Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / ExecutionEngine / Interpreter / Execution.cpp
blob770fc93490835d1deaafd2a2c347df4015fc093a
1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the actual instruction interpreter.
11 //===----------------------------------------------------------------------===//
13 #include "Interpreter.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/CodeGen/IntrinsicLowering.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/DerivedTypes.h"
19 #include "llvm/IR/GetElementPtrTypeIterator.h"
20 #include "llvm/IR/Instructions.h"
21 #include "llvm/Support/CommandLine.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/MathExtras.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include <algorithm>
27 #include <cmath>
28 using namespace llvm;
30 #define DEBUG_TYPE "interpreter"
32 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
34 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
35 cl::desc("make the interpreter print every volatile load and store"));
37 //===----------------------------------------------------------------------===//
38 // Various Helper Functions
39 //===----------------------------------------------------------------------===//
41 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
42 SF.Values[V] = Val;
45 //===----------------------------------------------------------------------===//
46 // Unary Instruction Implementations
47 //===----------------------------------------------------------------------===//
49 static void executeFNegInst(GenericValue &Dest, GenericValue Src, Type *Ty) {
50 switch (Ty->getTypeID()) {
51 case Type::FloatTyID:
52 Dest.FloatVal = -Src.FloatVal;
53 break;
54 case Type::DoubleTyID:
55 Dest.DoubleVal = -Src.DoubleVal;
56 break;
57 default:
58 llvm_unreachable("Unhandled type for FNeg instruction");
62 void Interpreter::visitUnaryOperator(UnaryOperator &I) {
63 ExecutionContext &SF = ECStack.back();
64 Type *Ty = I.getOperand(0)->getType();
65 GenericValue Src = getOperandValue(I.getOperand(0), SF);
66 GenericValue R; // Result
68 // First process vector operation
69 if (Ty->isVectorTy()) {
70 R.AggregateVal.resize(Src.AggregateVal.size());
72 switch(I.getOpcode()) {
73 default:
74 llvm_unreachable("Don't know how to handle this unary operator");
75 break;
76 case Instruction::FNeg:
77 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
78 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
79 R.AggregateVal[i].FloatVal = -Src.AggregateVal[i].FloatVal;
80 } else if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) {
81 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
82 R.AggregateVal[i].DoubleVal = -Src.AggregateVal[i].DoubleVal;
83 } else {
84 llvm_unreachable("Unhandled type for FNeg instruction");
86 break;
88 } else {
89 switch (I.getOpcode()) {
90 default:
91 llvm_unreachable("Don't know how to handle this unary operator");
92 break;
93 case Instruction::FNeg: executeFNegInst(R, Src, Ty); break;
96 SetValue(&I, R, SF);
99 //===----------------------------------------------------------------------===//
100 // Binary Instruction Implementations
101 //===----------------------------------------------------------------------===//
103 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
104 case Type::TY##TyID: \
105 Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
106 break
108 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
109 GenericValue Src2, Type *Ty) {
110 switch (Ty->getTypeID()) {
111 IMPLEMENT_BINARY_OPERATOR(+, Float);
112 IMPLEMENT_BINARY_OPERATOR(+, Double);
113 default:
114 dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
115 llvm_unreachable(nullptr);
119 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
120 GenericValue Src2, Type *Ty) {
121 switch (Ty->getTypeID()) {
122 IMPLEMENT_BINARY_OPERATOR(-, Float);
123 IMPLEMENT_BINARY_OPERATOR(-, Double);
124 default:
125 dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
126 llvm_unreachable(nullptr);
130 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
131 GenericValue Src2, Type *Ty) {
132 switch (Ty->getTypeID()) {
133 IMPLEMENT_BINARY_OPERATOR(*, Float);
134 IMPLEMENT_BINARY_OPERATOR(*, Double);
135 default:
136 dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
137 llvm_unreachable(nullptr);
141 static void executeFDivInst(GenericValue &Dest, GenericValue Src1,
142 GenericValue Src2, Type *Ty) {
143 switch (Ty->getTypeID()) {
144 IMPLEMENT_BINARY_OPERATOR(/, Float);
145 IMPLEMENT_BINARY_OPERATOR(/, Double);
146 default:
147 dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
148 llvm_unreachable(nullptr);
152 static void executeFRemInst(GenericValue &Dest, GenericValue Src1,
153 GenericValue Src2, Type *Ty) {
154 switch (Ty->getTypeID()) {
155 case Type::FloatTyID:
156 Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
157 break;
158 case Type::DoubleTyID:
159 Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
160 break;
161 default:
162 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
163 llvm_unreachable(nullptr);
167 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
168 case Type::IntegerTyID: \
169 Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
170 break;
172 #define IMPLEMENT_VECTOR_INTEGER_ICMP(OP, TY) \
173 case Type::FixedVectorTyID: \
174 case Type::ScalableVectorTyID: { \
175 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
176 Dest.AggregateVal.resize(Src1.AggregateVal.size()); \
177 for (uint32_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
178 Dest.AggregateVal[_i].IntVal = APInt( \
179 1, Src1.AggregateVal[_i].IntVal.OP(Src2.AggregateVal[_i].IntVal)); \
180 } break;
182 // Handle pointers specially because they must be compared with only as much
183 // width as the host has. We _do not_ want to be comparing 64 bit values when
184 // running on a 32-bit target, otherwise the upper 32 bits might mess up
185 // comparisons if they contain garbage.
186 #define IMPLEMENT_POINTER_ICMP(OP) \
187 case Type::PointerTyID: \
188 Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
189 (void*)(intptr_t)Src2.PointerVal); \
190 break;
192 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
193 Type *Ty) {
194 GenericValue Dest;
195 switch (Ty->getTypeID()) {
196 IMPLEMENT_INTEGER_ICMP(eq,Ty);
197 IMPLEMENT_VECTOR_INTEGER_ICMP(eq,Ty);
198 IMPLEMENT_POINTER_ICMP(==);
199 default:
200 dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
201 llvm_unreachable(nullptr);
203 return Dest;
206 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
207 Type *Ty) {
208 GenericValue Dest;
209 switch (Ty->getTypeID()) {
210 IMPLEMENT_INTEGER_ICMP(ne,Ty);
211 IMPLEMENT_VECTOR_INTEGER_ICMP(ne,Ty);
212 IMPLEMENT_POINTER_ICMP(!=);
213 default:
214 dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
215 llvm_unreachable(nullptr);
217 return Dest;
220 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
221 Type *Ty) {
222 GenericValue Dest;
223 switch (Ty->getTypeID()) {
224 IMPLEMENT_INTEGER_ICMP(ult,Ty);
225 IMPLEMENT_VECTOR_INTEGER_ICMP(ult,Ty);
226 IMPLEMENT_POINTER_ICMP(<);
227 default:
228 dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
229 llvm_unreachable(nullptr);
231 return Dest;
234 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
235 Type *Ty) {
236 GenericValue Dest;
237 switch (Ty->getTypeID()) {
238 IMPLEMENT_INTEGER_ICMP(slt,Ty);
239 IMPLEMENT_VECTOR_INTEGER_ICMP(slt,Ty);
240 IMPLEMENT_POINTER_ICMP(<);
241 default:
242 dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
243 llvm_unreachable(nullptr);
245 return Dest;
248 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
249 Type *Ty) {
250 GenericValue Dest;
251 switch (Ty->getTypeID()) {
252 IMPLEMENT_INTEGER_ICMP(ugt,Ty);
253 IMPLEMENT_VECTOR_INTEGER_ICMP(ugt,Ty);
254 IMPLEMENT_POINTER_ICMP(>);
255 default:
256 dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
257 llvm_unreachable(nullptr);
259 return Dest;
262 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
263 Type *Ty) {
264 GenericValue Dest;
265 switch (Ty->getTypeID()) {
266 IMPLEMENT_INTEGER_ICMP(sgt,Ty);
267 IMPLEMENT_VECTOR_INTEGER_ICMP(sgt,Ty);
268 IMPLEMENT_POINTER_ICMP(>);
269 default:
270 dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
271 llvm_unreachable(nullptr);
273 return Dest;
276 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
277 Type *Ty) {
278 GenericValue Dest;
279 switch (Ty->getTypeID()) {
280 IMPLEMENT_INTEGER_ICMP(ule,Ty);
281 IMPLEMENT_VECTOR_INTEGER_ICMP(ule,Ty);
282 IMPLEMENT_POINTER_ICMP(<=);
283 default:
284 dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
285 llvm_unreachable(nullptr);
287 return Dest;
290 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
291 Type *Ty) {
292 GenericValue Dest;
293 switch (Ty->getTypeID()) {
294 IMPLEMENT_INTEGER_ICMP(sle,Ty);
295 IMPLEMENT_VECTOR_INTEGER_ICMP(sle,Ty);
296 IMPLEMENT_POINTER_ICMP(<=);
297 default:
298 dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
299 llvm_unreachable(nullptr);
301 return Dest;
304 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
305 Type *Ty) {
306 GenericValue Dest;
307 switch (Ty->getTypeID()) {
308 IMPLEMENT_INTEGER_ICMP(uge,Ty);
309 IMPLEMENT_VECTOR_INTEGER_ICMP(uge,Ty);
310 IMPLEMENT_POINTER_ICMP(>=);
311 default:
312 dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
313 llvm_unreachable(nullptr);
315 return Dest;
318 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
319 Type *Ty) {
320 GenericValue Dest;
321 switch (Ty->getTypeID()) {
322 IMPLEMENT_INTEGER_ICMP(sge,Ty);
323 IMPLEMENT_VECTOR_INTEGER_ICMP(sge,Ty);
324 IMPLEMENT_POINTER_ICMP(>=);
325 default:
326 dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
327 llvm_unreachable(nullptr);
329 return Dest;
