in, the first use should be a def.
240 if (!BI.LiveIn) {
241 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
242 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
243 BI.FirstDef = BI.FirstInstr;
246 // Look for gaps in the live range.
247 BI.LiveOut = true;
248 while (LVI->end < Stop) {
249 SlotIndex LastStop = LVI->end;
250 if (++LVI == LVE || LVI->start >= Stop) {
251 BI.LiveOut = false;
252 BI.LastInstr = LastStop;
253 break;
256 if (LastStop < LVI->start) {
257 // There is a gap in the live range. Create duplicate entries for the
258 // live-in snippet and the live-out snippet.
259 ++NumGapBlocks;
261 // Push the Live-in part.
262 BI.LiveOut = false;
263 UseBlocks.push_back(BI);
264 UseBlocks.back().LastInstr = LastStop;
266 // Set up BI for the live-out part.
267 BI.LiveIn = false;
268 BI.LiveOut = true;
269 BI.FirstInstr = BI.FirstDef = LVI->start;
272 // A Segment that starts in the middle of the block must be a def.
273 assert(LVI->start == LVI->valno->def && "Dangling Segment start");
274 if (!BI.FirstDef)
275 BI.FirstDef = LVI->start;
278 UseBlocks.push_back(BI);
280 // LVI is now at LVE or LVI->end >= Stop.
281 if (LVI == LVE)
282 break;
285 // Live segment ends exactly at Stop. Move to the next segment.
286 if (LVI->end == Stop && ++LVI == LVE)
287 break;
289 // Pick the next basic block.
290 if (LVI->start < Stop)
291 ++MFI;
292 else
293 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
296 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
299 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
300 if (cli->empty())
301 return 0;
302 LiveInterval *li = const_cast<LiveInterval*>(cli);
303 LiveInterval::iterator LVI = li->begin();
304 LiveInterval::iterator LVE = li->end();
305 unsigned Count = 0;
307 // Loop over basic blocks where li is live.
308 MachineFunction::const_iterator MFI =
309 LIS.getMBBFromIndex(LVI->start)->getIterator();
310 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
311 while (true) {
312 ++Count;
313 LVI = li->advanceTo(LVI, Stop);
314 if (LVI == LVE)
315 return Count;
316 do {
317 ++MFI;
318 Stop = LIS.getMBBEndIdx(&*MFI);
319 } while (Stop <= LVI->start);
323 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
324 Register OrigReg = VRM.getOriginal(CurLI->reg());
325 const LiveInterval &Orig = LIS.getInterval(OrigReg);
326 assert(!Orig.empty() && "Splitting empty interval?");
327 LiveInterval::const_iterator I = Orig.find(Idx);
329 // Range containing Idx should begin at Idx.
330 if (I != Orig.end() && I->start <= Idx)
331 return I->start == Idx;
333 // Range does not contain Idx, previous must end at Idx.
334 return I != Orig.begin() && (--I)->end == Idx;
337 void SplitAnalysis::analyze(const LiveInterval *li) {
338 clear();
339 CurLI = li;
340 analyzeUses();
343 //===----------------------------------------------------------------------===//
344 // Split Editor
345 //===----------------------------------------------------------------------===//
347 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
348 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM,
349 MachineDominatorTree &MDT,
350 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
351 : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()),
352 MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
353 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
354 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
356 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
357 Edit = &LRE;
358 SpillMode = SM;
359 OpenIdx = 0;
360 RegAssign.clear();
361 Values.clear();
363 // Reset the LiveIntervalCalc instances needed for this spill mode.
364 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
365 &LIS.getVNInfoAllocator());
366 if (SpillMode)
367 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
368 &LIS.getVNInfoAllocator());
370 Edit->anyRematerializable();
373 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
374 LLVM_DUMP_METHOD void SplitEditor::dump() const {
375 if (RegAssign.empty()) {
376 dbgs() << " empty\n";
377 return;
380 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
381 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
382 dbgs() << '\n';
384 #endif
386 /// Find a subrange corresponding to the exact lane mask @p LM in the live
387 /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
388 /// This function is used to find corresponding subranges between the
389 /// original interval and the new intervals.
390 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
391 for (auto &S : LI.subranges())
392 if (S.LaneMask == LM)
393 return S;
394 llvm_unreachable("SubRange for this mask not found");
397 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
398 LiveInterval &LI) {
399 return getSubrangeImpl(LM, LI);
402 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
403 const LiveInterval &LI) {
404 return getSubrangeImpl(LM, LI);
407 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
408 /// in the live interval @p LI. The interval @p LI is assumed to contain such
409 /// a subrange. This function is used to find corresponding subranges between
410 /// the original interval and the new intervals.
411 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM,
412 const LiveInterval &LI) {
413 for (const LiveInterval::SubRange &S : LI.subranges())
414 if ((S.LaneMask & LM) == LM)
415 return S;
416 llvm_unreachable("SubRange for this mask not found");
419 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
420 if (!LI.hasSubRanges()) {
421 LI.createDeadDef(VNI);
422 return;
425 SlotIndex Def = VNI->def;
426 if (Original) {
427 // If we are transferring a def from the original interval, make sure
428 // to only update the subranges for which the original subranges had
429 // a def at this location.
430 for (LiveInterval::SubRange &S : LI.subranges()) {
431 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
432 VNInfo *PV = PS.getVNInfoAt(Def);
433 if (PV != nullptr && PV->def == Def)
434 S.createDeadDef(Def, LIS.getVNInfoAllocator());
436 } else {
437 // This is a new def: either from rematerialization, or from an inserted
438 // copy. Since rematerialization can regenerate a definition of a sub-
439 // register, we need to check which subranges need to be updated.
440 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
441 assert(DefMI != nullptr);
442 LaneBitmask LM;
443 for (const MachineOperand &DefOp : DefMI->defs()) {
444 Register R = DefOp.getReg();
445 if (R != LI.reg())
446 continue;
447 if (unsigned SR = DefOp.getSubReg())
448 LM |= TRI.getSubRegIndexLaneMask(SR);
449 else {
450 LM = MRI.getMaxLaneMaskForVReg(R);
451 break;
454 for (LiveInterval::SubRange &S : LI.subranges())
455 if ((S.LaneMask & LM).any())
456 S.createDeadDef(Def, LIS.getVNInfoAllocator());
460 VNInfo *SplitEditor::defValue(unsigned RegIdx,
461 const VNInfo *ParentVNI,
462 SlotIndex Idx,
463 bool Original) {
464 assert(ParentVNI && "Mapping NULL value");
465 assert(Idx.isValid() && "Invalid SlotIndex");
466 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
467 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
469 // Create a new value.
