Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / CodeGen / TwoAddressInstructionPass.cpp
blobbf689dbd308f7f00ca0e41267a023cf4bbd43af0
1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the TwoAddress instruction pass which is used
10 // by most register allocators. Two-Address instructions are rewritten
11 // from:
13 // A = B op C
15 // to:
17 // A = B
18 // A op= C
20 // Note that if a register allocator chooses to use this pass, that it
21 // has to be capable of handling the non-SSA nature of these rewritten
22 // virtual registers.
24 // It is also worth noting that the duplicate operand of the two
25 // address instruction is removed.
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/SmallPtrSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator_range.h"
34 #include "llvm/Analysis/AliasAnalysis.h"
35 #include "llvm/CodeGen/LiveInterval.h"
36 #include "llvm/CodeGen/LiveIntervals.h"
37 #include "llvm/CodeGen/LiveVariables.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineInstr.h"
42 #include "llvm/CodeGen/MachineInstrBuilder.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/Passes.h"
46 #include "llvm/CodeGen/SlotIndexes.h"
47 #include "llvm/CodeGen/TargetInstrInfo.h"
48 #include "llvm/CodeGen/TargetOpcodes.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/TargetSubtargetInfo.h"
51 #include "llvm/MC/MCInstrDesc.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/CodeGen.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Target/TargetMachine.h"
59 #include <cassert>
60 #include <iterator>
61 #include <utility>
63 using namespace llvm;
65 #define DEBUG_TYPE "twoaddressinstruction"
67 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
68 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
69 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
70 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
71 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up");
72 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down");
74 // Temporary flag to disable rescheduling.
75 static cl::opt<bool>
76 EnableRescheduling("twoaddr-reschedule",
77 cl::desc("Coalesce copies by rescheduling (default=true)"),
78 cl::init(true), cl::Hidden);
80 // Limit the number of dataflow edges to traverse when evaluating the benefit
81 // of commuting operands.
82 static cl::opt<unsigned> MaxDataFlowEdge(
83 "dataflow-edge-limit", cl::Hidden, cl::init(3),
84 cl::desc("Maximum number of dataflow edges to traverse when evaluating "
85 "the benefit of commuting operands"));
87 namespace {
89 class TwoAddressInstructionPass : public MachineFunctionPass {
90 MachineFunction *MF = nullptr;
91 const TargetInstrInfo *TII = nullptr;
92 const TargetRegisterInfo *TRI = nullptr;
93 const InstrItineraryData *InstrItins = nullptr;
94 MachineRegisterInfo *MRI = nullptr;
95 LiveVariables *LV = nullptr;
96 LiveIntervals *LIS = nullptr;
97 AliasAnalysis *AA = nullptr;
98 CodeGenOptLevel OptLevel = CodeGenOptLevel::None;
100 // The current basic block being processed.
101 MachineBasicBlock *MBB = nullptr;
103 // Keep track the distance of a MI from the start of the current basic block.
104 DenseMap<MachineInstr*, unsigned> DistanceMap;
106 // Set of already processed instructions in the current block.
107 SmallPtrSet<MachineInstr*, 8> Processed;
109 // A map from virtual registers to physical registers which are likely targets
110 // to be coalesced to due to copies from physical registers to virtual
111 // registers. e.g. v1024 = move r0.
112 DenseMap<Register, Register> SrcRegMap;
114 // A map from virtual registers to physical registers which are likely targets
115 // to be coalesced to due to copies to physical registers from virtual
116 // registers. e.g. r1 = move v1024.
117 DenseMap<Register, Register> DstRegMap;
119 MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB) const;
121 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen);
123 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef);
125 bool isCopyToReg(MachineInstr &MI, Register &SrcReg, Register &DstReg,
126 bool &IsSrcPhys, bool &IsDstPhys) const;
128 bool isPlainlyKilled(const MachineInstr *MI, LiveRange &LR) const;
129 bool isPlainlyKilled(const MachineInstr *MI, Register Reg) const;
130 bool isPlainlyKilled(const MachineOperand &MO) const;
132 bool isKilled(MachineInstr &MI, Register Reg, bool allowFalsePositives) const;
134 MachineInstr *findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB,
135 bool &IsCopy, Register &DstReg,
136 bool &IsDstPhys) const;
138 bool regsAreCompatible(Register RegA, Register RegB) const;
140 void removeMapRegEntry(const MachineOperand &MO,
141 DenseMap<Register, Register> &RegMap) const;
143 void removeClobberedSrcRegMap(MachineInstr *MI);
145 bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg) const;
147 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC,
148 MachineInstr *MI, unsigned Dist);
150 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx,
151 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist);
153 bool isProfitableToConv3Addr(Register RegA, Register RegB);
155 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
156 MachineBasicBlock::iterator &nmi, Register RegA,
157 Register RegB, unsigned &Dist);
159 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI);
161 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
162 MachineBasicBlock::iterator &nmi, Register Reg);
163 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
164 MachineBasicBlock::iterator &nmi, Register Reg);
166 bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
167 MachineBasicBlock::iterator &nmi,
168 unsigned SrcIdx, unsigned DstIdx,
169 unsigned &Dist, bool shouldOnlyCommute);
171 bool tryInstructionCommute(MachineInstr *MI,
172 unsigned DstOpIdx,
173 unsigned BaseOpIdx,
174 bool BaseOpKilled,
175 unsigned Dist);
176 void scanUses(Register DstReg);
178 void processCopy(MachineInstr *MI);
180 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>;
181 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>;
183 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
184 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
185 void eliminateRegSequence(MachineBasicBlock::iterator&);
186 bool processStatepoint(MachineInstr *MI, TiedOperandMap &TiedOperands);
188 public:
189 static char ID; // Pass identification, replacement for typeid
191 TwoAddressInstructionPass() : MachineFunctionPass(ID) {
192 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
195 void getAnalysisUsage(AnalysisUsage &AU) const override {
196 AU.setPreservesCFG();
197 AU.addUsedIfAvailable<AAResultsWrapperPass>();
198 AU.addUsedIfAvailable<LiveVariables>();
199 AU.addPreserved<LiveVariables>();
200 AU.addPreserved<SlotIndexes>();
201 AU.addPreserved<LiveIntervals>();
202 AU.addPreservedID(MachineLoopInfoID);
203 AU.addPreservedID(MachineDominatorsID);
204 MachineFunctionPass::getAnalysisUsage(AU);
207 /// Pass entry point.
208 bool runOnMachineFunction(MachineFunction&) override;
211 } // end anonymous namespace
213 char TwoAddressInstructionPass::ID = 0;
215 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
217 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE,
218 "Two-Address instruction pass", false, false)
219 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
220 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE,
221 "Two-Address instruction pass", false, false)
223 /// Return the MachineInstr* if it is the single def of the Reg in current BB.
224 MachineInstr *
225 TwoAddressInstructionPass::getSingleDef(Register Reg,
226 MachineBasicBlock *BB) const {
227 MachineInstr *Ret = nullptr;
228 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
229 if (DefMI.getParent() != BB || DefMI.isDebugValue())
230 continue;
231 if (!Ret)
232 Ret = &DefMI;
233 else if (Ret != &DefMI)
234 return nullptr;
236 return Ret;
239 /// Check if there is a reversed copy chain from FromReg to ToReg:
240 /// %Tmp1 = copy %Tmp2;
241 /// %FromReg = copy %Tmp1;
242 /// %ToReg = add %FromReg ...
243 /// %Tmp2 = copy %ToReg;
244 /// MaxLen specifies the maximum length of the copy chain the func
245 /// can walk through.
246 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg,
247 int Maxlen) {
248 Register TmpReg = FromReg;
249 for (int i = 0; i < Maxlen; i++) {
250 MachineInstr *Def = getSingleDef(TmpReg, MBB);
251 if (!Def || !Def->isCopy())
252 return false;
254 TmpReg = Def->getOperand(1).getReg();
256 if (TmpReg == ToReg)
257 return true;
259 return false;
262 /// Return true if there are no intervening uses between the last instruction
263 /// in the MBB that defines the specified register and the two-address
264 /// instruction which is being processed. It also returns the last def location
265 /// by reference.
