Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / CodeGen / StackProtector.cpp
blob3ba85bc125a0190c79d150714430e24c79e40f44
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/EHPersonalities.h"
34 #include "llvm/IR/Function.h"
35 #include "llvm/IR/IRBuilder.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/IntrinsicInst.h"
39 #include "llvm/IR/Intrinsics.h"
40 #include "llvm/IR/MDBuilder.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/User.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Target/TargetMachine.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
51 #include <optional>
52 #include <utility>
54 using namespace llvm;
56 #define DEBUG_TYPE "stack-protector"
58 STATISTIC(NumFunProtected, "Number of functions protected");
59 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
60 " taken.");
62 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
63 cl::init(true), cl::Hidden);
64 static cl::opt<bool> DisableCheckNoReturn("disable-check-noreturn-call",
65 cl::init(false), cl::Hidden);
67 char StackProtector::ID = 0;
69 StackProtector::StackProtector() : FunctionPass(ID) {
70 initializeStackProtectorPass(*PassRegistry::getPassRegistry());
73 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
74 "Insert stack protectors", false, true)
75 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
76 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
77 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
78 "Insert stack protectors", false, true)
80 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
82 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
83 AU.addRequired<TargetPassConfig>();
84 AU.addPreserved<DominatorTreeWrapperPass>();
87 bool StackProtector::runOnFunction(Function &Fn) {
88 F = &Fn;
89 M = F->getParent();
90 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
91 DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy);
92 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
93 Trip = TM->getTargetTriple();
94 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
95 HasPrologue = false;
96 HasIRCheck = false;
98 SSPBufferSize = Fn.getFnAttributeAsParsedInteger(
99 "stack-protector-buffer-size", DefaultSSPBufferSize);
100 if (!requiresStackProtector(F, &Layout))
101 return false;
103 // TODO(etienneb): Functions with funclets are not correctly supported now.
104 // Do nothing if this is funclet-based personality.
105 if (Fn.hasPersonalityFn()) {
106 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
107 if (isFuncletEHPersonality(Personality))
108 return false;
111 ++NumFunProtected;
112 bool Changed = InsertStackProtectors();
113 #ifdef EXPENSIVE_CHECKS
114 assert((!DTU ||
115 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full)) &&
116 "Failed to maintain validity of domtree!");
117 #endif
118 DTU.reset();
119 return Changed;
122 /// \param [out] IsLarge is set to true if a protectable array is found and
123 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with
124 /// multiple arrays, this gets set if any of them is large.
125 static bool ContainsProtectableArray(Type *Ty, Module *M, unsigned SSPBufferSize,
126 bool &IsLarge, bool Strong,
127 bool InStruct) {
128 if (!Ty)
129 return false;
130 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
131 if (!AT->getElementType()->isIntegerTy(8)) {
132 // If we're on a non-Darwin platform or we're inside of a structure, don't
133 // add stack protectors unless the array is a character array.
134 // However, in strong mode any array, regardless of type and size,
135 // triggers a protector.
136 if (!Strong && (InStruct || !Triple(M->getTargetTriple()).isOSDarwin()))
137 return false;
140 // If an array has more than SSPBufferSize bytes of allocated space, then we
141 // emit stack protectors.
142 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
143 IsLarge = true;
144 return true;
147 if (Strong)
148 // Require a protector for all arrays in strong mode
149 return true;
152 const StructType *ST = dyn_cast<StructType>(Ty);
153 if (!ST)
154 return false;
156 bool NeedsProtector = false;
157 for (Type *ET : ST->elements())
158 if (ContainsProtectableArray(ET, M, SSPBufferSize, IsLarge, Strong, true)) {
159 // If the element is a protectable array and is large (>= SSPBufferSize)
160 // then we are done. If the protectable array is not large, then
161 // keep looking in case a subsequent element is a large array.
162 if (IsLarge)
163 return true;
164 NeedsProtector = true;
167 return NeedsProtector;
170 /// Check whether a stack allocation has its address taken.
171 static bool HasAddressTaken(const Instruction *AI, TypeSize AllocSize,
172 Module *M,
173 SmallPtrSet<const PHINode *, 16> &VisitedPHIs) {
174 const DataLayout &DL = M->getDataLayout();
175 for (const User *U : AI->users()) {
176 const auto *I = cast<Instruction>(U);
177 // If this instruction accesses memory make sure it doesn't access beyond
178 // the bounds of the allocated object.
