Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / IR / ConstantRange.cpp
blob3d71b20f7e853e0a4ae1259380fbaeaae1e78b2d
1 //===- ConstantRange.cpp - ConstantRange implementation -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Represent a range of possible values that may occur when the program is run
10 // for an integral value. This keeps track of a lower and upper bound for the
11 // constant, which MAY wrap around the end of the numeric range. To do this, it
12 // keeps track of a [lower, upper) bound, which specifies an interval just like
13 // STL iterators. When used with boolean values, the following are important
14 // ranges (other integral ranges use min/max values for special range values):
16 // [F, F) = {} = Empty set
17 // [T, F) = {T}
18 // [F, T) = {F}
19 // [T, T) = {F, T} = Full set
21 //===----------------------------------------------------------------------===//
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/Config/llvm-config.h"
25 #include "llvm/IR/ConstantRange.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Operator.h"
32 #include "llvm/Support/Compiler.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/KnownBits.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <algorithm>
38 #include <cassert>
39 #include <cstdint>
40 #include <optional>
42 using namespace llvm;
44 ConstantRange::ConstantRange(uint32_t BitWidth, bool Full)
45 : Lower(Full ? APInt::getMaxValue(BitWidth) : APInt::getMinValue(BitWidth)),
46 Upper(Lower) {}
48 ConstantRange::ConstantRange(APInt V)
49 : Lower(std::move(V)), Upper(Lower + 1) {}
51 ConstantRange::ConstantRange(APInt L, APInt U)
52 : Lower(std::move(L)), Upper(std::move(U)) {
53 assert(Lower.getBitWidth() == Upper.getBitWidth() &&
54 "ConstantRange with unequal bit widths");
55 assert((Lower != Upper || (Lower.isMaxValue() || Lower.isMinValue())) &&
56 "Lower == Upper, but they aren't min or max value!");
59 ConstantRange ConstantRange::fromKnownBits(const KnownBits &Known,
60 bool IsSigned) {
61 assert(!Known.hasConflict() && "Expected valid KnownBits");
63 if (Known.isUnknown())
64 return getFull(Known.getBitWidth());
66 // For unsigned ranges, or signed ranges with known sign bit, create a simple
67 // range between the smallest and largest possible value.
68 if (!IsSigned || Known.isNegative() || Known.isNonNegative())
69 return ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1);
71 // If we don't know the sign bit, pick the lower bound as a negative number
72 // and the upper bound as a non-negative one.
73 APInt Lower = Known.getMinValue(), Upper = Known.getMaxValue();
74 Lower.setSignBit();
75 Upper.clearSignBit();
76 return ConstantRange(Lower, Upper + 1);
79 KnownBits ConstantRange::toKnownBits() const {
80 // TODO: We could return conflicting known bits here, but consumers are
81 // likely not prepared for that.
82 if (isEmptySet())
83 return KnownBits(getBitWidth());
85 // We can only retain the top bits that are the same between min and max.
86 APInt Min = getUnsignedMin();
87 APInt Max = getUnsignedMax();
88 KnownBits Known = KnownBits::makeConstant(Min);
89 if (std::optional<unsigned> DifferentBit =
90 APIntOps::GetMostSignificantDifferentBit(Min, Max)) {
91 Known.Zero.clearLowBits(*DifferentBit + 1);
92 Known.One.clearLowBits(*DifferentBit + 1);
94 return Known;
97 ConstantRange ConstantRange::makeAllowedICmpRegion(CmpInst::Predicate Pred,
98 const ConstantRange &CR) {
99 if (CR.isEmptySet())
100 return CR;
102 uint32_t W = CR.getBitWidth();
103 switch (Pred) {
104 default:
105 llvm_unreachable("Invalid ICmp predicate to makeAllowedICmpRegion()");
106 case CmpInst::ICMP_EQ:
107 return CR;
108 case CmpInst::ICMP_NE:
109 if (CR.isSingleElement())
110 return ConstantRange(CR.getUpper(), CR.getLower());
111 return getFull(W);
112 case CmpInst::ICMP_ULT: {
113 APInt UMax(CR.getUnsignedMax());
114 if (UMax.isMinValue())
115 return getEmpty(W);
116 return ConstantRange(APInt::getMinValue(W), std::move(UMax));
118 case CmpInst::ICMP_SLT: {
119 APInt SMax(CR.getSignedMax());
120 if (SMax.isMinSignedValue())
121 return getEmpty(W);
122 return ConstantRange(APInt::getSignedMinValue(W), std::move(SMax));
124 case CmpInst::ICMP_ULE:
125 return getNonEmpty(APInt::getMinValue(W), CR.getUnsignedMax() + 1);
126 case CmpInst::ICMP_SLE:
127 return getNonEmpty(APInt::getSignedMinValue(W), CR.getSignedMax() + 1);
128 case CmpInst::ICMP_UGT: {
129 APInt UMin(CR.getUnsignedMin());
130 if (UMin.isMaxValue())
131 return getEmpty(W);
132 return ConstantRange(std::move(UMin) + 1, APInt::getZero(W));
134 case CmpInst::ICMP_SGT: {
135 APInt SMin(CR.getSignedMin());
136 if (SMin.isMaxSignedValue())
137 return getEmpty(W);
138 return ConstantRange(std::move(SMin) + 1, APInt::getSignedMinValue(W));
140 case CmpInst::ICMP_UGE:
141 return getNonEmpty(CR.getUnsignedMin(), APInt::getZero(W));
142 case CmpInst::ICMP_SGE:
143 return getNonEmpty(CR.getSignedMin(), APInt::getSignedMinValue(W));
147 ConstantRange ConstantRange::makeSatisfyingICmpRegion(CmpInst::Predicate Pred,
148 const ConstantRange &CR) {
149 // Follows from De-Morgan's laws:
151 // ~(~A union ~B) == A intersect B.
153 return makeAllowedICmpRegion(CmpInst::getInversePredicate(Pred), CR)
154 .inverse();
157 ConstantRange ConstantRange::makeExactICmpRegion(CmpInst::Predicate Pred,
158 const APInt &C) {
159 // Computes the exact range that is equal to both the constant ranges returned
160 // by makeAllowedICmpRegion and makeSatisfyingICmpRegion. This is always true
161 // when RHS is a singleton such as an APInt and so the assert is valid.
162 // However for non-singleton RHS, for example ult [2,5) makeAllowedICmpRegion
163 // returns [0,4) but makeSatisfyICmpRegion returns [0,2).
165 assert(makeAllowedICmpRegion(Pred, C) == makeSatisfyingICmpRegion(Pred, C));
166 return makeAllowedICmpRegion(Pred, C);
169 bool ConstantRange::areInsensitiveToSignednessOfICmpPredicate(
170 const ConstantRange &CR1, const ConstantRange &CR2) {
171 if (CR1.isEmptySet() || CR2.isEmptySet())
172 return true;
174 return (CR1.isAllNonNegative() && CR2.isAllNonNegative()) ||
175 (CR1.isAllNegative() && CR2.isAllNegative());
178 bool ConstantRange::areInsensitiveToSignednessOfInvertedICmpPredicate(
179 const ConstantRange &CR1, const ConstantRange &CR2) {
180 if (CR1.isEmptySet() || CR2.isEmptySet())
181 return true;
183 return (CR1.isAllNonNegative() && CR2.isAllNegative()) ||
184 (CR1.isAllNegative() && CR2.isAllNonNegative());
187 CmpInst::Predicate ConstantRange::getEquivalentPredWithFlippedSignedness(
188 CmpInst::Predicate Pred, const ConstantRange &CR1,
189 const ConstantRange &CR2) {
190 assert(CmpInst::isIntPredicate(Pred) && CmpInst::isRelational(Pred) &&
191 "Only for relational integer predicates!");
193 CmpInst::Predicate FlippedSignednessPred =
194 CmpInst::getFlippedSignednessPredicate(Pred);
196 if (areInsensitiveToSignednessOfICmpPredicate(CR1, CR2))
197 return FlippedSignednessPred;
199 if (areInsensitiveToSignednessOfInvertedICmpPredicate(CR1, CR2))
200 return CmpInst::getInversePredicate(FlippedSignednessPred);
202 return CmpInst::Predicate::BAD_ICMP_PREDICATE;
205 void ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
206 APInt &RHS, APInt &Offset) const {
207 Offset = APInt(getBitWidth(), 0);
208 if (isFullSet() || isEmptySet()) {
209 Pred = isEmptySet() ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
210 RHS = APInt(getBitWidth(), 0);
211 } else if (auto *OnlyElt = getSingleElement()) {
212 Pred = CmpInst::ICMP_EQ;
213 RHS = *OnlyElt;
214 } else if (auto *OnlyMissingElt = getSingleMissingElement()) {
215 Pred = CmpInst::ICMP_NE;
216 RHS = *OnlyMissingElt;
217 } else if (getLower().isMinSignedValue() || getLower().isMinValue()) {
218 Pred =
219 getLower().isMinSignedValue() ? CmpInst::ICMP_SLT : CmpInst::ICMP_ULT;
220 RHS = getUpper();
221 } else if (getUpper().isMinSignedValue() || getUpper().isMinValue()) {
222 Pred =
223 getUpper().isMinSignedValue() ? CmpInst::ICMP_SGE : CmpInst::ICMP_UGE;
224 RHS = getLower();
225 } else {
226 Pred = CmpInst::ICMP_ULT;
227 RHS = getUpper() - getLower();
228 Offset = -getLower();
231 assert(ConstantRange::makeExactICmpRegion(Pred, RHS) == add(Offset) &&
232 "Bad result!");
235 bool ConstantRange::getEquivalentICmp(CmpInst::Predicate &Pred,
236 APInt &RHS) const {
237 APInt Offset;
238 getEquivalentICmp(Pred, RHS, Offset);
239 return Offset.isZero();
242 bool ConstantRange::icmp(CmpInst::Predicate Pred,
243 const ConstantRange &Other) const {
244 return makeSatisfyingICmpRegion(Pred, Other).contains(*this);
247 /// Exact mul nuw region for single element RHS.
