Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / IR / ConstantFold.cpp
blob15a74859045183b9e9c301f6c74d2741881dcda6
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM. This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/IR/ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
36 //===----------------------------------------------------------------------===//
37 // ConstantFold*Instruction Implementations
38 //===----------------------------------------------------------------------===//
40 /// Convert the specified vector Constant node to the specified vector type.
41 /// At this point, we know that the elements of the input vector constant are
42 /// all simple integer or FP values.
43 static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) {
45 if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy);
46 if (CV->isNullValue()) return Constant::getNullValue(DstTy);
48 // Do not iterate on scalable vector. The num of elements is unknown at
49 // compile-time.
50 if (isa<ScalableVectorType>(DstTy))
51 return nullptr;
53 // If this cast changes element count then we can't handle it here:
54 // doing so requires endianness information. This should be handled by
55 // Analysis/ConstantFolding.cpp
56 unsigned NumElts = cast<FixedVectorType>(DstTy)->getNumElements();
57 if (NumElts != cast<FixedVectorType>(CV->getType())->getNumElements())
58 return nullptr;
60 Type *DstEltTy = DstTy->getElementType();
61 // Fast path for splatted constants.
62 if (Constant *Splat = CV->getSplatValue()) {
63 return ConstantVector::getSplat(DstTy->getElementCount(),
64 ConstantExpr::getBitCast(Splat, DstEltTy));
67 SmallVector<Constant*, 16> Result;
68 Type *Ty = IntegerType::get(CV->getContext(), 32);
69 for (unsigned i = 0; i != NumElts; ++i) {
70 Constant *C =
71 ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i));
72 C = ConstantExpr::getBitCast(C, DstEltTy);
73 Result.push_back(C);
76 return ConstantVector::get(Result);
79 /// This function determines which opcode to use to fold two constant cast
80 /// expressions together. It uses CastInst::isEliminableCastPair to determine
81 /// the opcode. Consequently its just a wrapper around that function.
82 /// Determine if it is valid to fold a cast of a cast
83 static unsigned
84 foldConstantCastPair(
85 unsigned opc, ///< opcode of the second cast constant expression
86 ConstantExpr *Op, ///< the first cast constant expression
87 Type *DstTy ///< destination type of the first cast
88 ) {
89 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
90 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
91 assert(CastInst::isCast(opc) && "Invalid cast opcode");
93 // The types and opcodes for the two Cast constant expressions
94 Type *SrcTy = Op->getOperand(0)->getType();
95 Type *MidTy = Op->getType();
96 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
97 Instruction::CastOps secondOp = Instruction::CastOps(opc);
99 // Assume that pointers are never more than 64 bits wide, and only use this
100 // for the middle type. Otherwise we could end up folding away illegal
101 // bitcasts between address spaces with different sizes.
102 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
104 // Let CastInst::isEliminableCastPair do the heavy lifting.
105 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
106 nullptr, FakeIntPtrTy, nullptr);
109 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
110 Type *SrcTy = V->getType();
111 if (SrcTy == DestTy)
112 return V; // no-op cast
114 // Handle casts from one vector constant to another. We know that the src
115 // and dest type have the same size (otherwise its an illegal cast).
116 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
117 if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) {
118 assert(DestPTy->getPrimitiveSizeInBits() ==
119 SrcTy->getPrimitiveSizeInBits() &&
120 "Not cast between same sized vectors!");
121 SrcTy = nullptr;
122 // First, check for null. Undef is already handled.
123 if (isa<ConstantAggregateZero>(V))
124 return Constant::getNullValue(DestTy);
126 // Handle ConstantVector and ConstantAggregateVector.
127 return BitCastConstantVector(V, DestPTy);
130 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
131 // This allows for other simplifications (although some of them
132 // can only be handled by Analysis/ConstantFolding.cpp).
133 if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
134 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
137 // Finally, implement bitcast folding now. The code below doesn't handle
138 // bitcast right.
139 if (isa<ConstantPointerNull>(V)) // ptr->ptr cast.
140 return ConstantPointerNull::get(cast<PointerType>(DestTy));
142 // Handle integral constant input.
143 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
144 if (DestTy->isIntegerTy())
145 // Integral -> Integral. This is a no-op because the bit widths must
146 // be the same. Consequently, we just fold to V.
147 return V;
149 // See note below regarding the PPC_FP128 restriction.
150 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
151 return ConstantFP::get(DestTy->getContext(),
152 APFloat(DestTy->getFltSemantics(),
153 CI->getValue()));
155 // Otherwise, can't fold this (vector?)
156 return nullptr;
159 // Handle ConstantFP input: FP -> Integral.
160 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
161 // PPC_FP128 is really the sum of two consecutive doubles, where the first
162 // double is always stored first in memory, regardless of the target
163 // endianness. The memory layout of i128, however, depends on the target
164 // endianness, and so we can't fold this without target endianness
165 // information. This should instead be handled by
166 // Analysis/ConstantFolding.cpp
167 if (FP->getType()->isPPC_FP128Ty())
168 return nullptr;
170 // Make sure dest type is compatible with the folded integer constant.
171 if (!DestTy->isIntegerTy())
172 return nullptr;
174 return ConstantInt::get(FP->getContext(),
175 FP->getValueAPF().bitcastToAPInt());
178 return nullptr;
182 /// V is an integer constant which only has a subset of its bytes used.
183 /// The bytes used are indicated by ByteStart (which is the first byte used,
184 /// counting from the least significant byte) and ByteSize, which is the number
185 /// of bytes used.
187 /// This function analyzes the specified constant to see if the specified byte
188 /// range can be returned as a simplified constant. If so, the constant is
189 /// returned, otherwise null is returned.
190 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart,
191 unsigned ByteSize) {
192 assert(C->getType()->isIntegerTy() &&
193 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 &&
194 "Non-byte sized integer input");
195 unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8;
196 assert(ByteSize && "Must be accessing some piece");
197 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input");
198 assert(ByteSize != CSize && "Should not extract everything");
200 // Constant Integers are simple.
201 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
202 APInt V = CI->getValue();
203 if (ByteStart)
204 V.lshrInPlace(ByteStart*8);
205 V = V.trunc(ByteSize*8);
206 return ConstantInt::get(CI->getContext(), V);
209 // In the input is a constant expr, we might be able to recursively simplify.
210 // If not, we definitely can't do anything.
211 ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
212 if (!CE) return nullptr;
214 switch (CE->getOpcode()) {
215 default: return nullptr;
216 case Instruction::LShr: {
217 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
218 if (!Amt)
219 return nullptr;
220 APInt ShAmt = Amt->getValue();
221 // Cannot analyze non-byte shifts.
222 if ((ShAmt & 7) != 0)
223 return nullptr;
224 ShAmt.lshrInPlace(3);
226 // If the extract is known to be all zeros, return zero.
227 if (ShAmt.uge(CSize - ByteStart))
228 return Constant::getNullValue(
229 IntegerType::get(CE->getContext(), ByteSize * 8));
230 // If the extract is known to be fully in the input, extract it.
231 if (ShAmt.ule(CSize - (ByteStart + ByteSize)))
232 return ExtractConstantBytes(CE->getOperand(0),
233 ByteStart + ShAmt.getZExtValue(), ByteSize);
235 // TODO: Handle the 'partially zero' case.
236 return nullptr;
239 case Instruction::Shl: {
240 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1));
241 if (!Amt)
242 return nullptr;
243 APInt ShAmt = Amt->getValue();
244 // Cannot analyze non-byte shifts.
245 if ((ShAmt & 7) != 0)
246 return nullptr;
247 ShAmt.lshrInPlace(3);
249 // If the extract is known to be all zeros, return zero.
250 if (ShAmt.uge(ByteStart + ByteSize))
251 return Constant::getNullValue(
252 IntegerType::get(CE->getContext(), ByteSize * 8));
253 // If the extract is known to be fully in the input, extract it.
254 if (ShAmt.ule(ByteStart))
255 return ExtractConstantBytes(CE->getOperand(0),
256 ByteStart - ShAmt.getZExtValue(), ByteSize);
258 // TODO: Handle the 'partially zero' case.
259 return nullptr;
262 case Instruction::ZExt: {
263 unsigned SrcBitSize =
264 cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth();
266 // If extracting something that is completely zero, return 0.
267 if (ByteStart*8 >= SrcBitSize)
268 return Constant::getNullValue(IntegerType::get(CE->getContext(),
269 ByteSize*8));
271 // If exactly extracting the input, return it.
272 if (ByteStart == 0 && ByteSize*8 == SrcBitSize)
273 return CE->getOperand(0);
275 // If extracting something completely in the input, if the input is a
276 // multiple of 8 bits, recurse.
277 if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize)
278 return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize);
280 // Otherwise, if extracting a subset of the input, which is not multiple of
281 // 8 bits, do a shift and trunc to get the bits.
282 if ((ByteStart+ByteSize)*8 < SrcBitSize) {
283 assert((SrcBitSize&7) && "Shouldn't get byte sized case here");
284 Constant *Res = CE->getOperand(0);
285 if (ByteStart)
286 Res = ConstantExpr::getLShr(Res,
287 ConstantInt::get(Res->getType(), ByteStart*8));
288 return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(),
289 ByteSize*8));
292 // TODO: Handle the 'partially zero' case.
293 return nullptr;
298 static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V,
299 Type *DestTy) {
300 return ConstantExpr::isDesirableCastOp(opc)
301 ? ConstantExpr::getCast(opc, V, DestTy)
302 : ConstantFoldCastInstruction(opc, V, DestTy);
305 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
306 Type *DestTy) {
307 if (isa<PoisonValue>(V))
308 return PoisonValue::get(DestTy);
310 if (isa<UndefValue>(V)) {
311 // zext(undef) = 0, because the top bits will be zero.