332 void Interpreter::visitICmpInst(ICmpInst &I) {
333 ExecutionContext &SF = ECStack.back();
334 Type *Ty = I.getOperand(0)->getType();
335 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
336 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
337 GenericValue R; // Result
339 switch (I.getPredicate()) {
340 case ICmpInst::ICMP_EQ: R = executeICMP_EQ(Src1, Src2, Ty); break;
341 case ICmpInst::ICMP_NE: R = executeICMP_NE(Src1, Src2, Ty); break;
342 case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
343 case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
344 case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
345 case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
346 case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
347 case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
348 case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
349 case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
350 default:
351 dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
352 llvm_unreachable(nullptr);
355 SetValue(&I, R, SF);
358 #define IMPLEMENT_FCMP(OP, TY) \
359 case Type::TY##TyID: \
360 Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
361 break
363 #define IMPLEMENT_VECTOR_FCMP_T(OP, TY) \
364 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size()); \
365 Dest.AggregateVal.resize( Src1.AggregateVal.size() ); \
366 for( uint32_t _i=0;_i<Src1.AggregateVal.size();_i++) \
367 Dest.AggregateVal[_i].IntVal = APInt(1, \
368 Src1.AggregateVal[_i].TY##Val OP Src2.AggregateVal[_i].TY##Val);\
369 break;
371 #define IMPLEMENT_VECTOR_FCMP(OP) \
372 case Type::FixedVectorTyID: \
373 case Type::ScalableVectorTyID: \
374 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) { \
375 IMPLEMENT_VECTOR_FCMP_T(OP, Float); \
376 } else { \
377 IMPLEMENT_VECTOR_FCMP_T(OP, Double); \
380 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
381 Type *Ty) {
382 GenericValue Dest;
383 switch (Ty->getTypeID()) {
384 IMPLEMENT_FCMP(==, Float);
385 IMPLEMENT_FCMP(==, Double);
386 IMPLEMENT_VECTOR_FCMP(==);
387 default:
388 dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
389 llvm_unreachable(nullptr);
391 return Dest;
394 #define IMPLEMENT_SCALAR_NANS(TY, X,Y) \
395 if (TY->isFloatTy()) { \
396 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
397 Dest.IntVal = APInt(1,false); \
398 return Dest; \
400 } else { \
401 if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
402 Dest.IntVal = APInt(1,false); \
403 return Dest; \
407 #define MASK_VECTOR_NANS_T(X,Y, TZ, FLAG) \
408 assert(X.AggregateVal.size() == Y.AggregateVal.size()); \
409 Dest.AggregateVal.resize( X.AggregateVal.size() ); \
410 for( uint32_t _i=0;_i<X.AggregateVal.size();_i++) { \
411 if (X.AggregateVal[_i].TZ##Val != X.AggregateVal[_i].TZ##Val || \
412 Y.AggregateVal[_i].TZ##Val != Y.AggregateVal[_i].TZ##Val) \
413 Dest.AggregateVal[_i].IntVal = APInt(1,FLAG); \
414 else { \
415 Dest.AggregateVal[_i].IntVal = APInt(1,!FLAG); \
419 #define MASK_VECTOR_NANS(TY, X,Y, FLAG) \
420 if (TY->isVectorTy()) { \
421 if (cast<VectorType>(TY)->getElementType()->isFloatTy()) { \
422 MASK_VECTOR_NANS_T(X, Y, Float, FLAG) \
423 } else { \
424 MASK_VECTOR_NANS_T(X, Y, Double, FLAG) \
430 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
431 Type *Ty)
433 GenericValue Dest;
434 // if input is scalar value and Src1 or Src2 is NaN return false
435 IMPLEMENT_SCALAR_NANS(Ty, Src1, Src2)
436 // if vector input detect NaNs and fill mask
437 MASK_VECTOR_NANS(Ty, Src1, Src2, false)
438 GenericValue DestMask = Dest;
439 switch (Ty->getTypeID()) {
440 IMPLEMENT_FCMP(!=, Float);
441 IMPLEMENT_FCMP(!=, Double);
442 IMPLEMENT_VECTOR_FCMP(!=);
443 default:
444 dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
445 llvm_unreachable(nullptr);
447 // in vector case mask out NaN elements
448 if (Ty->isVectorTy())
449 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
450 if (DestMask.AggregateVal[_i].IntVal == false)
451 Dest.AggregateVal[_i].IntVal = APInt(1,false);
453 return Dest;
456 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
457 Type *Ty) {
458 GenericValue Dest;
459 switch (Ty->getTypeID()) {
460 IMPLEMENT_FCMP(<=, Float);
461 IMPLEMENT_FCMP(<=, Double);
462 IMPLEMENT_VECTOR_FCMP(<=);
463 default:
464 dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
465 llvm_unreachable(nullptr);
467 return Dest;
470 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
471 Type *Ty) {
472 GenericValue Dest;
473 switch (Ty->getTypeID()) {
474 IMPLEMENT_FCMP(>=, Float);
475 IMPLEMENT_FCMP(>=, Double);
476 IMPLEMENT_VECTOR_FCMP(>=);
477 default:
478 dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
479 llvm_unreachable(nullptr);
481 return Dest;
484 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
485 Type *Ty) {
486 GenericValue Dest;
487 switch (Ty->getTypeID()) {
488 IMPLEMENT_FCMP(<, Float);
489 IMPLEMENT_FCMP(<, Double);
490 IMPLEMENT_VECTOR_FCMP(<);
491 default:
492 dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
493 llvm_unreachable(nullptr);
495 return Dest;
498 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
499 Type *Ty) {
500 GenericValue Dest;
501 switch (Ty->getTypeID()) {
502 IMPLEMENT_FCMP(>, Float);
503 IMPLEMENT_FCMP(>, Double);
504 IMPLEMENT_VECTOR_FCMP(>);
505 default:
506 dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
507 llvm_unreachable(nullptr);
509 return Dest;
512 #define IMPLEMENT_UNORDERED(TY, X,Y) \
513 if (TY->isFloatTy()) { \
514 if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) { \
515 Dest.IntVal = APInt(1,true); \
516 return Dest; \
518 } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
519 Dest.IntVal = APInt(1,true); \
520 return Dest; \
523 #define IMPLEMENT_VECTOR_UNORDERED(TY, X, Y, FUNC) \
524 if (TY->isVectorTy()) { \
525 GenericValue DestMask = Dest; \
526 Dest = FUNC(Src1, Src2, Ty); \
527 for (size_t _i = 0; _i < Src1.AggregateVal.size(); _i++) \
528 if (DestMask.AggregateVal[_i].IntVal == true) \
529 Dest.AggregateVal[_i].IntVal = APInt(1, true); \
530 return Dest; \
533 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
534 Type *Ty) {
535 GenericValue Dest;
536 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
537 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
538 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OEQ)
539 return executeFCMP_OEQ(Src1, Src2, Ty);
543 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
544 Type *Ty) {
545 GenericValue Dest;
546 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
547 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
548 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_ONE)
549 return executeFCMP_ONE(Src1, Src2, Ty);
552 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
553 Type *Ty) {
554 GenericValue Dest;
555 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
556 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
557 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLE)
558 return executeFCMP_OLE(Src1, Src2, Ty);
561 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
562 Type *Ty) {
563 GenericValue Dest;
564 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
565 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
566 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGE)
567 return executeFCMP_OGE(Src1, Src2, Ty);
570 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
571 Type *Ty) {
572 GenericValue Dest;
573 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
574 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
575 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OLT)
576 return executeFCMP_OLT(Src1, Src2, Ty);
579 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
580 Type *Ty) {
581 GenericValue Dest;
582 IMPLEMENT_UNORDERED(Ty, Src1, Src2)
583 MASK_VECTOR_NANS(Ty, Src1, Src2, true)
584 IMPLEMENT_VECTOR_UNORDERED(Ty, Src1, Src2, executeFCMP_OGT)
585 return executeFCMP_OGT(Src1, Src2, Ty);
588 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
589 Type *Ty) {
590 GenericValue Dest;
591 if(Ty->isVectorTy()) {
592 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
593 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
594 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
595 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
596 Dest.AggregateVal[_i].IntVal = APInt(1,
597 ( (Src1.AggregateVal[_i].FloatVal ==
598 Src1.AggregateVal[_i].FloatVal) &&
599 (Src2.AggregateVal[_i].FloatVal ==
600 Src2.AggregateVal[_i].FloatVal)));
601 } else {
602 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
603 Dest.AggregateVal[_i].IntVal = APInt(1,
604 ( (Src1.AggregateVal[_i].DoubleVal ==
605 Src1.AggregateVal[_i].DoubleVal) &&
606 (Src2.AggregateVal[_i].DoubleVal ==
607 Src2.AggregateVal[_i].DoubleVal)));
609 } else if (Ty->isFloatTy())
610 Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal &&
611 Src2.FloatVal == Src2.FloatVal));
612 else {
613 Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal &&
614 Src2.DoubleVal == Src2.DoubleVal));
616 return Dest;
619 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
620 Type *Ty) {
621 GenericValue Dest;
622 if(Ty->isVectorTy()) {
623 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
624 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
625 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) {
626 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
627 Dest.AggregateVal[_i].IntVal = APInt(1,
628 ( (Src1.AggregateVal[_i].FloatVal !=
629 Src1.AggregateVal[_i].FloatVal) ||
630 (Src2.AggregateVal[_i].FloatVal !=
631 Src2.AggregateVal[_i].FloatVal)));
632 } else {
633 for( size_t _i=0;_i<Src1.AggregateVal.size();_i++)