248 static ConstantRange makeExactMulNUWRegion(const APInt &V) {
249 unsigned BitWidth = V.getBitWidth();
250 if (V == 0)
251 return ConstantRange::getFull(V.getBitWidth());
253 return ConstantRange::getNonEmpty(
254 APIntOps::RoundingUDiv(APInt::getMinValue(BitWidth), V,
255 APInt::Rounding::UP),
256 APIntOps::RoundingUDiv(APInt::getMaxValue(BitWidth), V,
257 APInt::Rounding::DOWN) + 1);
260 /// Exact mul nsw region for single element RHS.
261 static ConstantRange makeExactMulNSWRegion(const APInt &V) {
262 // Handle 0 and -1 separately to avoid division by zero or overflow.
263 unsigned BitWidth = V.getBitWidth();
264 if (V == 0)
265 return ConstantRange::getFull(BitWidth);
267 APInt MinValue = APInt::getSignedMinValue(BitWidth);
268 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
269 // e.g. Returning [-127, 127], represented as [-127, -128).
270 if (V.isAllOnes())
271 return ConstantRange(-MaxValue, MinValue);
273 APInt Lower, Upper;
274 if (V.isNegative()) {
275 Lower = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::UP);
276 Upper = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::DOWN);
277 } else {
278 Lower = APIntOps::RoundingSDiv(MinValue, V, APInt::Rounding::UP);
279 Upper = APIntOps::RoundingSDiv(MaxValue, V, APInt::Rounding::DOWN);
281 return ConstantRange::getNonEmpty(Lower, Upper + 1);
284 ConstantRange
285 ConstantRange::makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp,
286 const ConstantRange &Other,
287 unsigned NoWrapKind) {
288 using OBO = OverflowingBinaryOperator;
290 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
292 assert((NoWrapKind == OBO::NoSignedWrap ||
293 NoWrapKind == OBO::NoUnsignedWrap) &&
294 "NoWrapKind invalid!");
296 bool Unsigned = NoWrapKind == OBO::NoUnsignedWrap;
297 unsigned BitWidth = Other.getBitWidth();
299 switch (BinOp) {
300 default:
301 llvm_unreachable("Unsupported binary op");
303 case Instruction::Add: {
304 if (Unsigned)
305 return getNonEmpty(APInt::getZero(BitWidth), -Other.getUnsignedMax());
307 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
308 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
309 return getNonEmpty(
310 SMin.isNegative() ? SignedMinVal - SMin : SignedMinVal,
311 SMax.isStrictlyPositive() ? SignedMinVal - SMax : SignedMinVal);
314 case Instruction::Sub: {
315 if (Unsigned)
316 return getNonEmpty(Other.getUnsignedMax(), APInt::getMinValue(BitWidth));
318 APInt SignedMinVal = APInt::getSignedMinValue(BitWidth);
319 APInt SMin = Other.getSignedMin(), SMax = Other.getSignedMax();
320 return getNonEmpty(
321 SMax.isStrictlyPositive() ? SignedMinVal + SMax : SignedMinVal,
322 SMin.isNegative() ? SignedMinVal + SMin : SignedMinVal);
325 case Instruction::Mul:
326 if (Unsigned)
327 return makeExactMulNUWRegion(Other.getUnsignedMax());
329 // Avoid one makeExactMulNSWRegion() call for the common case of constants.
330 if (const APInt *C = Other.getSingleElement())
331 return makeExactMulNSWRegion(*C);
333 return makeExactMulNSWRegion(Other.getSignedMin())
334 .intersectWith(makeExactMulNSWRegion(Other.getSignedMax()));
336 case Instruction::Shl: {
337 // For given range of shift amounts, if we ignore all illegal shift amounts
338 // (that always produce poison), what shift amount range is left?
339 ConstantRange ShAmt = Other.intersectWith(
340 ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, (BitWidth - 1) + 1)));
341 if (ShAmt.isEmptySet()) {
342 // If the entire range of shift amounts is already poison-producing,
343 // then we can freely add more poison-producing flags ontop of that.
344 return getFull(BitWidth);
346 // There are some legal shift amounts, we can compute conservatively-correct
347 // range of no-wrap inputs. Note that by now we have clamped the ShAmtUMax
348 // to be at most bitwidth-1, which results in most conservative range.
349 APInt ShAmtUMax = ShAmt.getUnsignedMax();
350 if (Unsigned)
351 return getNonEmpty(APInt::getZero(BitWidth),
352 APInt::getMaxValue(BitWidth).lshr(ShAmtUMax) + 1);
353 return getNonEmpty(APInt::getSignedMinValue(BitWidth).ashr(ShAmtUMax),
354 APInt::getSignedMaxValue(BitWidth).ashr(ShAmtUMax) + 1);
359 ConstantRange ConstantRange::makeExactNoWrapRegion(Instruction::BinaryOps BinOp,
360 const APInt &Other,
361 unsigned NoWrapKind) {
362 // makeGuaranteedNoWrapRegion() is exact for single-element ranges, as
363 // "for all" and "for any" coincide in this case.
364 return makeGuaranteedNoWrapRegion(BinOp, ConstantRange(Other), NoWrapKind);
367 bool ConstantRange::isFullSet() const {
368 return Lower == Upper && Lower.isMaxValue();
371 bool ConstantRange::isEmptySet() const {
372 return Lower == Upper && Lower.isMinValue();
375 bool ConstantRange::isWrappedSet() const {
376 return Lower.ugt(Upper) && !Upper.isZero();
379 bool ConstantRange::isUpperWrapped() const {
380 return Lower.ugt(Upper);
383 bool ConstantRange::isSignWrappedSet() const {
384 return Lower.sgt(Upper) && !Upper.isMinSignedValue();
387 bool ConstantRange::isUpperSignWrapped() const {
388 return Lower.sgt(Upper);
391 bool
392 ConstantRange::isSizeStrictlySmallerThan(const ConstantRange &Other) const {
393 assert(getBitWidth() == Other.getBitWidth());
394 if (isFullSet())
395 return false;
396 if (Other.isFullSet())
397 return true;
398 return (Upper - Lower).ult(Other.Upper - Other.Lower);
401 bool
402 ConstantRange::isSizeLargerThan(uint64_t MaxSize) const {
403 // If this a full set, we need special handling to avoid needing an extra bit
404 // to represent the size.
405 if (isFullSet())
406 return MaxSize == 0 || APInt::getMaxValue(getBitWidth()).ugt(MaxSize - 1);
408 return (Upper - Lower).ugt(MaxSize);
411 bool ConstantRange::isAllNegative() const {
412 // Empty set is all negative, full set is not.
413 if (isEmptySet())
414 return true;
415 if (isFullSet())
416 return false;
418 return !isUpperSignWrapped() && !Upper.isStrictlyPositive();
421 bool ConstantRange::isAllNonNegative() const {
422 // Empty and full set are automatically treated correctly.