312 // sext(undef) = 0, because the top bits will all be the same.
313 // [us]itofp(undef) = 0, because the result value is bounded.
314 if (opc == Instruction::ZExt || opc == Instruction::SExt ||
315 opc == Instruction::UIToFP || opc == Instruction::SIToFP)
316 return Constant::getNullValue(DestTy);
317 return UndefValue::get(DestTy);
320 if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() &&
321 opc != Instruction::AddrSpaceCast)
322 return Constant::getNullValue(DestTy);
324 // If the cast operand is a constant expression, there's a few things we can
325 // do to try to simplify it.
326 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
327 if (CE->isCast()) {
328 // Try hard to fold cast of cast because they are often eliminable.
329 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
330 return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy);
331 } else if (CE->getOpcode() == Instruction::GetElementPtr &&
332 // Do not fold addrspacecast (gep 0, .., 0). It might make the
333 // addrspacecast uncanonicalized.
334 opc != Instruction::AddrSpaceCast &&
335 // Do not fold bitcast (gep) with inrange index, as this loses
336 // information.
337 !cast<GEPOperator>(CE)->getInRangeIndex() &&
338 // Do not fold if the gep type is a vector, as bitcasting
339 // operand 0 of a vector gep will result in a bitcast between
340 // different sizes.
341 !CE->getType()->isVectorTy()) {
342 // If all of the indexes in the GEP are null values, there is no pointer
343 // adjustment going on. We might as well cast the source pointer.
344 bool isAllNull = true;
345 for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
346 if (!CE->getOperand(i)->isNullValue()) {
347 isAllNull = false;
348 break;
350 if (isAllNull)
351 // This is casting one pointer type to another, always BitCast
352 return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy);
356 // If the cast operand is a constant vector, perform the cast by
357 // operating on each element. In the cast of bitcasts, the element
358 // count may be mismatched; don't attempt to handle that here.
359 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
360 DestTy->isVectorTy() &&
361 cast<FixedVectorType>(DestTy)->getNumElements() ==
362 cast<FixedVectorType>(V->getType())->getNumElements()) {
363 VectorType *DestVecTy = cast<VectorType>(DestTy);
364 Type *DstEltTy = DestVecTy->getElementType();
365 // Fast path for splatted constants.
366 if (Constant *Splat = V->getSplatValue()) {
367 Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy);
368 if (!Res)
369 return nullptr;
370 return ConstantVector::getSplat(
371 cast<VectorType>(DestTy)->getElementCount(), Res);
373 SmallVector<Constant *, 16> res;
374 Type *Ty = IntegerType::get(V->getContext(), 32);
375 for (unsigned i = 0,
376 e = cast<FixedVectorType>(V->getType())->getNumElements();
377 i != e; ++i) {
378 Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
379 Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy);
380 if (!Casted)
381 return nullptr;
382 res.push_back(Casted);
384 return ConstantVector::get(res);
387 // We actually have to do a cast now. Perform the cast according to the
388 // opcode specified.
389 switch (opc) {
390 default:
391 llvm_unreachable("Failed to cast constant expression");
392 case Instruction::FPTrunc:
393 case Instruction::FPExt:
394 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
395 bool ignored;
396 APFloat Val = FPC->getValueAPF();
397 Val.convert(DestTy->getFltSemantics(), APFloat::rmNearestTiesToEven,
398 &ignored);
399 return ConstantFP::get(V->getContext(), Val);
401 return nullptr; // Can't fold.
402 case Instruction::FPToUI:
403 case Instruction::FPToSI:
404 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
405 const APFloat &V = FPC->getValueAPF();
406 bool ignored;
407 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
408 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
409 if (APFloat::opInvalidOp ==
410 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
411 // Undefined behavior invoked - the destination type can't represent
412 // the input constant.
413 return PoisonValue::get(DestTy);
415 return ConstantInt::get(FPC->getContext(), IntVal);
417 return nullptr; // Can't fold.
418 case Instruction::IntToPtr: //always treated as unsigned
419 if (V->isNullValue()) // Is it an integral null value?
420 return ConstantPointerNull::get(cast<PointerType>(DestTy));
421 return nullptr; // Other pointer types cannot be casted
422 case Instruction::PtrToInt: // always treated as unsigned
423 // Is it a null pointer value?
424 if (V->isNullValue())
425 return ConstantInt::get(DestTy, 0);
426 // Other pointer types cannot be casted
427 return nullptr;
428 case Instruction::UIToFP:
429 case Instruction::SIToFP:
430 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
431 const APInt &api = CI->getValue();
432 APFloat apf(DestTy->getFltSemantics(),
433 APInt::getZero(DestTy->getPrimitiveSizeInBits()));
434 apf.convertFromAPInt(api, opc==Instruction::SIToFP,
435 APFloat::rmNearestTiesToEven);
436 return ConstantFP::get(V->getContext(), apf);
438 return nullptr;
439 case Instruction::ZExt:
440 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
441 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
442 return ConstantInt::get(V->getContext(),
443 CI->getValue().zext(BitWidth));
445 return nullptr;
446 case Instruction::SExt:
447 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
448 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
449 return ConstantInt::get(V->getContext(),
450 CI->getValue().sext(BitWidth));
452 return nullptr;
453 case Instruction::Trunc: {
454 if (V->getType()->isVectorTy())
455 return nullptr;
457 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
458 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
459 return ConstantInt::get(V->getContext(),
460 CI->getValue().trunc(DestBitWidth));
463 // The input must be a constantexpr. See if we can simplify this based on
464 // the bytes we are demanding. Only do this if the source and dest are an
465 // even multiple of a byte.
466 if ((DestBitWidth & 7) == 0 &&
467 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0)
468 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8))
469 return Res;
471 return nullptr;
473 case Instruction::BitCast:
474 return FoldBitCast(V, DestTy);
475 case Instruction::AddrSpaceCast:
476 return nullptr;
480 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
481 Constant *V1, Constant *V2) {
482 // Check for i1 and vector true/false conditions.
483 if (Cond->isNullValue()) return V2;
484 if (Cond->isAllOnesValue()) return V1;
486 // If the condition is a vector constant, fold the result elementwise.
487 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
488 auto *V1VTy = CondV->getType();
489 SmallVector<Constant*, 16> Result;
490 Type *Ty = IntegerType::get(CondV->getContext(), 32);
491 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
492 Constant *V;
493 Constant *V1Element = ConstantExpr::getExtractElement(V1,
494 ConstantInt::get(Ty, i));
495 Constant *V2Element = ConstantExpr::getExtractElement(V2,
496 ConstantInt::get(Ty, i));
497 auto *Cond = cast<Constant>(CondV->getOperand(i));
498 if (isa<PoisonValue>(Cond)) {
499 V = PoisonValue::get(V1Element->getType());
500 } else if (V1Element == V2Element) {
501 V = V1Element;
502 } else if (isa<UndefValue>(Cond)) {
503 V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
504 } else {
505 if (!isa<ConstantInt>(Cond)) break;
506 V = Cond->isNullValue() ? V2Element : V1Element;
508 Result.push_back(V);
511 // If we were able to build the vector, return it.
512 if (Result.size() == V1VTy->getNumElements())
513 return ConstantVector::get(Result);
516 if (isa<PoisonValue>(Cond))
517 return PoisonValue::get(V1->getType());
519 if (isa<UndefValue>(Cond)) {
520 if (isa<UndefValue>(V1)) return V1;
521 return V2;
524 if (V1 == V2) return V1;
526 if (isa<PoisonValue>(V1))
527 return V2;
528 if (isa<PoisonValue>(V2))
529 return V1;
531 // If the true or false value is undef, we can fold to the other value as
532 // long as the other value isn't poison.
533 auto NotPoison = [](Constant *C) {
534 if (isa<PoisonValue>(C))
535 return false;
537 // TODO: We can analyze ConstExpr by opcode to determine if there is any
538 // possibility of poison.
539 if (isa<ConstantExpr>(C))
540 return false;
542 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) ||
543 isa<ConstantPointerNull>(C) || isa<Function>(C))
544 return true;
546 if (C->getType()->isVectorTy())
547 return !C->containsPoisonElement() && !C->containsConstantExpression();
549 // TODO: Recursively analyze aggregates or other constants.
550 return false;
552 if (isa<UndefValue>(V1) && NotPoison(V2)) return V2;
553 if (isa<UndefValue>(V2) && NotPoison(V1)) return V1;
555 return nullptr;
558 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
559 Constant *Idx) {
560 auto *ValVTy = cast<VectorType>(Val->getType());
562 // extractelt poison, C -> poison
563 // extractelt C, undef -> poison
564 if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx))
565 return PoisonValue::get(ValVTy->getElementType());
567 // extractelt undef, C -> undef
568 if (isa<UndefValue>(Val))
569 return UndefValue::get(ValVTy->getElementType());
571 auto *CIdx = dyn_cast<ConstantInt>(Idx);
572 if (!CIdx)
573 return nullptr;
575 if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) {
576 // ee({w,x,y,z}, wrong_value) -> poison
577 if (CIdx->uge(ValFVTy->getNumElements()))
578 return PoisonValue::get(ValFVTy->getElementType());
581 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
582 if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
583 if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
584 SmallVector<Constant *, 8> Ops;
585 Ops.reserve(CE->getNumOperands());
586 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
587 Constant *Op = CE->getOperand(i);
588 if (Op->getType()->isVectorTy()) {
589 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
590 if (!ScalarOp)
591 return nullptr;
592 Ops.push_back(ScalarOp);
593 } else
594 Ops.push_back(Op);
596 return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
597 GEP->getSourceElementType());
598 } else if (CE->getOpcode() == Instruction::InsertElement) {
599 if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) {
600 if (APSInt::isSameValue(APSInt(IEIdx->getValue()),
601 APSInt(CIdx->getValue()))) {
602 return CE->getOperand(1);
603 } else {
604 return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx);
610 if (Constant *C = Val->getAggregateElement(CIdx))
611 return C;
613 // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x
614 if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
615 if (Constant *SplatVal = Val->getSplatValue())
616 return SplatVal;
619 return nullptr;
622 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
623 Constant *Elt,
624 Constant *Idx) {
625 if (isa<UndefValue>(Idx))
626 return PoisonValue::get(Val->getType());
628 // Inserting null into all zeros is still all zeros.