634 Dest.AggregateVal[_i].IntVal = APInt(1,
635 ( (Src1.AggregateVal[_i].DoubleVal !=
636 Src1.AggregateVal[_i].DoubleVal) ||
637 (Src2.AggregateVal[_i].DoubleVal !=
638 Src2.AggregateVal[_i].DoubleVal)));
640 } else if (Ty->isFloatTy())
641 Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal ||
642 Src2.FloatVal != Src2.FloatVal));
643 else {
644 Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal ||
645 Src2.DoubleVal != Src2.DoubleVal));
647 return Dest;
650 static GenericValue executeFCMP_BOOL(GenericValue Src1, GenericValue Src2,
651 Type *Ty, const bool val) {
652 GenericValue Dest;
653 if(Ty->isVectorTy()) {
654 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
655 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
656 for( size_t _i=0; _i<Src1.AggregateVal.size(); _i++)
657 Dest.AggregateVal[_i].IntVal = APInt(1,val);
658 } else {
659 Dest.IntVal = APInt(1, val);
662 return Dest;
665 void Interpreter::visitFCmpInst(FCmpInst &I) {
666 ExecutionContext &SF = ECStack.back();
667 Type *Ty = I.getOperand(0)->getType();
668 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
669 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
670 GenericValue R; // Result
672 switch (I.getPredicate()) {
673 default:
674 dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
675 llvm_unreachable(nullptr);
676 break;
677 case FCmpInst::FCMP_FALSE: R = executeFCMP_BOOL(Src1, Src2, Ty, false);
678 break;
679 case FCmpInst::FCMP_TRUE: R = executeFCMP_BOOL(Src1, Src2, Ty, true);
680 break;
681 case FCmpInst::FCMP_ORD: R = executeFCMP_ORD(Src1, Src2, Ty); break;
682 case FCmpInst::FCMP_UNO: R = executeFCMP_UNO(Src1, Src2, Ty); break;
683 case FCmpInst::FCMP_UEQ: R = executeFCMP_UEQ(Src1, Src2, Ty); break;
684 case FCmpInst::FCMP_OEQ: R = executeFCMP_OEQ(Src1, Src2, Ty); break;
685 case FCmpInst::FCMP_UNE: R = executeFCMP_UNE(Src1, Src2, Ty); break;
686 case FCmpInst::FCMP_ONE: R = executeFCMP_ONE(Src1, Src2, Ty); break;
687 case FCmpInst::FCMP_ULT: R = executeFCMP_ULT(Src1, Src2, Ty); break;
688 case FCmpInst::FCMP_OLT: R = executeFCMP_OLT(Src1, Src2, Ty); break;
689 case FCmpInst::FCMP_UGT: R = executeFCMP_UGT(Src1, Src2, Ty); break;
690 case FCmpInst::FCMP_OGT: R = executeFCMP_OGT(Src1, Src2, Ty); break;
691 case FCmpInst::FCMP_ULE: R = executeFCMP_ULE(Src1, Src2, Ty); break;
692 case FCmpInst::FCMP_OLE: R = executeFCMP_OLE(Src1, Src2, Ty); break;
693 case FCmpInst::FCMP_UGE: R = executeFCMP_UGE(Src1, Src2, Ty); break;
694 case FCmpInst::FCMP_OGE: R = executeFCMP_OGE(Src1, Src2, Ty); break;
697 SetValue(&I, R, SF);
700 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1,
701 GenericValue Src2, Type *Ty) {
702 GenericValue Result;
703 switch (predicate) {
704 case ICmpInst::ICMP_EQ: return executeICMP_EQ(Src1, Src2, Ty);
705 case ICmpInst::ICMP_NE: return executeICMP_NE(Src1, Src2, Ty);
706 case ICmpInst::ICMP_UGT: return executeICMP_UGT(Src1, Src2, Ty);
707 case ICmpInst::ICMP_SGT: return executeICMP_SGT(Src1, Src2, Ty);
708 case ICmpInst::ICMP_ULT: return executeICMP_ULT(Src1, Src2, Ty);
709 case ICmpInst::ICMP_SLT: return executeICMP_SLT(Src1, Src2, Ty);
710 case ICmpInst::ICMP_UGE: return executeICMP_UGE(Src1, Src2, Ty);
711 case ICmpInst::ICMP_SGE: return executeICMP_SGE(Src1, Src2, Ty);
712 case ICmpInst::ICMP_ULE: return executeICMP_ULE(Src1, Src2, Ty);
713 case ICmpInst::ICMP_SLE: return executeICMP_SLE(Src1, Src2, Ty);
714 case FCmpInst::FCMP_ORD: return executeFCMP_ORD(Src1, Src2, Ty);
715 case FCmpInst::FCMP_UNO: return executeFCMP_UNO(Src1, Src2, Ty);
716 case FCmpInst::FCMP_OEQ: return executeFCMP_OEQ(Src1, Src2, Ty);
717 case FCmpInst::FCMP_UEQ: return executeFCMP_UEQ(Src1, Src2, Ty);
718 case FCmpInst::FCMP_ONE: return executeFCMP_ONE(Src1, Src2, Ty);
719 case FCmpInst::FCMP_UNE: return executeFCMP_UNE(Src1, Src2, Ty);
720 case FCmpInst::FCMP_OLT: return executeFCMP_OLT(Src1, Src2, Ty);
721 case FCmpInst::FCMP_ULT: return executeFCMP_ULT(Src1, Src2, Ty);
722 case FCmpInst::FCMP_OGT: return executeFCMP_OGT(Src1, Src2, Ty);
723 case FCmpInst::FCMP_UGT: return executeFCMP_UGT(Src1, Src2, Ty);
724 case FCmpInst::FCMP_OLE: return executeFCMP_OLE(Src1, Src2, Ty);
725 case FCmpInst::FCMP_ULE: return executeFCMP_ULE(Src1, Src2, Ty);
726 case FCmpInst::FCMP_OGE: return executeFCMP_OGE(Src1, Src2, Ty);
727 case FCmpInst::FCMP_UGE: return executeFCMP_UGE(Src1, Src2, Ty);
728 case FCmpInst::FCMP_FALSE: return executeFCMP_BOOL(Src1, Src2, Ty, false);
729 case FCmpInst::FCMP_TRUE: return executeFCMP_BOOL(Src1, Src2, Ty, true);
730 default:
731 dbgs() << "Unhandled Cmp predicate\n";
732 llvm_unreachable(nullptr);
736 void Interpreter::visitBinaryOperator(BinaryOperator &I) {
737 ExecutionContext &SF = ECStack.back();
738 Type *Ty = I.getOperand(0)->getType();
739 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
740 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
741 GenericValue R; // Result
743 // First process vector operation
744 if (Ty->isVectorTy()) {
745 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
746 R.AggregateVal.resize(Src1.AggregateVal.size());
748 // Macros to execute binary operation 'OP' over integer vectors
749 #define INTEGER_VECTOR_OPERATION(OP) \
750 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
751 R.AggregateVal[i].IntVal = \
752 Src1.AggregateVal[i].IntVal OP Src2.AggregateVal[i].IntVal;
754 // Additional macros to execute binary operations udiv/sdiv/urem/srem since
755 // they have different notation.
756 #define INTEGER_VECTOR_FUNCTION(OP) \
757 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
758 R.AggregateVal[i].IntVal = \
759 Src1.AggregateVal[i].IntVal.OP(Src2.AggregateVal[i].IntVal);
761 // Macros to execute binary operation 'OP' over floating point type TY
762 // (float or double) vectors
763 #define FLOAT_VECTOR_FUNCTION(OP, TY) \
764 for (unsigned i = 0; i < R.AggregateVal.size(); ++i) \
765 R.AggregateVal[i].TY = \
766 Src1.AggregateVal[i].TY OP Src2.AggregateVal[i].TY;
768 // Macros to choose appropriate TY: float or double and run operation
769 // execution
770 #define FLOAT_VECTOR_OP(OP) { \
771 if (cast<VectorType>(Ty)->getElementType()->isFloatTy()) \
772 FLOAT_VECTOR_FUNCTION(OP, FloatVal) \
773 else { \
774 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy()) \
775 FLOAT_VECTOR_FUNCTION(OP, DoubleVal) \
776 else { \
777 dbgs() << "Unhandled type for OP instruction: " << *Ty << "\n"; \
778 llvm_unreachable(0); \
783 switch(I.getOpcode()){
784 default:
785 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
786 llvm_unreachable(nullptr);
787 break;
788 case Instruction::Add: INTEGER_VECTOR_OPERATION(+) break;
789 case Instruction::Sub: INTEGER_VECTOR_OPERATION(-) break;
790 case Instruction::Mul: INTEGER_VECTOR_OPERATION(*) break;
791 case Instruction::UDiv: INTEGER_VECTOR_FUNCTION(udiv) break;
792 case Instruction::SDiv: INTEGER_VECTOR_FUNCTION(sdiv) break;
793 case Instruction::URem: INTEGER_VECTOR_FUNCTION(urem) break;
794 case Instruction::SRem: INTEGER_VECTOR_FUNCTION(srem) break;
795 case Instruction::And: INTEGER_VECTOR_OPERATION(&) break;
796 case Instruction::Or: INTEGER_VECTOR_OPERATION(|) break;
797 case Instruction::Xor: INTEGER_VECTOR_OPERATION(^) break;
798 case Instruction::FAdd: FLOAT_VECTOR_OP(+) break;
799 case Instruction::FSub: FLOAT_VECTOR_OP(-) break;
800 case Instruction::FMul: FLOAT_VECTOR_OP(*) break;
801 case Instruction::FDiv: FLOAT_VECTOR_OP(/) break;
802 case Instruction::FRem:
803 if (cast<VectorType>(Ty)->getElementType()->isFloatTy())
804 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
805 R.AggregateVal[i].FloatVal =
806 fmod(Src1.AggregateVal[i].FloatVal, Src2.AggregateVal[i].FloatVal);
807 else {
808 if (cast<VectorType>(Ty)->getElementType()->isDoubleTy())
809 for (unsigned i = 0; i < R.AggregateVal.size(); ++i)
810 R.AggregateVal[i].DoubleVal =
811 fmod(Src1.AggregateVal[i].DoubleVal, Src2.AggregateVal[i].DoubleVal);
812 else {
813 dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
814 llvm_unreachable(nullptr);
817 break;
819 } else {
820 switch (I.getOpcode()) {
821 default:
822 dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
823 llvm_unreachable(nullptr);
824 break;
825 case Instruction::Add: R.IntVal = Src1.IntVal + Src2.IntVal; break;
826 case Instruction::Sub: R.IntVal = Src1.IntVal - Src2.IntVal; break;
827 case Instruction::Mul: R.IntVal = Src1.IntVal * Src2.IntVal; break;
828 case Instruction::FAdd: executeFAddInst(R, Src1, Src2, Ty); break;
829 case Instruction::FSub: executeFSubInst(R, Src1, Src2, Ty); break;
830 case Instruction::FMul: executeFMulInst(R, Src1, Src2, Ty); break;
831 case Instruction::FDiv: executeFDivInst(R, Src1, Src2, Ty); break;
832 case Instruction::FRem: executeFRemInst(R, Src1, Src2, Ty); break;
833 case Instruction::UDiv: R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
834 case Instruction::SDiv: R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
835 case Instruction::URem: R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
836 case Instruction::SRem: R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
837 case Instruction::And: R.IntVal = Src1.IntVal & Src2.IntVal; break;
838 case Instruction::Or: R.IntVal = Src1.IntVal | Src2.IntVal; break;
839 case Instruction::Xor: R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
842 SetValue(&I, R, SF);
845 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
846 GenericValue Src3, Type *Ty) {
847 GenericValue Dest;
848 if(Ty->isVectorTy()) {
849 assert(Src1.AggregateVal.size() == Src2.AggregateVal.size());
850 assert(Src2.AggregateVal.size() == Src3.AggregateVal.size());
851 Dest.AggregateVal.resize( Src1.AggregateVal.size() );
852 for (size_t i = 0; i < Src1.AggregateVal.size(); ++i)