423 return !isSignWrappedSet() && Lower.isNonNegative();
426 APInt ConstantRange::getUnsignedMax() const {
427 if (isFullSet() || isUpperWrapped())
428 return APInt::getMaxValue(getBitWidth());
429 return getUpper() - 1;
432 APInt ConstantRange::getUnsignedMin() const {
433 if (isFullSet() || isWrappedSet())
434 return APInt::getMinValue(getBitWidth());
435 return getLower();
438 APInt ConstantRange::getSignedMax() const {
439 if (isFullSet() || isUpperSignWrapped())
440 return APInt::getSignedMaxValue(getBitWidth());
441 return getUpper() - 1;
444 APInt ConstantRange::getSignedMin() const {
445 if (isFullSet() || isSignWrappedSet())
446 return APInt::getSignedMinValue(getBitWidth());
447 return getLower();
450 bool ConstantRange::contains(const APInt &V) const {
451 if (Lower == Upper)
452 return isFullSet();
454 if (!isUpperWrapped())
455 return Lower.ule(V) && V.ult(Upper);
456 return Lower.ule(V) || V.ult(Upper);
459 bool ConstantRange::contains(const ConstantRange &Other) const {
460 if (isFullSet() || Other.isEmptySet()) return true;
461 if (isEmptySet() || Other.isFullSet()) return false;
463 if (!isUpperWrapped()) {
464 if (Other.isUpperWrapped())
465 return false;
467 return Lower.ule(Other.getLower()) && Other.getUpper().ule(Upper);
470 if (!Other.isUpperWrapped())
471 return Other.getUpper().ule(Upper) ||
472 Lower.ule(Other.getLower());
474 return Other.getUpper().ule(Upper) && Lower.ule(Other.getLower());
477 unsigned ConstantRange::getActiveBits() const {
478 if (isEmptySet())
479 return 0;
481 return getUnsignedMax().getActiveBits();
484 unsigned ConstantRange::getMinSignedBits() const {
485 if (isEmptySet())
486 return 0;
488 return std::max(getSignedMin().getSignificantBits(),
489 getSignedMax().getSignificantBits());
492 ConstantRange ConstantRange::subtract(const APInt &Val) const {
493 assert(Val.getBitWidth() == getBitWidth() && "Wrong bit width");
494 // If the set is empty or full, don't modify the endpoints.
495 if (Lower == Upper)
496 return *this;
497 return ConstantRange(Lower - Val, Upper - Val);
500 ConstantRange ConstantRange::difference(const ConstantRange &CR) const {
501 return intersectWith(CR.inverse());
504 static ConstantRange getPreferredRange(
505 const ConstantRange &CR1, const ConstantRange &CR2,
506 ConstantRange::PreferredRangeType Type) {
507 if (Type == ConstantRange::Unsigned) {
508 if (!CR1.isWrappedSet() && CR2.isWrappedSet())
509 return CR1;
510 if (CR1.isWrappedSet() && !CR2.isWrappedSet())
511 return CR2;
512 } else if (Type == ConstantRange::Signed) {
513 if (!CR1.isSignWrappedSet() && CR2.isSignWrappedSet())
514 return CR1;
515 if (CR1.isSignWrappedSet() && !CR2.isSignWrappedSet())
516 return CR2;
519 if (CR1.isSizeStrictlySmallerThan(CR2))
520 return CR1;
521 return CR2;
524 ConstantRange ConstantRange::intersectWith(const ConstantRange &CR,
525 PreferredRangeType Type) const {
526 assert(getBitWidth() == CR.getBitWidth() &&
527 "ConstantRange types don't agree!");
529 // Handle common cases.
530 if ( isEmptySet() || CR.isFullSet()) return *this;
531 if (CR.isEmptySet() || isFullSet()) return CR;
533 if (!isUpperWrapped() && CR.isUpperWrapped())
534 return CR.intersectWith(*this, Type);
536 if (!isUpperWrapped() && !CR.isUpperWrapped()) {
537 if (Lower.ult(CR.Lower)) {
538 // L---U : this
539 // L---U : CR
540 if (Upper.ule(CR.Lower))
541 return getEmpty();
543 // L---U : this
544 // L---U : CR
545 if (Upper.ult(CR.Upper))
546 return ConstantRange(CR.Lower, Upper);
548 // L-------U : this
549 // L---U : CR
550 return CR;
552 // L---U : this
553 // L-------U : CR
554 if (Upper.ult(CR.Upper))
555 return *this;
557 // L-----U : this
558 // L-----U : CR
559 if (Lower.ult(CR.Upper))
560 return ConstantRange(Lower, CR.Upper);
562 // L---U : this
563 // L---U : CR
564 return getEmpty();
567 if (isUpperWrapped() && !CR.isUpperWrapped()) {
568 if (CR.Lower.ult(Upper)) {
569 // ------U L--- : this
570 // L--U : CR
571 if (CR.Upper.ult(Upper))
572 return CR;
574 // ------U L--- : this
575 // L------U : CR
576 if (CR.Upper.ule(Lower))
577 return ConstantRange(CR.Lower, Upper);
579 // ------U L--- : this
580 // L----------U : CR
581 return getPreferredRange(*this, CR, Type);
583 if (CR.Lower.ult(Lower)) {
584 // --U L---- : this
585 // L--U : CR
586 if (CR.Upper.ule(Lower))
587 return getEmpty();
589 // --U L---- : this
590 // L------U : CR
591 return ConstantRange(Lower, CR.Upper);
594 // --U L------ : this
595 // L--U : CR
596 return CR;
599 if (CR.Upper.ult(Upper)) {
600 // ------U L-- : this
601 // --U L------ : CR
602 if (CR.Lower.ult(Upper))
603 return getPreferredRange(*this, CR, Type);
605 // ----U L-- : this
606 // --U L---- : CR
607 if (CR.Lower.ult(Lower))
608 return ConstantRange(Lower, CR.Upper);
610 // ----U L---- : this
611 // --U L-- : CR
612 return CR;
614 if (CR.Upper.ule(Lower)) {
615 // --U L-- : this
616 // ----U L---- : CR
617 if (CR.Lower.ult(Lower))
618 return *this;
620 // --U L---- : this
621 // ----U L-- : CR
622 return ConstantRange(CR.Lower, Upper);
625 // --U L------ : this
626 // ------U L-- : CR
627 return getPreferredRange(*this, CR, Type);
630 ConstantRange ConstantRange::unionWith(const ConstantRange &CR,
631 PreferredRangeType Type) const {
632 assert(getBitWidth() == CR.getBitWidth() &&
633 "ConstantRange types don't agree!");
635 if ( isFullSet() || CR.isEmptySet()) return *this;
636 if (CR.isFullSet() || isEmptySet()) return CR;
638 if (!isUpperWrapped() && CR.isUpperWrapped())
639 return CR.unionWith(*this, Type);
641 if (!isUpperWrapped() && !CR.isUpperWrapped()) {
642 // L---U and L---U : this
643 // L---U L---U : CR
644 // result in one of
645 // L---------U
646 // -----U L-----
647 if (CR.Upper.ult(Lower) || Upper.ult(CR.Lower))
648 return getPreferredRange(
649 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
651 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
652 APInt U = (CR.Upper - 1).ugt(Upper - 1) ? CR.Upper : Upper;
654 if (L.isZero() && U.isZero())
655 return getFull();
657 return ConstantRange(std::move(L), std::move(U));
660 if (!CR.isUpperWrapped()) {
661 // ------U L----- and ------U L----- : this
662 // L--U L--U : CR
663 if (CR.Upper.ule(Upper) || CR.Lower.uge(Lower))
664 return *this;
666 // ------U L----- : this
667 // L---------U : CR
668 if (CR.Lower.ule(Upper) && Lower.ule(CR.Upper))
669 return getFull();
671 // ----U L---- : this
672 // L---U : CR
673 // results in one of
674 // ----------U L----
675 // ----U L----------
676 if (Upper.ult(CR.Lower) && CR.Upper.ult(Lower))
677 return getPreferredRange(
678 ConstantRange(Lower, CR.Upper), ConstantRange(CR.Lower, Upper), Type);
680 // ----U L----- : this
681 // L----U : CR
682 if (Upper.ult(CR.Lower) && Lower.ule(CR.Upper))
683 return ConstantRange(CR.Lower, Upper);
685 // ------U L---- : this
686 // L-----U : CR
687 assert(CR.Lower.ule(Upper) && CR.Upper.ult(Lower) &&
688 "ConstantRange::unionWith missed a case with one range wrapped");
689 return ConstantRange(Lower, CR.Upper);
692 // ------U L---- and ------U L---- : this
693 // -U L----------- and ------------U L : CR
694 if (CR.Lower.ule(Upper) || Lower.ule(CR.Upper))
695 return getFull();
697 APInt L = CR.Lower.ult(Lower) ? CR.Lower : Lower;
698 APInt U = CR.Upper.ugt(Upper) ? CR.Upper : Upper;
700 return ConstantRange(std::move(L), std::move(U));
703 std::optional<ConstantRange>
704 ConstantRange::exactIntersectWith(const ConstantRange &CR) const {
705 // TODO: This can be implemented more efficiently.