629 // TODO: This is true for undef and poison splats too.
630 if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue())
631 return Val;
633 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
634 if (!CIdx) return nullptr;
636 // Do not iterate on scalable vector. The num of elements is unknown at
637 // compile-time.
638 if (isa<ScalableVectorType>(Val->getType()))
639 return nullptr;
641 auto *ValTy = cast<FixedVectorType>(Val->getType());
643 unsigned NumElts = ValTy->getNumElements();
644 if (CIdx->uge(NumElts))
645 return PoisonValue::get(Val->getType());
647 SmallVector<Constant*, 16> Result;
648 Result.reserve(NumElts);
649 auto *Ty = Type::getInt32Ty(Val->getContext());
650 uint64_t IdxVal = CIdx->getZExtValue();
651 for (unsigned i = 0; i != NumElts; ++i) {
652 if (i == IdxVal) {
653 Result.push_back(Elt);
654 continue;
657 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
658 Result.push_back(C);
661 return ConstantVector::get(Result);
664 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
665 ArrayRef<int> Mask) {
666 auto *V1VTy = cast<VectorType>(V1->getType());
667 unsigned MaskNumElts = Mask.size();
668 auto MaskEltCount =
669 ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy));
670 Type *EltTy = V1VTy->getElementType();
672 // Poison shuffle mask -> poison value.
673 if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) {
674 return PoisonValue::get(VectorType::get(EltTy, MaskEltCount));
677 // If the mask is all zeros this is a splat, no need to go through all
678 // elements.
679 if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
680 Type *Ty = IntegerType::get(V1->getContext(), 32);
681 Constant *Elt =
682 ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
684 if (Elt->isNullValue()) {
685 auto *VTy = VectorType::get(EltTy, MaskEltCount);
686 return ConstantAggregateZero::get(VTy);
687 } else if (!MaskEltCount.isScalable())
688 return ConstantVector::getSplat(MaskEltCount, Elt);
690 // Do not iterate on scalable vector. The num of elements is unknown at
691 // compile-time.
692 if (isa<ScalableVectorType>(V1VTy))
693 return nullptr;
695 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
697 // Loop over the shuffle mask, evaluating each element.
698 SmallVector<Constant*, 32> Result;
699 for (unsigned i = 0; i != MaskNumElts; ++i) {
700 int Elt = Mask[i];
701 if (Elt == -1) {
702 Result.push_back(UndefValue::get(EltTy));
703 continue;
705 Constant *InElt;
706 if (unsigned(Elt) >= SrcNumElts*2)
707 InElt = UndefValue::get(EltTy);
708 else if (unsigned(Elt) >= SrcNumElts) {
709 Type *Ty = IntegerType::get(V2->getContext(), 32);
710 InElt =
711 ConstantExpr::getExtractElement(V2,
712 ConstantInt::get(Ty, Elt - SrcNumElts));
713 } else {
714 Type *Ty = IntegerType::get(V1->getContext(), 32);
715 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
717 Result.push_back(InElt);
720 return ConstantVector::get(Result);
723 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
724 ArrayRef<unsigned> Idxs) {
725 // Base case: no indices, so return the entire value.
726 if (Idxs.empty())
727 return Agg;
729 if (Constant *C = Agg->getAggregateElement(Idxs[0]))
730 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
732 return nullptr;
735 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
736 Constant *Val,
737 ArrayRef<unsigned> Idxs) {
738 // Base case: no indices, so replace the entire value.
739 if (Idxs.empty())
740 return Val;
742 unsigned NumElts;
743 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
744 NumElts = ST->getNumElements();
745 else
746 NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
748 SmallVector<Constant*, 32> Result;
749 for (unsigned i = 0; i != NumElts; ++i) {
750 Constant *C = Agg->getAggregateElement(i);
751 if (!C) return nullptr;
753 if (Idxs[0] == i)
754 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
756 Result.push_back(C);
759 if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
760 return ConstantStruct::get(ST, Result);
761 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
764 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
765 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
767 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
768 // vectors are always evaluated per element.
769 bool IsScalableVector = isa<ScalableVectorType>(C->getType());
770 bool HasScalarUndefOrScalableVectorUndef =
771 (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C);
773 if (HasScalarUndefOrScalableVectorUndef) {
774 switch (static_cast<Instruction::UnaryOps>(Opcode)) {
775 case Instruction::FNeg:
776 return C; // -undef -> undef
777 case Instruction::UnaryOpsEnd:
778 llvm_unreachable("Invalid UnaryOp");
782 // Constant should not be UndefValue, unless these are vector constants.
783 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
784 // We only have FP UnaryOps right now.
785 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
787 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
788 const APFloat &CV = CFP->getValueAPF();
789 switch (Opcode) {
790 default:
791 break;
792 case Instruction::FNeg:
793 return ConstantFP::get(C->getContext(), neg(CV));
795 } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) {
797 Type *Ty = IntegerType::get(VTy->getContext(), 32);
798 // Fast path for splatted constants.
799 if (Constant *Splat = C->getSplatValue())
800 if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat))
801 return ConstantVector::getSplat(VTy->getElementCount(), Elt);
803 // Fold each element and create a vector constant from those constants.
804 SmallVector<Constant *, 16> Result;
805 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
806 Constant *ExtractIdx = ConstantInt::get(Ty, i);
807 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
808 Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt);
809 if (!Res)
810 return nullptr;
811 Result.push_back(Res);
814 return ConstantVector::get(Result);
817 // We don't know how to fold this.
818 return nullptr;
821 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
822 Constant *C2) {
823 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
825 // Simplify BinOps with their identity values first. They are no-ops and we
826 // can always return the other value, including undef or poison values.
827 // FIXME: remove unnecessary duplicated identity patterns below.
828 // FIXME: Use AllowRHSConstant with getBinOpIdentity to handle additional ops,
829 // like X << 0 = X.
830 Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, C1->getType());
831 if (Identity) {
832 if (C1 == Identity)
833 return C2;
834 if (C2 == Identity)
835 return C1;
838 // Binary operations propagate poison.
839 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
840 return PoisonValue::get(C1->getType());
842 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
843 // vectors are always evaluated per element.
844 bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
845 bool HasScalarUndefOrScalableVectorUndef =
846 (!C1->getType()->isVectorTy() || IsScalableVector) &&
847 (isa<UndefValue>(C1) || isa<UndefValue>(C2));
848 if (HasScalarUndefOrScalableVectorUndef) {
849 switch (static_cast<Instruction::BinaryOps>(Opcode)) {
850 case Instruction::Xor:
851 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
852 // Handle undef ^ undef -> 0 special case. This is a common
853 // idiom (misuse).
854 return Constant::getNullValue(C1->getType());
855 [[fallthrough]];
856 case Instruction::Add:
857 case Instruction::Sub:
858 return UndefValue::get(C1->getType());
859 case Instruction::And:
860 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
861 return C1;
862 return Constant::getNullValue(C1->getType()); // undef & X -> 0
863 case Instruction::Mul: {
864 // undef * undef -> undef
865 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
866 return C1;
867 const APInt *CV;
868 // X * undef -> undef if X is odd
869 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
870 if ((*CV)[0])
871 return UndefValue::get(C1->getType());
873 // X * undef -> 0 otherwise
874 return Constant::getNullValue(C1->getType());
876 case Instruction::SDiv:
877 case Instruction::UDiv:
878 // X / undef -> poison
879 // X / 0 -> poison
880 if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
881 return PoisonValue::get(C2->getType());
882 // undef / 1 -> undef
883 if (match(C2, m_One()))
884 return C1;
885 // undef / X -> 0 otherwise
886 return Constant::getNullValue(C1->getType());
887 case Instruction::URem:
888 case Instruction::SRem:
889 // X % undef -> poison
890 // X % 0 -> poison
891 if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
892 return PoisonValue::get(C2->getType());
893 // undef % X -> 0 otherwise
894 return Constant::getNullValue(C1->getType());
895 case Instruction::Or: // X | undef -> -1
896 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
897 return C1;
898 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
899 case Instruction::LShr:
900 // X >>l undef -> poison
901 if (isa<UndefValue>(C2))
902 return PoisonValue::get(C2->getType());
903 // undef >>l 0 -> undef
904 if (match(C2, m_Zero()))
905 return C1;
906 // undef >>l X -> 0
907 return Constant::getNullValue(C1->getType());
908 case Instruction::AShr:
909 // X >>a undef -> poison
910 if (isa<UndefValue>(C2))
911 return PoisonValue::get(C2->getType());
912 // undef >>a 0 -> undef
913 if (match(C2, m_Zero()))
914 return C1;
915 // TODO: undef >>a X -> poison if the shift is exact
916 // undef >>a X -> 0
917 return Constant::getNullValue(C1->getType());
918 case Instruction::Shl:
919 // X << undef -> undef
920 if (isa<UndefValue>(C2))
921 return PoisonValue::get(C2->getType());
922 // undef << 0 -> undef
923 if (match(C2, m_Zero()))
924 return C1;
925 // undef << X -> 0
926 return Constant::getNullValue(C1->getType());
927 case Instruction::FSub:
928 // -0.0 - undef --> undef (consistent with "fneg undef")
929 if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
930 return C2;
931 [[fallthrough]];
932 case Instruction::FAdd:
933 case Instruction::FMul:
934 case Instruction::FDiv:
935 case Instruction::FRem:
936 // [any flop] undef, undef -> undef
937 if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
938 return C1;
939 // [any flop] C, undef -> NaN
940 // [any flop] undef, C -> NaN
941 // We could potentially specialize NaN/Inf constants vs. 'normal'
942 // constants (possibly differently depending on opcode and operand). This
943 // would allow returning undef sometimes. But it is always safe to fold to
944 // NaN because we can choose the undef operand as NaN, and any FP opcode
945 // with a NaN operand will propagate NaN.