853 Dest.AggregateVal[i] = (Src1.AggregateVal[i].IntVal == 0) ?
854 Src3.AggregateVal[i] : Src2.AggregateVal[i];
855 } else {
856 Dest = (Src1.IntVal == 0) ? Src3 : Src2;
858 return Dest;
861 void Interpreter::visitSelectInst(SelectInst &I) {
862 ExecutionContext &SF = ECStack.back();
863 Type * Ty = I.getOperand(0)->getType();
864 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
865 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
866 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
867 GenericValue R = executeSelectInst(Src1, Src2, Src3, Ty);
868 SetValue(&I, R, SF);
871 //===----------------------------------------------------------------------===//
872 // Terminator Instruction Implementations
873 //===----------------------------------------------------------------------===//
875 void Interpreter::exitCalled(GenericValue GV) {
876 // runAtExitHandlers() assumes there are no stack frames, but
877 // if exit() was called, then it had a stack frame. Blow away
878 // the stack before interpreting atexit handlers.
879 ECStack.clear();
880 runAtExitHandlers();
881 exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
884 /// Pop the last stack frame off of ECStack and then copy the result
885 /// back into the result variable if we are not returning void. The
886 /// result variable may be the ExitValue, or the Value of the calling
887 /// CallInst if there was a previous stack frame. This method may
888 /// invalidate any ECStack iterators you have. This method also takes
889 /// care of switching to the normal destination BB, if we are returning
890 /// from an invoke.
892 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
893 GenericValue Result) {
894 // Pop the current stack frame.
895 ECStack.pop_back();
897 if (ECStack.empty()) { // Finished main. Put result into exit code...
898 if (RetTy && !RetTy->isVoidTy()) { // Nonvoid return type?
899 ExitValue = Result; // Capture the exit value of the program
900 } else {
901 memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
903 } else {
904 // If we have a previous stack frame, and we have a previous call,
905 // fill in the return value...
906 ExecutionContext &CallingSF = ECStack.back();
907 if (CallingSF.Caller) {
908 // Save result...
909 if (!CallingSF.Caller->getType()->isVoidTy())
910 SetValue(CallingSF.Caller, Result, CallingSF);
911 if (InvokeInst *II = dyn_cast<InvokeInst>(CallingSF.Caller))
912 SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
913 CallingSF.Caller = nullptr; // We returned from the call...
918 void Interpreter::visitReturnInst(ReturnInst &I) {
919 ExecutionContext &SF = ECStack.back();
920 Type *RetTy = Type::getVoidTy(I.getContext());
921 GenericValue Result;
923 // Save away the return value... (if we are not 'ret void')
924 if (I.getNumOperands()) {
925 RetTy = I.getReturnValue()->getType();
926 Result = getOperandValue(I.getReturnValue(), SF);
929 popStackAndReturnValueToCaller(RetTy, Result);
932 void Interpreter::visitUnreachableInst(UnreachableInst &I) {
933 report_fatal_error("Program executed an 'unreachable' instruction!");
936 void Interpreter::visitBranchInst(BranchInst &I) {
937 ExecutionContext &SF = ECStack.back();
938 BasicBlock *Dest;
940 Dest = I.getSuccessor(0); // Uncond branches have a fixed dest...
941 if (!I.isUnconditional()) {
942 Value *Cond = I.getCondition();
943 if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
944 Dest = I.getSuccessor(1);
946 SwitchToNewBasicBlock(Dest, SF);
949 void Interpreter::visitSwitchInst(SwitchInst &I) {
950 ExecutionContext &SF = ECStack.back();
951 Value* Cond = I.getCondition();
952 Type *ElTy = Cond->getType();
953 GenericValue CondVal = getOperandValue(Cond, SF);
955 // Check to see if any of the cases match...
956 BasicBlock *Dest = nullptr;
957 for (auto Case : I.cases()) {
958 GenericValue CaseVal = getOperandValue(Case.getCaseValue(), SF);
959 if (executeICMP_EQ(CondVal, CaseVal, ElTy).IntVal != 0) {
960 Dest = cast<BasicBlock>(Case.getCaseSuccessor());
961 break;
964 if (!Dest) Dest = I.getDefaultDest(); // No cases matched: use default
965 SwitchToNewBasicBlock(Dest, SF);
968 void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
969 ExecutionContext &SF = ECStack.back();
970 void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
971 SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
975 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
976 // This function handles the actual updating of block and instruction iterators
977 // as well as execution of all of the PHI nodes in the destination block.
979 // This method does this because all of the PHI nodes must be executed
980 // atomically, reading their inputs before any of the results are updated. Not
981 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
982 // their inputs. If the input PHI node is updated before it is read, incorrect
983 // results can happen. Thus we use a two phase approach.
985 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
986 BasicBlock *PrevBB = SF.CurBB; // Remember where we came from...
987 SF.CurBB = Dest; // Update CurBB to branch destination
988 SF.CurInst = SF.CurBB->begin(); // Update new instruction ptr...
990 if (!isa<PHINode>(SF.CurInst)) return; // Nothing fancy to do
992 // Loop over all of the PHI nodes in the current block, reading their inputs.
993 std::vector<GenericValue> ResultValues;
995 for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
996 // Search for the value corresponding to this previous bb...
997 int i = PN->getBasicBlockIndex(PrevBB);
998 assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
999 Value *IncomingValue = PN->getIncomingValue(i);
1001 // Save the incoming value for this PHI node...
1002 ResultValues.push_back(getOperandValue(IncomingValue, SF));
1005 // Now loop over all of the PHI nodes setting their values...
1006 SF.CurInst = SF.CurBB->begin();
1007 for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
1008 PHINode *PN = cast<PHINode>(SF.CurInst);
1009 SetValue(PN, ResultValues[i], SF);
1013 //===----------------------------------------------------------------------===//
1014 // Memory Instruction Implementations
1015 //===----------------------------------------------------------------------===//
1017 void Interpreter::visitAllocaInst(AllocaInst &I) {
1018 ExecutionContext &SF = ECStack.back();
1020 Type *Ty = I.getAllocatedType(); // Type to be allocated
1022 // Get the number of elements being allocated by the array...
1023 unsigned NumElements =
1024 getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
1026 unsigned TypeSize = (size_t)getDataLayout().getTypeAllocSize(Ty);
1028 // Avoid malloc-ing zero bytes, use max()...
1029 unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
1031 // Allocate enough memory to hold the type...
1032 void *Memory = safe_malloc(MemToAlloc);
1034 LLVM_DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize
1035 << " bytes) x " << NumElements << " (Total: " << MemToAlloc
1036 << ") at " << uintptr_t(Memory) << '\n');
1038 GenericValue Result = PTOGV(Memory);
1039 assert(Result.PointerVal && "Null pointer returned by malloc!");
1040 SetValue(&I, Result, SF);
1042 if (I.getOpcode() == Instruction::Alloca)
1043 ECStack.back().Allocas.add(Memory);
1046 // getElementOffset - The workhorse for getelementptr.
1048 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
1049 gep_type_iterator E,
1050 ExecutionContext &SF) {
1051 assert(Ptr->getType()->isPointerTy() &&
1052 "Cannot getElementOffset of a nonpointer type!");
1054 uint64_t Total = 0;
1056 for (; I != E; ++I) {
1057 if (StructType *STy = I.getStructTypeOrNull()) {
1058 const StructLayout *SLO = getDataLayout().getStructLayout(STy);
1060 const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
1061 unsigned Index = unsigned(CPU->getZExtValue());
1063 Total += SLO->getElementOffset(Index);
1064 } else {
1065 // Get the index number for the array... which must be long type...