706 ConstantRange Result = intersectWith(CR);
707 if (Result == inverse().unionWith(CR.inverse()).inverse())
708 return Result;
709 return std::nullopt;
712 std::optional<ConstantRange>
713 ConstantRange::exactUnionWith(const ConstantRange &CR) const {
714 // TODO: This can be implemented more efficiently.
715 ConstantRange Result = unionWith(CR);
716 if (Result == inverse().intersectWith(CR.inverse()).inverse())
717 return Result;
718 return std::nullopt;
721 ConstantRange ConstantRange::castOp(Instruction::CastOps CastOp,
722 uint32_t ResultBitWidth) const {
723 switch (CastOp) {
724 default:
725 llvm_unreachable("unsupported cast type");
726 case Instruction::Trunc:
727 return truncate(ResultBitWidth);
728 case Instruction::SExt:
729 return signExtend(ResultBitWidth);
730 case Instruction::ZExt:
731 return zeroExtend(ResultBitWidth);
732 case Instruction::BitCast:
733 return *this;
734 case Instruction::FPToUI:
735 case Instruction::FPToSI:
736 if (getBitWidth() == ResultBitWidth)
737 return *this;
738 else
739 return getFull(ResultBitWidth);
740 case Instruction::UIToFP: {
741 // TODO: use input range if available
742 auto BW = getBitWidth();
743 APInt Min = APInt::getMinValue(BW);
744 APInt Max = APInt::getMaxValue(BW);
745 if (ResultBitWidth > BW) {
746 Min = Min.zext(ResultBitWidth);
747 Max = Max.zext(ResultBitWidth);
749 return ConstantRange(std::move(Min), std::move(Max));
751 case Instruction::SIToFP: {
752 // TODO: use input range if available
753 auto BW = getBitWidth();
754 APInt SMin = APInt::getSignedMinValue(BW);
755 APInt SMax = APInt::getSignedMaxValue(BW);
756 if (ResultBitWidth > BW) {
757 SMin = SMin.sext(ResultBitWidth);
758 SMax = SMax.sext(ResultBitWidth);
760 return ConstantRange(std::move(SMin), std::move(SMax));
762 case Instruction::FPTrunc:
763 case Instruction::FPExt:
764 case Instruction::IntToPtr:
765 case Instruction::PtrToInt:
766 case Instruction::AddrSpaceCast:
767 // Conservatively return getFull set.
768 return getFull(ResultBitWidth);
772 ConstantRange ConstantRange::zeroExtend(uint32_t DstTySize) const {
773 if (isEmptySet()) return getEmpty(DstTySize);
775 unsigned SrcTySize = getBitWidth();
776 assert(SrcTySize < DstTySize && "Not a value extension");
777 if (isFullSet() || isUpperWrapped()) {
778 // Change into [0, 1 << src bit width)
779 APInt LowerExt(DstTySize, 0);
780 if (!Upper) // special case: [X, 0) -- not really wrapping around
781 LowerExt = Lower.zext(DstTySize);
782 return ConstantRange(std::move(LowerExt),
783 APInt::getOneBitSet(DstTySize, SrcTySize));
786 return ConstantRange(Lower.zext(DstTySize), Upper.zext(DstTySize));
789 ConstantRange ConstantRange::signExtend(uint32_t DstTySize) const {
790 if (isEmptySet()) return getEmpty(DstTySize);
792 unsigned SrcTySize = getBitWidth();
793 assert(SrcTySize < DstTySize && "Not a value extension");
795 // special case: [X, INT_MIN) -- not really wrapping around
796 if (Upper.isMinSignedValue())
797 return ConstantRange(Lower.sext(DstTySize), Upper.zext(DstTySize));
799 if (isFullSet() || isSignWrappedSet()) {
800 return ConstantRange(APInt::getHighBitsSet(DstTySize,DstTySize-SrcTySize+1),
801 APInt::getLowBitsSet(DstTySize, SrcTySize-1) + 1);
804 return ConstantRange(Lower.sext(DstTySize), Upper.sext(DstTySize));
807 ConstantRange ConstantRange::truncate(uint32_t DstTySize) const {
808 assert(getBitWidth() > DstTySize && "Not a value truncation");
809 if (isEmptySet())
810 return getEmpty(DstTySize);
811 if (isFullSet())
812 return getFull(DstTySize);
814 APInt LowerDiv(Lower), UpperDiv(Upper);
815 ConstantRange Union(DstTySize, /*isFullSet=*/false);
817 // Analyze wrapped sets in their two parts: [0, Upper) \/ [Lower, MaxValue]
818 // We use the non-wrapped set code to analyze the [Lower, MaxValue) part, and
819 // then we do the union with [MaxValue, Upper)
820 if (isUpperWrapped()) {
821 // If Upper is greater than or equal to MaxValue(DstTy), it covers the whole
822 // truncated range.
823 if (Upper.getActiveBits() > DstTySize || Upper.countr_one() == DstTySize)
824 return getFull(DstTySize);
826 Union = ConstantRange(APInt::getMaxValue(DstTySize),Upper.trunc(DstTySize));
827 UpperDiv.setAllBits();
829 // Union covers the MaxValue case, so return if the remaining range is just
830 // MaxValue(DstTy).
831 if (LowerDiv == UpperDiv)
832 return Union;
835 // Chop off the most significant bits that are past the destination bitwidth.
836 if (LowerDiv.getActiveBits() > DstTySize) {
837 // Mask to just the signficant bits and subtract from LowerDiv/UpperDiv.
838 APInt Adjust = LowerDiv & APInt::getBitsSetFrom(getBitWidth(), DstTySize);
839 LowerDiv -= Adjust;
840 UpperDiv -= Adjust;
843 unsigned UpperDivWidth = UpperDiv.getActiveBits();
844 if (UpperDivWidth <= DstTySize)
845 return ConstantRange(LowerDiv.trunc(DstTySize),
846 UpperDiv.trunc(DstTySize)).unionWith(Union);
848 // The truncated value wraps around. Check if we can do better than fullset.
849 if (UpperDivWidth == DstTySize + 1) {
850 // Clear the MSB so that UpperDiv wraps around.
851 UpperDiv.clearBit(DstTySize);
852 if (UpperDiv.ult(LowerDiv))
853 return ConstantRange(LowerDiv.trunc(DstTySize),
854 UpperDiv.trunc(DstTySize)).unionWith(Union);
857 return getFull(DstTySize);
860 ConstantRange ConstantRange::zextOrTrunc(uint32_t DstTySize) const {
861 unsigned SrcTySize = getBitWidth();
862 if (SrcTySize > DstTySize)
863 return truncate(DstTySize);
864 if (SrcTySize < DstTySize)
865 return zeroExtend(DstTySize);
866 return *this;
869 ConstantRange ConstantRange::sextOrTrunc(uint32_t DstTySize) const {
870 unsigned SrcTySize = getBitWidth();
871 if (SrcTySize > DstTySize)
872 return truncate(DstTySize);
873 if (SrcTySize < DstTySize)
874 return signExtend(DstTySize);
875 return *this;
878 ConstantRange ConstantRange::binaryOp(Instruction::BinaryOps BinOp,
879 const ConstantRange &Other) const {
880 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
882 switch (BinOp) {
883 case Instruction::Add:
884 return add(Other);
885 case Instruction::Sub:
886 return sub(Other);
887 case Instruction::Mul:
888 return multiply(Other);
889 case Instruction::UDiv:
890 return udiv(Other);
891 case Instruction::SDiv:
892 return sdiv(Other);
893 case Instruction::URem:
894 return urem(Other);
895 case Instruction::SRem:
896 return srem(Other);
897 case Instruction::Shl:
898 return shl(Other);
899 case Instruction::LShr:
900 return lshr(Other);
901 case Instruction::AShr:
902 return ashr(Other);
903 case Instruction::And:
904 return binaryAnd(Other);
905 case Instruction::Or:
906 return binaryOr(Other);
907 case Instruction::Xor:
908 return binaryXor(Other);
909 // Note: floating point operations applied to abstract ranges are just
910 // ideal integer operations with a lossy representation
911 case Instruction::FAdd:
912 return add(Other);
913 case Instruction::FSub:
914 return sub(Other);
915 case Instruction::FMul:
916 return multiply(Other);
917 default:
918 // Conservatively return getFull set.