470 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
472 bool Force = LI->hasSubRanges();
473 ValueForcePair FP(Force ? nullptr : VNI, Force);
474 // Use insert for lookup, so we can add missing values with a second lookup.
475 std::pair<ValueMap::iterator, bool> InsP =
476 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
478 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
479 // forced. Keep it as a simple def without any liveness.
480 if (!Force && InsP.second)
481 return VNI;
483 // If the previous value was a simple mapping, add liveness for it now.
484 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
485 addDeadDef(*LI, OldVNI, Original);
487 // No longer a simple mapping. Switch to a complex mapping. If the
488 // interval has subranges, make it a forced mapping.
489 InsP.first->second = ValueForcePair(nullptr, Force);
492 // This is a complex mapping, add liveness for VNI
493 addDeadDef(*LI, VNI, Original);
494 return VNI;
497 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
498 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
499 VNInfo *VNI = VFP.getPointer();
501 // ParentVNI was either unmapped or already complex mapped. Either way, just
502 // set the force bit.
503 if (!VNI) {
504 VFP.setInt(true);
505 return;
508 // This was previously a single mapping. Make sure the old def is represented
509 // by a trivial live range.
510 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
512 // Mark as complex mapped, forced.
513 VFP = ValueForcePair(nullptr, true);
516 SlotIndex SplitEditor::buildSingleSubRegCopy(
517 Register FromReg, Register ToReg, MachineBasicBlock &MBB,
518 MachineBasicBlock::iterator InsertBefore, unsigned SubIdx,
519 LiveInterval &DestLI, bool Late, SlotIndex Def, const MCInstrDesc &Desc) {
520 bool FirstCopy = !Def.isValid();
521 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
522 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
523 | getInternalReadRegState(!FirstCopy), SubIdx)
524 .addReg(FromReg, 0, SubIdx);
526 SlotIndexes &Indexes = *LIS.getSlotIndexes();
527 if (FirstCopy) {
528 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
529 } else {
530 CopyMI->bundleWithPred();
532 return Def;
535 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
536 LaneBitmask LaneMask, MachineBasicBlock &MBB,
537 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
538 const MCInstrDesc &Desc =
539 TII.get(TII.getLiveRangeSplitOpcode(FromReg, *MBB.getParent()));
540 SlotIndexes &Indexes = *LIS.getSlotIndexes();
541 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
542 // The full vreg is copied.
543 MachineInstr *CopyMI =
544 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
545 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
548 // Only a subset of lanes needs to be copied. The following is a simple
549 // heuristic to construct a sequence of COPYs. We could add a target
550 // specific callback if this turns out to be suboptimal.
551 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
553 // First pass: Try to find a perfectly matching subregister index. If none
554 // exists find the one covering the most lanemask bits.
555 const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
556 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
558 SmallVector<unsigned, 8> SubIndexes;
560 // Abort if we cannot possibly implement the COPY with the given indexes.
561 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
562 report_fatal_error("Impossible to implement partial COPY");
564 SlotIndex Def;
565 for (unsigned BestIdx : SubIndexes) {
566 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
567 DestLI, Late, Def, Desc);
570 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
571 DestLI.refineSubRanges(
572 Allocator, LaneMask,
573 [Def, &Allocator](LiveInterval::SubRange &SR) {
574 SR.createDeadDef(Def, Allocator);
576 Indexes, TRI);
578 return Def;
581 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
582 SlotIndex UseIdx, MachineBasicBlock &MBB,
583 MachineBasicBlock::iterator I) {
584 SlotIndex Def;
585 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
587 // We may be trying to avoid interference that ends at a deleted instruction,
588 // so always begin RegIdx 0 early and all others late.
589 bool Late = RegIdx != 0;
591 // Attempt cheap-as-a-copy rematerialization.
592 Register Original = VRM.getOriginal(Edit->get(RegIdx));
593 LiveInterval &OrigLI = LIS.getInterval(Original);
594 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
596 Register Reg = LI->reg();
597 bool DidRemat = false;
598 if (OrigVNI) {
599 LiveRangeEdit::Remat RM(ParentVNI);
600 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
601 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
602 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
603 ++NumRemats;
604 DidRemat = true;
607 if (!DidRemat) {
608 LaneBitmask LaneMask;
609 if (OrigLI.hasSubRanges()) {
610 LaneMask = LaneBitmask::getNone();
611 for (LiveInterval::SubRange &S : OrigLI.subranges()) {
612 if (S.liveAt(UseIdx))
613 LaneMask |= S.LaneMask;
615 } else {
616 LaneMask = LaneBitmask::getAll();
619 if (LaneMask.none()) {
620 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
621 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
622 SlotIndexes &Indexes = *LIS.getSlotIndexes();
623 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
624 } else {
625 ++NumCopies;
626 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
630 // Define the value in Reg.
631 return defValue(RegIdx, ParentVNI, Def, false);
634 /// Create a new virtual register and live interval.
635 unsigned SplitEditor::openIntv() {
636 // Create the complement as index 0.
637 if (Edit->empty())
638 Edit->createEmptyInterval();
640 // Create the open interval.