266 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist,
267 unsigned &LastDef) {
268 LastDef = 0;
269 unsigned LastUse = Dist;
270 for (MachineOperand &MO : MRI->reg_operands(Reg)) {
271 MachineInstr *MI = MO.getParent();
272 if (MI->getParent() != MBB || MI->isDebugValue())
273 continue;
274 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
275 if (DI == DistanceMap.end())
276 continue;
277 if (MO.isUse() && DI->second < LastUse)
278 LastUse = DI->second;
279 if (MO.isDef() && DI->second > LastDef)
280 LastDef = DI->second;
283 return !(LastUse > LastDef && LastUse < Dist);
286 /// Return true if the specified MI is a copy instruction or an extract_subreg
287 /// instruction. It also returns the source and destination registers and
288 /// whether they are physical registers by reference.
289 bool TwoAddressInstructionPass::isCopyToReg(MachineInstr &MI, Register &SrcReg,
290 Register &DstReg, bool &IsSrcPhys,
291 bool &IsDstPhys) const {
292 SrcReg = 0;
293 DstReg = 0;
294 if (MI.isCopy()) {
295 DstReg = MI.getOperand(0).getReg();
296 SrcReg = MI.getOperand(1).getReg();
297 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
298 DstReg = MI.getOperand(0).getReg();
299 SrcReg = MI.getOperand(2).getReg();
300 } else {
301 return false;
304 IsSrcPhys = SrcReg.isPhysical();
305 IsDstPhys = DstReg.isPhysical();
306 return true;
309 bool TwoAddressInstructionPass::isPlainlyKilled(const MachineInstr *MI,
310 LiveRange &LR) const {
311 // This is to match the kill flag version where undefs don't have kill flags.
312 if (!LR.hasAtLeastOneValue())
313 return false;
315 SlotIndex useIdx = LIS->getInstructionIndex(*MI);
316 LiveInterval::const_iterator I = LR.find(useIdx);
317 assert(I != LR.end() && "Reg must be live-in to use.");
318 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
321 /// Test if the given register value, which is used by the
322 /// given instruction, is killed by the given instruction.
323 bool TwoAddressInstructionPass::isPlainlyKilled(const MachineInstr *MI,
324 Register Reg) const {
325 // FIXME: Sometimes tryInstructionTransform() will add instructions and
326 // test whether they can be folded before keeping them. In this case it
327 // sets a kill before recursively calling tryInstructionTransform() again.
328 // If there is no interval available, we assume that this instruction is
329 // one of those. A kill flag is manually inserted on the operand so the
330 // check below will handle it.
331 if (LIS && !LIS->isNotInMIMap(*MI)) {
332 if (Reg.isVirtual())
333 return isPlainlyKilled(MI, LIS->getInterval(Reg));
334 // Reserved registers are considered always live.
335 if (MRI->isReserved(Reg))
336 return false;
337 return all_of(TRI->regunits(Reg), [&](MCRegUnit U) {
338 return isPlainlyKilled(MI, LIS->getRegUnit(U));
342 return MI->killsRegister(Reg);
345 /// Test if the register used by the given operand is killed by the operand's
346 /// instruction.
347 bool TwoAddressInstructionPass::isPlainlyKilled(
348 const MachineOperand &MO) const {
349 return MO.isKill() || isPlainlyKilled(MO.getParent(), MO.getReg());
352 /// Test if the given register value, which is used by the given
353 /// instruction, is killed by the given instruction. This looks through
354 /// coalescable copies to see if the original value is potentially not killed.
356 /// For example, in this code:
358 /// %reg1034 = copy %reg1024
359 /// %reg1035 = copy killed %reg1025
360 /// %reg1036 = add killed %reg1034, killed %reg1035
362 /// %reg1034 is not considered to be killed, since it is copied from a
363 /// register which is not killed. Treating it as not killed lets the
364 /// normal heuristics commute the (two-address) add, which lets
365 /// coalescing eliminate the extra copy.
367 /// If allowFalsePositives is true then likely kills are treated as kills even
368 /// if it can't be proven that they are kills.
369 bool TwoAddressInstructionPass::isKilled(MachineInstr &MI, Register Reg,
370 bool allowFalsePositives) const {
371 MachineInstr *DefMI = &MI;
372 while (true) {
373 // All uses of physical registers are likely to be kills.
374 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg)))
375 return true;
376 if (!isPlainlyKilled(DefMI, Reg))
377 return false;
378 if (Reg.isPhysical())
379 return true;
380 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
381 // If there are multiple defs, we can't do a simple analysis, so just
382 // go with what the kill flag says.
383 if (std::next(Begin) != MRI->def_end())
384 return true;
385 DefMI = Begin->getParent();
386 bool IsSrcPhys, IsDstPhys;
387 Register SrcReg, DstReg;
388 // If the def is something other than a copy, then it isn't going to
389 // be coalesced, so follow the kill flag.
390 if (!isCopyToReg(*DefMI, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
391 return true;
392 Reg = SrcReg;
396 /// Return true if the specified MI uses the specified register as a two-address
397 /// use. If so, return the destination register by reference.
398 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) {
399 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
400 const MachineOperand &MO = MI.getOperand(i);
401 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
402 continue;
403 unsigned ti;
404 if (MI.isRegTiedToDefOperand(i, &ti)) {
405 DstReg = MI.getOperand(ti).getReg();
406 return true;
409 return false;
412 /// Given a register, if all its uses are in the same basic block, return the
413 /// last use instruction if it's a copy or a two-address use.
414 MachineInstr *TwoAddressInstructionPass::findOnlyInterestingUse(
415 Register Reg, MachineBasicBlock *MBB, bool &IsCopy, Register &DstReg,
416 bool &IsDstPhys) const {
417 MachineOperand *UseOp = nullptr;
418 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
419 MachineInstr *MI = MO.getParent();
420 if (MI->getParent() != MBB)
421 return nullptr;
422 if (isPlainlyKilled(MI, Reg))
423 UseOp = &MO;
425 if (!UseOp)
426 return nullptr;
427 MachineInstr &UseMI = *UseOp->getParent();
429 Register SrcReg;
430 bool IsSrcPhys;
431 if (isCopyToReg(UseMI, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
432 IsCopy = true;
433 return &UseMI;
435 IsDstPhys = false;
436 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
437 IsDstPhys = DstReg.isPhysical();
438 return &UseMI;
440 if (UseMI.isCommutable()) {
441 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex;
442 unsigned Src2 = UseOp->getOperandNo();
443 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) {
444 MachineOperand &MO = UseMI.getOperand(Src1);
445 if (MO.isReg() && MO.isUse() &&
446 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) {
447 IsDstPhys = DstReg.isPhysical();
448 return &UseMI;
452 return nullptr;
455 /// Return the physical register the specified virtual register might be mapped
456 /// to.
457 static MCRegister getMappedReg(Register Reg,
458 DenseMap<Register, Register> &RegMap) {
459 while (Reg.isVirtual()) {
460 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg);
461 if (SI == RegMap.end())
462 return 0;
463 Reg = SI->second;
465 if (Reg.isPhysical())
466 return Reg;
467 return 0;
470 /// Return true if the two registers are equal or aliased.
471 bool TwoAddressInstructionPass::regsAreCompatible(Register RegA,
472 Register RegB) const {
473 if (RegA == RegB)
474 return true;
475 if (!RegA || !RegB)
476 return false;
477 return TRI->regsOverlap(RegA, RegB);
480 /// From RegMap remove entries mapped to a physical register which overlaps MO.
481 void TwoAddressInstructionPass::removeMapRegEntry(
482 const MachineOperand &MO, DenseMap<Register, Register> &RegMap) const {
483 assert(
484 (MO.isReg() || MO.isRegMask()) &&
485 "removeMapRegEntry must be called with a register or regmask operand.");
487 SmallVector<Register, 2> Srcs;
488 for (auto SI : RegMap) {
489 Register ToReg = SI.second;
490 if (ToReg.isVirtual())
491 continue;
493 if (MO.isReg()) {
494 Register Reg = MO.getReg();
495 if (TRI->regsOverlap(ToReg, Reg))
496 Srcs.push_back(SI.first);
497 } else if (MO.clobbersPhysReg(ToReg))
498 Srcs.push_back(SI.first);
501 for (auto SrcReg : Srcs)
502 RegMap.erase(SrcReg);
505 /// If a physical register is clobbered, old entries mapped to it should be
506 /// deleted. For example
508 /// %2:gr64 = COPY killed $rdx
509 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx
511 /// After the MUL instruction, $rdx contains different value than in the COPY
512 /// instruction. So %2 should not map to $rdx after MUL.