919 return getFull();
923 ConstantRange ConstantRange::overflowingBinaryOp(Instruction::BinaryOps BinOp,
924 const ConstantRange &Other,
925 unsigned NoWrapKind) const {
926 assert(Instruction::isBinaryOp(BinOp) && "Binary operators only!");
928 switch (BinOp) {
929 case Instruction::Add:
930 return addWithNoWrap(Other, NoWrapKind);
931 case Instruction::Sub:
932 return subWithNoWrap(Other, NoWrapKind);
933 default:
934 // Don't know about this Overflowing Binary Operation.
935 // Conservatively fallback to plain binop handling.
936 return binaryOp(BinOp, Other);
940 bool ConstantRange::isIntrinsicSupported(Intrinsic::ID IntrinsicID) {
941 switch (IntrinsicID) {
942 case Intrinsic::uadd_sat:
943 case Intrinsic::usub_sat:
944 case Intrinsic::sadd_sat:
945 case Intrinsic::ssub_sat:
946 case Intrinsic::umin:
947 case Intrinsic::umax:
948 case Intrinsic::smin:
949 case Intrinsic::smax:
950 case Intrinsic::abs:
951 case Intrinsic::ctlz:
952 return true;
953 default:
954 return false;
958 ConstantRange ConstantRange::intrinsic(Intrinsic::ID IntrinsicID,
959 ArrayRef<ConstantRange> Ops) {
960 switch (IntrinsicID) {
961 case Intrinsic::uadd_sat:
962 return Ops[0].uadd_sat(Ops[1]);
963 case Intrinsic::usub_sat:
964 return Ops[0].usub_sat(Ops[1]);
965 case Intrinsic::sadd_sat:
966 return Ops[0].sadd_sat(Ops[1]);
967 case Intrinsic::ssub_sat:
968 return Ops[0].ssub_sat(Ops[1]);
969 case Intrinsic::umin:
970 return Ops[0].umin(Ops[1]);
971 case Intrinsic::umax:
972 return Ops[0].umax(Ops[1]);
973 case Intrinsic::smin:
974 return Ops[0].smin(Ops[1]);
975 case Intrinsic::smax:
976 return Ops[0].smax(Ops[1]);
977 case Intrinsic::abs: {
978 const APInt *IntMinIsPoison = Ops[1].getSingleElement();
979 assert(IntMinIsPoison && "Must be known (immarg)");
980 assert(IntMinIsPoison->getBitWidth() == 1 && "Must be boolean");
981 return Ops[0].abs(IntMinIsPoison->getBoolValue());
983 case Intrinsic::ctlz: {
984 const APInt *ZeroIsPoison = Ops[1].getSingleElement();
985 assert(ZeroIsPoison && "Must be known (immarg)");
986 assert(ZeroIsPoison->getBitWidth() == 1 && "Must be boolean");
987 return Ops[0].ctlz(ZeroIsPoison->getBoolValue());
989 default:
990 assert(!isIntrinsicSupported(IntrinsicID) && "Shouldn't be supported");
991 llvm_unreachable("Unsupported intrinsic");
995 ConstantRange
996 ConstantRange::add(const ConstantRange &Other) const {
997 if (isEmptySet() || Other.isEmptySet())
998 return getEmpty();
999 if (isFullSet() || Other.isFullSet())
1000 return getFull();
1002 APInt NewLower = getLower() + Other.getLower();
1003 APInt NewUpper = getUpper() + Other.getUpper() - 1;
1004 if (NewLower == NewUpper)
1005 return getFull();
1007 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
1008 if (X.isSizeStrictlySmallerThan(*this) ||
1009 X.isSizeStrictlySmallerThan(Other))
1010 // We've wrapped, therefore, full set.
1011 return getFull();
1012 return X;
1015 ConstantRange ConstantRange::addWithNoWrap(const ConstantRange &Other,
1016 unsigned NoWrapKind,
1017 PreferredRangeType RangeType) const {
1018 // Calculate the range for "X + Y" which is guaranteed not to wrap(overflow).
1019 // (X is from this, and Y is from Other)
1020 if (isEmptySet() || Other.isEmptySet())
1021 return getEmpty();
1022 if (isFullSet() && Other.isFullSet())
1023 return getFull();
1025 using OBO = OverflowingBinaryOperator;
1026 ConstantRange Result = add(Other);
1028 // If an overflow happens for every value pair in these two constant ranges,
1029 // we must return Empty set. In this case, we get that for free, because we
1030 // get lucky that intersection of add() with uadd_sat()/sadd_sat() results
1031 // in an empty set.
1033 if (NoWrapKind & OBO::NoSignedWrap)
1034 Result = Result.intersectWith(sadd_sat(Other), RangeType);
1036 if (NoWrapKind & OBO::NoUnsignedWrap)
1037 Result = Result.intersectWith(uadd_sat(Other), RangeType);
1039 return Result;
1042 ConstantRange
1043 ConstantRange::sub(const ConstantRange &Other) const {
1044 if (isEmptySet() || Other.isEmptySet())
1045 return getEmpty();
1046 if (isFullSet() || Other.isFullSet())
1047 return getFull();
1049 APInt NewLower = getLower() - Other.getUpper() + 1;
1050 APInt NewUpper = getUpper() - Other.getLower();
1051 if (NewLower == NewUpper)
1052 return getFull();
1054 ConstantRange X = ConstantRange(std::move(NewLower), std::move(NewUpper));
1055 if (X.isSizeStrictlySmallerThan(*this) ||
1056 X.isSizeStrictlySmallerThan(Other))
1057 // We've wrapped, therefore, full set.
1058 return getFull();
1059 return X;
1062 ConstantRange ConstantRange::subWithNoWrap(const ConstantRange &Other,
1063 unsigned NoWrapKind,
1064 PreferredRangeType RangeType) const {
1065 // Calculate the range for "X - Y" which is guaranteed not to wrap(overflow).
1066 // (X is from this, and Y is from Other)
1067 if (isEmptySet() || Other.isEmptySet())
1068 return getEmpty();
1069 if (isFullSet() && Other.isFullSet())
1070 return getFull();
1072 using OBO = OverflowingBinaryOperator;
1073 ConstantRange Result = sub(Other);
1075 // If an overflow happens for every value pair in these two constant ranges,
1076 // we must return Empty set. In signed case, we get that for free, because we
1077 // get lucky that intersection of sub() with ssub_sat() results in an
1078 // empty set. But for unsigned we must perform the overflow check manually.
1080 if (NoWrapKind & OBO::NoSignedWrap)
1081 Result = Result.intersectWith(ssub_sat(Other), RangeType);
1083 if (NoWrapKind & OBO::NoUnsignedWrap) {
1084 if (getUnsignedMax().ult(Other.getUnsignedMin()))
1085 return getEmpty(); // Always overflows.
1086 Result = Result.intersectWith(usub_sat(Other), RangeType);
1089 return Result;
1092 ConstantRange
1093 ConstantRange::multiply(const ConstantRange &Other) const {
1094 // TODO: If either operand is a single element and the multiply is known to
1095 // be non-wrapping, round the result min and max value to the appropriate
1096 // multiple of that element. If wrapping is possible, at least adjust the
1097 // range according to the greatest power-of-two factor of the single element.
1099 if (isEmptySet() || Other.isEmptySet())
1100 return getEmpty();
1102 if (const APInt *C = getSingleElement()) {
1103 if (C->isOne())
1104 return Other;
1105 if (C->isAllOnes())
1106 return ConstantRange(APInt::getZero(getBitWidth())).sub(Other);
1109 if (const APInt *C = Other.getSingleElement()) {
1110 if (C->isOne())
1111 return *this;
1112 if (C->isAllOnes())
1113 return ConstantRange(APInt::getZero(getBitWidth())).sub(*this);
1116 // Multiplication is signedness-independent. However different ranges can be
1117 // obtained depending on how the input ranges are treated. These different
1118 // ranges are all conservatively correct, but one might be better than the
1119 // other. We calculate two ranges; one treating the inputs as unsigned
1120 // and the other signed, then return the smallest of these ranges.
1122 // Unsigned range first.
1123 APInt this_min = getUnsignedMin().zext(getBitWidth() * 2);
1124 APInt this_max = getUnsignedMax().zext(getBitWidth() * 2);
1125 APInt Other_min = Other.getUnsignedMin().zext(getBitWidth() * 2);
1126 APInt Other_max = Other.getUnsignedMax().zext(getBitWidth() * 2);
1128 ConstantRange Result_zext = ConstantRange(this_min * Other_min,
1129 this_max * Other_max + 1);
1130 ConstantRange UR = Result_zext.truncate(getBitWidth());
1132 // If the unsigned range doesn't wrap, and isn't negative then it's a range
1133 // from one positive number to another which is as good as we can generate.
1134 // In this case, skip the extra work of generating signed ranges which aren't
1135 // going to be better than this range.