641 OpenIdx = Edit->size();
642 Edit->createEmptyInterval();
643 return OpenIdx;
646 void SplitEditor::selectIntv(unsigned Idx) {
647 assert(Idx != 0 && "Cannot select the complement interval");
648 assert(Idx < Edit->size() && "Can only select previously opened interval");
649 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
650 OpenIdx = Idx;
653 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
654 assert(OpenIdx && "openIntv not called before enterIntvBefore");
655 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx);
656 Idx = Idx.getBaseIndex();
657 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
658 if (!ParentVNI) {
659 LLVM_DEBUG(dbgs() << ": not live\n");
660 return Idx;
662 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
663 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
664 assert(MI && "enterIntvBefore called with invalid index");
666 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
667 return VNI->def;
670 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
671 assert(OpenIdx && "openIntv not called before enterIntvAfter");
672 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx);
673 Idx = Idx.getBoundaryIndex();
674 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
675 if (!ParentVNI) {
676 LLVM_DEBUG(dbgs() << ": not live\n");
677 return Idx;
679 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
680 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
681 assert(MI && "enterIntvAfter called with invalid index");
683 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
684 std::next(MachineBasicBlock::iterator(MI)));
685 return VNI->def;
688 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
689 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
690 SlotIndex End = LIS.getMBBEndIdx(&MBB);
691 SlotIndex Last = End.getPrevSlot();
692 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", "
693 << Last);
694 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
695 if (!ParentVNI) {
696 LLVM_DEBUG(dbgs() << ": not live\n");
697 return End;
699 SlotIndex LSP = SA.getLastSplitPoint(&MBB);
700 if (LSP < Last) {
701 // It could be that the use after LSP is a def, and thus the ParentVNI
702 // just selected starts at that def. For this case to exist, the def
703 // must be part of a tied def/use pair (as otherwise we'd have split
704 // distinct live ranges into individual live intervals), and thus we
705 // can insert the def into the VNI of the use and the tied def/use
706 // pair can live in the resulting interval.
707 Last = LSP;
708 ParentVNI = Edit->getParent().getVNInfoAt(Last);
709 if (!ParentVNI) {
710 // undef use --> undef tied def
711 LLVM_DEBUG(dbgs() << ": tied use not live\n");
712 return End;
716 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
717 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
718 SA.getLastSplitPointIter(&MBB));
719 RegAssign.insert(VNI->def, End, OpenIdx);
720 LLVM_DEBUG(dump());
721 return VNI->def;
724 /// useIntv - indicate that all instructions in MBB should use OpenLI.
725 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
726 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
729 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
730 assert(OpenIdx && "openIntv not called before useIntv");
731 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
732 RegAssign.insert(Start, End, OpenIdx);
733 LLVM_DEBUG(dump());
736 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
737 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
738 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx);
740 // The interval must be live beyond the instruction at Idx.
741 SlotIndex Boundary = Idx.getBoundaryIndex();
742 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
743 if (!ParentVNI) {
744 LLVM_DEBUG(dbgs() << ": not live\n");
745 return Boundary.getNextSlot();
747 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
748 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
749 assert(MI && "No instruction at index");
751 // In spill mode, make live ranges as short as possible by inserting the copy
752 // before MI. This is only possible if that instruction doesn't redefine the
753 // value. The inserted COPY is not a kill, and we don't need to recompute
754 // the source live range. The spiller also won't try to hoist this copy.
755 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
756 MI->readsVirtualRegister(Edit->getReg())) {
757 forceRecompute(0, *ParentVNI);
758 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
759 return Idx;
762 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
763 std::next(MachineBasicBlock::iterator(MI)));
764 return VNI->def;
767 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
768 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
769 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx);
771 // The interval must be live into the instruction at Idx.
772 Idx = Idx.getBaseIndex();
773 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
774 if (!ParentVNI) {
775 LLVM_DEBUG(dbgs() << ": not live\n");
776 return Idx.getNextSlot();
778 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
780 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
781 assert(MI && "No instruction at index");
782 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
783 return VNI->def;
786 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
787 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
788 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
789 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", "
790 << Start);
792 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
793 if (!ParentVNI) {
794 LLVM_DEBUG(dbgs() << ": not live\n");
795 return Start;
798 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
799 MBB.SkipPHIsLabelsAndDebug(MBB.begin()));
800 RegAssign.insert(Start, VNI->def, OpenIdx);
801 LLVM_DEBUG(dump());
802 return VNI->def;
805 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
806 return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
807 return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
811 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
812 assert(OpenIdx && "openIntv not called before overlapIntv");
813 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
814 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
815 "Parent changes value in extended range");
816 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
817 "Range cannot span basic blocks");
819 // The complement interval will be extended as needed by LICalc.extend().
820 if (ParentVNI)
821 forceRecompute(0, *ParentVNI);
823 // If the last use is tied to a def, we can't mark it as live for the
824 // interval which includes only the use. That would cause the tied pair
825 // to end up in two different intervals.
826 if (auto *MI = LIS.getInstructionFromIndex(End))
827 if (hasTiedUseOf(*MI, Edit->getReg())) {
828 LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
829 return;
832 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
833 RegAssign.insert(Start, End, OpenIdx);
834 LLVM_DEBUG(dump());
837 //===----------------------------------------------------------------------===//
838 // Spill modes
839 //===----------------------------------------------------------------------===//
841 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
842 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
843 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
844 RegAssignMap::iterator AssignI;
845 AssignI.setMap(RegAssign);
847 for (const VNInfo *C : Copies) {
848 SlotIndex Def = C->def;
849 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
850 assert(MI && "No instruction for back-copy");
852 MachineBasicBlock *MBB = MI->getParent();
853 MachineBasicBlock::iterator MBBI(MI);
854 bool AtBegin;
855 do AtBegin = MBBI == MBB->begin();
856 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
858 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
859 LIS.removeVRegDefAt(*LI, Def);
860 LIS.RemoveMachineInstrFromMaps(*MI);
861 MI->eraseFromParent();
863 // Adjust RegAssign if a register assignment is killed at Def. We want to
864 // avoid calculating the live range of the source register if possible.
865 AssignI.find(Def.getPrevSlot());
866 if (!AssignI.valid() || AssignI.start() >= Def)
867 continue;
868 // If MI doesn't kill the assigned register, just leave it.
869 if (AssignI.stop() != Def)
870 continue;
871 unsigned RegIdx = AssignI.value();
872 // We could hoist back-copy right after another back-copy. As a result
873 // MMBI points to copy instruction which is actually dead now.
874 // We cannot set its stop to MBBI which will be the same as start and
875 // interval does not support that.