513 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) {
514 if (MI->isCopy()) {
515 // If a virtual register is copied to its mapped physical register, it
516 // doesn't change the potential coalescing between them, so we don't remove
517 // entries mapped to the physical register. For example
519 // %100 = COPY $r8
520 // ...
521 // $r8 = COPY %100
523 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't
524 // destroy the content of $r8, and should not impact SrcRegMap.
525 Register Dst = MI->getOperand(0).getReg();
526 if (!Dst || Dst.isVirtual())
527 return;
529 Register Src = MI->getOperand(1).getReg();
530 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap)))
531 return;
534 for (const MachineOperand &MO : MI->operands()) {
535 if (MO.isRegMask()) {
536 removeMapRegEntry(MO, SrcRegMap);
537 continue;
539 if (!MO.isReg() || !MO.isDef())
540 continue;
541 Register Reg = MO.getReg();
542 if (!Reg || Reg.isVirtual())
543 continue;
544 removeMapRegEntry(MO, SrcRegMap);
548 // Returns true if Reg is equal or aliased to at least one register in Set.
549 bool TwoAddressInstructionPass::regOverlapsSet(
550 const SmallVectorImpl<Register> &Set, Register Reg) const {
551 for (unsigned R : Set)
552 if (TRI->regsOverlap(R, Reg))
553 return true;
555 return false;
558 /// Return true if it's potentially profitable to commute the two-address
559 /// instruction that's being processed.
560 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA,
561 Register RegB,
562 Register RegC,
563 MachineInstr *MI,
564 unsigned Dist) {
565 if (OptLevel == CodeGenOptLevel::None)
566 return false;
568 // Determine if it's profitable to commute this two address instruction. In
569 // general, we want no uses between this instruction and the definition of
570 // the two-address register.
571 // e.g.
572 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
573 // %reg1029 = COPY %reg1028
574 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
575 // insert => %reg1030 = COPY %reg1028
576 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
577 // In this case, it might not be possible to coalesce the second COPY
578 // instruction if the first one is coalesced. So it would be profitable to
579 // commute it:
580 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1
581 // %reg1029 = COPY %reg1028
582 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags
583 // insert => %reg1030 = COPY %reg1029
584 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags
586 if (!isPlainlyKilled(MI, RegC))
587 return false;
589 // Ok, we have something like:
590 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags
591 // let's see if it's worth commuting it.
593 // Look for situations like this:
594 // %reg1024 = MOV r1
595 // %reg1025 = MOV r0
596 // %reg1026 = ADD %reg1024, %reg1025
597 // r0 = MOV %reg1026
598 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
599 MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
600 if (ToRegA) {
601 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
602 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
603 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA);
604 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA);
606 // Compute if any of the following are true:
607 // -RegB is not tied to a register and RegC is compatible with RegA.
608 // -RegB is tied to the wrong physical register, but RegC is.
609 // -RegB is tied to the wrong physical register, and RegC isn't tied.
610 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
611 return true;
612 // Don't compute if any of the following are true:
613 // -RegC is not tied to a register and RegB is compatible with RegA.
614 // -RegC is tied to the wrong physical register, but RegB is.
615 // -RegC is tied to the wrong physical register, and RegB isn't tied.
616 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
617 return false;
620 // If there is a use of RegC between its last def (could be livein) and this
621 // instruction, then bail.
622 unsigned LastDefC = 0;
623 if (!noUseAfterLastDef(RegC, Dist, LastDefC))
624 return false;
626 // If there is a use of RegB between its last def (could be livein) and this
627 // instruction, then go ahead and make this transformation.
628 unsigned LastDefB = 0;
629 if (!noUseAfterLastDef(RegB, Dist, LastDefB))
630 return true;
632 // Look for situation like this:
633 // %reg101 = MOV %reg100
634 // %reg102 = ...
635 // %reg103 = ADD %reg102, %reg101
636 // ... = %reg103 ...
637 // %reg100 = MOV %reg103
638 // If there is a reversed copy chain from reg101 to reg103, commute the ADD
639 // to eliminate an otherwise unavoidable copy.
640 // FIXME:
641 // We can extend the logic further: If an pair of operands in an insn has
642 // been merged, the insn could be regarded as a virtual copy, and the virtual
643 // copy could also be used to construct a copy chain.
644 // To more generally minimize register copies, ideally the logic of two addr
645 // instruction pass should be integrated with register allocation pass where
646 // interference graph is available.
647 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge))
648 return true;
650 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge))
651 return false;
653 // Look for other target specific commute preference.
654 bool Commute;
655 if (TII->hasCommutePreference(*MI, Commute))
656 return Commute;
658 // Since there are no intervening uses for both registers, then commute
659 // if the def of RegC is closer. Its live interval is shorter.
660 return LastDefB && LastDefC && LastDefC > LastDefB;
663 /// Commute a two-address instruction and update the basic block, distance map,
664 /// and live variables if needed. Return true if it is successful.
665 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI,
666 unsigned DstIdx,
667 unsigned RegBIdx,
668 unsigned RegCIdx,
669 unsigned Dist) {
670 Register RegC = MI->getOperand(RegCIdx).getReg();
671 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
672 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx);
674 if (NewMI == nullptr) {
675 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
676 return false;
679 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
680 assert(NewMI == MI &&
681 "TargetInstrInfo::commuteInstruction() should not return a new "
682 "instruction unless it was requested.");
684 // Update source register map.
685 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap);
686 if (FromRegC) {
687 Register RegA = MI->getOperand(DstIdx).getReg();
688 SrcRegMap[RegA] = FromRegC;
691 return true;
694 /// Return true if it is profitable to convert the given 2-address instruction
695 /// to a 3-address one.
696 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA,
697 Register RegB) {
698 // Look for situations like this:
699 // %reg1024 = MOV r1
700 // %reg1025 = MOV r0
701 // %reg1026 = ADD %reg1024, %reg1025
702 // r2 = MOV %reg1026
703 // Turn ADD into a 3-address instruction to avoid a copy.
704 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap);
705 if (!FromRegB)
706 return false;
707 MCRegister ToRegA = getMappedReg(RegA, DstRegMap);
708 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA));
711 /// Convert the specified two-address instruction into a three address one.
712 /// Return true if this transformation was successful.
713 bool TwoAddressInstructionPass::convertInstTo3Addr(
714 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
715 Register RegA, Register RegB, unsigned &Dist) {
716 MachineInstrSpan MIS(mi, MBB);
717 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS);
718 if (!NewMI)
719 return false;
721 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
722 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
724 // If the old instruction is debug value tracked, an update is required.
725 if (auto OldInstrNum = mi->peekDebugInstrNum()) {
726 assert(mi->getNumExplicitDefs() == 1);
727 assert(NewMI->getNumExplicitDefs() == 1);
729 // Find the old and new def location.
730 unsigned OldIdx = mi->defs().begin()->getOperandNo();
731 unsigned NewIdx = NewMI->defs().begin()->getOperandNo();
733 // Record that one def has been replaced by the other.
734 unsigned NewInstrNum = NewMI->getDebugInstrNum();
735 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx),
736 std::make_pair(NewInstrNum, NewIdx));
739 MBB->erase(mi); // Nuke the old inst.
741 for (MachineInstr &MI : MIS)
742 DistanceMap.insert(std::make_pair(&MI, Dist++));
743 Dist--;
744 mi = NewMI;
745 nmi = std::next(mi);
747 // Update source and destination register maps.
748 SrcRegMap.erase(RegA);
749 DstRegMap.erase(RegB);
750 return true;
753 /// Scan forward recursively for only uses, update maps if the use is a copy or
754 /// a two-address instruction.
755 void TwoAddressInstructionPass::scanUses(Register DstReg) {
756 SmallVector<Register, 4> VirtRegPairs;
757 bool IsDstPhys;
758 bool IsCopy = false;
759 Register NewReg;
760 Register Reg = DstReg;
761 while (MachineInstr *UseMI =
762 findOnlyInterestingUse(Reg, MBB, IsCopy, NewReg, IsDstPhys)) {
763 if (IsCopy && !Processed.insert(UseMI).second)
764 break;
766 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
767 if (DI != DistanceMap.end())
768 // Earlier in the same MBB.Reached via a back edge.