1136 if (!UR.isUpperWrapped() &&
1137 (UR.getUpper().isNonNegative() || UR.getUpper().isMinSignedValue()))
1138 return UR;
1140 // Now the signed range. Because we could be dealing with negative numbers
1141 // here, the lower bound is the smallest of the cartesian product of the
1142 // lower and upper ranges; for example:
1143 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1144 // Similarly for the upper bound, swapping min for max.
1146 this_min = getSignedMin().sext(getBitWidth() * 2);
1147 this_max = getSignedMax().sext(getBitWidth() * 2);
1148 Other_min = Other.getSignedMin().sext(getBitWidth() * 2);
1149 Other_max = Other.getSignedMax().sext(getBitWidth() * 2);
1151 auto L = {this_min * Other_min, this_min * Other_max,
1152 this_max * Other_min, this_max * Other_max};
1153 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1154 ConstantRange Result_sext(std::min(L, Compare), std::max(L, Compare) + 1);
1155 ConstantRange SR = Result_sext.truncate(getBitWidth());
1157 return UR.isSizeStrictlySmallerThan(SR) ? UR : SR;
1160 ConstantRange ConstantRange::smul_fast(const ConstantRange &Other) const {
1161 if (isEmptySet() || Other.isEmptySet())
1162 return getEmpty();
1164 APInt Min = getSignedMin();
1165 APInt Max = getSignedMax();
1166 APInt OtherMin = Other.getSignedMin();
1167 APInt OtherMax = Other.getSignedMax();
1169 bool O1, O2, O3, O4;
1170 auto Muls = {Min.smul_ov(OtherMin, O1), Min.smul_ov(OtherMax, O2),
1171 Max.smul_ov(OtherMin, O3), Max.smul_ov(OtherMax, O4)};
1172 if (O1 || O2 || O3 || O4)
1173 return getFull();
1175 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1176 return getNonEmpty(std::min(Muls, Compare), std::max(Muls, Compare) + 1);
1179 ConstantRange
1180 ConstantRange::smax(const ConstantRange &Other) const {
1181 // X smax Y is: range(smax(X_smin, Y_smin),
1182 // smax(X_smax, Y_smax))
1183 if (isEmptySet() || Other.isEmptySet())
1184 return getEmpty();
1185 APInt NewL = APIntOps::smax(getSignedMin(), Other.getSignedMin());
1186 APInt NewU = APIntOps::smax(getSignedMax(), Other.getSignedMax()) + 1;
1187 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1188 if (isSignWrappedSet() || Other.isSignWrappedSet())
1189 return Res.intersectWith(unionWith(Other, Signed), Signed);
1190 return Res;
1193 ConstantRange
1194 ConstantRange::umax(const ConstantRange &Other) const {
1195 // X umax Y is: range(umax(X_umin, Y_umin),
1196 // umax(X_umax, Y_umax))
1197 if (isEmptySet() || Other.isEmptySet())
1198 return getEmpty();
1199 APInt NewL = APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin());
1200 APInt NewU = APIntOps::umax(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1201 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1202 if (isWrappedSet() || Other.isWrappedSet())
1203 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1204 return Res;
1207 ConstantRange
1208 ConstantRange::smin(const ConstantRange &Other) const {
1209 // X smin Y is: range(smin(X_smin, Y_smin),
1210 // smin(X_smax, Y_smax))
1211 if (isEmptySet() || Other.isEmptySet())
1212 return getEmpty();
1213 APInt NewL = APIntOps::smin(getSignedMin(), Other.getSignedMin());
1214 APInt NewU = APIntOps::smin(getSignedMax(), Other.getSignedMax()) + 1;
1215 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1216 if (isSignWrappedSet() || Other.isSignWrappedSet())
1217 return Res.intersectWith(unionWith(Other, Signed), Signed);
1218 return Res;
1221 ConstantRange
1222 ConstantRange::umin(const ConstantRange &Other) const {
1223 // X umin Y is: range(umin(X_umin, Y_umin),
1224 // umin(X_umax, Y_umax))
1225 if (isEmptySet() || Other.isEmptySet())
1226 return getEmpty();
1227 APInt NewL = APIntOps::umin(getUnsignedMin(), Other.getUnsignedMin());
1228 APInt NewU = APIntOps::umin(getUnsignedMax(), Other.getUnsignedMax()) + 1;
1229 ConstantRange Res = getNonEmpty(std::move(NewL), std::move(NewU));
1230 if (isWrappedSet() || Other.isWrappedSet())
1231 return Res.intersectWith(unionWith(Other, Unsigned), Unsigned);
1232 return Res;
1235 ConstantRange
1236 ConstantRange::udiv(const ConstantRange &RHS) const {
1237 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1238 return getEmpty();
1240 APInt Lower = getUnsignedMin().udiv(RHS.getUnsignedMax());
1242 APInt RHS_umin = RHS.getUnsignedMin();
1243 if (RHS_umin.isZero()) {
1244 // We want the lowest value in RHS excluding zero. Usually that would be 1
1245 // except for a range in the form of [X, 1) in which case it would be X.
1246 if (RHS.getUpper() == 1)
1247 RHS_umin = RHS.getLower();
1248 else
1249 RHS_umin = 1;
1252 APInt Upper = getUnsignedMax().udiv(RHS_umin) + 1;
1253 return getNonEmpty(std::move(Lower), std::move(Upper));
1256 ConstantRange ConstantRange::sdiv(const ConstantRange &RHS) const {
1257 // We split up the LHS and RHS into positive and negative components
1258 // and then also compute the positive and negative components of the result
1259 // separately by combining division results with the appropriate signs.
1260 APInt Zero = APInt::getZero(getBitWidth());
1261 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1262 // There are no positive 1-bit values. The 1 would get interpreted as -1.
1263 ConstantRange PosFilter =
1264 getBitWidth() == 1 ? getEmpty()
1265 : ConstantRange(APInt(getBitWidth(), 1), SignedMin);
1266 ConstantRange NegFilter(SignedMin, Zero);
1267 ConstantRange PosL = intersectWith(PosFilter);
1268 ConstantRange NegL = intersectWith(NegFilter);
1269 ConstantRange PosR = RHS.intersectWith(PosFilter);
1270 ConstantRange NegR = RHS.intersectWith(NegFilter);
1272 ConstantRange PosRes = getEmpty();
1273 if (!PosL.isEmptySet() && !PosR.isEmptySet())
1274 // pos / pos = pos.
1275 PosRes = ConstantRange(PosL.Lower.sdiv(PosR.Upper - 1),
1276 (PosL.Upper - 1).sdiv(PosR.Lower) + 1);
1278 if (!NegL.isEmptySet() && !NegR.isEmptySet()) {
1279 // neg / neg = pos.
1281 // We need to deal with one tricky case here: SignedMin / -1 is UB on the
1282 // IR level, so we'll want to exclude this case when calculating bounds.
1283 // (For APInts the operation is well-defined and yields SignedMin.) We
1284 // handle this by dropping either SignedMin from the LHS or -1 from the RHS.
1285 APInt Lo = (NegL.Upper - 1).sdiv(NegR.Lower);
1286 if (NegL.Lower.isMinSignedValue() && NegR.Upper.isZero()) {
1287 // Remove -1 from the LHS. Skip if it's the only element, as this would
1288 // leave us with an empty set.
1289 if (!NegR.Lower.isAllOnes()) {
1290 APInt AdjNegRUpper;
1291 if (RHS.Lower.isAllOnes())
1292 // Negative part of [-1, X] without -1 is [SignedMin, X].
1293 AdjNegRUpper = RHS.Upper;
1294 else
1295 // [X, -1] without -1 is [X, -2].
1296 AdjNegRUpper = NegR.Upper - 1;
1298 PosRes = PosRes.unionWith(
1299 ConstantRange(Lo, NegL.Lower.sdiv(AdjNegRUpper - 1) + 1));
1302 // Remove SignedMin from the RHS. Skip if it's the only element, as this
1303 // would leave us with an empty set.
1304 if (NegL.Upper != SignedMin + 1) {
1305 APInt AdjNegLLower;
1306 if (Upper == SignedMin + 1)
1307 // Negative part of [X, SignedMin] without SignedMin is [X, -1].
1308 AdjNegLLower = Lower;
1309 else
1310 // [SignedMin, X] without SignedMin is [SignedMin + 1, X].
1311 AdjNegLLower = NegL.Lower + 1;
1313 PosRes = PosRes.unionWith(
1314 ConstantRange(std::move(Lo),
1315 AdjNegLLower.sdiv(NegR.Upper - 1) + 1));
1317 } else {
1318 PosRes = PosRes.unionWith(
1319 ConstantRange(std::move(Lo), NegL.Lower.sdiv(NegR.Upper - 1) + 1));
1323 ConstantRange NegRes = getEmpty();
1324 if (!PosL.isEmptySet() && !NegR.isEmptySet())
1325 // pos / neg = neg.