946 return ConstantFP::getNaN(C1->getType());
947 case Instruction::BinaryOpsEnd:
948 llvm_unreachable("Invalid BinaryOp");
952 // Neither constant should be UndefValue, unless these are vector constants.
953 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
955 // Handle simplifications when the RHS is a constant int.
956 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
957 switch (Opcode) {
958 case Instruction::Add:
959 if (CI2->isZero()) return C1; // X + 0 == X
960 break;
961 case Instruction::Sub:
962 if (CI2->isZero()) return C1; // X - 0 == X
963 break;
964 case Instruction::Mul:
965 if (CI2->isZero()) return C2; // X * 0 == 0
966 if (CI2->isOne())
967 return C1; // X * 1 == X
968 break;
969 case Instruction::UDiv:
970 case Instruction::SDiv:
971 if (CI2->isOne())
972 return C1; // X / 1 == X
973 if (CI2->isZero())
974 return PoisonValue::get(CI2->getType()); // X / 0 == poison
975 break;
976 case Instruction::URem:
977 case Instruction::SRem:
978 if (CI2->isOne())
979 return Constant::getNullValue(CI2->getType()); // X % 1 == 0
980 if (CI2->isZero())
981 return PoisonValue::get(CI2->getType()); // X % 0 == poison
982 break;
983 case Instruction::And:
984 if (CI2->isZero()) return C2; // X & 0 == 0
985 if (CI2->isMinusOne())
986 return C1; // X & -1 == X
988 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
989 // (zext i32 to i64) & 4294967295 -> (zext i32 to i64)
990 if (CE1->getOpcode() == Instruction::ZExt) {
991 unsigned DstWidth = CI2->getType()->getBitWidth();
992 unsigned SrcWidth =
993 CE1->getOperand(0)->getType()->getPrimitiveSizeInBits();
994 APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth));
995 if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits)
996 return C1;
999 // If and'ing the address of a global with a constant, fold it.
1000 if (CE1->getOpcode() == Instruction::PtrToInt &&
1001 isa<GlobalValue>(CE1->getOperand(0))) {
1002 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
1004 Align GVAlign; // defaults to 1
1006 if (Module *TheModule = GV->getParent()) {
1007 const DataLayout &DL = TheModule->getDataLayout();
1008 GVAlign = GV->getPointerAlignment(DL);
1010 // If the function alignment is not specified then assume that it
1011 // is 4.
1012 // This is dangerous; on x86, the alignment of the pointer
1013 // corresponds to the alignment of the function, but might be less
1014 // than 4 if it isn't explicitly specified.
1015 // However, a fix for this behaviour was reverted because it
1016 // increased code size (see https://reviews.llvm.org/D55115)
1017 // FIXME: This code should be deleted once existing targets have
1018 // appropriate defaults
1019 if (isa<Function>(GV) && !DL.getFunctionPtrAlign())
1020 GVAlign = Align(4);
1021 } else if (isa<GlobalVariable>(GV)) {
1022 GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne();
1025 if (GVAlign > 1) {
1026 unsigned DstWidth = CI2->getType()->getBitWidth();
1027 unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign));
1028 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
1030 // If checking bits we know are clear, return zero.
1031 if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
1032 return Constant::getNullValue(CI2->getType());
1036 break;
1037 case Instruction::Or:
1038 if (CI2->isZero()) return C1; // X | 0 == X
1039 if (CI2->isMinusOne())
1040 return C2; // X | -1 == -1
1041 break;
1042 case Instruction::Xor:
1043 if (CI2->isZero()) return C1; // X ^ 0 == X
1045 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1046 switch (CE1->getOpcode()) {
1047 default: break;
1048 case Instruction::ICmp:
1049 case Instruction::FCmp:
1050 // cmp pred ^ true -> cmp !pred
1051 assert(CI2->isOne());
1052 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate();
1053 pred = CmpInst::getInversePredicate(pred);
1054 return ConstantExpr::getCompare(pred, CE1->getOperand(0),
1055 CE1->getOperand(1));
1058 break;
1059 case Instruction::AShr:
1060 // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2
1061 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1))
1062 if (CE1->getOpcode() == Instruction::ZExt) // Top bits known zero.
1063 return ConstantExpr::getLShr(C1, C2);
1064 break;
1066 } else if (isa<ConstantInt>(C1)) {
1067 // If C1 is a ConstantInt and C2 is not, swap the operands.
1068 if (Instruction::isCommutative(Opcode))
1069 return ConstantExpr::isDesirableBinOp(Opcode)
1070 ? ConstantExpr::get(Opcode, C2, C1)
1071 : ConstantFoldBinaryInstruction(Opcode, C2, C1);
1074 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
1075 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
1076 const APInt &C1V = CI1->getValue();
1077 const APInt &C2V = CI2->getValue();
1078 switch (Opcode) {
1079 default:
1080 break;
1081 case Instruction::Add:
1082 return ConstantInt::get(CI1->getContext(), C1V + C2V);
1083 case Instruction::Sub:
1084 return ConstantInt::get(CI1->getContext(), C1V - C2V);
1085 case Instruction::Mul:
1086 return ConstantInt::get(CI1->getContext(), C1V * C2V);
1087 case Instruction::UDiv:
1088 assert(!CI2->isZero() && "Div by zero handled above");
1089 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
1090 case Instruction::SDiv:
1091 assert(!CI2->isZero() && "Div by zero handled above");
1092 if (C2V.isAllOnes() && C1V.isMinSignedValue())
1093 return PoisonValue::get(CI1->getType()); // MIN_INT / -1 -> poison
1094 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
1095 case Instruction::URem:
1096 assert(!CI2->isZero() && "Div by zero handled above");
1097 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
1098 case Instruction::SRem:
1099 assert(!CI2->isZero() && "Div by zero handled above");
1100 if (C2V.isAllOnes() && C1V.isMinSignedValue())
1101 return PoisonValue::get(CI1->getType()); // MIN_INT % -1 -> poison
1102 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
1103 case Instruction::And:
1104 return ConstantInt::get(CI1->getContext(), C1V & C2V);
1105 case Instruction::Or:
1106 return ConstantInt::get(CI1->getContext(), C1V | C2V);
1107 case Instruction::Xor:
1108 return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
1109 case Instruction::Shl:
1110 if (C2V.ult(C1V.getBitWidth()))
1111 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
1112 return PoisonValue::get(C1->getType()); // too big shift is poison
1113 case Instruction::LShr:
1114 if (C2V.ult(C1V.getBitWidth()))
1115 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
1116 return PoisonValue::get(C1->getType()); // too big shift is poison
1117 case Instruction::AShr:
1118 if (C2V.ult(C1V.getBitWidth()))
1119 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
1120 return PoisonValue::get(C1->getType()); // too big shift is poison
1124 switch (Opcode) {
1125 case Instruction::SDiv:
1126 case Instruction::UDiv:
1127 case Instruction::URem:
1128 case Instruction::SRem:
1129 case Instruction::LShr:
1130 case Instruction::AShr:
1131 case Instruction::Shl:
1132 if (CI1->isZero()) return C1;
1133 break;
1134 default:
1135 break;
1137 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
1138 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
1139 const APFloat &C1V = CFP1->getValueAPF();
1140 const APFloat &C2V = CFP2->getValueAPF();
1141 APFloat C3V = C1V; // copy for modification
1142 switch (Opcode) {
1143 default:
1144 break;
1145 case Instruction::FAdd:
1146 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
1147 return ConstantFP::get(C1->getContext(), C3V);
1148 case Instruction::FSub:
1149 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
1150 return ConstantFP::get(C1->getContext(), C3V);
1151 case Instruction::FMul:
1152 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
1153 return ConstantFP::get(C1->getContext(), C3V);
1154 case Instruction::FDiv:
1155 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
1156 return ConstantFP::get(C1->getContext(), C3V);
1157 case Instruction::FRem:
1158 (void)C3V.mod(C2V);
1159 return ConstantFP::get(C1->getContext(), C3V);
1162 } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) {
1163 // Fast path for splatted constants.