769 break;
771 if (IsDstPhys) {
772 VirtRegPairs.push_back(NewReg);
773 break;
775 SrcRegMap[NewReg] = Reg;
776 VirtRegPairs.push_back(NewReg);
777 Reg = NewReg;
780 if (!VirtRegPairs.empty()) {
781 unsigned ToReg = VirtRegPairs.back();
782 VirtRegPairs.pop_back();
783 while (!VirtRegPairs.empty()) {
784 unsigned FromReg = VirtRegPairs.pop_back_val();
785 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
786 if (!isNew)
787 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
788 ToReg = FromReg;
790 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
791 if (!isNew)
792 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
796 /// If the specified instruction is not yet processed, process it if it's a
797 /// copy. For a copy instruction, we find the physical registers the
798 /// source and destination registers might be mapped to. These are kept in
799 /// point-to maps used to determine future optimizations. e.g.
800 /// v1024 = mov r0
801 /// v1025 = mov r1
802 /// v1026 = add v1024, v1025
803 /// r1 = mov r1026
804 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
805 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
806 /// potentially joined with r1 on the output side. It's worthwhile to commute
807 /// 'add' to eliminate a copy.
808 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
809 if (Processed.count(MI))
810 return;
812 bool IsSrcPhys, IsDstPhys;
813 Register SrcReg, DstReg;
814 if (!isCopyToReg(*MI, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
815 return;
817 if (IsDstPhys && !IsSrcPhys) {
818 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
819 } else if (!IsDstPhys && IsSrcPhys) {
820 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
821 if (!isNew)
822 assert(SrcRegMap[DstReg] == SrcReg &&
823 "Can't map to two src physical registers!");
825 scanUses(DstReg);
828 Processed.insert(MI);
831 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
832 /// consider moving the instruction below the kill instruction in order to
833 /// eliminate the need for the copy.
834 bool TwoAddressInstructionPass::rescheduleMIBelowKill(
835 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
836 Register Reg) {
837 // Bail immediately if we don't have LV or LIS available. We use them to find
838 // kills efficiently.
839 if (!LV && !LIS)
840 return false;
842 MachineInstr *MI = &*mi;
843 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
844 if (DI == DistanceMap.end())
845 // Must be created from unfolded load. Don't waste time trying this.
846 return false;
848 MachineInstr *KillMI = nullptr;
849 if (LIS) {
850 LiveInterval &LI = LIS->getInterval(Reg);
851 assert(LI.end() != LI.begin() &&
852 "Reg should not have empty live interval.");
854 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
855 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
856 if (I != LI.end() && I->start < MBBEndIdx)
857 return false;
859 --I;
860 KillMI = LIS->getInstructionFromIndex(I->end);
861 } else {
862 KillMI = LV->getVarInfo(Reg).findKill(MBB);
864 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
865 // Don't mess with copies, they may be coalesced later.
866 return false;
868 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
869 KillMI->isBranch() || KillMI->isTerminator())
870 // Don't move pass calls, etc.
871 return false;
873 Register DstReg;
874 if (isTwoAddrUse(*KillMI, Reg, DstReg))
875 return false;
877 bool SeenStore = true;
878 if (!MI->isSafeToMove(AA, SeenStore))
879 return false;
881 if (TII->getInstrLatency(InstrItins, *MI) > 1)
882 // FIXME: Needs more sophisticated heuristics.
883 return false;
885 SmallVector<Register, 2> Uses;
886 SmallVector<Register, 2> Kills;
887 SmallVector<Register, 2> Defs;
888 for (const MachineOperand &MO : MI->operands()) {
889 if (!MO.isReg())
890 continue;
891 Register MOReg = MO.getReg();
892 if (!MOReg)
893 continue;
894 if (MO.isDef())
895 Defs.push_back(MOReg);
896 else {
897 Uses.push_back(MOReg);
898 if (MOReg != Reg && isPlainlyKilled(MO))
899 Kills.push_back(MOReg);
903 // Move the copies connected to MI down as well.
904 MachineBasicBlock::iterator Begin = MI;
905 MachineBasicBlock::iterator AfterMI = std::next(Begin);
906 MachineBasicBlock::iterator End = AfterMI;
907 while (End != MBB->end()) {
908 End = skipDebugInstructionsForward(End, MBB->end());
909 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg()))
910 Defs.push_back(End->getOperand(0).getReg());
911 else
912 break;
913 ++End;
916 // Check if the reschedule will not break dependencies.
917 unsigned NumVisited = 0;
918 MachineBasicBlock::iterator KillPos = KillMI;
919 ++KillPos;
920 for (MachineInstr &OtherMI : make_range(End, KillPos)) {
921 // Debug or pseudo instructions cannot be counted against the limit.
922 if (OtherMI.isDebugOrPseudoInstr())
923 continue;
924 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
925 return false;
926 ++NumVisited;
927 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
928 OtherMI.isBranch() || OtherMI.isTerminator())
929 // Don't move pass calls, etc.
930 return false;
931 for (const MachineOperand &MO : OtherMI.operands()) {
932 if (!MO.isReg())
933 continue;
934 Register MOReg = MO.getReg();
935 if (!MOReg)
936 continue;
937 if (MO.isDef()) {
938 if (regOverlapsSet(Uses, MOReg))
939 // Physical register use would be clobbered.
940 return false;
941 if (!MO.isDead() && regOverlapsSet(Defs, MOReg))
942 // May clobber a physical register def.
943 // FIXME: This may be too conservative. It's ok if the instruction
944 // is sunken completely below the use.
945 return false;
946 } else {
947 if (regOverlapsSet(Defs, MOReg))
948 return false;
949 bool isKill = isPlainlyKilled(MO);
950 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg)) ||
951 regOverlapsSet(Kills, MOReg)))
952 // Don't want to extend other live ranges and update kills.
953 return false;
954 if (MOReg == Reg && !isKill)
955 // We can't schedule across a use of the register in question.
956 return false;
957 // Ensure that if this is register in question, its the kill we expect.
958 assert((MOReg != Reg || &OtherMI == KillMI) &&
959 "Found multiple kills of a register in a basic block");
964 // Move debug info as well.
965 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr())
966 --Begin;
968 nmi = End;
969 MachineBasicBlock::iterator InsertPos = KillPos;
970 if (LIS) {
971 // We have to move the copies (and any interleaved debug instructions)
972 // first so that the MBB is still well-formed when calling handleMove().
973 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
974 auto CopyMI = MBBI++;
975 MBB->splice(InsertPos, MBB, CopyMI);
976 if (!CopyMI->isDebugOrPseudoInstr())
977 LIS->handleMove(*CopyMI);
978 InsertPos = CopyMI;
980 End = std::next(MachineBasicBlock::iterator(MI));
983 // Copies following MI may have been moved as well.
984 MBB->splice(InsertPos, MBB, Begin, End);
985 DistanceMap.erase(DI);
987 // Update live variables
988 if (LIS) {
989 LIS->handleMove(*MI);
990 } else {
991 LV->removeVirtualRegisterKilled(Reg, *KillMI);
992 LV->addVirtualRegisterKilled(Reg, *MI);
995 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
996 return true;
999 /// Return true if the re-scheduling will put the given instruction too close
1000 /// to the defs of its register dependencies.
1001 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist,
1002 MachineInstr *MI) {
1003 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
1004 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
1005 continue;
1006 if (&DefMI == MI)
1007 return true; // MI is defining something KillMI uses
1008 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
1009 if (DDI == DistanceMap.end())
1010 return true; // Below MI
1011 unsigned DefDist = DDI->second;
1012 assert(Dist > DefDist && "Visited def already?");
1013 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist))
1014 return true;
1016 return false;
1019 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg,
1020 /// consider moving the kill instruction above the current two-address
1021 /// instruction in order to eliminate the need for the copy.
1022 bool TwoAddressInstructionPass::rescheduleKillAboveMI(
1023 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi,
1024 Register Reg) {
1025 // Bail immediately if we don't have LV or LIS available. We use them to find
1026 // kills efficiently.
1027 if (!LV && !LIS)
1028 return false;
1030 MachineInstr *MI = &*mi;
1031 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1032 if (DI == DistanceMap.end())
1033 // Must be created from unfolded load. Don't waste time trying this.