1326 NegRes = ConstantRange((PosL.Upper - 1).sdiv(NegR.Upper - 1),
1327 PosL.Lower.sdiv(NegR.Lower) + 1);
1329 if (!NegL.isEmptySet() && !PosR.isEmptySet())
1330 // neg / pos = neg.
1331 NegRes = NegRes.unionWith(
1332 ConstantRange(NegL.Lower.sdiv(PosR.Lower),
1333 (NegL.Upper - 1).sdiv(PosR.Upper - 1) + 1));
1335 // Prefer a non-wrapping signed range here.
1336 ConstantRange Res = NegRes.unionWith(PosRes, PreferredRangeType::Signed);
1338 // Preserve the zero that we dropped when splitting the LHS by sign.
1339 if (contains(Zero) && (!PosR.isEmptySet() || !NegR.isEmptySet()))
1340 Res = Res.unionWith(ConstantRange(Zero));
1341 return Res;
1344 ConstantRange ConstantRange::urem(const ConstantRange &RHS) const {
1345 if (isEmptySet() || RHS.isEmptySet() || RHS.getUnsignedMax().isZero())
1346 return getEmpty();
1348 if (const APInt *RHSInt = RHS.getSingleElement()) {
1349 // UREM by null is UB.
1350 if (RHSInt->isZero())
1351 return getEmpty();
1352 // Use APInt's implementation of UREM for single element ranges.
1353 if (const APInt *LHSInt = getSingleElement())
1354 return {LHSInt->urem(*RHSInt)};
1357 // L % R for L < R is L.
1358 if (getUnsignedMax().ult(RHS.getUnsignedMin()))
1359 return *this;
1361 // L % R is <= L and < R.
1362 APInt Upper = APIntOps::umin(getUnsignedMax(), RHS.getUnsignedMax() - 1) + 1;
1363 return getNonEmpty(APInt::getZero(getBitWidth()), std::move(Upper));
1366 ConstantRange ConstantRange::srem(const ConstantRange &RHS) const {
1367 if (isEmptySet() || RHS.isEmptySet())
1368 return getEmpty();
1370 if (const APInt *RHSInt = RHS.getSingleElement()) {
1371 // SREM by null is UB.
1372 if (RHSInt->isZero())
1373 return getEmpty();
1374 // Use APInt's implementation of SREM for single element ranges.
1375 if (const APInt *LHSInt = getSingleElement())
1376 return {LHSInt->srem(*RHSInt)};
1379 ConstantRange AbsRHS = RHS.abs();
1380 APInt MinAbsRHS = AbsRHS.getUnsignedMin();
1381 APInt MaxAbsRHS = AbsRHS.getUnsignedMax();
1383 // Modulus by zero is UB.
1384 if (MaxAbsRHS.isZero())
1385 return getEmpty();
1387 if (MinAbsRHS.isZero())
1388 ++MinAbsRHS;
1390 APInt MinLHS = getSignedMin(), MaxLHS = getSignedMax();
1392 if (MinLHS.isNonNegative()) {
1393 // L % R for L < R is L.
1394 if (MaxLHS.ult(MinAbsRHS))
1395 return *this;
1397 // L % R is <= L and < R.
1398 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1399 return ConstantRange(APInt::getZero(getBitWidth()), std::move(Upper));
1402 // Same basic logic as above, but the result is negative.
1403 if (MaxLHS.isNegative()) {
1404 if (MinLHS.ugt(-MinAbsRHS))
1405 return *this;
1407 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1408 return ConstantRange(std::move(Lower), APInt(getBitWidth(), 1));
1411 // LHS range crosses zero.
1412 APInt Lower = APIntOps::umax(MinLHS, -MaxAbsRHS + 1);
1413 APInt Upper = APIntOps::umin(MaxLHS, MaxAbsRHS - 1) + 1;
1414 return ConstantRange(std::move(Lower), std::move(Upper));
1417 ConstantRange ConstantRange::binaryNot() const {
1418 return ConstantRange(APInt::getAllOnes(getBitWidth())).sub(*this);
1421 ConstantRange ConstantRange::binaryAnd(const ConstantRange &Other) const {
1422 if (isEmptySet() || Other.isEmptySet())
1423 return getEmpty();
1425 ConstantRange KnownBitsRange =
1426 fromKnownBits(toKnownBits() & Other.toKnownBits(), false);
1427 ConstantRange UMinUMaxRange =
1428 getNonEmpty(APInt::getZero(getBitWidth()),
1429 APIntOps::umin(Other.getUnsignedMax(), getUnsignedMax()) + 1);
1430 return KnownBitsRange.intersectWith(UMinUMaxRange);
1433 ConstantRange ConstantRange::binaryOr(const ConstantRange &Other) const {
1434 if (isEmptySet() || Other.isEmptySet())
1435 return getEmpty();
1437 ConstantRange KnownBitsRange =
1438 fromKnownBits(toKnownBits() | Other.toKnownBits(), false);
1439 // Upper wrapped range.
1440 ConstantRange UMaxUMinRange =
1441 getNonEmpty(APIntOps::umax(getUnsignedMin(), Other.getUnsignedMin()),
1442 APInt::getZero(getBitWidth()));
1443 return KnownBitsRange.intersectWith(UMaxUMinRange);
1446 ConstantRange ConstantRange::binaryXor(const ConstantRange &Other) const {
1447 if (isEmptySet() || Other.isEmptySet())
1448 return getEmpty();
1450 // Use APInt's implementation of XOR for single element ranges.
1451 if (isSingleElement() && Other.isSingleElement())
1452 return {*getSingleElement() ^ *Other.getSingleElement()};
1454 // Special-case binary complement, since we can give a precise answer.
1455 if (Other.isSingleElement() && Other.getSingleElement()->isAllOnes())
1456 return binaryNot();
1457 if (isSingleElement() && getSingleElement()->isAllOnes())
1458 return Other.binaryNot();
1460 return fromKnownBits(toKnownBits() ^ Other.toKnownBits(), /*IsSigned*/false);
1463 ConstantRange
1464 ConstantRange::shl(const ConstantRange &Other) const {
1465 if (isEmptySet() || Other.isEmptySet())
1466 return getEmpty();
1468 APInt Min = getUnsignedMin();
1469 APInt Max = getUnsignedMax();
1470 if (const APInt *RHS = Other.getSingleElement()) {
1471 unsigned BW = getBitWidth();
1472 if (RHS->uge(BW))
1473 return getEmpty();
1475 unsigned EqualLeadingBits = (Min ^ Max).countl_zero();
1476 if (RHS->ule(EqualLeadingBits))
1477 return getNonEmpty(Min << *RHS, (Max << *RHS) + 1);
1479 return getNonEmpty(APInt::getZero(BW),
1480 APInt::getBitsSetFrom(BW, RHS->getZExtValue()) + 1);
1483 APInt OtherMax = Other.getUnsignedMax();
1484 if (isAllNegative() && OtherMax.ule(Min.countl_one())) {
1485 // For negative numbers, if the shift does not overflow in a signed sense,
1486 // a larger shift will make the number smaller.
1487 Max <<= Other.getUnsignedMin();
1488 Min <<= OtherMax;
1489 return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
1492 // There's overflow!
1493 if (OtherMax.ugt(Max.countl_zero()))
1494 return getFull();
1496 // FIXME: implement the other tricky cases
1498 Min <<= Other.getUnsignedMin();
1499 Max <<= OtherMax;
1501 return ConstantRange::getNonEmpty(std::move(Min), std::move(Max) + 1);
1504 ConstantRange
1505 ConstantRange::lshr(const ConstantRange &Other) const {
1506 if (isEmptySet() || Other.isEmptySet())
1507 return getEmpty();
1509 APInt max = getUnsignedMax().lshr(Other.getUnsignedMin()) + 1;
1510 APInt min = getUnsignedMin().lshr(Other.getUnsignedMax());
1511 return getNonEmpty(std::move(min), std::move(max));
1514 ConstantRange
1515 ConstantRange::ashr(const ConstantRange &Other) const {
1516 if (isEmptySet() || Other.isEmptySet())
1517 return getEmpty();
1519 // May straddle zero, so handle both positive and negative cases.
1520 // 'PosMax' is the upper bound of the result of the ashr
1521 // operation, when Upper of the LHS of ashr is a non-negative.
1522 // number. Since ashr of a non-negative number will result in a
1523 // smaller number, the Upper value of LHS is shifted right with
1524 // the minimum value of 'Other' instead of the maximum value.