1164 if (Constant *C2Splat = C2->getSplatValue()) {
1165 if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue())
1166 return PoisonValue::get(VTy);
1167 if (Constant *C1Splat = C1->getSplatValue()) {
1168 Constant *Res =
1169 ConstantExpr::isDesirableBinOp(Opcode)
1170 ? ConstantExpr::get(Opcode, C1Splat, C2Splat)
1171 : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat);
1172 if (!Res)
1173 return nullptr;
1174 return ConstantVector::getSplat(VTy->getElementCount(), Res);
1178 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
1179 // Fold each element and create a vector constant from those constants.
1180 SmallVector<Constant*, 16> Result;
1181 Type *Ty = IntegerType::get(FVTy->getContext(), 32);
1182 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
1183 Constant *ExtractIdx = ConstantInt::get(Ty, i);
1184 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
1185 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
1187 // If any element of a divisor vector is zero, the whole op is poison.
1188 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
1189 return PoisonValue::get(VTy);
1191 Constant *Res = ConstantExpr::isDesirableBinOp(Opcode)
1192 ? ConstantExpr::get(Opcode, LHS, RHS)
1193 : ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
1194 if (!Res)
1195 return nullptr;
1196 Result.push_back(Res);
1199 return ConstantVector::get(Result);
1203 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1204 // There are many possible foldings we could do here. We should probably
1205 // at least fold add of a pointer with an integer into the appropriate
1206 // getelementptr. This will improve alias analysis a bit.
1208 // Given ((a + b) + c), if (b + c) folds to something interesting, return
1209 // (a + (b + c)).
1210 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
1211 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
1212 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
1213 return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
1215 } else if (isa<ConstantExpr>(C2)) {
1216 // If C2 is a constant expr and C1 isn't, flop them around and fold the
1217 // other way if possible.
1218 if (Instruction::isCommutative(Opcode))
1219 return ConstantFoldBinaryInstruction(Opcode, C2, C1);
1222 // i1 can be simplified in many cases.
1223 if (C1->getType()->isIntegerTy(1)) {
1224 switch (Opcode) {
1225 case Instruction::Add:
1226 case Instruction::Sub:
1227 return ConstantExpr::getXor(C1, C2);
1228 case Instruction::Shl:
1229 case Instruction::LShr:
1230 case Instruction::AShr:
1231 // We can assume that C2 == 0. If it were one the result would be
1232 // undefined because the shift value is as large as the bitwidth.
1233 return C1;
1234 case Instruction::SDiv:
1235 case Instruction::UDiv:
1236 // We can assume that C2 == 1. If it were zero the result would be
1237 // undefined through division by zero.
1238 return C1;
1239 case Instruction::URem:
1240 case Instruction::SRem:
1241 // We can assume that C2 == 1. If it were zero the result would be
1242 // undefined through division by zero.
1243 return ConstantInt::getFalse(C1->getContext());
1244 default:
1245 break;
1249 // We don't know how to fold this.
1250 return nullptr;
1253 /// This function determines if there is anything we can decide about the two
1254 /// constants provided. This doesn't need to handle simple things like
1255 /// ConstantFP comparisons, but should instead handle ConstantExprs.
1256 /// If we can determine that the two constants have a particular relation to
1257 /// each other, we should return the corresponding FCmpInst predicate,
1258 /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in
1259 /// ConstantFoldCompareInstruction.
1261 /// To simplify this code we canonicalize the relation so that the first
1262 /// operand is always the most "complex" of the two. We consider ConstantFP
1263 /// to be the simplest, and ConstantExprs to be the most complex.
1264 static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) {
1265 assert(V1->getType() == V2->getType() &&
1266 "Cannot compare values of different types!");
1268 // We do not know if a constant expression will evaluate to a number or NaN.
1269 // Therefore, we can only say that the relation is unordered or equal.
1270 if (V1 == V2) return FCmpInst::FCMP_UEQ;
1272 if (!isa<ConstantExpr>(V1)) {
1273 if (!isa<ConstantExpr>(V2)) {
1274 // Simple case, use the standard constant folder.
1275 ConstantInt *R = nullptr;
1276 R = dyn_cast<ConstantInt>(
1277 ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2));
1278 if (R && !R->isZero())
1279 return FCmpInst::FCMP_OEQ;
1280 R = dyn_cast<ConstantInt>(
1281 ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2));
1282 if (R && !R->isZero())
1283 return FCmpInst::FCMP_OLT;
1284 R = dyn_cast<ConstantInt>(
1285 ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2));
1286 if (R && !R->isZero())
1287 return FCmpInst::FCMP_OGT;
1289 // Nothing more we can do
1290 return FCmpInst::BAD_FCMP_PREDICATE;
1293 // If the first operand is simple and second is ConstantExpr, swap operands.
1294 FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1);
1295 if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE)
1296 return FCmpInst::getSwappedPredicate(SwappedRelation);
1297 } else {
1298 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1299 // constantexpr or a simple constant.
1300 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1301 switch (CE1->getOpcode()) {
1302 case Instruction::FPTrunc:
1303 case Instruction::FPExt:
1304 case Instruction::UIToFP:
1305 case Instruction::SIToFP:
1306 // We might be able to do something with these but we don't right now.
1307 break;
1308 default:
1309 break;
1312 // There are MANY other foldings that we could perform here. They will
1313 // probably be added on demand, as they seem needed.
1314 return FCmpInst::BAD_FCMP_PREDICATE;
1317 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
1318 const GlobalValue *GV2) {
1319 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
1320 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
1321 return true;
1322 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
1323 Type *Ty = GVar->getValueType();
1324 // A global with opaque type might end up being zero sized.
1325 if (!Ty->isSized())
1326 return true;
1327 // A global with an empty type might lie at the address of any other
1328 // global.
1329 if (Ty->isEmptyTy())
1330 return true;
1332 return false;
1334 // Don't try to decide equality of aliases.
1335 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
1336 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
1337 return ICmpInst::ICMP_NE;
1338 return ICmpInst::BAD_ICMP_PREDICATE;
1341 /// This function determines if there is anything we can decide about the two
1342 /// constants provided. This doesn't need to handle simple things like integer
1343 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
1344 /// If we can determine that the two constants have a particular relation to
1345 /// each other, we should return the corresponding ICmp predicate, otherwise
1346 /// return ICmpInst::BAD_ICMP_PREDICATE.
1348 /// To simplify this code we canonicalize the relation so that the first
1349 /// operand is always the most "complex" of the two. We consider simple
1350 /// constants (like ConstantInt) to be the simplest, followed by
1351 /// GlobalValues, followed by ConstantExpr's (the most complex).
1353 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2,
1354 bool isSigned) {
1355 assert(V1->getType() == V2->getType() &&
1356 "Cannot compare different types of values!");
1357 if (V1 == V2) return ICmpInst::ICMP_EQ;
1359 if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) &&
1360 !isa<BlockAddress>(V1)) {
1361 if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) &&
1362 !isa<BlockAddress>(V2)) {
1363 // We distilled this down to a simple case, use the standard constant
1364 // folder.
1365 ConstantInt *R = nullptr;
1366 ICmpInst::Predicate pred = ICmpInst::ICMP_EQ;
1367 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1368 if (R && !R->isZero())
1369 return pred;
1370 pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
1371 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1372 if (R && !R->isZero())
1373 return pred;
1374 pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
1375 R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2));
1376 if (R && !R->isZero())
1377 return pred;
1379 // If we couldn't figure it out, bail.
1380 return ICmpInst::BAD_ICMP_PREDICATE;
1383 // If the first operand is simple, swap operands.
1384 ICmpInst::Predicate SwappedRelation =
1385 evaluateICmpRelation(V2, V1, isSigned);
1386 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1387 return ICmpInst::getSwappedPredicate(SwappedRelation);
1389 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1390 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1391 ICmpInst::Predicate SwappedRelation =
1392 evaluateICmpRelation(V2, V1, isSigned);
1393 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1394 return ICmpInst::getSwappedPredicate(SwappedRelation);
1395 return ICmpInst::BAD_ICMP_PREDICATE;
1398 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1399 // constant (which, since the types must match, means that it's a
1400 // ConstantPointerNull).
1401 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1402 return areGlobalsPotentiallyEqual(GV, GV2);
1403 } else if (isa<BlockAddress>(V2)) {
1404 return ICmpInst::ICMP_NE; // Globals never equal labels.
1405 } else {
1406 assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!");
1407 // GlobalVals can never be null unless they have external weak linkage.
1408 // We don't try to evaluate aliases here.
1409 // NOTE: We should not be doing this constant folding if null pointer
1410 // is considered valid for the function. But currently there is no way to
1411 // query it from the Constant type.
1412 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1413 !NullPointerIsDefined(nullptr /* F */,
1414 GV->getType()->getAddressSpace()))
1415 return ICmpInst::ICMP_UGT;
1417 } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1418 if (isa<ConstantExpr>(V2)) { // Swap as necessary.
1419 ICmpInst::Predicate SwappedRelation =
1420 evaluateICmpRelation(V2, V1, isSigned);
1421 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1422 return ICmpInst::getSwappedPredicate(SwappedRelation);
1423 return ICmpInst::BAD_ICMP_PREDICATE;
1426 // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1427 // constant (which, since the types must match, means that it is a
1428 // ConstantPointerNull).
1429 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1430 // Block address in another function can't equal this one, but block
1431 // addresses in the current function might be the same if blocks are
1432 // empty.
1433 if (BA2->getFunction() != BA->getFunction())
1434 return ICmpInst::ICMP_NE;
1435 } else {
1436 // Block addresses aren't null, don't equal the address of globals.
1437 assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) &&
1438 "Canonicalization guarantee!");
1439 return ICmpInst::ICMP_NE;
1441 } else {
1442 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a
1443 // constantexpr, a global, block address, or a simple constant.