1034 return false;
1036 MachineInstr *KillMI = nullptr;
1037 if (LIS) {
1038 LiveInterval &LI = LIS->getInterval(Reg);
1039 assert(LI.end() != LI.begin() &&
1040 "Reg should not have empty live interval.");
1042 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1043 LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1044 if (I != LI.end() && I->start < MBBEndIdx)
1045 return false;
1047 --I;
1048 KillMI = LIS->getInstructionFromIndex(I->end);
1049 } else {
1050 KillMI = LV->getVarInfo(Reg).findKill(MBB);
1052 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1053 // Don't mess with copies, they may be coalesced later.
1054 return false;
1056 Register DstReg;
1057 if (isTwoAddrUse(*KillMI, Reg, DstReg))
1058 return false;
1060 bool SeenStore = true;
1061 if (!KillMI->isSafeToMove(AA, SeenStore))
1062 return false;
1064 SmallVector<Register, 2> Uses;
1065 SmallVector<Register, 2> Kills;
1066 SmallVector<Register, 2> Defs;
1067 SmallVector<Register, 2> LiveDefs;
1068 for (const MachineOperand &MO : KillMI->operands()) {
1069 if (!MO.isReg())
1070 continue;
1071 Register MOReg = MO.getReg();
1072 if (MO.isUse()) {
1073 if (!MOReg)
1074 continue;
1075 if (isDefTooClose(MOReg, DI->second, MI))
1076 return false;
1077 bool isKill = isPlainlyKilled(MO);
1078 if (MOReg == Reg && !isKill)
1079 return false;
1080 Uses.push_back(MOReg);
1081 if (isKill && MOReg != Reg)
1082 Kills.push_back(MOReg);
1083 } else if (MOReg.isPhysical()) {
1084 Defs.push_back(MOReg);
1085 if (!MO.isDead())
1086 LiveDefs.push_back(MOReg);
1090 // Check if the reschedule will not break depedencies.
1091 unsigned NumVisited = 0;
1092 for (MachineInstr &OtherMI :
1093 make_range(mi, MachineBasicBlock::iterator(KillMI))) {
1094 // Debug or pseudo instructions cannot be counted against the limit.
1095 if (OtherMI.isDebugOrPseudoInstr())
1096 continue;
1097 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost.
1098 return false;
1099 ++NumVisited;
1100 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() ||
1101 OtherMI.isBranch() || OtherMI.isTerminator())
1102 // Don't move pass calls, etc.
1103 return false;
1104 SmallVector<Register, 2> OtherDefs;
1105 for (const MachineOperand &MO : OtherMI.operands()) {
1106 if (!MO.isReg())
1107 continue;
1108 Register MOReg = MO.getReg();
1109 if (!MOReg)
1110 continue;
1111 if (MO.isUse()) {
1112 if (regOverlapsSet(Defs, MOReg))
1113 // Moving KillMI can clobber the physical register if the def has
1114 // not been seen.
1115 return false;
1116 if (regOverlapsSet(Kills, MOReg))
1117 // Don't want to extend other live ranges and update kills.
1118 return false;
1119 if (&OtherMI != MI && MOReg == Reg && !isPlainlyKilled(MO))
1120 // We can't schedule across a use of the register in question.
1121 return false;
1122 } else {
1123 OtherDefs.push_back(MOReg);
1127 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1128 Register MOReg = OtherDefs[i];
1129 if (regOverlapsSet(Uses, MOReg))
1130 return false;
1131 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg))
1132 return false;
1133 // Physical register def is seen.
1134 llvm::erase(Defs, MOReg);
1138 // Move the old kill above MI, don't forget to move debug info as well.
1139 MachineBasicBlock::iterator InsertPos = mi;
1140 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr())
1141 --InsertPos;
1142 MachineBasicBlock::iterator From = KillMI;
1143 MachineBasicBlock::iterator To = std::next(From);
1144 while (std::prev(From)->isDebugInstr())
1145 --From;
1146 MBB->splice(InsertPos, MBB, From, To);
1148 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1149 DistanceMap.erase(DI);
1151 // Update live variables
1152 if (LIS) {
1153 LIS->handleMove(*KillMI);
1154 } else {
1155 LV->removeVirtualRegisterKilled(Reg, *KillMI);
1156 LV->addVirtualRegisterKilled(Reg, *MI);
1159 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1160 return true;
1163 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the
1164 /// given machine instruction to improve opportunities for coalescing and
1165 /// elimination of a register to register copy.
1167 /// 'DstOpIdx' specifies the index of MI def operand.
1168 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx'
1169 /// operand is killed by the given instruction.
1170 /// The 'Dist' arguments provides the distance of MI from the start of the
1171 /// current basic block and it is used to determine if it is profitable
1172 /// to commute operands in the instruction.
1174 /// Returns true if the transformation happened. Otherwise, returns false.
1175 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI,
1176 unsigned DstOpIdx,
1177 unsigned BaseOpIdx,
1178 bool BaseOpKilled,
1179 unsigned Dist) {
1180 if (!MI->isCommutable())
1181 return false;
1183 bool MadeChange = false;
1184 Register DstOpReg = MI->getOperand(DstOpIdx).getReg();
1185 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg();
1186 unsigned OpsNum = MI->getDesc().getNumOperands();
1187 unsigned OtherOpIdx = MI->getDesc().getNumDefs();
1188 for (; OtherOpIdx < OpsNum; OtherOpIdx++) {
1189 // The call of findCommutedOpIndices below only checks if BaseOpIdx
1190 // and OtherOpIdx are commutable, it does not really search for
1191 // other commutable operands and does not change the values of passed
1192 // variables.
1193 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() ||
1194 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx))
1195 continue;
1197 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg();
1198 bool AggressiveCommute = false;
1200 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp
1201 // operands. This makes the live ranges of DstOp and OtherOp joinable.
1202 bool OtherOpKilled = isKilled(*MI, OtherOpReg, false);
1203 bool DoCommute = !BaseOpKilled && OtherOpKilled;
1205 if (!DoCommute &&
1206 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) {
1207 DoCommute = true;
1208 AggressiveCommute = true;
1211 // If it's profitable to commute, try to do so.
1212 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx,
1213 Dist)) {
1214 MadeChange = true;
1215 ++NumCommuted;
1216 if (AggressiveCommute)
1217 ++NumAggrCommuted;
1219 // There might be more than two commutable operands, update BaseOp and
1220 // continue scanning.
1221 // FIXME: This assumes that the new instruction's operands are in the
1222 // same positions and were simply swapped.
1223 BaseOpReg = OtherOpReg;
1224 BaseOpKilled = OtherOpKilled;
1225 // Resamples OpsNum in case the number of operands was reduced. This
1226 // happens with X86.
1227 OpsNum = MI->getDesc().getNumOperands();
1230 return MadeChange;
1233 /// For the case where an instruction has a single pair of tied register
1234 /// operands, attempt some transformations that may either eliminate the tied
1235 /// operands or improve the opportunities for coalescing away the register copy.
1236 /// Returns true if no copy needs to be inserted to untie mi's operands
1237 /// (either because they were untied, or because mi was rescheduled, and will
1238 /// be visited again later). If the shouldOnlyCommute flag is true, only
1239 /// instruction commutation is attempted.
1240 bool TwoAddressInstructionPass::
1241 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1242 MachineBasicBlock::iterator &nmi,
1243 unsigned SrcIdx, unsigned DstIdx,
1244 unsigned &Dist, bool shouldOnlyCommute) {
1245 if (OptLevel == CodeGenOptLevel::None)
1246 return false;
1248 MachineInstr &MI = *mi;
1249 Register regA = MI.getOperand(DstIdx).getReg();
1250 Register regB = MI.getOperand(SrcIdx).getReg();
1252 assert(regB.isVirtual() && "cannot make instruction into two-address form");
1253 bool regBKilled = isKilled(MI, regB, true);
1255 if (regA.isVirtual())
1256 scanUses(regA);
1258 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist);
1260 // If the instruction is convertible to 3 Addr, instead
1261 // of returning try 3 Addr transformation aggressively and
1262 // use this variable to check later. Because it might be better.
1263 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret`
1264 // instead of the following code.
1265 // addl %esi, %edi
1266 // movl %edi, %eax
1267 // ret
1268 if (Commuted && !MI.isConvertibleTo3Addr())
1269 return false;
1271 if (shouldOnlyCommute)
1272 return false;
1274 // If there is one more use of regB later in the same MBB, consider
1275 // re-schedule this MI below it.