179 std::optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
180 if (MemLoc && MemLoc->Size.hasValue() &&
181 !TypeSize::isKnownGE(AllocSize, MemLoc->Size.getValue()))
182 return true;
183 switch (I->getOpcode()) {
184 case Instruction::Store:
185 if (AI == cast<StoreInst>(I)->getValueOperand())
186 return true;
187 break;
188 case Instruction::AtomicCmpXchg:
189 // cmpxchg conceptually includes both a load and store from the same
190 // location. So, like store, the value being stored is what matters.
191 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
192 return true;
193 break;
194 case Instruction::PtrToInt:
195 if (AI == cast<PtrToIntInst>(I)->getOperand(0))
196 return true;
197 break;
198 case Instruction::Call: {
199 // Ignore intrinsics that do not become real instructions.
200 // TODO: Narrow this to intrinsics that have store-like effects.
201 const auto *CI = cast<CallInst>(I);
202 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
203 return true;
204 break;
206 case Instruction::Invoke:
207 return true;
208 case Instruction::GetElementPtr: {
209 // If the GEP offset is out-of-bounds, or is non-constant and so has to be
210 // assumed to be potentially out-of-bounds, then any memory access that
211 // would use it could also be out-of-bounds meaning stack protection is
212 // required.
213 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
214 unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType());
215 APInt Offset(IndexSize, 0);
216 if (!GEP->accumulateConstantOffset(DL, Offset))
217 return true;
218 TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue());
219 if (!TypeSize::isKnownGT(AllocSize, OffsetSize))
220 return true;
221 // Adjust AllocSize to be the space remaining after this offset.
222 // We can't subtract a fixed size from a scalable one, so in that case
223 // assume the scalable value is of minimum size.
224 TypeSize NewAllocSize =
225 TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize;
226 if (HasAddressTaken(I, NewAllocSize, M, VisitedPHIs))
227 return true;
228 break;
230 case Instruction::BitCast:
231 case Instruction::Select:
232 case Instruction::AddrSpaceCast:
233 if (HasAddressTaken(I, AllocSize, M, VisitedPHIs))
234 return true;
235 break;
236 case Instruction::PHI: {
237 // Keep track of what PHI nodes we have already visited to ensure
238 // they are only visited once.
239 const auto *PN = cast<PHINode>(I);
240 if (VisitedPHIs.insert(PN).second)
241 if (HasAddressTaken(PN, AllocSize, M, VisitedPHIs))
242 return true;
243 break;
245 case Instruction::Load:
246 case Instruction::AtomicRMW:
247 case Instruction::Ret:
248 // These instructions take an address operand, but have load-like or
249 // other innocuous behavior that should not trigger a stack protector.
250 // atomicrmw conceptually has both load and store semantics, but the
251 // value being stored must be integer; so if a pointer is being stored,
252 // we'll catch it in the PtrToInt case above.
253 break;
254 default:
255 // Conservatively return true for any instruction that takes an address
256 // operand, but is not handled above.
257 return true;
260 return false;
263 /// Search for the first call to the llvm.stackprotector intrinsic and return it
264 /// if present.
265 static const CallInst *findStackProtectorIntrinsic(Function &F) {
266 for (const BasicBlock &BB : F)
267 for (const Instruction &I : BB)
268 if (const auto *II = dyn_cast<IntrinsicInst>(&I))
269 if (II->getIntrinsicID() == Intrinsic::stackprotector)
270 return II;
271 return nullptr;
274 /// Check whether or not this function needs a stack protector based
275 /// upon the stack protector level.
277 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
278 /// The standard heuristic which will add a guard variable to functions that
279 /// call alloca with a either a variable size or a size >= SSPBufferSize,
280 /// functions with character buffers larger than SSPBufferSize, and functions
281 /// with aggregates containing character buffers larger than SSPBufferSize. The
282 /// strong heuristic will add a guard variables to functions that call alloca
283 /// regardless of size, functions with any buffer regardless of type and size,
284 /// functions with aggregates that contain any buffer regardless of type and
285 /// size, and functions that contain stack-based variables that have had their
286 /// address taken.