1444 ConstantExpr *CE1 = cast<ConstantExpr>(V1);
1445 Constant *CE1Op0 = CE1->getOperand(0);
1447 switch (CE1->getOpcode()) {
1448 case Instruction::Trunc:
1449 case Instruction::FPTrunc:
1450 case Instruction::FPExt:
1451 case Instruction::FPToUI:
1452 case Instruction::FPToSI:
1453 break; // We can't evaluate floating point casts or truncations.
1455 case Instruction::BitCast:
1456 // If this is a global value cast, check to see if the RHS is also a
1457 // GlobalValue.
1458 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0))
1459 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2))
1460 return areGlobalsPotentiallyEqual(GV, GV2);
1461 [[fallthrough]];
1462 case Instruction::UIToFP:
1463 case Instruction::SIToFP:
1464 case Instruction::ZExt:
1465 case Instruction::SExt:
1466 // We can't evaluate floating point casts or truncations.
1467 if (CE1Op0->getType()->isFPOrFPVectorTy())
1468 break;
1470 // If the cast is not actually changing bits, and the second operand is a
1471 // null pointer, do the comparison with the pre-casted value.
1472 if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) {
1473 if (CE1->getOpcode() == Instruction::ZExt) isSigned = false;
1474 if (CE1->getOpcode() == Instruction::SExt) isSigned = true;
1475 return evaluateICmpRelation(CE1Op0,
1476 Constant::getNullValue(CE1Op0->getType()),
1477 isSigned);
1479 break;
1481 case Instruction::GetElementPtr: {
1482 GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1483 // Ok, since this is a getelementptr, we know that the constant has a
1484 // pointer type. Check the various cases.
1485 if (isa<ConstantPointerNull>(V2)) {
1486 // If we are comparing a GEP to a null pointer, check to see if the base
1487 // of the GEP equals the null pointer.
1488 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1489 // If its not weak linkage, the GVal must have a non-zero address
1490 // so the result is greater-than
1491 if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds())
1492 return ICmpInst::ICMP_UGT;
1494 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1495 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1496 if (GV != GV2) {
1497 if (CE1GEP->hasAllZeroIndices())
1498 return areGlobalsPotentiallyEqual(GV, GV2);
1499 return ICmpInst::BAD_ICMP_PREDICATE;
1502 } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) {
1503 // By far the most common case to handle is when the base pointers are
1504 // obviously to the same global.
1505 const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand());
1506 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1507 // Don't know relative ordering, but check for inequality.
1508 if (CE1Op0 != CE2Op0) {
1509 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1510 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1511 cast<GlobalValue>(CE2Op0));
1512 return ICmpInst::BAD_ICMP_PREDICATE;
1516 break;
1518 default:
1519 break;
1523 return ICmpInst::BAD_ICMP_PREDICATE;
1526 static Constant *constantFoldCompareGlobalToNull(CmpInst::Predicate Predicate,
1527 Constant *C1, Constant *C2) {
1528 const GlobalValue *GV = dyn_cast<GlobalValue>(C2);
1529 if (!GV || !C1->isNullValue())
1530 return nullptr;
1532 // Don't try to evaluate aliases. External weak GV can be null.
1533 if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() &&
1534 !NullPointerIsDefined(nullptr /* F */,
1535 GV->getType()->getAddressSpace())) {
1536 if (Predicate == ICmpInst::ICMP_EQ)
1537 return ConstantInt::getFalse(C1->getContext());
1538 else if (Predicate == ICmpInst::ICMP_NE)
1539 return ConstantInt::getTrue(C1->getContext());
1542 return nullptr;
1545 Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate,
1546 Constant *C1, Constant *C2) {
1547 Type *ResultTy;
1548 if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1549 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1550 VT->getElementCount());
1551 else
1552 ResultTy = Type::getInt1Ty(C1->getContext());
1554 // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1555 if (Predicate == FCmpInst::FCMP_FALSE)
1556 return Constant::getNullValue(ResultTy);
1558 if (Predicate == FCmpInst::FCMP_TRUE)
1559 return Constant::getAllOnesValue(ResultTy);
1561 // Handle some degenerate cases first
1562 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
1563 return PoisonValue::get(ResultTy);
1565 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1566 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1567 // For EQ and NE, we can always pick a value for the undef to make the
1568 // predicate pass or fail, so we can return undef.
1569 // Also, if both operands are undef, we can return undef for int comparison.
1570 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1571 return UndefValue::get(ResultTy);
1573 // Otherwise, for integer compare, pick the same value as the non-undef
1574 // operand, and fold it to true or false.
1575 if (isIntegerPredicate)
1576 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1578 // Choosing NaN for the undef will always make unordered comparison succeed
1579 // and ordered comparison fails.
1580 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1583 // icmp eq/ne(null,GV) -> false/true
1584 if (Constant *Folded = constantFoldCompareGlobalToNull(Predicate, C1, C2))
1585 return Folded;
1587 // icmp eq/ne(GV,null) -> false/true
1588 if (Constant *Folded = constantFoldCompareGlobalToNull(Predicate, C2, C1))
1589 return Folded;
1591 if (C2->isNullValue()) {
1592 // The caller is expected to commute the operands if the constant expression
1593 // is C2.
1594 // C1 >= 0 --> true
1595 if (Predicate == ICmpInst::ICMP_UGE)
1596 return Constant::getAllOnesValue(ResultTy);
1597 // C1 < 0 --> false
1598 if (Predicate == ICmpInst::ICMP_ULT)
1599 return Constant::getNullValue(ResultTy);
1602 // If the comparison is a comparison between two i1's, simplify it.
1603 if (C1->getType()->isIntegerTy(1)) {
1604 switch (Predicate) {
1605 case ICmpInst::ICMP_EQ:
1606 if (isa<ConstantInt>(C2))
1607 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1608 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1609 case ICmpInst::ICMP_NE:
1610 return ConstantExpr::getXor(C1, C2);
1611 default:
1612 break;
1616 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1617 const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1618 const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1619 return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate));
1620 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1621 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1622 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1623 return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate));
1624 } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
1626 // Fast path for splatted constants.
1627 if (Constant *C1Splat = C1->getSplatValue())
1628 if (Constant *C2Splat = C2->getSplatValue())
1629 return ConstantVector::getSplat(
1630 C1VTy->getElementCount(),
1631 ConstantExpr::getCompare(Predicate, C1Splat, C2Splat));
1633 // Do not iterate on scalable vector. The number of elements is unknown at
1634 // compile-time.
1635 if (isa<ScalableVectorType>(C1VTy))
1636 return nullptr;
1638 // If we can constant fold the comparison of each element, constant fold
1639 // the whole vector comparison.
1640 SmallVector<Constant*, 4> ResElts;
1641 Type *Ty = IntegerType::get(C1->getContext(), 32);
1642 // Compare the elements, producing an i1 result or constant expr.
1643 for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1644 I != E; ++I) {
1645 Constant *C1E =
1646 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I));
1647 Constant *C2E =
1648 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I));
1650 ResElts.push_back(ConstantExpr::getCompare(Predicate, C1E, C2E));
1653 return ConstantVector::get(ResElts);
1656 if (C1->getType()->isFloatingPointTy() &&
1657 // Only call evaluateFCmpRelation if we have a constant expr to avoid
1658 // infinite recursive loop
1659 (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) {
1660 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1661 switch (evaluateFCmpRelation(C1, C2)) {
1662 default: llvm_unreachable("Unknown relation!");
1663 case FCmpInst::FCMP_UNO:
1664 case FCmpInst::FCMP_ORD:
1665 case FCmpInst::FCMP_UNE:
1666 case FCmpInst::FCMP_ULT:
1667 case FCmpInst::FCMP_UGT:
1668 case FCmpInst::FCMP_ULE:
1669 case FCmpInst::FCMP_UGE:
1670 case FCmpInst::FCMP_TRUE:
1671 case FCmpInst::FCMP_FALSE:
1672 case FCmpInst::BAD_FCMP_PREDICATE:
1673 break; // Couldn't determine anything about these constants.
1674 case FCmpInst::FCMP_OEQ: // We know that C1 == C2
1675 Result =
1676 (Predicate == FCmpInst::FCMP_UEQ || Predicate == FCmpInst::FCMP_OEQ ||
1677 Predicate == FCmpInst::FCMP_ULE || Predicate == FCmpInst::FCMP_OLE ||
1678 Predicate == FCmpInst::FCMP_UGE || Predicate == FCmpInst::FCMP_OGE);
1679 break;
1680 case FCmpInst::FCMP_OLT: // We know that C1 < C2
1681 Result =
1682 (Predicate == FCmpInst::FCMP_UNE || Predicate == FCmpInst::FCMP_ONE ||
1683 Predicate == FCmpInst::FCMP_ULT || Predicate == FCmpInst::FCMP_OLT ||
1684 Predicate == FCmpInst::FCMP_ULE || Predicate == FCmpInst::FCMP_OLE);
1685 break;
1686 case FCmpInst::FCMP_OGT: // We know that C1 > C2
1687 Result =
1688 (Predicate == FCmpInst::FCMP_UNE || Predicate == FCmpInst::FCMP_ONE ||
1689 Predicate == FCmpInst::FCMP_UGT || Predicate == FCmpInst::FCMP_OGT ||
1690 Predicate == FCmpInst::FCMP_UGE || Predicate == FCmpInst::FCMP_OGE);
1691 break;
1692 case FCmpInst::FCMP_OLE: // We know that C1 <= C2
1693 // We can only partially decide this relation.