1276 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1277 ++NumReSchedDowns;
1278 return true;
1281 // If we commuted, regB may have changed so we should re-sample it to avoid
1282 // confusing the three address conversion below.
1283 if (Commuted) {
1284 regB = MI.getOperand(SrcIdx).getReg();
1285 regBKilled = isKilled(MI, regB, true);
1288 if (MI.isConvertibleTo3Addr()) {
1289 // This instruction is potentially convertible to a true
1290 // three-address instruction. Check if it is profitable.
1291 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1292 // Try to convert it.
1293 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1294 ++NumConvertedTo3Addr;
1295 return true; // Done with this instruction.
1300 // Return if it is commuted but 3 addr conversion is failed.
1301 if (Commuted)
1302 return false;
1304 // If there is one more use of regB later in the same MBB, consider
1305 // re-schedule it before this MI if it's legal.
1306 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1307 ++NumReSchedUps;
1308 return true;
1311 // If this is an instruction with a load folded into it, try unfolding
1312 // the load, e.g. avoid this:
1313 // movq %rdx, %rcx
1314 // addq (%rax), %rcx
1315 // in favor of this:
1316 // movq (%rax), %rcx
1317 // addq %rdx, %rcx
1318 // because it's preferable to schedule a load than a register copy.
1319 if (MI.mayLoad() && !regBKilled) {
1320 // Determine if a load can be unfolded.
1321 unsigned LoadRegIndex;
1322 unsigned NewOpc =
1323 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1324 /*UnfoldLoad=*/true,
1325 /*UnfoldStore=*/false,
1326 &LoadRegIndex);
1327 if (NewOpc != 0) {
1328 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1329 if (UnfoldMCID.getNumDefs() == 1) {
1330 // Unfold the load.
1331 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI);
1332 const TargetRegisterClass *RC =
1333 TRI->getAllocatableClass(
1334 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1335 Register Reg = MRI->createVirtualRegister(RC);
1336 SmallVector<MachineInstr *, 2> NewMIs;
1337 if (!TII->unfoldMemoryOperand(*MF, MI, Reg,
1338 /*UnfoldLoad=*/true,
1339 /*UnfoldStore=*/false, NewMIs)) {
1340 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1341 return false;
1343 assert(NewMIs.size() == 2 &&
1344 "Unfolded a load into multiple instructions!");
1345 // The load was previously folded, so this is the only use.
1346 NewMIs[1]->addRegisterKilled(Reg, TRI);
1348 // Tentatively insert the instructions into the block so that they
1349 // look "normal" to the transformation logic.
1350 MBB->insert(mi, NewMIs[0]);
1351 MBB->insert(mi, NewMIs[1]);
1352 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++));
1353 DistanceMap.insert(std::make_pair(NewMIs[1], Dist));
1355 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0]
1356 << "2addr: NEW INST: " << *NewMIs[1]);
1358 // Transform the instruction, now that it no longer has a load.
1359 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1360 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1361 MachineBasicBlock::iterator NewMI = NewMIs[1];
1362 bool TransformResult =
1363 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1364 (void)TransformResult;
1365 assert(!TransformResult &&
1366 "tryInstructionTransform() should return false.");
1367 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1368 // Success, or at least we made an improvement. Keep the unfolded
1369 // instructions and discard the original.
1370 if (LV) {
1371 for (const MachineOperand &MO : MI.operands()) {
1372 if (MO.isReg() && MO.getReg().isVirtual()) {
1373 if (MO.isUse()) {
1374 if (MO.isKill()) {
1375 if (NewMIs[0]->killsRegister(MO.getReg()))
1376 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]);
1377 else {
1378 assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1379 "Kill missing after load unfold!");
1380 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]);
1383 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) {
1384 if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1385 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]);
1386 else {
1387 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1388 "Dead flag missing after load unfold!");
1389 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]);
1394 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]);
1397 SmallVector<Register, 4> OrigRegs;
1398 if (LIS) {
1399 for (const MachineOperand &MO : MI.operands()) {
1400 if (MO.isReg())
1401 OrigRegs.push_back(MO.getReg());
1404 LIS->RemoveMachineInstrFromMaps(MI);
1407 MI.eraseFromParent();
1408 DistanceMap.erase(&MI);
1410 // Update LiveIntervals.
1411 if (LIS) {
1412 MachineBasicBlock::iterator Begin(NewMIs[0]);
1413 MachineBasicBlock::iterator End(NewMIs[1]);
1414 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1417 mi = NewMIs[1];
1418 } else {
1419 // Transforming didn't eliminate the tie and didn't lead to an
1420 // improvement. Clean up the unfolded instructions and keep the
1421 // original.
1422 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1423 NewMIs[0]->eraseFromParent();
1424 NewMIs[1]->eraseFromParent();
1425 DistanceMap.erase(NewMIs[0]);
1426 DistanceMap.erase(NewMIs[1]);
1427 Dist--;
1433 return false;
1436 // Collect tied operands of MI that need to be handled.
1437 // Rewrite trivial cases immediately.
1438 // Return true if any tied operands where found, including the trivial ones.
1439 bool TwoAddressInstructionPass::
1440 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1441 bool AnyOps = false;
1442 unsigned NumOps = MI->getNumOperands();
1444 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1445 unsigned DstIdx = 0;
1446 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1447 continue;
1448 AnyOps = true;
1449 MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1450 MachineOperand &DstMO = MI->getOperand(DstIdx);
1451 Register SrcReg = SrcMO.getReg();
1452 Register DstReg = DstMO.getReg();
1453 // Tied constraint already satisfied?
1454 if (SrcReg == DstReg)
1455 continue;
1457 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1459 // Deal with undef uses immediately - simply rewrite the src operand.
1460 if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1461 // Constrain the DstReg register class if required.
1462 if (DstReg.isVirtual()) {
1463 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
1464 MRI->constrainRegClass(DstReg, RC);
1466 SrcMO.setReg(DstReg);
1467 SrcMO.setSubReg(0);
1468 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1469 continue;
1471 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1473 return AnyOps;
1476 // Process a list of tied MI operands that all use the same source register.
1477 // The tied pairs are of the form (SrcIdx, DstIdx).
1478 void
1479 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1480 TiedPairList &TiedPairs,
1481 unsigned &Dist) {
1482 bool IsEarlyClobber = llvm::any_of(TiedPairs, [MI](auto const &TP) {
1483 return MI->getOperand(TP.second).isEarlyClobber();
1486 bool RemovedKillFlag = false;
1487 bool AllUsesCopied = true;
1488 unsigned LastCopiedReg = 0;
1489 SlotIndex LastCopyIdx;
1490 Register RegB = 0;
1491 unsigned SubRegB = 0;
1492 for (auto &TP : TiedPairs) {
1493 unsigned SrcIdx = TP.first;
1494 unsigned DstIdx = TP.second;
1496 const MachineOperand &DstMO = MI->getOperand(DstIdx);
1497 Register RegA = DstMO.getReg();
1499 // Grab RegB from the instruction because it may have changed if the
1500 // instruction was commuted.
1501 RegB = MI->getOperand(SrcIdx).getReg();
1502 SubRegB = MI->getOperand(SrcIdx).getSubReg();
1504 if (RegA == RegB) {
1505 // The register is tied to multiple destinations (or else we would
1506 // not have continued this far), but this use of the register
1507 // already matches the tied destination. Leave it.
1508 AllUsesCopied = false;
1509 continue;
1511 LastCopiedReg = RegA;
1513 assert(RegB.isVirtual() && "cannot make instruction into two-address form");
1515 #ifndef NDEBUG
1516 // First, verify that we don't have a use of "a" in the instruction
1517 // (a = b + a for example) because our transformation will not
1518 // work. This should never occur because we are in SSA form.
1519 for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1520 assert(i == DstIdx ||
1521 !MI->getOperand(i).isReg() ||
1522 MI->getOperand(i).getReg() != RegA);
1523 #endif
1525 // Emit a copy.
1526 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1527 TII->get(TargetOpcode::COPY), RegA);
1528 // If this operand is folding a truncation, the truncation now moves to the
1529 // copy so that the register classes remain valid for the operands.