1066 GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
1068 int64_t Idx;
1069 unsigned BitWidth =
1070 cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
1071 if (BitWidth == 32)
1072 Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
1073 else {
1074 assert(BitWidth == 64 && "Invalid index type for getelementptr");
1075 Idx = (int64_t)IdxGV.IntVal.getZExtValue();
1077 Total += getDataLayout().getTypeAllocSize(I.getIndexedType()) * Idx;
1081 GenericValue Result;
1082 Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
1083 LLVM_DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
1084 return Result;
1087 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
1088 ExecutionContext &SF = ECStack.back();
1089 SetValue(&I, executeGEPOperation(I.getPointerOperand(),
1090 gep_type_begin(I), gep_type_end(I), SF), SF);
1093 void Interpreter::visitLoadInst(LoadInst &I) {
1094 ExecutionContext &SF = ECStack.back();
1095 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1096 GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
1097 GenericValue Result;
1098 LoadValueFromMemory(Result, Ptr, I.getType());
1099 SetValue(&I, Result, SF);
1100 if (I.isVolatile() && PrintVolatile)
1101 dbgs() << "Volatile load " << I;
1104 void Interpreter::visitStoreInst(StoreInst &I) {
1105 ExecutionContext &SF = ECStack.back();
1106 GenericValue Val = getOperandValue(I.getOperand(0), SF);
1107 GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
1108 StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
1109 I.getOperand(0)->getType());
1110 if (I.isVolatile() && PrintVolatile)
1111 dbgs() << "Volatile store: " << I;
1114 //===----------------------------------------------------------------------===//
1115 // Miscellaneous Instruction Implementations
1116 //===----------------------------------------------------------------------===//
1118 void Interpreter::visitVAStartInst(VAStartInst &I) {
1119 ExecutionContext &SF = ECStack.back();
1120 GenericValue ArgIndex;
1121 ArgIndex.UIntPairVal.first = ECStack.size() - 1;
1122 ArgIndex.UIntPairVal.second = 0;
1123 SetValue(&I, ArgIndex, SF);
1126 void Interpreter::visitVAEndInst(VAEndInst &I) {
1127 // va_end is a noop for the interpreter
1130 void Interpreter::visitVACopyInst(VACopyInst &I) {
1131 ExecutionContext &SF = ECStack.back();
1132 SetValue(&I, getOperandValue(*I.arg_begin(), SF), SF);
1135 void Interpreter::visitIntrinsicInst(IntrinsicInst &I) {
1136 ExecutionContext &SF = ECStack.back();
1138 // If it is an unknown intrinsic function, use the intrinsic lowering
1139 // class to transform it into hopefully tasty LLVM code.
1141 BasicBlock::iterator Me(&I);
1142 BasicBlock *Parent = I.getParent();
1143 bool atBegin(Parent->begin() == Me);
1144 if (!atBegin)
1145 --Me;
1146 IL->LowerIntrinsicCall(&I);
1148 // Restore the CurInst pointer to the first instruction newly inserted, if
1149 // any.
1150 if (atBegin) {
1151 SF.CurInst = Parent->begin();
1152 } else {
1153 SF.CurInst = Me;
1154 ++SF.CurInst;
1158 void Interpreter::visitCallBase(CallBase &I) {
1159 ExecutionContext &SF = ECStack.back();
1161 SF.Caller = &I;
1162 std::vector<GenericValue> ArgVals;
1163 const unsigned NumArgs = SF.Caller->arg_size();
1164 ArgVals.reserve(NumArgs);
1165 for (Value *V : SF.Caller->args())
1166 ArgVals.push_back(getOperandValue(V, SF));
1168 // To handle indirect calls, we must get the pointer value from the argument
1169 // and treat it as a function pointer.
1170 GenericValue SRC = getOperandValue(SF.Caller->getCalledOperand(), SF);
1171 callFunction((Function*)GVTOP(SRC), ArgVals);
1174 // auxiliary function for shift operations
1175 static unsigned getShiftAmount(uint64_t orgShiftAmount,
1176 llvm::APInt valueToShift) {
1177 unsigned valueWidth = valueToShift.getBitWidth();
1178 if (orgShiftAmount < (uint64_t)valueWidth)
1179 return orgShiftAmount;
1180 // according to the llvm documentation, if orgShiftAmount > valueWidth,
1181 // the result is undfeined. but we do shift by this rule:
1182 return (NextPowerOf2(valueWidth-1) - 1) & orgShiftAmount;
1186 void Interpreter::visitShl(BinaryOperator &I) {
1187 ExecutionContext &SF = ECStack.back();
1188 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1189 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1190 GenericValue Dest;
1191 Type *Ty = I.getType();
1193 if (Ty->isVectorTy()) {
1194 uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1195 assert(src1Size == Src2.AggregateVal.size());
1196 for (unsigned i = 0; i < src1Size; i++) {
1197 GenericValue Result;
1198 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1199 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1200 Result.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1201 Dest.AggregateVal.push_back(Result);
1203 } else {
1204 // scalar
1205 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1206 llvm::APInt valueToShift = Src1.IntVal;
1207 Dest.IntVal = valueToShift.shl(getShiftAmount(shiftAmount, valueToShift));
1210 SetValue(&I, Dest, SF);
1213 void Interpreter::visitLShr(BinaryOperator &I) {
1214 ExecutionContext &SF = ECStack.back();
1215 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1216 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1217 GenericValue Dest;
1218 Type *Ty = I.getType();
1220 if (Ty->isVectorTy()) {
1221 uint32_t src1Size = uint32_t(Src1.AggregateVal.size());
1222 assert(src1Size == Src2.AggregateVal.size());
1223 for (unsigned i = 0; i < src1Size; i++) {
1224 GenericValue Result;
1225 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1226 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1227 Result.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1228 Dest.AggregateVal.push_back(Result);
1230 } else {
1231 // scalar
1232 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1233 llvm::APInt valueToShift = Src1.IntVal;
1234 Dest.IntVal = valueToShift.lshr(getShiftAmount(shiftAmount, valueToShift));
1237 SetValue(&I, Dest, SF);
1240 void Interpreter::visitAShr(BinaryOperator &I) {
1241 ExecutionContext &SF = ECStack.back();
1242 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1243 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1244 GenericValue Dest;
1245 Type *Ty = I.getType();
1247 if (Ty->isVectorTy()) {
1248 size_t src1Size = Src1.AggregateVal.size();
1249 assert(src1Size == Src2.AggregateVal.size());
1250 for (unsigned i = 0; i < src1Size; i++) {
1251 GenericValue Result;
1252 uint64_t shiftAmount = Src2.AggregateVal[i].IntVal.getZExtValue();
1253 llvm::APInt valueToShift = Src1.AggregateVal[i].IntVal;
1254 Result.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1255 Dest.AggregateVal.push_back(Result);
1257 } else {
1258 // scalar
1259 uint64_t shiftAmount = Src2.IntVal.getZExtValue();
1260 llvm::APInt valueToShift = Src1.IntVal;
1261 Dest.IntVal = valueToShift.ashr(getShiftAmount(shiftAmount, valueToShift));
1264 SetValue(&I, Dest, SF);
1267 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
1268 ExecutionContext &SF) {
1269 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1270 Type *SrcTy = SrcVal->getType();
1271 if (SrcTy->isVectorTy()) {
1272 Type *DstVecTy = DstTy->getScalarType();
1273 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1274 unsigned NumElts = Src.AggregateVal.size();
1275 // the sizes of src and dst vectors must be equal
1276 Dest.AggregateVal.resize(NumElts);
1277 for (unsigned i = 0; i < NumElts; i++)
1278 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.trunc(DBitWidth);
1279 } else {
1280 IntegerType *DITy = cast<IntegerType>(DstTy);
1281 unsigned DBitWidth = DITy->getBitWidth();
1282 Dest.IntVal = Src.IntVal.trunc(DBitWidth);
1284 return Dest;
1287 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
1288 ExecutionContext &SF) {
1289 Type *SrcTy = SrcVal->getType();
1290 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1291 if (SrcTy->isVectorTy()) {
1292 Type *DstVecTy = DstTy->getScalarType();
1293 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1294 unsigned size = Src.AggregateVal.size();
1295 // the sizes of src and dst vectors must be equal.
1296 Dest.AggregateVal.resize(size);
1297 for (unsigned i = 0; i < size; i++)
1298 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.sext(DBitWidth);
1299 } else {
1300 auto *DITy = cast<IntegerType>(DstTy);
1301 unsigned DBitWidth = DITy->getBitWidth();
1302 Dest.IntVal = Src.IntVal.sext(DBitWidth);
1304 return Dest;
1307 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
1308 ExecutionContext &SF) {
1309 Type *SrcTy = SrcVal->getType();
1310 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1311 if (SrcTy->isVectorTy()) {
1312 Type *DstVecTy = DstTy->getScalarType();
1313 unsigned DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1315 unsigned size = Src.AggregateVal.size();
1316 // the sizes of src and dst vectors must be equal.
1317 Dest.AggregateVal.resize(size);
1318 for (unsigned i = 0; i < size; i++)
1319 Dest.AggregateVal[i].IntVal = Src.AggregateVal[i].IntVal.zext(DBitWidth);
1320 } else {
1321 auto *DITy = cast<IntegerType>(DstTy);
1322 unsigned DBitWidth = DITy->getBitWidth();
1323 Dest.IntVal = Src.IntVal.zext(DBitWidth);
1325 return Dest;
1328 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
1329 ExecutionContext &SF) {
1330 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1332 if (isa<VectorType>(SrcVal->getType())) {
1333 assert(SrcVal->getType()->getScalarType()->isDoubleTy() &&
1334 DstTy->getScalarType()->isFloatTy() &&
1335 "Invalid FPTrunc instruction");
1337 unsigned size = Src.AggregateVal.size();
1338 // the sizes of src and dst vectors must be equal.