1694 if (Predicate == FCmpInst::FCMP_UGT || Predicate == FCmpInst::FCMP_OGT)
1695 Result = 0;
1696 else if (Predicate == FCmpInst::FCMP_ULT ||
1697 Predicate == FCmpInst::FCMP_OLT)
1698 Result = 1;
1699 break;
1700 case FCmpInst::FCMP_OGE: // We known that C1 >= C2
1701 // We can only partially decide this relation.
1702 if (Predicate == FCmpInst::FCMP_ULT || Predicate == FCmpInst::FCMP_OLT)
1703 Result = 0;
1704 else if (Predicate == FCmpInst::FCMP_UGT ||
1705 Predicate == FCmpInst::FCMP_OGT)
1706 Result = 1;
1707 break;
1708 case FCmpInst::FCMP_ONE: // We know that C1 != C2
1709 // We can only partially decide this relation.
1710 if (Predicate == FCmpInst::FCMP_OEQ || Predicate == FCmpInst::FCMP_UEQ)
1711 Result = 0;
1712 else if (Predicate == FCmpInst::FCMP_ONE ||
1713 Predicate == FCmpInst::FCMP_UNE)
1714 Result = 1;
1715 break;
1716 case FCmpInst::FCMP_UEQ: // We know that C1 == C2 || isUnordered(C1, C2).
1717 // We can only partially decide this relation.
1718 if (Predicate == FCmpInst::FCMP_ONE)
1719 Result = 0;
1720 else if (Predicate == FCmpInst::FCMP_UEQ)
1721 Result = 1;
1722 break;
1725 // If we evaluated the result, return it now.
1726 if (Result != -1)
1727 return ConstantInt::get(ResultTy, Result);
1729 } else {
1730 // Evaluate the relation between the two constants, per the predicate.
1731 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true.
1732 switch (evaluateICmpRelation(C1, C2, CmpInst::isSigned(Predicate))) {
1733 default: llvm_unreachable("Unknown relational!");
1734 case ICmpInst::BAD_ICMP_PREDICATE:
1735 break; // Couldn't determine anything about these constants.
1736 case ICmpInst::ICMP_EQ: // We know the constants are equal!
1737 // If we know the constants are equal, we can decide the result of this
1738 // computation precisely.
1739 Result = ICmpInst::isTrueWhenEqual(Predicate);
1740 break;
1741 case ICmpInst::ICMP_ULT:
1742 switch (Predicate) {
1743 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1744 Result = 1; break;
1745 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1746 Result = 0; break;
1747 default:
1748 break;
1750 break;
1751 case ICmpInst::ICMP_SLT:
1752 switch (Predicate) {
1753 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1754 Result = 1; break;
1755 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1756 Result = 0; break;
1757 default:
1758 break;
1760 break;
1761 case ICmpInst::ICMP_UGT:
1762 switch (Predicate) {
1763 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1764 Result = 1; break;
1765 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1766 Result = 0; break;
1767 default:
1768 break;
1770 break;
1771 case ICmpInst::ICMP_SGT:
1772 switch (Predicate) {
1773 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1774 Result = 1; break;
1775 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1776 Result = 0; break;
1777 default:
1778 break;
1780 break;
1781 case ICmpInst::ICMP_ULE:
1782 if (Predicate == ICmpInst::ICMP_UGT)
1783 Result = 0;
1784 if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE)
1785 Result = 1;
1786 break;
1787 case ICmpInst::ICMP_SLE:
1788 if (Predicate == ICmpInst::ICMP_SGT)
1789 Result = 0;
1790 if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE)
1791 Result = 1;
1792 break;
1793 case ICmpInst::ICMP_UGE:
1794 if (Predicate == ICmpInst::ICMP_ULT)
1795 Result = 0;
1796 if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE)
1797 Result = 1;
1798 break;
1799 case ICmpInst::ICMP_SGE:
1800 if (Predicate == ICmpInst::ICMP_SLT)
1801 Result = 0;
1802 if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE)
1803 Result = 1;
1804 break;
1805 case ICmpInst::ICMP_NE:
1806 if (Predicate == ICmpInst::ICMP_EQ)
1807 Result = 0;
1808 if (Predicate == ICmpInst::ICMP_NE)
1809 Result = 1;
1810 break;
1813 // If we evaluated the result, return it now.
1814 if (Result != -1)
1815 return ConstantInt::get(ResultTy, Result);
1817 // If the right hand side is a bitcast, try using its inverse to simplify
1818 // it by moving it to the left hand side. We can't do this if it would turn
1819 // a vector compare into a scalar compare or visa versa, or if it would turn
1820 // the operands into FP values.
1821 if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) {
1822 Constant *CE2Op0 = CE2->getOperand(0);
1823 if (CE2->getOpcode() == Instruction::BitCast &&
1824 CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() &&
1825 !CE2Op0->getType()->isFPOrFPVectorTy()) {
1826 Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType());
1827 return ConstantExpr::getICmp(Predicate, Inverse, CE2Op0);
1831 // If the left hand side is an extension, try eliminating it.
1832 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
1833 if ((CE1->getOpcode() == Instruction::SExt &&
1834 ICmpInst::isSigned(Predicate)) ||
1835 (CE1->getOpcode() == Instruction::ZExt &&
1836 !ICmpInst::isSigned(Predicate))) {
1837 Constant *CE1Op0 = CE1->getOperand(0);
1838 Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType());
1839 if (CE1Inverse == CE1Op0) {
1840 // Check whether we can safely truncate the right hand side.
1841 Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType());
1842 if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse,
1843 C2->getType()) == C2)
1844 return ConstantExpr::getICmp(Predicate, CE1Inverse, C2Inverse);
1849 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1850 (C1->isNullValue() && !C2->isNullValue())) {
1851 // If C2 is a constant expr and C1 isn't, flip them around and fold the
1852 // other way if possible.
1853 // Also, if C1 is null and C2 isn't, flip them around.
1854 Predicate = ICmpInst::getSwappedPredicate(Predicate);
1855 return ConstantExpr::getICmp(Predicate, C2, C1);
1858 return nullptr;
1861 /// Test whether the given sequence of *normalized* indices is "inbounds".
1862 template<typename IndexTy>
1863 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) {
1864 // No indices means nothing that could be out of bounds.
1865 if (Idxs.empty()) return true;
1867 // If the first index is zero, it's in bounds.
1868 if (cast<Constant>(Idxs[0])->isNullValue()) return true;
1870 // If the first index is one and all the rest are zero, it's in bounds,
1871 // by the one-past-the-end rule.
1872 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) {
1873 if (!CI->isOne())
1874 return false;
1875 } else {
1876 auto *CV = cast<ConstantDataVector>(Idxs[0]);
1877 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue());
1878 if (!CI || !CI->isOne())
1879 return false;
1882 for (unsigned i = 1, e = Idxs.size(); i != e; ++i)
1883 if (!cast<Constant>(Idxs[i])->isNullValue())
1884 return false;
1885 return true;
1888 /// Test whether a given ConstantInt is in-range for a SequentialType.
1889 static bool isIndexInRangeOfArrayType(uint64_t NumElements,
1890 const ConstantInt *CI) {
1891 // We cannot bounds check the index if it doesn't fit in an int64_t.
1892 if (CI->getValue().getSignificantBits() > 64)
1893 return false;
1895 // A negative index or an index past the end of our sequential type is
1896 // considered out-of-range.
1897 int64_t IndexVal = CI->getSExtValue();
1898 if (IndexVal < 0 || (IndexVal != 0 && (uint64_t)IndexVal >= NumElements))
1899 return false;
1901 // Otherwise, it is in-range.
1902 return true;
1905 // Combine Indices - If the source pointer to this getelementptr instruction
1906 // is a getelementptr instruction, combine the indices of the two
1907 // getelementptr instructions into a single instruction.
1908 static Constant *foldGEPOfGEP(GEPOperator *GEP, Type *PointeeTy, bool InBounds,
1909 ArrayRef<Value *> Idxs) {
1910 if (PointeeTy != GEP->getResultElementType())
1911 return nullptr;
1913 Constant *Idx0 = cast<Constant>(Idxs[0]);
1914 if (Idx0->isNullValue()) {
1915 // Handle the simple case of a zero index.
1916 SmallVector<Value*, 16> NewIndices;
1917 NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
1918 NewIndices.append(GEP->idx_begin(), GEP->idx_end());
1919 NewIndices.append(Idxs.begin() + 1, Idxs.end());
1920 return ConstantExpr::getGetElementPtr(
1921 GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
1922 NewIndices, InBounds && GEP->isInBounds(), GEP->getInRangeIndex());
1925 gep_type_iterator LastI = gep_type_end(GEP);
1926 for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP);
1927 I != E; ++I)
1928 LastI = I;
1930 // We can't combine GEPs if the last index is a struct type.
1931 if (!LastI.isSequential())
1932 return nullptr;
1933 // We could perform the transform with non-constant index, but prefer leaving
1934 // it as GEP of GEP rather than GEP of add for now.
1935 ConstantInt *CI = dyn_cast<ConstantInt>(Idx0);
1936 if (!CI)
1937 return nullptr;
1939 // TODO: This code may be extended to handle vectors as well.
1940 auto *LastIdx = cast<Constant>(GEP->getOperand(GEP->getNumOperands()-1));
1941 Type *LastIdxTy = LastIdx->getType();
1942 if (LastIdxTy->isVectorTy())
1943 return nullptr;
1945 SmallVector<Value*, 16> NewIndices;
1946 NewIndices.reserve(Idxs.size() + GEP->getNumIndices());
1947 NewIndices.append(GEP->idx_begin(), GEP->idx_end() - 1);
1949 // Add the last index of the source with the first index of the new GEP.