1530 MIB.addReg(RegB, 0, SubRegB);
1531 const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1532 if (SubRegB) {
1533 if (RegA.isVirtual()) {
1534 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1535 SubRegB) &&
1536 "tied subregister must be a truncation");
1537 // The superreg class will not be used to constrain the subreg class.
1538 RC = nullptr;
1539 } else {
1540 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1541 && "tied subregister must be a truncation");
1545 // Update DistanceMap.
1546 MachineBasicBlock::iterator PrevMI = MI;
1547 --PrevMI;
1548 DistanceMap.insert(std::make_pair(&*PrevMI, Dist));
1549 DistanceMap[MI] = ++Dist;
1551 if (LIS) {
1552 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot();
1554 SlotIndex endIdx =
1555 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber);
1556 if (RegA.isVirtual()) {
1557 LiveInterval &LI = LIS->getInterval(RegA);
1558 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1559 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1560 for (auto &S : LI.subranges()) {
1561 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1562 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1564 } else {
1565 for (MCRegUnit Unit : TRI->regunits(RegA)) {
1566 if (LiveRange *LR = LIS->getCachedRegUnit(Unit)) {
1567 VNInfo *VNI =
1568 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1569 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI));
1575 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1577 MachineOperand &MO = MI->getOperand(SrcIdx);
1578 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1579 "inconsistent operand info for 2-reg pass");
1580 if (isPlainlyKilled(MO)) {
1581 MO.setIsKill(false);
1582 RemovedKillFlag = true;
1585 // Make sure regA is a legal regclass for the SrcIdx operand.
1586 if (RegA.isVirtual() && RegB.isVirtual())
1587 MRI->constrainRegClass(RegA, RC);
1588 MO.setReg(RegA);
1589 // The getMatchingSuper asserts guarantee that the register class projected
1590 // by SubRegB is compatible with RegA with no subregister. So regardless of
1591 // whether the dest oper writes a subreg, the source oper should not.
1592 MO.setSubReg(0);
1595 if (AllUsesCopied) {
1596 LaneBitmask RemainingUses = LaneBitmask::getNone();
1597 // Replace other (un-tied) uses of regB with LastCopiedReg.
1598 for (MachineOperand &MO : MI->all_uses()) {
1599 if (MO.getReg() == RegB) {
1600 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) {
1601 if (isPlainlyKilled(MO)) {
1602 MO.setIsKill(false);
1603 RemovedKillFlag = true;
1605 MO.setReg(LastCopiedReg);
1606 MO.setSubReg(0);
1607 } else {
1608 RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg());
1613 // Update live variables for regB.
1614 if (RemovedKillFlag && RemainingUses.none() && LV &&
1615 LV->getVarInfo(RegB).removeKill(*MI)) {
1616 MachineBasicBlock::iterator PrevMI = MI;
1617 --PrevMI;
1618 LV->addVirtualRegisterKilled(RegB, *PrevMI);
1621 if (RemovedKillFlag && RemainingUses.none())
1622 SrcRegMap[LastCopiedReg] = RegB;
1624 // Update LiveIntervals.
1625 if (LIS) {
1626 SlotIndex UseIdx = LIS->getInstructionIndex(*MI);
1627 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) {
1628 LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx);
1629 if (!S)
1630 return true;
1631 if ((LaneMask & RemainingUses).any())
1632 return false;
1633 if (S->end.getBaseIndex() != UseIdx)
1634 return false;
1635 S->end = LastCopyIdx;
1636 return true;
1639 LiveInterval &LI = LIS->getInterval(RegB);
1640 bool ShrinkLI = true;
1641 for (auto &S : LI.subranges())
1642 ShrinkLI &= Shrink(S, S.LaneMask);
1643 if (ShrinkLI)
1644 Shrink(LI, LaneBitmask::getAll());
1646 } else if (RemovedKillFlag) {
1647 // Some tied uses of regB matched their destination registers, so
1648 // regB is still used in this instruction, but a kill flag was
1649 // removed from a different tied use of regB, so now we need to add
1650 // a kill flag to one of the remaining uses of regB.
1651 for (MachineOperand &MO : MI->all_uses()) {
1652 if (MO.getReg() == RegB) {
1653 MO.setIsKill(true);
1654 break;
1660 // For every tied operand pair this function transforms statepoint from
1661 // RegA = STATEPOINT ... RegB(tied-def N)
1662 // to
1663 // RegB = STATEPOINT ... RegB(tied-def N)
1664 // and replaces all uses of RegA with RegB.
1665 // No extra COPY instruction is necessary because tied use is killed at
1666 // STATEPOINT.
1667 bool TwoAddressInstructionPass::processStatepoint(
1668 MachineInstr *MI, TiedOperandMap &TiedOperands) {
1670 bool NeedCopy = false;
1671 for (auto &TO : TiedOperands) {
1672 Register RegB = TO.first;
1673 if (TO.second.size() != 1) {
1674 NeedCopy = true;
1675 continue;
1678 unsigned SrcIdx = TO.second[0].first;
1679 unsigned DstIdx = TO.second[0].second;
1681 MachineOperand &DstMO = MI->getOperand(DstIdx);
1682 Register RegA = DstMO.getReg();
1684 assert(RegB == MI->getOperand(SrcIdx).getReg());
1686 if (RegA == RegB)
1687 continue;
1689 // CodeGenPrepare can sink pointer compare past statepoint, which
1690 // breaks assumption that statepoint kills tied-use register when
1691 // in SSA form (see note in IR/SafepointIRVerifier.cpp). Fall back
1692 // to generic tied register handling to avoid assertion failures.
1693 // TODO: Recompute LIS/LV information for new range here.
1694 if (LIS) {
1695 const auto &UseLI = LIS->getInterval(RegB);
1696 const auto &DefLI = LIS->getInterval(RegA);
1697 if (DefLI.overlaps(UseLI)) {
1698 LLVM_DEBUG(dbgs() << "LIS: " << printReg(RegB, TRI, 0)
1699 << " UseLI overlaps with DefLI\n");
1700 NeedCopy = true;
1701 continue;
1703 } else if (LV && LV->getVarInfo(RegB).findKill(MI->getParent()) != MI) {
1704 // Note that MachineOperand::isKill does not work here, because it
1705 // is set only on first register use in instruction and for statepoint
1706 // tied-use register will usually be found in preceeding deopt bundle.
1707 LLVM_DEBUG(dbgs() << "LV: " << printReg(RegB, TRI, 0)
1708 << " not killed by statepoint\n");
1709 NeedCopy = true;
1710 continue;
1713 if (!MRI->constrainRegClass(RegB, MRI->getRegClass(RegA))) {
1714 LLVM_DEBUG(dbgs() << "MRI: couldn't constrain" << printReg(RegB, TRI, 0)
1715 << " to register class of " << printReg(RegA, TRI, 0)
1716 << '\n');
1717 NeedCopy = true;
1718 continue;
1720 MRI->replaceRegWith(RegA, RegB);
1722 if (LIS) {
1723 VNInfo::Allocator &A = LIS->getVNInfoAllocator();
1724 LiveInterval &LI = LIS->getInterval(RegB);
1725 LiveInterval &Other = LIS->getInterval(RegA);
1726 SmallVector<VNInfo *> NewVNIs;
1727 for (const VNInfo *VNI : Other.valnos) {
1728 assert(VNI->id == NewVNIs.size() && "assumed");
1729 NewVNIs.push_back(LI.createValueCopy(VNI, A));
1731 for (auto &S : Other) {
1732 VNInfo *VNI = NewVNIs[S.valno->id];
1733 LiveRange::Segment NewSeg(S.start, S.end, VNI);
1734 LI.addSegment(NewSeg);
1736 LIS->removeInterval(RegA);
1739 if (LV) {
1740 if (MI->getOperand(SrcIdx).isKill())
1741 LV->removeVirtualRegisterKilled(RegB, *MI);
1742 LiveVariables::VarInfo &SrcInfo = LV->getVarInfo(RegB);
1743 LiveVariables::VarInfo &DstInfo = LV->getVarInfo(RegA);
1744 SrcInfo.AliveBlocks |= DstInfo.AliveBlocks;
1745 DstInfo.AliveBlocks.clear();
1746 for (auto *KillMI : DstInfo.Kills)
1747 LV->addVirtualRegisterKilled(RegB, *KillMI, false);
1750 return !NeedCopy;
1753 /// Reduce two-address instructions to two operands.