1339 Dest.AggregateVal.resize(size);
1340 for (unsigned i = 0; i < size; i++)
1341 Dest.AggregateVal[i].FloatVal = (float)Src.AggregateVal[i].DoubleVal;
1342 } else {
1343 assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
1344 "Invalid FPTrunc instruction");
1345 Dest.FloatVal = (float)Src.DoubleVal;
1348 return Dest;
1351 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
1352 ExecutionContext &SF) {
1353 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1355 if (isa<VectorType>(SrcVal->getType())) {
1356 assert(SrcVal->getType()->getScalarType()->isFloatTy() &&
1357 DstTy->getScalarType()->isDoubleTy() && "Invalid FPExt instruction");
1359 unsigned size = Src.AggregateVal.size();
1360 // the sizes of src and dst vectors must be equal.
1361 Dest.AggregateVal.resize(size);
1362 for (unsigned i = 0; i < size; i++)
1363 Dest.AggregateVal[i].DoubleVal = (double)Src.AggregateVal[i].FloatVal;
1364 } else {
1365 assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
1366 "Invalid FPExt instruction");
1367 Dest.DoubleVal = (double)Src.FloatVal;
1370 return Dest;
1373 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
1374 ExecutionContext &SF) {
1375 Type *SrcTy = SrcVal->getType();
1376 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1378 if (isa<VectorType>(SrcTy)) {
1379 Type *DstVecTy = DstTy->getScalarType();
1380 Type *SrcVecTy = SrcTy->getScalarType();
1381 uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1382 unsigned size = Src.AggregateVal.size();
1383 // the sizes of src and dst vectors must be equal.
1384 Dest.AggregateVal.resize(size);
1386 if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1387 assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1388 for (unsigned i = 0; i < size; i++)
1389 Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1390 Src.AggregateVal[i].FloatVal, DBitWidth);
1391 } else {
1392 for (unsigned i = 0; i < size; i++)
1393 Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1394 Src.AggregateVal[i].DoubleVal, DBitWidth);
1396 } else {
1397 // scalar
1398 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1399 assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
1401 if (SrcTy->getTypeID() == Type::FloatTyID)
1402 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1403 else {
1404 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1408 return Dest;
1411 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1412 ExecutionContext &SF) {
1413 Type *SrcTy = SrcVal->getType();
1414 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1416 if (isa<VectorType>(SrcTy)) {
1417 Type *DstVecTy = DstTy->getScalarType();
1418 Type *SrcVecTy = SrcTy->getScalarType();
1419 uint32_t DBitWidth = cast<IntegerType>(DstVecTy)->getBitWidth();
1420 unsigned size = Src.AggregateVal.size();
1421 // the sizes of src and dst vectors must be equal
1422 Dest.AggregateVal.resize(size);
1424 if (SrcVecTy->getTypeID() == Type::FloatTyID) {
1425 assert(SrcVecTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1426 for (unsigned i = 0; i < size; i++)
1427 Dest.AggregateVal[i].IntVal = APIntOps::RoundFloatToAPInt(
1428 Src.AggregateVal[i].FloatVal, DBitWidth);
1429 } else {
1430 for (unsigned i = 0; i < size; i++)
1431 Dest.AggregateVal[i].IntVal = APIntOps::RoundDoubleToAPInt(
1432 Src.AggregateVal[i].DoubleVal, DBitWidth);
1434 } else {
1435 // scalar
1436 unsigned DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1437 assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1439 if (SrcTy->getTypeID() == Type::FloatTyID)
1440 Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1441 else {
1442 Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1445 return Dest;
1448 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1449 ExecutionContext &SF) {
1450 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1452 if (isa<VectorType>(SrcVal->getType())) {
1453 Type *DstVecTy = DstTy->getScalarType();
1454 unsigned size = Src.AggregateVal.size();
1455 // the sizes of src and dst vectors must be equal
1456 Dest.AggregateVal.resize(size);
1458 if (DstVecTy->getTypeID() == Type::FloatTyID) {
1459 assert(DstVecTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1460 for (unsigned i = 0; i < size; i++)
1461 Dest.AggregateVal[i].FloatVal =
1462 APIntOps::RoundAPIntToFloat(Src.AggregateVal[i].IntVal);
1463 } else {
1464 for (unsigned i = 0; i < size; i++)
1465 Dest.AggregateVal[i].DoubleVal =
1466 APIntOps::RoundAPIntToDouble(Src.AggregateVal[i].IntVal);
1468 } else {
1469 // scalar
1470 assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1471 if (DstTy->getTypeID() == Type::FloatTyID)
1472 Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1473 else {
1474 Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1477 return Dest;
1480 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1481 ExecutionContext &SF) {
1482 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1484 if (isa<VectorType>(SrcVal->getType())) {
1485 Type *DstVecTy = DstTy->getScalarType();
1486 unsigned size = Src.AggregateVal.size();
1487 // the sizes of src and dst vectors must be equal
1488 Dest.AggregateVal.resize(size);
1490 if (DstVecTy->getTypeID() == Type::FloatTyID) {
1491 assert(DstVecTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1492 for (unsigned i = 0; i < size; i++)
1493 Dest.AggregateVal[i].FloatVal =
1494 APIntOps::RoundSignedAPIntToFloat(Src.AggregateVal[i].IntVal);
1495 } else {
1496 for (unsigned i = 0; i < size; i++)
1497 Dest.AggregateVal[i].DoubleVal =
1498 APIntOps::RoundSignedAPIntToDouble(Src.AggregateVal[i].IntVal);
1500 } else {
1501 // scalar
1502 assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1504 if (DstTy->getTypeID() == Type::FloatTyID)
1505 Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1506 else {
1507 Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1511 return Dest;
1514 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1515 ExecutionContext &SF) {
1516 uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1517 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1518 assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1520 Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1521 return Dest;
1524 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1525 ExecutionContext &SF) {
1526 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1527 assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1529 uint32_t PtrSize = getDataLayout().getPointerSizeInBits();
1530 if (PtrSize != Src.IntVal.getBitWidth())
1531 Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1533 Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1534 return Dest;
1537 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1538 ExecutionContext &SF) {
1540 // This instruction supports bitwise conversion of vectors to integers and
1541 // to vectors of other types (as long as they have the same size)
1542 Type *SrcTy = SrcVal->getType();
1543 GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1545 if (isa<VectorType>(SrcTy) || isa<VectorType>(DstTy)) {
1546 // vector src bitcast to vector dst or vector src bitcast to scalar dst or
1547 // scalar src bitcast to vector dst
1548 bool isLittleEndian = getDataLayout().isLittleEndian();
1549 GenericValue TempDst, TempSrc, SrcVec;
1550 Type *SrcElemTy;
1551 Type *DstElemTy;
1552 unsigned SrcBitSize;
1553 unsigned DstBitSize;
1554 unsigned SrcNum;
1555 unsigned DstNum;
1557 if (isa<VectorType>(SrcTy)) {
1558 SrcElemTy = SrcTy->getScalarType();
1559 SrcBitSize = SrcTy->getScalarSizeInBits();
1560 SrcNum = Src.AggregateVal.size();
1561 SrcVec = Src;
1562 } else {
1563 // if src is scalar value, make it vector <1 x type>
1564 SrcElemTy = SrcTy;
1565 SrcBitSize = SrcTy->getPrimitiveSizeInBits();
1566 SrcNum = 1;
1567 SrcVec.AggregateVal.push_back(Src);
1570 if (isa<VectorType>(DstTy)) {
1571 DstElemTy = DstTy->getScalarType();
1572 DstBitSize = DstTy->getScalarSizeInBits();
1573 DstNum = (SrcNum * SrcBitSize) / DstBitSize;
1574 } else {
1575 DstElemTy = DstTy;
1576 DstBitSize = DstTy->getPrimitiveSizeInBits();
1577 DstNum = 1;
1580 if (SrcNum * SrcBitSize != DstNum * DstBitSize)
1581 llvm_unreachable("Invalid BitCast");
1583 // If src is floating point, cast to integer first.
1584 TempSrc.AggregateVal.resize(SrcNum);
1585 if (SrcElemTy->isFloatTy()) {
1586 for (unsigned i = 0; i < SrcNum; i++)
1587 TempSrc.AggregateVal[i].IntVal =
1588 APInt::floatToBits(SrcVec.AggregateVal[i].FloatVal);
1590 } else if (SrcElemTy->isDoubleTy()) {
1591 for (unsigned i = 0; i < SrcNum; i++)
1592 TempSrc.AggregateVal[i].IntVal =
1593 APInt::doubleToBits(SrcVec.AggregateVal[i].DoubleVal);
1594 } else if (SrcElemTy->isIntegerTy()) {
1595 for (unsigned i = 0; i < SrcNum; i++)
1596 TempSrc.AggregateVal[i].IntVal = SrcVec.AggregateVal[i].IntVal;
1597 } else {
1598 // Pointers are not allowed as the element type of vector.