287 bool StackProtector::requiresStackProtector(Function *F, SSPLayoutMap *Layout) {
288 Module *M = F->getParent();
289 bool Strong = false;
290 bool NeedsProtector = false;
292 // The set of PHI nodes visited when determining if a variable's reference has
293 // been taken. This set is maintained to ensure we don't visit the same PHI
294 // node multiple times.
295 SmallPtrSet<const PHINode *, 16> VisitedPHIs;
297 unsigned SSPBufferSize = F->getFnAttributeAsParsedInteger(
298 "stack-protector-buffer-size", DefaultSSPBufferSize);
300 if (F->hasFnAttribute(Attribute::SafeStack))
301 return false;
303 // We are constructing the OptimizationRemarkEmitter on the fly rather than
304 // using the analysis pass to avoid building DominatorTree and LoopInfo which
305 // are not available this late in the IR pipeline.
306 OptimizationRemarkEmitter ORE(F);
308 if (F->hasFnAttribute(Attribute::StackProtectReq)) {
309 if (!Layout)
310 return true;
311 ORE.emit([&]() {
312 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
313 << "Stack protection applied to function "
314 << ore::NV("Function", F)
315 << " due to a function attribute or command-line switch";
317 NeedsProtector = true;
318 Strong = true; // Use the same heuristic as strong to determine SSPLayout
319 } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
320 Strong = true;
321 else if (!F->hasFnAttribute(Attribute::StackProtect))
322 return false;
324 for (const BasicBlock &BB : *F) {
325 for (const Instruction &I : BB) {
326 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
327 if (AI->isArrayAllocation()) {
328 auto RemarkBuilder = [&]() {
329 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
331 << "Stack protection applied to function "
332 << ore::NV("Function", F)
333 << " due to a call to alloca or use of a variable length "
334 "array";
336 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
337 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
338 // A call to alloca with size >= SSPBufferSize requires
339 // stack protectors.
340 if (!Layout)
341 return true;
342 Layout->insert(
343 std::make_pair(AI, MachineFrameInfo::SSPLK_LargeArray));
344 ORE.emit(RemarkBuilder);
345 NeedsProtector = true;
346 } else if (Strong) {
347 // Require protectors for all alloca calls in strong mode.
348 if (!Layout)
349 return true;
350 Layout->insert(
351 std::make_pair(AI, MachineFrameInfo::SSPLK_SmallArray));
352 ORE.emit(RemarkBuilder);
353 NeedsProtector = true;
355 } else {
356 // A call to alloca with a variable size requires protectors.
357 if (!Layout)
358 return true;
359 Layout->insert(
360 std::make_pair(AI, MachineFrameInfo::SSPLK_LargeArray));
361 ORE.emit(RemarkBuilder);
362 NeedsProtector = true;
364 continue;
367 bool IsLarge = false;
368 if (ContainsProtectableArray(AI->getAllocatedType(), M, SSPBufferSize,
369 IsLarge, Strong, false)) {
370 if (!Layout)
371 return true;
372 Layout->insert(std::make_pair(
373 AI, IsLarge ? MachineFrameInfo::SSPLK_LargeArray
374 : MachineFrameInfo::SSPLK_SmallArray));
375 ORE.emit([&]() {
376 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
377 << "Stack protection applied to function "
378 << ore::NV("Function", F)
379 << " due to a stack allocated buffer or struct containing a "
380 "buffer";
382 NeedsProtector = true;
383 continue;
386 if (Strong &&
387 HasAddressTaken(
388 AI, M->getDataLayout().getTypeAllocSize(AI->getAllocatedType()),
389 M, VisitedPHIs)) {
390 ++NumAddrTaken;
391 if (!Layout)
392 return true;
393 Layout->insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
394 ORE.emit([&]() {
395 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
397 << "Stack protection applied to function "
398 << ore::NV("Function", F)
399 << " due to the address of a local variable being taken";
401 NeedsProtector = true;
403 // Clear any PHIs that we visited, to make sure we examine all uses of
404 // any subsequent allocas that we look at.
405 VisitedPHIs.clear();
410 return NeedsProtector;
413 /// Create a stack guard loading and populate whether SelectionDAG SSP is
414 /// supported.
415 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
416 IRBuilder<> &B,
417 bool *SupportsSelectionDAGSP = nullptr) {
418 Value *Guard = TLI->getIRStackGuard(B);
419 StringRef GuardMode = M->getStackProtectorGuard();
420 if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
421 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
423 // Use SelectionDAG SSP handling, since there isn't an IR guard.