876 SlotIndex Kill =
877 AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
878 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
879 Kill <= AssignI.start()) {
880 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx
881 << '\n');
882 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
883 } else {
884 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
885 AssignI.setStop(Kill);
890 MachineBasicBlock*
891 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
892 MachineBasicBlock *DefMBB) {
893 if (MBB == DefMBB)
894 return MBB;
895 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
897 const MachineLoopInfo &Loops = SA.Loops;
898 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
899 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
901 // Best candidate so far.
902 MachineBasicBlock *BestMBB = MBB;
903 unsigned BestDepth = std::numeric_limits<unsigned>::max();
905 while (true) {
906 const MachineLoop *Loop = Loops.getLoopFor(MBB);
908 // MBB isn't in a loop, it doesn't get any better. All dominators have a
909 // higher frequency by definition.
910 if (!Loop) {
911 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
912 << " dominates " << printMBBReference(*MBB)
913 << " at depth 0\n");
914 return MBB;
917 // We'll never be able to exit the DefLoop.
918 if (Loop == DefLoop) {
919 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
920 << " dominates " << printMBBReference(*MBB)
921 << " in the same loop\n");
922 return MBB;
925 // Least busy dominator seen so far.
926 unsigned Depth = Loop->getLoopDepth();
927 if (Depth < BestDepth) {
928 BestMBB = MBB;
929 BestDepth = Depth;
930 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
931 << " dominates " << printMBBReference(*MBB)
932 << " at depth " << Depth << '\n');
935 // Leave loop by going to the immediate dominator of the loop header.
936 // This is a bigger stride than simply walking up the dominator tree.
937 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
939 // Too far up the dominator tree?
940 if (!IDom || !MDT.dominates(DefDomNode, IDom))
941 return BestMBB;
943 MBB = IDom->getBlock();
947 void SplitEditor::computeRedundantBackCopies(
948 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
949 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
950 const LiveInterval *Parent = &Edit->getParent();
951 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
952 SmallPtrSet<VNInfo *, 8> DominatedVNIs;
954 // Aggregate VNIs having the same value as ParentVNI.
955 for (VNInfo *VNI : LI->valnos) {
956 if (VNI->isUnused())
957 continue;
958 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
959 EqualVNs[ParentVNI->id].insert(VNI);
962 // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
963 // redundant VNIs to BackCopies.
964 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
965 const VNInfo *ParentVNI = Parent->getValNumInfo(i);
966 if (!NotToHoistSet.count(ParentVNI->id))
967 continue;
968 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
969 SmallPtrSetIterator<VNInfo *> It2 = It1;
970 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
971 It2 = It1;
972 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
973 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
974 continue;
976 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
977 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
978 if (MBB1 == MBB2) {
979 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
980 } else if (MDT.dominates(MBB1, MBB2)) {
981 DominatedVNIs.insert(*It2);
982 } else if (MDT.dominates(MBB2, MBB1)) {
983 DominatedVNIs.insert(*It1);
987 if (!DominatedVNIs.empty()) {
988 forceRecompute(0, *ParentVNI);
989 append_range(BackCopies, DominatedVNIs);
990 DominatedVNIs.clear();
995 /// For SM_Size mode, find a common dominator for all the back-copies for
996 /// the same ParentVNI and hoist the backcopies to the dominator BB.
997 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
998 /// to do the hoisting, simply remove the dominated backcopies for the same
999 /// ParentVNI.
1000 void SplitEditor::hoistCopies() {
1001 // Get the complement interval, always RegIdx 0.
1002 LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1003 const LiveInterval *Parent = &Edit->getParent();
1005 // Track the nearest common dominator for all back-copies for each ParentVNI,
1006 // indexed by ParentVNI->id.
1007 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1008 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1009 // The total cost of all the back-copies for each ParentVNI.
1010 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1011 // The ParentVNI->id set for which hoisting back-copies are not beneficial
1012 // for Speed.
1013 DenseSet<unsigned> NotToHoistSet;
1015 // Find the nearest common dominator for parent values with multiple
1016 // back-copies. If a single back-copy dominates, put it in DomPair.second.
1017 for (VNInfo *VNI : LI->valnos) {
1018 if (VNI->isUnused())
1019 continue;
1020 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1021 assert(ParentVNI && "Parent not live at complement def");
1023 // Don't hoist remats. The complement is probably going to disappear
1024 // completely anyway.
1025 if (Edit->didRematerialize(ParentVNI))
1026 continue;
1028 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1030 DomPair &Dom = NearestDom[ParentVNI->id];
1032 // Keep directly defined parent values. This is either a PHI or an
1033 // instruction in the complement range. All other copies of ParentVNI
1034 // should be eliminated.
1035 if (VNI->def == ParentVNI->def) {
1036 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1037 Dom = DomPair(ValMBB, VNI->def);
1038 continue;
1040 // Skip the singly mapped values. There is nothing to gain from hoisting a
1041 // single back-copy.
1042 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1043 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1044 continue;
1047 if (!Dom.first) {
1048 // First time we see ParentVNI. VNI dominates itself.
1049 Dom = DomPair(ValMBB, VNI->def);
1050 } else if (Dom.first == ValMBB) {
1051 // Two defs in the same block. Pick the earlier def.
1052 if (!Dom.second.isValid() || VNI->def < Dom.second)
1053 Dom.second = VNI->def;
1054 } else {
1055 // Different basic blocks. Check if one dominates.
1056 MachineBasicBlock *Near =
1057 MDT.findNearestCommonDominator(Dom.first, ValMBB);
1058 if (Near == ValMBB)
1059 // Def ValMBB dominates.
1060 Dom = DomPair(ValMBB, VNI->def);
1061 else if (Near != Dom.first)
1062 // None dominate. Hoist to common dominator, need new def.
1063 Dom = DomPair(Near, SlotIndex());
1064 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1067 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1068 << VNI->def << " for parent " << ParentVNI->id << '@'
1069 << ParentVNI->def << " hoist to "
1070 << printMBBReference(*Dom.first) << ' ' << Dom.second
1071 << '\n');
1074 // Insert the hoisted copies.
1075 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1076 DomPair &Dom = NearestDom[i];
1077 if (!Dom.first || Dom.second.isValid())
1078 continue;
1079 // This value needs a hoisted copy inserted at the end of Dom.first.
1080 const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1081 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1082 // Get a less loopy dominator than Dom.first.