1950 // Make sure to handle the case when they are actually different types.
1951 if (LastIdxTy != Idx0->getType()) {
1952 unsigned CommonExtendedWidth =
1953 std::max(LastIdxTy->getIntegerBitWidth(),
1954 Idx0->getType()->getIntegerBitWidth());
1955 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
1957 Type *CommonTy =
1958 Type::getIntNTy(LastIdxTy->getContext(), CommonExtendedWidth);
1959 if (Idx0->getType() != CommonTy)
1960 Idx0 = ConstantFoldCastInstruction(Instruction::SExt, Idx0, CommonTy);
1961 if (LastIdx->getType() != CommonTy)
1962 LastIdx =
1963 ConstantFoldCastInstruction(Instruction::SExt, LastIdx, CommonTy);
1964 if (!Idx0 || !LastIdx)
1965 return nullptr;
1968 NewIndices.push_back(ConstantExpr::get(Instruction::Add, Idx0, LastIdx));
1969 NewIndices.append(Idxs.begin() + 1, Idxs.end());
1971 // The combined GEP normally inherits its index inrange attribute from
1972 // the inner GEP, but if the inner GEP's last index was adjusted by the
1973 // outer GEP, any inbounds attribute on that index is invalidated.
1974 std::optional<unsigned> IRIndex = GEP->getInRangeIndex();
1975 if (IRIndex && *IRIndex == GEP->getNumIndices() - 1)
1976 IRIndex = std::nullopt;
1978 return ConstantExpr::getGetElementPtr(
1979 GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()),
1980 NewIndices, InBounds && GEP->isInBounds(), IRIndex);
1983 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
1984 bool InBounds,
1985 std::optional<unsigned> InRangeIndex,
1986 ArrayRef<Value *> Idxs) {
1987 if (Idxs.empty()) return C;
1989 Type *GEPTy = GetElementPtrInst::getGEPReturnType(
1990 C, ArrayRef((Value *const *)Idxs.data(), Idxs.size()));
1992 if (isa<PoisonValue>(C))
1993 return PoisonValue::get(GEPTy);
1995 if (isa<UndefValue>(C))
1996 // If inbounds, we can choose an out-of-bounds pointer as a base pointer.
1997 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy);
1999 auto IsNoOp = [&]() {
2000 // Avoid losing inrange information.
2001 if (InRangeIndex)
2002 return false;
2004 return all_of(Idxs, [](Value *Idx) {
2005 Constant *IdxC = cast<Constant>(Idx);
2006 return IdxC->isNullValue() || isa<UndefValue>(IdxC);
2009 if (IsNoOp())
2010 return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
2011 ? ConstantVector::getSplat(
2012 cast<VectorType>(GEPTy)->getElementCount(), C)
2013 : C;
2015 if (C->isNullValue()) {
2016 bool isNull = true;
2017 for (Value *Idx : Idxs)
2018 if (!isa<UndefValue>(Idx) && !cast<Constant>(Idx)->isNullValue()) {
2019 isNull = false;
2020 break;
2022 if (isNull) {
2023 PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType());
2024 Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs);
2026 assert(Ty && "Invalid indices for GEP!");
2027 Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2028 Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace());
2029 if (VectorType *VT = dyn_cast<VectorType>(C->getType()))
2030 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
2032 // The GEP returns a vector of pointers when one of more of
2033 // its arguments is a vector.
2034 for (Value *Idx : Idxs) {
2035 if (auto *VT = dyn_cast<VectorType>(Idx->getType())) {
2036 assert((!isa<VectorType>(GEPTy) || isa<ScalableVectorType>(GEPTy) ==
2037 isa<ScalableVectorType>(VT)) &&
2038 "Mismatched GEPTy vector types");
2039 GEPTy = VectorType::get(OrigGEPTy, VT->getElementCount());
2040 break;
2044 return Constant::getNullValue(GEPTy);
2048 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
2049 if (auto *GEP = dyn_cast<GEPOperator>(CE))
2050 if (Constant *C = foldGEPOfGEP(GEP, PointeeTy, InBounds, Idxs))
2051 return C;
2053 // Check to see if any array indices are not within the corresponding
2054 // notional array or vector bounds. If so, try to determine if they can be
2055 // factored out into preceding dimensions.
2056 SmallVector<Constant *, 8> NewIdxs;
2057 Type *Ty = PointeeTy;
2058 Type *Prev = C->getType();
2059 auto GEPIter = gep_type_begin(PointeeTy, Idxs);
2060 bool Unknown =
2061 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]);
2062 for (unsigned i = 1, e = Idxs.size(); i != e;
2063 Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) {
2064 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) {
2065 // We don't know if it's in range or not.
2066 Unknown = true;
2067 continue;
2069 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1]))
2070 // Skip if the type of the previous index is not supported.
2071 continue;
2072 if (InRangeIndex && i == *InRangeIndex + 1) {
2073 // If an index is marked inrange, we cannot apply this canonicalization to
2074 // the following index, as that will cause the inrange index to point to
2075 // the wrong element.
2076 continue;
2078 if (isa<StructType>(Ty)) {
2079 // The verify makes sure that GEPs into a struct are in range.
2080 continue;
2082 if (isa<VectorType>(Ty)) {
2083 // There can be awkward padding in after a non-power of two vector.
2084 Unknown = true;
2085 continue;
2087 auto *STy = cast<ArrayType>(Ty);
2088 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) {
2089 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI))
2090 // It's in range, skip to the next index.
2091 continue;
2092 if (CI->isNegative()) {
2093 // It's out of range and negative, don't try to factor it.
2094 Unknown = true;
2095 continue;
2097 } else {
2098 auto *CV = cast<ConstantDataVector>(Idxs[i]);
2099 bool InRange = true;
2100 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
2101 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I));
2102 InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI);
2103 if (CI->isNegative()) {
2104 Unknown = true;
2105 break;
2108 if (InRange || Unknown)
2109 // It's in range, skip to the next index.
2110 // It's out of range and negative, don't try to factor it.
2111 continue;
2113 if (isa<StructType>(Prev)) {
2114 // It's out of range, but the prior dimension is a struct
2115 // so we can't do anything about it.
2116 Unknown = true;
2117 continue;
2120 // Determine the number of elements in our sequential type.
2121 uint64_t NumElements = STy->getArrayNumElements();
2122 if (!NumElements) {
2123 Unknown = true;
2124 continue;
2127 // It's out of range, but we can factor it into the prior
2128 // dimension.
2129 NewIdxs.resize(Idxs.size());
2131 // Expand the current index or the previous index to a vector from a scalar
2132 // if necessary.
2133 Constant *CurrIdx = cast<Constant>(Idxs[i]);
2134 auto *PrevIdx =
2135 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]);
2136 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy();
2137 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy();
2138 bool UseVector = IsCurrIdxVector || IsPrevIdxVector;
2140 if (!IsCurrIdxVector && IsPrevIdxVector)
2141 CurrIdx = ConstantDataVector::getSplat(
2142 cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx);
2144 if (!IsPrevIdxVector && IsCurrIdxVector)
2145 PrevIdx = ConstantDataVector::getSplat(
2146 cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx);
2148 Constant *Factor =
2149 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements);
2150 if (UseVector)
2151 Factor = ConstantDataVector::getSplat(
2152 IsPrevIdxVector
2153 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
2154 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(),
2155 Factor);
2157 NewIdxs[i] =
2158 ConstantFoldBinaryInstruction(Instruction::SRem, CurrIdx, Factor);
2160 Constant *Div =
2161 ConstantFoldBinaryInstruction(Instruction::SDiv, CurrIdx, Factor);
2163 // We're working on either ConstantInt or vectors of ConstantInt,
2164 // so these should always fold.
2165 assert(NewIdxs[i] != nullptr && Div != nullptr && "Should have folded");
2167 unsigned CommonExtendedWidth =
2168 std::max(PrevIdx->getType()->getScalarSizeInBits(),
2169 Div->getType()->getScalarSizeInBits());
2170 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U);
2172 // Before adding, extend both operands to i64 to avoid
2173 // overflow trouble.
2174 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth);
2175 if (UseVector)
2176 ExtendedTy = FixedVectorType::get(
2177 ExtendedTy,
2178 IsPrevIdxVector
2179 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements()
2180 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements());
2182 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2183 PrevIdx =
2184 ConstantFoldCastInstruction(Instruction::SExt, PrevIdx, ExtendedTy);
2186 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth))
2187 Div = ConstantFoldCastInstruction(Instruction::SExt, Div, ExtendedTy);
2189 assert(PrevIdx && Div && "Should have folded");
2190 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div);
2193 // If we did any factoring, start over with the adjusted indices.
2194 if (!NewIdxs.empty()) {
2195 for (unsigned i = 0, e = Idxs.size(); i != e; ++i)
2196 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]);
2197 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds,
2198 InRangeIndex);
2201 // If all indices are known integers and normalized, we can do a simple
2202 // check for the "inbounds" property.
2203 if (!Unknown && !InBounds)
2204 if (auto *GV = dyn_cast<GlobalVariable>(C))
2205 if (!GV->hasExternalWeakLinkage() && GV->getValueType() == PointeeTy &&
2206 isInBoundsIndices(Idxs))
2207 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs,
2208 /*InBounds=*/true, InRangeIndex);
2210 return nullptr;