425 // This is more or less weird, since we optionally output whether we
426 // should perform a SelectionDAG SP here. The reason is that it's strictly
427 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
428 // mutating. There is no way to get this bit without mutating the IR, so
429 // getting this bit has to happen in this right time.
431 // We could have define a new function TLI::supportsSelectionDAGSP(), but that
432 // will put more burden on the backends' overriding work, especially when it
433 // actually conveys the same information getIRStackGuard() already gives.
434 if (SupportsSelectionDAGSP)
435 *SupportsSelectionDAGSP = true;
436 TLI->insertSSPDeclarations(*M);
437 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
440 /// Insert code into the entry block that stores the stack guard
441 /// variable onto the stack:
443 /// entry:
444 /// StackGuardSlot = alloca i8*
445 /// StackGuard = <stack guard>
446 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot)
448 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
449 /// node.
450 static bool CreatePrologue(Function *F, Module *M, Instruction *CheckLoc,
451 const TargetLoweringBase *TLI, AllocaInst *&AI) {
452 bool SupportsSelectionDAGSP = false;
453 IRBuilder<> B(&F->getEntryBlock().front());
454 PointerType *PtrTy = Type::getInt8PtrTy(CheckLoc->getContext());
455 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
457 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
458 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
459 {GuardSlot, AI});
460 return SupportsSelectionDAGSP;
463 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
464 /// function.
466 /// - The prologue code loads and stores the stack guard onto the stack.
467 /// - The epilogue checks the value stored in the prologue against the original
468 /// value. It calls __stack_chk_fail if they differ.
469 bool StackProtector::InsertStackProtectors() {
470 // If the target wants to XOR the frame pointer into the guard value, it's
471 // impossible to emit the check in IR, so the target *must* support stack
472 // protection in SDAG.
473 bool SupportsSelectionDAGSP =
474 TLI->useStackGuardXorFP() ||
475 (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
476 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
477 BasicBlock *FailBB = nullptr;
479 for (BasicBlock &BB : llvm::make_early_inc_range(*F)) {
480 // This is stack protector auto generated check BB, skip it.
481 if (&BB == FailBB)
482 continue;
483 Instruction *CheckLoc = dyn_cast<ReturnInst>(BB.getTerminator());
484 if (!CheckLoc && !DisableCheckNoReturn)
485 for (auto &Inst : BB)
486 if (auto *CB = dyn_cast<CallBase>(&Inst))
487 // Do stack check before noreturn calls that aren't nounwind (e.g:
488 // __cxa_throw).
489 if (CB->doesNotReturn() && !CB->doesNotThrow()) {
490 CheckLoc = CB;
491 break;
494 if (!CheckLoc)
495 continue;
497 // Generate prologue instrumentation if not already generated.
498 if (!HasPrologue) {
499 HasPrologue = true;
500 SupportsSelectionDAGSP &= CreatePrologue(F, M, CheckLoc, TLI, AI);
503 // SelectionDAG based code generation. Nothing else needs to be done here.
504 // The epilogue instrumentation is postponed to SelectionDAG.
505 if (SupportsSelectionDAGSP)
506 break;
508 // Find the stack guard slot if the prologue was not created by this pass
509 // itself via a previous call to CreatePrologue().
510 if (!AI) {
511 const CallInst *SPCall = findStackProtectorIntrinsic(*F);
512 assert(SPCall && "Call to llvm.stackprotector is missing");
513 AI = cast<AllocaInst>(SPCall->getArgOperand(1));
516 // Set HasIRCheck to true, so that SelectionDAG will not generate its own
517 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
518 // instrumentation has already been generated.
519 HasIRCheck = true;
521 // If we're instrumenting a block with a tail call, the check has to be
522 // inserted before the call rather than between it and the return. The
523 // verifier guarantees that a tail call is either directly before the
524 // return or with a single correct bitcast of the return value in between so
525 // we don't need to worry about many situations here.
526 Instruction *Prev = CheckLoc->getPrevNonDebugInstruction();
527 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall())
528 CheckLoc = Prev;
529 else if (Prev) {
530 Prev = Prev->getPrevNonDebugInstruction();
531 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall())
532 CheckLoc = Prev;
535 // Generate epilogue instrumentation. The epilogue intrumentation can be
536 // function-based or inlined depending on which mechanism the target is
537 // providing.