1083 Dom.first = findShallowDominator(Dom.first, DefMBB);
1084 if (SpillMode == SM_Speed &&
1085 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1086 NotToHoistSet.insert(ParentVNI->id);
1087 continue;
1089 SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1090 if (LSP <= ParentVNI->def) {
1091 NotToHoistSet.insert(ParentVNI->id);
1092 continue;
1094 Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1095 SA.getLastSplitPointIter(Dom.first))->def;
1098 // Remove redundant back-copies that are now known to be dominated by another
1099 // def with the same value.
1100 SmallVector<VNInfo*, 8> BackCopies;
1101 for (VNInfo *VNI : LI->valnos) {
1102 if (VNI->isUnused())
1103 continue;
1104 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1105 const DomPair &Dom = NearestDom[ParentVNI->id];
1106 if (!Dom.first || Dom.second == VNI->def ||
1107 NotToHoistSet.count(ParentVNI->id))
1108 continue;
1109 BackCopies.push_back(VNI);
1110 forceRecompute(0, *ParentVNI);
1113 // If it is not beneficial to hoist all the BackCopies, simply remove
1114 // redundant BackCopies in speed mode.
1115 if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1116 computeRedundantBackCopies(NotToHoistSet, BackCopies);
1118 removeBackCopies(BackCopies);
1121 /// transferValues - Transfer all possible values to the new live ranges.
1122 /// Values that were rematerialized are left alone, they need LICalc.extend().
1123 bool SplitEditor::transferValues() {
1124 bool Skipped = false;
1125 RegAssignMap::const_iterator AssignI = RegAssign.begin();
1126 for (const LiveRange::Segment &S : Edit->getParent()) {
1127 LLVM_DEBUG(dbgs() << " blit " << S << ':');
1128 VNInfo *ParentVNI = S.valno;
1129 // RegAssign has holes where RegIdx 0 should be used.
1130 SlotIndex Start = S.start;
1131 AssignI.advanceTo(Start);
1132 do {
1133 unsigned RegIdx;
1134 SlotIndex End = S.end;
1135 if (!AssignI.valid()) {
1136 RegIdx = 0;
1137 } else if (AssignI.start() <= Start) {
1138 RegIdx = AssignI.value();
1139 if (AssignI.stop() < End) {
1140 End = AssignI.stop();
1141 ++AssignI;
1143 } else {
1144 RegIdx = 0;
1145 End = std::min(End, AssignI.start());
1148 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1149 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1150 << printReg(Edit->get(RegIdx)) << ')');
1151 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1153 // Check for a simply defined value that can be blitted directly.
1154 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1155 if (VNInfo *VNI = VFP.getPointer()) {
1156 LLVM_DEBUG(dbgs() << ':' << VNI->id);
1157 LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1158 Start = End;
1159 continue;
1162 // Skip values with forced recomputation.
1163 if (VFP.getInt()) {
1164 LLVM_DEBUG(dbgs() << "(recalc)");
1165 Skipped = true;
1166 Start = End;
1167 continue;
1170 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1172 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1173 // so the live range is accurate. Add live-in blocks in [Start;End) to the
1174 // LiveInBlocks.
1175 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1176 SlotIndex BlockStart, BlockEnd;
1177 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1179 // The first block may be live-in, or it may have its own def.
1180 if (Start != BlockStart) {
1181 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1182 assert(VNI && "Missing def for complex mapped value");
1183 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1184 // MBB has its own def. Is it also live-out?
1185 if (BlockEnd <= End)
1186 LIC.setLiveOutValue(&*MBB, VNI);
1188 // Skip to the next block for live-in.
1189 ++MBB;
1190 BlockStart = BlockEnd;
1193 // Handle the live-in blocks covered by [Start;End).
1194 assert(Start <= BlockStart && "Expected live-in block");
1195 while (BlockStart < End) {
1196 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1197 BlockEnd = LIS.getMBBEndIdx(&*MBB);
1198 if (BlockStart == ParentVNI->def) {
1199 // This block has the def of a parent PHI, so it isn't live-in.
1200 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1201 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1202 assert(VNI && "Missing def for complex mapped parent PHI");
1203 if (End >= BlockEnd)
1204 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1205 } else {
1206 // This block needs a live-in value. The last block covered may not
1207 // be live-out.
1208 if (End < BlockEnd)
1209 LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1210 else {
1211 // Live-through, and we don't know the value.
1212 LIC.addLiveInBlock(LI, MDT[&*MBB]);
1213 LIC.setLiveOutValue(&*MBB, nullptr);
1216 BlockStart = BlockEnd;
1217 ++MBB;
1219 Start = End;
1220 } while (Start != S.end);
1221 LLVM_DEBUG(dbgs() << '\n');
1224 LICalc[0].calculateValues();
1225 if (SpillMode)
1226 LICalc[1].calculateValues();
1228 return Skipped;
1231 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1232 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1233 if (Seg == nullptr)
1234 return true;
1235 if (Seg->end != Def.getDeadSlot())
1236 return false;
1237 // This is a dead PHI. Remove it.
1238 LR.removeSegment(*Seg, true);
1239 return true;
1242 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1243 LiveRange &LR, LaneBitmask LM,
1244 ArrayRef<SlotIndex> Undefs) {
1245 for (MachineBasicBlock *P : B.predecessors()) {
1246 SlotIndex End = LIS.getMBBEndIdx(P);
1247 SlotIndex LastUse = End.getPrevSlot();
1248 // The predecessor may not have a live-out value. That is OK, like an
1249 // undef PHI operand.
1250 const LiveInterval &PLI = Edit->getParent();
1251 // Need the cast because the inputs to ?: would otherwise be deemed
1252 // "incompatible": SubRange vs LiveInterval.
1253 const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1254 : static_cast<const LiveRange &>(PLI);
1255 if (PSR.liveAt(LastUse))
1256 LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1260 void SplitEditor::extendPHIKillRanges() {
1261 // Extend live ranges to be live-out for successor PHI values.
1263 // Visit each PHI def slot in the parent live interval. If the def is dead,
1264 // remove it. Otherwise, extend the live interval to reach the end indexes
1265 // of all predecessor blocks.