1599 llvm_unreachable("Invalid Bitcast");
1602 // now TempSrc is integer type vector
1603 if (DstNum < SrcNum) {
1604 // Example: bitcast <4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>
1605 unsigned Ratio = SrcNum / DstNum;
1606 unsigned SrcElt = 0;
1607 for (unsigned i = 0; i < DstNum; i++) {
1608 GenericValue Elt;
1609 Elt.IntVal = 0;
1610 Elt.IntVal = Elt.IntVal.zext(DstBitSize);
1611 unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize * (Ratio - 1);
1612 for (unsigned j = 0; j < Ratio; j++) {
1613 APInt Tmp;
1614 Tmp = Tmp.zext(SrcBitSize);
1615 Tmp = TempSrc.AggregateVal[SrcElt++].IntVal;
1616 Tmp = Tmp.zext(DstBitSize);
1617 Tmp <<= ShiftAmt;
1618 ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
1619 Elt.IntVal |= Tmp;
1621 TempDst.AggregateVal.push_back(Elt);
1623 } else {
1624 // Example: bitcast <2 x i64> <i64 0, i64 1> to <4 x i32>
1625 unsigned Ratio = DstNum / SrcNum;
1626 for (unsigned i = 0; i < SrcNum; i++) {
1627 unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize * (Ratio - 1);
1628 for (unsigned j = 0; j < Ratio; j++) {
1629 GenericValue Elt;
1630 Elt.IntVal = Elt.IntVal.zext(SrcBitSize);
1631 Elt.IntVal = TempSrc.AggregateVal[i].IntVal;
1632 Elt.IntVal.lshrInPlace(ShiftAmt);
1633 // it could be DstBitSize == SrcBitSize, so check it
1634 if (DstBitSize < SrcBitSize)
1635 Elt.IntVal = Elt.IntVal.trunc(DstBitSize);
1636 ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
1637 TempDst.AggregateVal.push_back(Elt);
1642 // convert result from integer to specified type
1643 if (isa<VectorType>(DstTy)) {
1644 if (DstElemTy->isDoubleTy()) {
1645 Dest.AggregateVal.resize(DstNum);
1646 for (unsigned i = 0; i < DstNum; i++)
1647 Dest.AggregateVal[i].DoubleVal =
1648 TempDst.AggregateVal[i].IntVal.bitsToDouble();
1649 } else if (DstElemTy->isFloatTy()) {
1650 Dest.AggregateVal.resize(DstNum);
1651 for (unsigned i = 0; i < DstNum; i++)
1652 Dest.AggregateVal[i].FloatVal =
1653 TempDst.AggregateVal[i].IntVal.bitsToFloat();
1654 } else {
1655 Dest = TempDst;
1657 } else {
1658 if (DstElemTy->isDoubleTy())
1659 Dest.DoubleVal = TempDst.AggregateVal[0].IntVal.bitsToDouble();
1660 else if (DstElemTy->isFloatTy()) {
1661 Dest.FloatVal = TempDst.AggregateVal[0].IntVal.bitsToFloat();
1662 } else {
1663 Dest.IntVal = TempDst.AggregateVal[0].IntVal;
1666 } else { // if (isa<VectorType>(SrcTy)) || isa<VectorType>(DstTy))
1668 // scalar src bitcast to scalar dst
1669 if (DstTy->isPointerTy()) {
1670 assert(SrcTy->isPointerTy() && "Invalid BitCast");
1671 Dest.PointerVal = Src.PointerVal;
1672 } else if (DstTy->isIntegerTy()) {
1673 if (SrcTy->isFloatTy())
1674 Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1675 else if (SrcTy->isDoubleTy()) {
1676 Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1677 } else if (SrcTy->isIntegerTy()) {
1678 Dest.IntVal = Src.IntVal;
1679 } else {
1680 llvm_unreachable("Invalid BitCast");
1682 } else if (DstTy->isFloatTy()) {
1683 if (SrcTy->isIntegerTy())
1684 Dest.FloatVal = Src.IntVal.bitsToFloat();
1685 else {
1686 Dest.FloatVal = Src.FloatVal;
1688 } else if (DstTy->isDoubleTy()) {
1689 if (SrcTy->isIntegerTy())
1690 Dest.DoubleVal = Src.IntVal.bitsToDouble();
1691 else {
1692 Dest.DoubleVal = Src.DoubleVal;
1694 } else {
1695 llvm_unreachable("Invalid Bitcast");
1699 return Dest;
1702 void Interpreter::visitTruncInst(TruncInst &I) {
1703 ExecutionContext &SF = ECStack.back();
1704 SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1707 void Interpreter::visitSExtInst(SExtInst &I) {
1708 ExecutionContext &SF = ECStack.back();
1709 SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1712 void Interpreter::visitZExtInst(ZExtInst &I) {
1713 ExecutionContext &SF = ECStack.back();
1714 SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1717 void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1718 ExecutionContext &SF = ECStack.back();
1719 SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1722 void Interpreter::visitFPExtInst(FPExtInst &I) {
1723 ExecutionContext &SF = ECStack.back();
1724 SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1727 void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1728 ExecutionContext &SF = ECStack.back();
1729 SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1732 void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1733 ExecutionContext &SF = ECStack.back();
1734 SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1737 void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1738 ExecutionContext &SF = ECStack.back();
1739 SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1742 void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1743 ExecutionContext &SF = ECStack.back();
1744 SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1747 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1748 ExecutionContext &SF = ECStack.back();
1749 SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1752 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1753 ExecutionContext &SF = ECStack.back();
1754 SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1757 void Interpreter::visitBitCastInst(BitCastInst &I) {
1758 ExecutionContext &SF = ECStack.back();
1759 SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1762 #define IMPLEMENT_VAARG(TY) \
1763 case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1765 void Interpreter::visitVAArgInst(VAArgInst &I) {
1766 ExecutionContext &SF = ECStack.back();
1768 // Get the incoming valist parameter. LLI treats the valist as a
1769 // (ec-stack-depth var-arg-index) pair.
1770 GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1771 GenericValue Dest;
1772 GenericValue Src = ECStack[VAList.UIntPairVal.first]
1773 .VarArgs[VAList.UIntPairVal.second];
1774 Type *Ty = I.getType();
1775 switch (Ty->getTypeID()) {
1776 case Type::IntegerTyID:
1777 Dest.IntVal = Src.IntVal;
1778 break;
1779 IMPLEMENT_VAARG(Pointer);
1780 IMPLEMENT_VAARG(Float);
1781 IMPLEMENT_VAARG(Double);
1782 default:
1783 dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1784 llvm_unreachable(nullptr);
1787 // Set the Value of this Instruction.
1788 SetValue(&I, Dest, SF);
1790 // Move the pointer to the next vararg.
1791 ++VAList.UIntPairVal.second;
1794 void Interpreter::visitExtractElementInst(ExtractElementInst &I) {
1795 ExecutionContext &SF = ECStack.back();
1796 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1797 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1798 GenericValue Dest;
1800 Type *Ty = I.getType();
1801 const unsigned indx = unsigned(Src2.IntVal.getZExtValue());
1803 if(Src1.AggregateVal.size() > indx) {
1804 switch (Ty->getTypeID()) {
1805 default:
1806 dbgs() << "Unhandled destination type for extractelement instruction: "
1807 << *Ty << "\n";
1808 llvm_unreachable(nullptr);
1809 break;
1810 case Type::IntegerTyID:
1811 Dest.IntVal = Src1.AggregateVal[indx].IntVal;
1812 break;
1813 case Type::FloatTyID:
1814 Dest.FloatVal = Src1.AggregateVal[indx].FloatVal;
1815 break;
1816 case Type::DoubleTyID:
1817 Dest.DoubleVal = Src1.AggregateVal[indx].DoubleVal;
1818 break;
1820 } else {
1821 dbgs() << "Invalid index in extractelement instruction\n";
1824 SetValue(&I, Dest, SF);
1827 void Interpreter::visitInsertElementInst(InsertElementInst &I) {
1828 ExecutionContext &SF = ECStack.back();
1829 VectorType *Ty = cast<VectorType>(I.getType());
1831 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1832 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1833 GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
1834 GenericValue Dest;
1836 Type *TyContained = Ty->getElementType();
1838 const unsigned indx = unsigned(Src3.IntVal.getZExtValue());
1839 Dest.AggregateVal = Src1.AggregateVal;
1841 if(Src1.AggregateVal.size() <= indx)
1842 llvm_unreachable("Invalid index in insertelement instruction");
1843 switch (TyContained->getTypeID()) {
1844 default:
1845 llvm_unreachable("Unhandled dest type for insertelement instruction");
1846 case Type::IntegerTyID:
1847 Dest.AggregateVal[indx].IntVal = Src2.IntVal;
1848 break;
1849 case Type::FloatTyID:
1850 Dest.AggregateVal[indx].FloatVal = Src2.FloatVal;
1851 break;
1852 case Type::DoubleTyID:
1853 Dest.AggregateVal[indx].DoubleVal = Src2.DoubleVal;
1854 break;
1856 SetValue(&I, Dest, SF);
1859 void Interpreter::visitShuffleVectorInst(ShuffleVectorInst &I){
1860 ExecutionContext &SF = ECStack.back();
1862 VectorType *Ty = cast<VectorType>(I.getType());
1864 GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
1865 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1866 GenericValue Dest;
1868 // There is no need to check types of src1 and src2, because the compiled
1869 // bytecode can't contain different types for src1 and src2 for a
1870 // shufflevector instruction.