538 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
539 // Generate the function-based epilogue instrumentation.
540 // The target provides a guard check function, generate a call to it.
541 IRBuilder<> B(CheckLoc);
542 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
543 CallInst *Call = B.CreateCall(GuardCheck, {Guard});
544 Call->setAttributes(GuardCheck->getAttributes());
545 Call->setCallingConv(GuardCheck->getCallingConv());
546 } else {
547 // Generate the epilogue with inline instrumentation.
548 // If we do not support SelectionDAG based calls, generate IR level
549 // calls.
551 // For each block with a return instruction, convert this:
553 // return:
554 // ...
555 // ret ...
557 // into this:
559 // return:
560 // ...
561 // %1 = <stack guard>
562 // %2 = load StackGuardSlot
563 // %3 = icmp ne i1 %1, %2
564 // br i1 %3, label %CallStackCheckFailBlk, label %SP_return
566 // SP_return:
567 // ret ...
569 // CallStackCheckFailBlk:
570 // call void @__stack_chk_fail()
571 // unreachable
573 // Create the FailBB. We duplicate the BB every time since the MI tail
574 // merge pass will merge together all of the various BB into one including
575 // fail BB generated by the stack protector pseudo instruction.
576 if (!FailBB)
577 FailBB = CreateFailBB();
579 IRBuilder<> B(CheckLoc);
580 Value *Guard = getStackGuard(TLI, M, B);
581 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
582 auto *Cmp = cast<ICmpInst>(B.CreateICmpNE(Guard, LI2));
583 auto SuccessProb =
584 BranchProbabilityInfo::getBranchProbStackProtector(true);
585 auto FailureProb =
586 BranchProbabilityInfo::getBranchProbStackProtector(false);
587 MDNode *Weights = MDBuilder(F->getContext())
588 .createBranchWeights(FailureProb.getNumerator(),
589 SuccessProb.getNumerator());
591 SplitBlockAndInsertIfThen(Cmp, CheckLoc,
592 /*Unreachable=*/false, Weights,
593 DTU ? &*DTU : nullptr,
594 /*LI=*/nullptr, /*ThenBlock=*/FailBB);
596 auto *BI = cast<BranchInst>(Cmp->getParent()->getTerminator());
597 BasicBlock *NewBB = BI->getSuccessor(1);
598 NewBB->setName("SP_return");
599 NewBB->moveAfter(&BB);
601 Cmp->setPredicate(Cmp->getInversePredicate());
602 BI->swapSuccessors();
606 // Return if we didn't modify any basic blocks. i.e., there are no return
607 // statements in the function.
608 return HasPrologue;
611 /// CreateFailBB - Create a basic block to jump to when the stack protector
612 /// check fails.
613 BasicBlock *StackProtector::CreateFailBB() {
614 LLVMContext &Context = F->getContext();
615 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
616 IRBuilder<> B(FailBB);
617 if (F->getSubprogram())
618 B.SetCurrentDebugLocation(
619 DILocation::get(Context, 0, 0, F->getSubprogram()));
620 FunctionCallee StackChkFail;
621 SmallVector<Value *, 1> Args;
622 if (Trip.isOSOpenBSD()) {
623 StackChkFail = M->getOrInsertFunction("__stack_smash_handler",
624 Type::getVoidTy(Context),
625 Type::getInt8PtrTy(Context));
626 Args.push_back(B.CreateGlobalStringPtr(F->getName(), "SSH"));
627 } else {
628 StackChkFail =
629 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
631 cast<Function>(StackChkFail.getCallee())->addFnAttr(Attribute::NoReturn);
632 B.CreateCall(StackChkFail, Args);
633 B.CreateUnreachable();
634 return FailBB;
637 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
638 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
641 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
642 if (Layout.empty())
643 return;
645 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
646 if (MFI.isDeadObjectIndex(I))
647 continue;
649 const AllocaInst *AI = MFI.getObjectAllocation(I);
650 if (!AI)
651 continue;
653 SSPLayoutMap::const_iterator LI = Layout.find(AI);
654 if (LI == Layout.end())
655 continue;
657 MFI.setObjectSSPLayout(I, LI->second);