1267 const LiveInterval &ParentLI = Edit->getParent();
1268 for (const VNInfo *V : ParentLI.valnos) {
1269 if (V->isUnused() || !V->isPHIDef())
1270 continue;
1272 unsigned RegIdx = RegAssign.lookup(V->def);
1273 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1274 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1275 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1276 if (!removeDeadSegment(V->def, LI))
1277 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1280 SmallVector<SlotIndex, 4> Undefs;
1281 LiveIntervalCalc SubLIC;
1283 for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1284 for (const VNInfo *V : PS.valnos) {
1285 if (V->isUnused() || !V->isPHIDef())
1286 continue;
1287 unsigned RegIdx = RegAssign.lookup(V->def);
1288 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1289 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1290 if (removeDeadSegment(V->def, S))
1291 continue;
1293 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1294 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1295 &LIS.getVNInfoAllocator());
1296 Undefs.clear();
1297 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1298 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1303 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1304 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1305 struct ExtPoint {
1306 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1307 : MO(O), RegIdx(R), Next(N) {}
1309 MachineOperand MO;
1310 unsigned RegIdx;
1311 SlotIndex Next;
1314 SmallVector<ExtPoint,4> ExtPoints;
1316 for (MachineOperand &MO :
1317 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1318 MachineInstr *MI = MO.getParent();
1319 // LiveDebugVariables should have handled all DBG_VALUE instructions.
1320 if (MI->isDebugValue()) {
1321 LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1322 MO.setReg(0);
1323 continue;
1326 // <undef> operands don't really read the register, so it doesn't matter
1327 // which register we choose. When the use operand is tied to a def, we must
1328 // use the same register as the def, so just do that always.
1329 SlotIndex Idx = LIS.getInstructionIndex(*MI);
1330 if (MO.isDef() || MO.isUndef())
1331 Idx = Idx.getRegSlot(MO.isEarlyClobber());
1333 // Rewrite to the mapped register at Idx.
1334 unsigned RegIdx = RegAssign.lookup(Idx);
1335 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1336 MO.setReg(LI.reg());
1337 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent())
1338 << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1340 // Extend liveness to Idx if the instruction reads reg.
1341 if (!ExtendRanges || MO.isUndef())
1342 continue;
1344 // Skip instructions that don't read Reg.
1345 if (MO.isDef()) {
1346 if (!MO.getSubReg() && !MO.isEarlyClobber())
1347 continue;
1348 // We may want to extend a live range for a partial redef, or for a use
1349 // tied to an early clobber.
1350 if (!Edit->getParent().liveAt(Idx.getPrevSlot()))
1351 continue;
1352 } else {
1353 assert(MO.isUse());
1354 bool IsEarlyClobber = false;
1355 if (MO.isTied()) {
1356 // We want to extend a live range into `e` slot rather than `r` slot if
1357 // tied-def is early clobber, because the `e` slot already contained
1358 // in the live range of early-clobber tied-def operand, give an example
1359 // here:
1360 // 0 %0 = ...
1361 // 16 early-clobber %0 = Op %0 (tied-def 0), ...
1362 // 32 ... = Op %0
1363 // Before extend:
1364 // %0 = [0r, 0d) [16e, 32d)
1365 // The point we want to extend is 0d to 16e not 16r in this case, but if
1366 // we use 16r here we will extend nothing because that already contained
1367 // in [16e, 32d).
1368 unsigned OpIdx = MO.getOperandNo();
1369 unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx);
1370 const MachineOperand &DefOp = MI->getOperand(DefOpIdx);
1371 IsEarlyClobber = DefOp.isEarlyClobber();
1374 Idx = Idx.getRegSlot(IsEarlyClobber);
1377 SlotIndex Next = Idx;
1378 if (LI.hasSubRanges()) {
1379 // We have to delay extending subranges until we have seen all operands
1380 // defining the register. This is because a <def,read-undef> operand
1381 // will create an "undef" point, and we cannot extend any subranges
1382 // until all of them have been accounted for.
1383 if (MO.isUse())
1384 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1385 } else {
1386 LiveIntervalCalc &LIC = getLICalc(RegIdx);
1387 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1391 for (ExtPoint &EP : ExtPoints) {
1392 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1393 assert(LI.hasSubRanges());
1395 LiveIntervalCalc SubLIC;
1396 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1397 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1398 : MRI.getMaxLaneMaskForVReg(Reg);
1399 for (LiveInterval::SubRange &S : LI.subranges()) {
1400 if ((S.LaneMask & LM).none())
1401 continue;
1402 // The problem here can be that the new register may have been created
1403 // for a partially defined original register. For example:
1404 // %0:subreg_hireg<def,read-undef> = ...
1405 // ...
1406 // %1 = COPY %0
1407 if (S.empty())
1408 continue;
1409 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1410 &LIS.getVNInfoAllocator());
1411 SmallVector<SlotIndex, 4> Undefs;
1412 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1413 SubLIC.extend(S, EP.Next, 0, Undefs);
1417 for (Register R : *Edit) {
1418 LiveInterval &LI = LIS.getInterval(R);
1419 if (!LI.hasSubRanges())
1420 continue;
1421 LI.clear();
1422 LI.removeEmptySubRanges();
1423 LIS.constructMainRangeFromSubranges(LI);
1427 void SplitEditor::deleteRematVictims() {
1428 SmallVector<MachineInstr*, 8> Dead;
1429 for (const Register &R : *Edit) {
1430 LiveInterval *LI = &LIS.getInterval(R);
1431 for (const LiveRange::Segment &S : LI->segments) {
1432 // Dead defs end at the dead slot.
1433 if (S.end != S.valno->def.getDeadSlot())
1434 continue;
1435 if (S.valno->isPHIDef())
1436 continue;
1437 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1438 assert(MI && "Missing instruction for dead def");
1439 MI->addRegisterDead(LI->reg(), &TRI);
1441 if (!MI->allDefsAreDead())
1442 continue;
1444 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1445 Dead.push_back(MI);
1449 if (Dead.empty())
1450 return;
1452 Edit->eliminateDeadDefs(Dead, std::nullopt);
1455 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1456 // Fast-path for common case.
1457 if (!ParentVNI.isPHIDef()) {
1458 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1459 forceRecompute(I, ParentVNI);
1460 return;
1463 // Trace value through phis.