1754 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1755 MF = &Func;
1756 const TargetMachine &TM = MF->getTarget();
1757 MRI = &MF->getRegInfo();
1758 TII = MF->getSubtarget().getInstrInfo();
1759 TRI = MF->getSubtarget().getRegisterInfo();
1760 InstrItins = MF->getSubtarget().getInstrItineraryData();
1761 LV = getAnalysisIfAvailable<LiveVariables>();
1762 LIS = getAnalysisIfAvailable<LiveIntervals>();
1763 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>())
1764 AA = &AAPass->getAAResults();
1765 else
1766 AA = nullptr;
1767 OptLevel = TM.getOptLevel();
1768 // Disable optimizations if requested. We cannot skip the whole pass as some
1769 // fixups are necessary for correctness.
1770 if (skipFunction(Func.getFunction()))
1771 OptLevel = CodeGenOptLevel::None;
1773 bool MadeChange = false;
1775 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1776 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n');
1778 // This pass takes the function out of SSA form.
1779 MRI->leaveSSA();
1781 // This pass will rewrite the tied-def to meet the RegConstraint.
1782 MF->getProperties()
1783 .set(MachineFunctionProperties::Property::TiedOpsRewritten);
1785 TiedOperandMap TiedOperands;
1786 for (MachineBasicBlock &MBBI : *MF) {
1787 MBB = &MBBI;
1788 unsigned Dist = 0;
1789 DistanceMap.clear();
1790 SrcRegMap.clear();
1791 DstRegMap.clear();
1792 Processed.clear();
1793 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1794 mi != me; ) {
1795 MachineBasicBlock::iterator nmi = std::next(mi);
1796 // Skip debug instructions.
1797 if (mi->isDebugInstr()) {
1798 mi = nmi;
1799 continue;
1802 // Expand REG_SEQUENCE instructions. This will position mi at the first
1803 // expanded instruction.
1804 if (mi->isRegSequence())
1805 eliminateRegSequence(mi);
1807 DistanceMap.insert(std::make_pair(&*mi, ++Dist));
1809 processCopy(&*mi);
1811 // First scan through all the tied register uses in this instruction
1812 // and record a list of pairs of tied operands for each register.
1813 if (!collectTiedOperands(&*mi, TiedOperands)) {
1814 removeClobberedSrcRegMap(&*mi);
1815 mi = nmi;
1816 continue;
1819 ++NumTwoAddressInstrs;
1820 MadeChange = true;
1821 LLVM_DEBUG(dbgs() << '\t' << *mi);
1823 // If the instruction has a single pair of tied operands, try some
1824 // transformations that may either eliminate the tied operands or
1825 // improve the opportunities for coalescing away the register copy.
1826 if (TiedOperands.size() == 1) {
1827 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs
1828 = TiedOperands.begin()->second;
1829 if (TiedPairs.size() == 1) {
1830 unsigned SrcIdx = TiedPairs[0].first;
1831 unsigned DstIdx = TiedPairs[0].second;
1832 Register SrcReg = mi->getOperand(SrcIdx).getReg();
1833 Register DstReg = mi->getOperand(DstIdx).getReg();
1834 if (SrcReg != DstReg &&
1835 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1836 // The tied operands have been eliminated or shifted further down
1837 // the block to ease elimination. Continue processing with 'nmi'.
1838 TiedOperands.clear();
1839 removeClobberedSrcRegMap(&*mi);
1840 mi = nmi;
1841 continue;
1846 if (mi->getOpcode() == TargetOpcode::STATEPOINT &&
1847 processStatepoint(&*mi, TiedOperands)) {
1848 TiedOperands.clear();
1849 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1850 mi = nmi;
1851 continue;
1854 // Now iterate over the information collected above.
1855 for (auto &TO : TiedOperands) {
1856 processTiedPairs(&*mi, TO.second, Dist);
1857 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1860 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1861 if (mi->isInsertSubreg()) {
1862 // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1863 // To %reg:subidx = COPY %subreg
1864 unsigned SubIdx = mi->getOperand(3).getImm();
1865 mi->removeOperand(3);
1866 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1867 mi->getOperand(0).setSubReg(SubIdx);
1868 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1869 mi->removeOperand(1);
1870 mi->setDesc(TII->get(TargetOpcode::COPY));
1871 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1873 // Update LiveIntervals.
1874 if (LIS) {
1875 Register Reg = mi->getOperand(0).getReg();
1876 LiveInterval &LI = LIS->getInterval(Reg);
1877 if (LI.hasSubRanges()) {
1878 // The COPY no longer defines subregs of %reg except for
1879 // %reg.subidx.
1880 LaneBitmask LaneMask =
1881 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg());
1882 SlotIndex Idx = LIS->getInstructionIndex(*mi).getRegSlot();
1883 for (auto &S : LI.subranges()) {
1884 if ((S.LaneMask & LaneMask).none()) {
1885 LiveRange::iterator DefSeg = S.FindSegmentContaining(Idx);
1886 if (mi->getOperand(0).isUndef()) {
1887 S.removeValNo(DefSeg->valno);
1888 } else {
1889 LiveRange::iterator UseSeg = std::prev(DefSeg);
1890 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno);
1895 // The COPY no longer has a use of %reg.
1896 LIS->shrinkToUses(&LI);
1897 } else {
1898 // The live interval for Reg did not have subranges but now it needs
1899 // them because we have introduced a subreg def. Recompute it.
1900 LIS->removeInterval(Reg);
1901 LIS->createAndComputeVirtRegInterval(Reg);
1906 // Clear TiedOperands here instead of at the top of the loop
1907 // since most instructions do not have tied operands.
1908 TiedOperands.clear();
1909 removeClobberedSrcRegMap(&*mi);
1910 mi = nmi;
1914 return MadeChange;
1917 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1919 /// The instruction is turned into a sequence of sub-register copies:
1921 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1923 /// Becomes:
1925 /// undef %dst:ssub0 = COPY %v1
1926 /// %dst:ssub1 = COPY %v2
1927 void TwoAddressInstructionPass::
1928 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1929 MachineInstr &MI = *MBBI;
1930 Register DstReg = MI.getOperand(0).getReg();
1932 SmallVector<Register, 4> OrigRegs;
1933 if (LIS) {
1934 OrigRegs.push_back(MI.getOperand(0).getReg());
1935 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2)
1936 OrigRegs.push_back(MI.getOperand(i).getReg());
1939 bool DefEmitted = false;
1940 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) {
1941 MachineOperand &UseMO = MI.getOperand(i);
1942 Register SrcReg = UseMO.getReg();
1943 unsigned SubIdx = MI.getOperand(i+1).getImm();
1944 // Nothing needs to be inserted for undef operands.
1945 if (UseMO.isUndef())
1946 continue;
1948 // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1949 // might insert a COPY that uses SrcReg after is was killed.
1950 bool isKill = UseMO.isKill();
1951 if (isKill)
1952 for (unsigned j = i + 2; j < e; j += 2)
1953 if (MI.getOperand(j).getReg() == SrcReg) {
1954 MI.getOperand(j).setIsKill();
1955 UseMO.setIsKill(false);
1956 isKill = false;
1957 break;
1960 // Insert the sub-register copy.
1961 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
1962 TII->get(TargetOpcode::COPY))
1963 .addReg(DstReg, RegState::Define, SubIdx)
1964 .add(UseMO);
1966 // The first def needs an undef flag because there is no live register
1967 // before it.
1968 if (!DefEmitted) {
1969 CopyMI->getOperand(0).setIsUndef(true);
1970 // Return an iterator pointing to the first inserted instr.
1971 MBBI = CopyMI;
1973 DefEmitted = true;
1975 // Update LiveVariables' kill info.
1976 if (LV && isKill && !SrcReg.isPhysical())
1977 LV->replaceKillInstruction(SrcReg, MI, *CopyMI);
1979 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI);
1982 MachineBasicBlock::iterator EndMBBI =
1983 std::next(MachineBasicBlock::iterator(MI));
1985 if (!DefEmitted) {
1986 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF");
1987 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1988 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j)
1989 MI.removeOperand(j);
1990 } else {
1991 if (LIS)
1992 LIS->RemoveMachineInstrFromMaps(MI);
1994 LLVM_DEBUG(dbgs() << "Eliminated: " << MI);
1995 MI.eraseFromParent();
1998 // Udpate LiveIntervals.
1999 if (LIS)
2000 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);