1872 Type *TyContained = Ty->getElementType();
1873 unsigned src1Size = (unsigned)Src1.AggregateVal.size();
1874 unsigned src2Size = (unsigned)Src2.AggregateVal.size();
1875 unsigned src3Size = I.getShuffleMask().size();
1877 Dest.AggregateVal.resize(src3Size);
1879 switch (TyContained->getTypeID()) {
1880 default:
1881 llvm_unreachable("Unhandled dest type for insertelement instruction");
1882 break;
1883 case Type::IntegerTyID:
1884 for( unsigned i=0; i<src3Size; i++) {
1885 unsigned j = std::max(0, I.getMaskValue(i));
1886 if(j < src1Size)
1887 Dest.AggregateVal[i].IntVal = Src1.AggregateVal[j].IntVal;
1888 else if(j < src1Size + src2Size)
1889 Dest.AggregateVal[i].IntVal = Src2.AggregateVal[j-src1Size].IntVal;
1890 else
1891 // The selector may not be greater than sum of lengths of first and
1892 // second operands and llasm should not allow situation like
1893 // %tmp = shufflevector <2 x i32> <i32 3, i32 4>, <2 x i32> undef,
1894 // <2 x i32> < i32 0, i32 5 >,
1895 // where i32 5 is invalid, but let it be additional check here:
1896 llvm_unreachable("Invalid mask in shufflevector instruction");
1898 break;
1899 case Type::FloatTyID:
1900 for( unsigned i=0; i<src3Size; i++) {
1901 unsigned j = std::max(0, I.getMaskValue(i));
1902 if(j < src1Size)
1903 Dest.AggregateVal[i].FloatVal = Src1.AggregateVal[j].FloatVal;
1904 else if(j < src1Size + src2Size)
1905 Dest.AggregateVal[i].FloatVal = Src2.AggregateVal[j-src1Size].FloatVal;
1906 else
1907 llvm_unreachable("Invalid mask in shufflevector instruction");
1909 break;
1910 case Type::DoubleTyID:
1911 for( unsigned i=0; i<src3Size; i++) {
1912 unsigned j = std::max(0, I.getMaskValue(i));
1913 if(j < src1Size)
1914 Dest.AggregateVal[i].DoubleVal = Src1.AggregateVal[j].DoubleVal;
1915 else if(j < src1Size + src2Size)
1916 Dest.AggregateVal[i].DoubleVal =
1917 Src2.AggregateVal[j-src1Size].DoubleVal;
1918 else
1919 llvm_unreachable("Invalid mask in shufflevector instruction");
1921 break;
1923 SetValue(&I, Dest, SF);
1926 void Interpreter::visitExtractValueInst(ExtractValueInst &I) {
1927 ExecutionContext &SF = ECStack.back();
1928 Value *Agg = I.getAggregateOperand();
1929 GenericValue Dest;
1930 GenericValue Src = getOperandValue(Agg, SF);
1932 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1933 unsigned Num = I.getNumIndices();
1934 GenericValue *pSrc = &Src;
1936 for (unsigned i = 0 ; i < Num; ++i) {
1937 pSrc = &pSrc->AggregateVal[*IdxBegin];
1938 ++IdxBegin;
1941 Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1942 switch (IndexedType->getTypeID()) {
1943 default:
1944 llvm_unreachable("Unhandled dest type for extractelement instruction");
1945 break;
1946 case Type::IntegerTyID:
1947 Dest.IntVal = pSrc->IntVal;
1948 break;
1949 case Type::FloatTyID:
1950 Dest.FloatVal = pSrc->FloatVal;
1951 break;
1952 case Type::DoubleTyID:
1953 Dest.DoubleVal = pSrc->DoubleVal;
1954 break;
1955 case Type::ArrayTyID:
1956 case Type::StructTyID:
1957 case Type::FixedVectorTyID:
1958 case Type::ScalableVectorTyID:
1959 Dest.AggregateVal = pSrc->AggregateVal;
1960 break;
1961 case Type::PointerTyID:
1962 Dest.PointerVal = pSrc->PointerVal;
1963 break;
1966 SetValue(&I, Dest, SF);
1969 void Interpreter::visitInsertValueInst(InsertValueInst &I) {
1971 ExecutionContext &SF = ECStack.back();
1972 Value *Agg = I.getAggregateOperand();
1974 GenericValue Src1 = getOperandValue(Agg, SF);
1975 GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
1976 GenericValue Dest = Src1; // Dest is a slightly changed Src1
1978 ExtractValueInst::idx_iterator IdxBegin = I.idx_begin();
1979 unsigned Num = I.getNumIndices();
1981 GenericValue *pDest = &Dest;
1982 for (unsigned i = 0 ; i < Num; ++i) {
1983 pDest = &pDest->AggregateVal[*IdxBegin];
1984 ++IdxBegin;
1986 // pDest points to the target value in the Dest now
1988 Type *IndexedType = ExtractValueInst::getIndexedType(Agg->getType(), I.getIndices());
1990 switch (IndexedType->getTypeID()) {
1991 default:
1992 llvm_unreachable("Unhandled dest type for insertelement instruction");
1993 break;
1994 case Type::IntegerTyID:
1995 pDest->IntVal = Src2.IntVal;
1996 break;
1997 case Type::FloatTyID:
1998 pDest->FloatVal = Src2.FloatVal;
1999 break;
2000 case Type::DoubleTyID:
2001 pDest->DoubleVal = Src2.DoubleVal;
2002 break;
2003 case Type::ArrayTyID:
2004 case Type::StructTyID:
2005 case Type::FixedVectorTyID:
2006 case Type::ScalableVectorTyID:
2007 pDest->AggregateVal = Src2.AggregateVal;
2008 break;
2009 case Type::PointerTyID:
2010 pDest->PointerVal = Src2.PointerVal;
2011 break;
2014 SetValue(&I, Dest, SF);
2017 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
2018 ExecutionContext &SF) {
2019 switch (CE->getOpcode()) {
2020 case Instruction::Trunc:
2021 return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
2022 case Instruction::ZExt:
2023 return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
2024 case Instruction::SExt:
2025 return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
2026 case Instruction::FPTrunc:
2027 return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
2028 case Instruction::FPExt:
2029 return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
2030 case Instruction::UIToFP:
2031 return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
2032 case Instruction::SIToFP:
2033 return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
2034 case Instruction::FPToUI:
2035 return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
2036 case Instruction::FPToSI:
2037 return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
2038 case Instruction::PtrToInt:
2039 return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
2040 case Instruction::IntToPtr:
2041 return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
2042 case Instruction::BitCast:
2043 return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
2044 case Instruction::GetElementPtr:
2045 return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
2046 gep_type_end(CE), SF);
2047 case Instruction::FCmp:
2048 case Instruction::ICmp:
2049 return executeCmpInst(CE->getPredicate(),
2050 getOperandValue(CE->getOperand(0), SF),
2051 getOperandValue(CE->getOperand(1), SF),
2052 CE->getOperand(0)->getType());
2053 case Instruction::Select:
2054 return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
2055 getOperandValue(CE->getOperand(1), SF),
2056 getOperandValue(CE->getOperand(2), SF),
2057 CE->getOperand(0)->getType());
2058 default :
2059 break;
2062 // The cases below here require a GenericValue parameter for the result
2063 // so we initialize one, compute it and then return it.
2064 GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
2065 GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
2066 GenericValue Dest;
2067 Type * Ty = CE->getOperand(0)->getType();
2068 switch (CE->getOpcode()) {
2069 case Instruction::Add: Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
2070 case Instruction::Sub: Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
2071 case Instruction::Mul: Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
2072 case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
2073 case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
2074 case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
2075 case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
2076 case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
2077 case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
2078 case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
2079 case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
2080 case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
2081 case Instruction::And: Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
2082 case Instruction::Or: Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
2083 case Instruction::Xor: Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
2084 case Instruction::Shl:
2085 Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
2086 break;
2087 case Instruction::LShr:
2088 Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
2089 break;
2090 case Instruction::AShr:
2091 Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
2092 break;
2093 default:
2094 dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
2095 llvm_unreachable("Unhandled ConstantExpr");
2097 return Dest;
2100 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
2101 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
2102 return getConstantExprValue(CE, SF);
2103 } else if (Constant *CPV = dyn_cast<Constant>(V)) {
2104 return getConstantValue(CPV);
2105 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
2106 return PTOGV(getPointerToGlobal(GV));
2107 } else {
2108 return SF.Values[V];
2112 //===----------------------------------------------------------------------===//
2113 // Dispatch and Execution Code
2114 //===----------------------------------------------------------------------===//
2116 //===----------------------------------------------------------------------===//
2117 // callFunction - Execute the specified function...
2119 void Interpreter::callFunction(Function *F, ArrayRef<GenericValue> ArgVals) {
2120 assert((ECStack.empty() || !ECStack.back().Caller ||
2121 ECStack.back().Caller->arg_size() == ArgVals.size()) &&
2122 "Incorrect number of arguments passed into function call!");
2123 // Make a new stack frame... and fill it in.
2124 ECStack.emplace_back();
2125 ExecutionContext &StackFrame = ECStack.back();
2126 StackFrame.CurFunction = F;
2128 // Special handling for external functions.
2129 if (F->isDeclaration()) {
2130 GenericValue Result = callExternalFunction (F, ArgVals);
2131 // Simulate a 'ret' instruction of the appropriate type.
2132 popStackAndReturnValueToCaller (F->getReturnType (), Result);
2133 return;
2136 // Get pointers to first LLVM BB & Instruction in function.
2137 StackFrame.CurBB = &F->front();
2138 StackFrame.CurInst = StackFrame.CurBB->begin();
2140 // Run through the function arguments and initialize their values...
2141 assert((ArgVals.size() == F->arg_size() ||
2142 (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
2143 "Invalid number of values passed to function invocation!");
2145 // Handle non-varargs arguments...
2146 unsigned i = 0;
2147 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
2148 AI != E; ++AI, ++i)
2149 SetValue(&*AI, ArgVals[i], StackFrame);
2151 // Handle varargs arguments...
2152 StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
2156 void Interpreter::run() {
2157 while (!ECStack.empty()) {
2158 // Interpret a single instruction & increment the "PC".
2159 ExecutionContext &SF = ECStack.back(); // Current stack frame
2160 Instruction &I = *SF.CurInst++; // Increment before execute
2162 // Track the number of dynamic instructions executed.
2163 ++NumDynamicInsts;
2165 LLVM_DEBUG(dbgs() << "About to interpret: " << I << "\n");
2166 visit(I); // Dispatch to one of the visit* methods...