1464 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1465 SmallVector<const VNInfo *, 4> WorkList;
1466 Visited.insert(&ParentVNI);
1467 WorkList.push_back(&ParentVNI);
1469 const LiveInterval &ParentLI = Edit->getParent();
1470 const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1471 do {
1472 const VNInfo &VNI = *WorkList.back();
1473 WorkList.pop_back();
1474 for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1475 forceRecompute(I, VNI);
1476 if (!VNI.isPHIDef())
1477 continue;
1479 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1480 for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1481 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1482 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1483 assert(PredVNI && "Value available in PhiVNI predecessor");
1484 if (Visited.insert(PredVNI).second)
1485 WorkList.push_back(PredVNI);
1487 } while(!WorkList.empty());
1490 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1491 ++NumFinished;
1493 // At this point, the live intervals in Edit contain VNInfos corresponding to
1494 // the inserted copies.
1496 // Add the original defs from the parent interval.
1497 for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1498 if (ParentVNI->isUnused())
1499 continue;
1500 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1501 defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1503 // Force rematted values to be recomputed everywhere.
1504 // The new live ranges may be truncated.
1505 if (Edit->didRematerialize(ParentVNI))
1506 forceRecomputeVNI(*ParentVNI);
1509 // Hoist back-copies to the complement interval when in spill mode.
1510 switch (SpillMode) {
1511 case SM_Partition:
1512 // Leave all back-copies as is.
1513 break;
1514 case SM_Size:
1515 case SM_Speed:
1516 // hoistCopies will behave differently between size and speed.
1517 hoistCopies();
1520 // Transfer the simply mapped values, check if any are skipped.
1521 bool Skipped = transferValues();
1523 // Rewrite virtual registers, possibly extending ranges.
1524 rewriteAssigned(Skipped);
1526 if (Skipped)
1527 extendPHIKillRanges();
1528 else
1529 ++NumSimple;
1531 // Delete defs that were rematted everywhere.
1532 if (Skipped)
1533 deleteRematVictims();
1535 // Get rid of unused values and set phi-kill flags.
1536 for (Register Reg : *Edit) {
1537 LiveInterval &LI = LIS.getInterval(Reg);
1538 LI.removeEmptySubRanges();
1539 LI.RenumberValues();
1542 // Provide a reverse mapping from original indices to Edit ranges.
1543 if (LRMap) {
1544 auto Seq = llvm::seq<unsigned>(0, Edit->size());
1545 LRMap->assign(Seq.begin(), Seq.end());
1548 // Now check if any registers were separated into multiple components.
1549 ConnectedVNInfoEqClasses ConEQ(LIS);
1550 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1551 // Don't use iterators, they are invalidated by create() below.
1552 Register VReg = Edit->get(i);
1553 LiveInterval &LI = LIS.getInterval(VReg);
1554 SmallVector<LiveInterval*, 8> SplitLIs;
1555 LIS.splitSeparateComponents(LI, SplitLIs);
1556 Register Original = VRM.getOriginal(VReg);
1557 for (LiveInterval *SplitLI : SplitLIs)
1558 VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1560 // The new intervals all map back to i.
1561 if (LRMap)
1562 LRMap->resize(Edit->size(), i);
1565 // Calculate spill weight and allocation hints for new intervals.
1566 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1568 assert(!LRMap || LRMap->size() == Edit->size());
1571 //===----------------------------------------------------------------------===//
1572 // Single Block Splitting
1573 //===----------------------------------------------------------------------===//
1575 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1576 bool SingleInstrs) const {
1577 // Always split for multiple instructions.
1578 if (!BI.isOneInstr())
1579 return true;
1580 // Don't split for single instructions unless explicitly requested.
1581 if (!SingleInstrs)
1582 return false;
1583 // Splitting a live-through range always makes progress.
1584 if (BI.LiveIn && BI.LiveOut)
1585 return true;
1586 // No point in isolating a copy. It has no register class constraints.
1587 MachineInstr *MI = LIS.getInstructionFromIndex(BI.FirstInstr);
1588 bool copyLike = TII.isCopyInstr(*MI) || MI->isSubregToReg();
1589 if (copyLike)
1590 return false;
1591 // Finally, don't isolate an end point that was created by earlier splits.
1592 return isOriginalEndpoint(BI.FirstInstr);
1595 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1596 openIntv();
1597 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1598 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1599 LastSplitPoint));
1600 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1601 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1602 } else {
1603 // The last use is after the last valid split point.
1604 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1605 useIntv(SegStart, SegStop);
1606 overlapIntv(SegStop, BI.LastInstr);
1610 //===----------------------------------------------------------------------===//
1611 // Global Live Range Splitting Support
1612 //===----------------------------------------------------------------------===//
1614 // These methods support a method of global live range splitting that uses a
1615 // global algorithm to decide intervals for CFG edges. They will insert split
1616 // points and color intervals in basic blocks while avoiding interference.
1618 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1619 // are on the stack.
1621 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1622 unsigned IntvIn, SlotIndex LeaveBefore,
1623 unsigned IntvOut, SlotIndex EnterAfter){
1624 SlotIndex Start, Stop;
1625 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1627 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1628 << ") intf " << LeaveBefore << '-' << EnterAfter
1629 << ", live-through " << IntvIn << " -> " << IntvOut);
1631 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1633 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1634 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1635 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1637 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1639 if (!IntvOut) {
1640 LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1642 // <<<<<<<<< Possible LeaveBefore interference.
1643 // |-----------| Live through.
1644 // -____________ Spill on entry.
1646 selectIntv(IntvIn);
1647 SlotIndex Idx = leaveIntvAtTop(*MBB);
1648 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1649 (void)Idx;
1650 return;
1653 if (!IntvIn) {
1654 LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1656 // >>>>>>> Possible EnterAfter interference.
1657 // |-----------| Live through.
1658 // ___________-- Reload on exit.
1660 selectIntv(IntvOut);
1661 SlotIndex Idx = enterIntvAtEnd(*MBB);
1662 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1663 (void)Idx;
1664 return;
1667 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1668 LLVM_DEBUG(dbgs() << ", straight through.\n");
1670 // |-----------| Live through.
1671 // ------------- Straight through, same intv, no interference.
1673 selectIntv(IntvOut);
1674 useIntv(Start, Stop);
1675 return;
1678 // We cannot legally insert splits after LSP.
1679 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1680 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1682 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1683 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1684 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1686 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1687 // |-----------| Live through.
1688 // ------======= Switch intervals between interference.
1690 selectIntv(IntvOut);
1691 SlotIndex Idx;
1692 if (LeaveBefore && LeaveBefore < LSP) {
1693 Idx = enterIntvBefore(LeaveBefore);
1694 useIntv(Idx, Stop);
1695 } else {
1696 Idx = enterIntvAtEnd(*MBB);
1698 selectIntv(IntvIn);
1699 useIntv(Start, Idx);
1700 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1701 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1702 return;
1705 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1707 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1708 // |-----------| Live through.
1709 // ==---------== Switch intervals before/after interference.
1711 assert(LeaveBefore <= EnterAfter && "Missed case");
1713 selectIntv(IntvOut);
1714 SlotIndex Idx = enterIntvAfter(EnterAfter);
1715 useIntv(Idx, Stop);
1716 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1718 selectIntv(IntvIn);
1719 Idx = leaveIntvBefore(LeaveBefore);
1720 useIntv(Start, Idx);
1721 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1724 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1725 unsigned IntvIn, SlotIndex LeaveBefore) {
1726 SlotIndex Start, Stop;
1727 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1729 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1730 << Stop << "), uses " << BI.FirstInstr << '-'
1731 << BI.LastInstr << ", reg-in " << IntvIn
1732 << ", leave before " << LeaveBefore
1733 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1735 assert(IntvIn && "Must have register in");
1736 assert(BI.LiveIn && "Must be live-in");
1737 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1739 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1740 LLVM_DEBUG(dbgs() << " before interference.\n");
1742 // <<< Interference after kill.
1743 // |---o---x | Killed in block.
1744 // ========= Use IntvIn everywhere.
1746 selectIntv(IntvIn);
1747 useIntv(Start, BI.LastInstr);
1748 return;
1751 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1753 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1755 // <<< Possible interference after last use.
1756 // |---o---o---| Live-out on stack.
1757 // =========____ Leave IntvIn after last use.
1759 // < Interference after last use.
1760 // |---o---o--o| Live-out on stack, late last use.
1761 // ============ Copy to stack after LSP, overlap IntvIn.
1762 // \_____ Stack interval is live-out.
1764 if (BI.LastInstr < LSP) {
1765 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1766 selectIntv(IntvIn);
1767 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1768 useIntv(Start, Idx);
1769 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1770 } else {
1771 LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1772 selectIntv(IntvIn);
1773 SlotIndex Idx = leaveIntvBefore(LSP);
1774 overlapIntv(Idx, BI.LastInstr);
1775 useIntv(Start, Idx);
1776 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1778 return;
1781 // The interference is overlapping somewhere we wanted to use IntvIn. That
1782 // means we need to create a local interval that can be allocated a
1783 // different register.
1784 unsigned LocalIntv = openIntv();
1785 (void)LocalIntv;
1786 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1788 if (!BI.LiveOut || BI.LastInstr < LSP) {
1790 // <<<<<<< Interference overlapping uses.
1791 // |---o---o---| Live-out on stack.
1792 // =====----____ Leave IntvIn before interference, then spill.
1794 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1795 SlotIndex From = enterIntvBefore(LeaveBefore);
1796 useIntv(From, To);
1797 selectIntv(IntvIn);
1798 useIntv(Start, From);
1799 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1800 return;
1803 // <<<<<<< Interference overlapping uses.
1804 // |---o---o--o| Live-out on stack, late last use.
1805 // =====------- Copy to stack before LSP, overlap LocalIntv.
1806 // \_____ Stack interval is live-out.
1808 SlotIndex To = leaveIntvBefore(LSP);
1809 overlapIntv(To, BI.LastInstr);
1810 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1811 useIntv(From, To);
1812 selectIntv(IntvIn);
1813 useIntv(Start, From);
1814 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1817 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1818 unsigned IntvOut, SlotIndex EnterAfter) {
1819 SlotIndex Start, Stop;
1820 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1822 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1823 << Stop << "), uses " << BI.FirstInstr << '-'
1824 << BI.LastInstr << ", reg-out " << IntvOut
1825 << ", enter after " << EnterAfter
1826 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1828 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1830 assert(IntvOut && "Must have register out");
1831 assert(BI.LiveOut && "Must be live-out");
1832 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1834 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1835 LLVM_DEBUG(dbgs() << " after interference.\n");
1837 // >>>> Interference before def.
1838 // | o---o---| Defined in block.
1839 // ========= Use IntvOut everywhere.
1841 selectIntv(IntvOut);
1842 useIntv(BI.FirstInstr, Stop);
1843 return;
1846 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1847 LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1849 // >>>> Interference before def.
1850 // |---o---o---| Live-through, stack-in.
1851 // ____========= Enter IntvOut before first use.
1853 selectIntv(IntvOut);
1854 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1855 useIntv(Idx, Stop);
1856 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1857 return;
1860 // The interference is overlapping somewhere we wanted to use IntvOut. That
1861 // means we need to create a local interval that can be allocated a
1862 // different register.
1863 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1865 // >>>>>>> Interference overlapping uses.
1866 // |---o---o---| Live-through, stack-in.
1867 // ____---====== Create local interval for interference range.
1869 selectIntv(IntvOut);
1870 SlotIndex Idx = enterIntvAfter(EnterAfter);
1871 useIntv(Idx, Stop);
1872 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1874 openIntv();
1875 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1876 useIntv(From, Idx);
1879 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1880 OS << "{" << printMBBReference(*MBB) << ", "
1881 << "uses " << FirstInstr << " to " << LastInstr << ", "
1882 << "1st def " << FirstDef << ", "
1883 << (LiveIn ? "live in" : "dead in") << ", "
1884 << (LiveOut ? "live out" : "dead out") << "}";
1887 void SplitAnalysis::BlockInfo::dump() const {
1888 print(dbgs());
1889 dbgs() << "\n";