1525 APInt PosMax = getSignedMax().ashr(Other.getUnsignedMin()) + 1;
1527 // 'PosMin' is the lower bound of the result of the ashr
1528 // operation, when Lower of the LHS is a non-negative number.
1529 // Since ashr of a non-negative number will result in a smaller
1530 // number, the Lower value of LHS is shifted right with the
1531 // maximum value of 'Other'.
1532 APInt PosMin = getSignedMin().ashr(Other.getUnsignedMax());
1534 // 'NegMax' is the upper bound of the result of the ashr
1535 // operation, when Upper of the LHS of ashr is a negative number.
1536 // Since 'ashr' of a negative number will result in a bigger
1537 // number, the Upper value of LHS is shifted right with the
1538 // maximum value of 'Other'.
1539 APInt NegMax = getSignedMax().ashr(Other.getUnsignedMax()) + 1;
1541 // 'NegMin' is the lower bound of the result of the ashr
1542 // operation, when Lower of the LHS of ashr is a negative number.
1543 // Since 'ashr' of a negative number will result in a bigger
1544 // number, the Lower value of LHS is shifted right with the
1545 // minimum value of 'Other'.
1546 APInt NegMin = getSignedMin().ashr(Other.getUnsignedMin());
1548 APInt max, min;
1549 if (getSignedMin().isNonNegative()) {
1550 // Upper and Lower of LHS are non-negative.
1551 min = PosMin;
1552 max = PosMax;
1553 } else if (getSignedMax().isNegative()) {
1554 // Upper and Lower of LHS are negative.
1555 min = NegMin;
1556 max = NegMax;
1557 } else {
1558 // Upper is non-negative and Lower is negative.
1559 min = NegMin;
1560 max = PosMax;
1562 return getNonEmpty(std::move(min), std::move(max));
1565 ConstantRange ConstantRange::uadd_sat(const ConstantRange &Other) const {
1566 if (isEmptySet() || Other.isEmptySet())
1567 return getEmpty();
1569 APInt NewL = getUnsignedMin().uadd_sat(Other.getUnsignedMin());
1570 APInt NewU = getUnsignedMax().uadd_sat(Other.getUnsignedMax()) + 1;
1571 return getNonEmpty(std::move(NewL), std::move(NewU));
1574 ConstantRange ConstantRange::sadd_sat(const ConstantRange &Other) const {
1575 if (isEmptySet() || Other.isEmptySet())
1576 return getEmpty();
1578 APInt NewL = getSignedMin().sadd_sat(Other.getSignedMin());
1579 APInt NewU = getSignedMax().sadd_sat(Other.getSignedMax()) + 1;
1580 return getNonEmpty(std::move(NewL), std::move(NewU));
1583 ConstantRange ConstantRange::usub_sat(const ConstantRange &Other) const {
1584 if (isEmptySet() || Other.isEmptySet())
1585 return getEmpty();
1587 APInt NewL = getUnsignedMin().usub_sat(Other.getUnsignedMax());
1588 APInt NewU = getUnsignedMax().usub_sat(Other.getUnsignedMin()) + 1;
1589 return getNonEmpty(std::move(NewL), std::move(NewU));
1592 ConstantRange ConstantRange::ssub_sat(const ConstantRange &Other) const {
1593 if (isEmptySet() || Other.isEmptySet())
1594 return getEmpty();
1596 APInt NewL = getSignedMin().ssub_sat(Other.getSignedMax());
1597 APInt NewU = getSignedMax().ssub_sat(Other.getSignedMin()) + 1;
1598 return getNonEmpty(std::move(NewL), std::move(NewU));
1601 ConstantRange ConstantRange::umul_sat(const ConstantRange &Other) const {
1602 if (isEmptySet() || Other.isEmptySet())
1603 return getEmpty();
1605 APInt NewL = getUnsignedMin().umul_sat(Other.getUnsignedMin());
1606 APInt NewU = getUnsignedMax().umul_sat(Other.getUnsignedMax()) + 1;
1607 return getNonEmpty(std::move(NewL), std::move(NewU));
1610 ConstantRange ConstantRange::smul_sat(const ConstantRange &Other) const {
1611 if (isEmptySet() || Other.isEmptySet())
1612 return getEmpty();
1614 // Because we could be dealing with negative numbers here, the lower bound is
1615 // the smallest of the cartesian product of the lower and upper ranges;
1616 // for example:
1617 // [-1,4) * [-2,3) = min(-1*-2, -1*2, 3*-2, 3*2) = -6.
1618 // Similarly for the upper bound, swapping min for max.
1620 APInt Min = getSignedMin();
1621 APInt Max = getSignedMax();
1622 APInt OtherMin = Other.getSignedMin();
1623 APInt OtherMax = Other.getSignedMax();
1625 auto L = {Min.smul_sat(OtherMin), Min.smul_sat(OtherMax),
1626 Max.smul_sat(OtherMin), Max.smul_sat(OtherMax)};
1627 auto Compare = [](const APInt &A, const APInt &B) { return A.slt(B); };
1628 return getNonEmpty(std::min(L, Compare), std::max(L, Compare) + 1);
1631 ConstantRange ConstantRange::ushl_sat(const ConstantRange &Other) const {
1632 if (isEmptySet() || Other.isEmptySet())
1633 return getEmpty();
1635 APInt NewL = getUnsignedMin().ushl_sat(Other.getUnsignedMin());
1636 APInt NewU = getUnsignedMax().ushl_sat(Other.getUnsignedMax()) + 1;
1637 return getNonEmpty(std::move(NewL), std::move(NewU));
1640 ConstantRange ConstantRange::sshl_sat(const ConstantRange &Other) const {
1641 if (isEmptySet() || Other.isEmptySet())
1642 return getEmpty();
1644 APInt Min = getSignedMin(), Max = getSignedMax();
1645 APInt ShAmtMin = Other.getUnsignedMin(), ShAmtMax = Other.getUnsignedMax();
1646 APInt NewL = Min.sshl_sat(Min.isNonNegative() ? ShAmtMin : ShAmtMax);
1647 APInt NewU = Max.sshl_sat(Max.isNegative() ? ShAmtMin : ShAmtMax) + 1;
1648 return getNonEmpty(std::move(NewL), std::move(NewU));
1651 ConstantRange ConstantRange::inverse() const {
1652 if (isFullSet())
1653 return getEmpty();
1654 if (isEmptySet())
1655 return getFull();
1656 return ConstantRange(Upper, Lower);
1659 ConstantRange ConstantRange::abs(bool IntMinIsPoison) const {
1660 if (isEmptySet())
1661 return getEmpty();
1663 if (isSignWrappedSet()) {
1664 APInt Lo;
1665 // Check whether the range crosses zero.
1666 if (Upper.isStrictlyPositive() || !Lower.isStrictlyPositive())
1667 Lo = APInt::getZero(getBitWidth());
1668 else
1669 Lo = APIntOps::umin(Lower, -Upper + 1);
1671 // If SignedMin is not poison, then it is included in the result range.
1672 if (IntMinIsPoison)
1673 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()));
1674 else
1675 return ConstantRange(Lo, APInt::getSignedMinValue(getBitWidth()) + 1);
1678 APInt SMin = getSignedMin(), SMax = getSignedMax();
1680 // Skip SignedMin if it is poison.
1681 if (IntMinIsPoison && SMin.isMinSignedValue()) {
1682 // The range may become empty if it *only* contains SignedMin.
1683 if (SMax.isMinSignedValue())
1684 return getEmpty();
1685 ++SMin;
1688 // All non-negative.
1689 if (SMin.isNonNegative())
1690 return ConstantRange(SMin, SMax + 1);
1692 // All negative.
1693 if (SMax.isNegative())
1694 return ConstantRange(-SMax, -SMin + 1);
1696 // Range crosses zero.
1697 return ConstantRange::getNonEmpty(APInt::getZero(getBitWidth()),
1698 APIntOps::umax(-SMin, SMax) + 1);
1701 ConstantRange ConstantRange::ctlz(bool ZeroIsPoison) const {
1702 if (isEmptySet())
1703 return getEmpty();
1705 APInt Zero = APInt::getZero(getBitWidth());
1706 if (ZeroIsPoison && contains(Zero)) {
1707 // ZeroIsPoison is set, and zero is contained. We discern three cases, in
1708 // which a zero can appear:
1709 // 1) Lower is zero, handling cases of kind [0, 1), [0, 2), etc.
1710 // 2) Upper is zero, wrapped set, handling cases of kind [3, 0], etc.
1711 // 3) Zero contained in a wrapped set, e.g., [3, 2), [3, 1), etc.
1713 if (getLower().isZero()) {
1714 if ((getUpper() - 1).isZero()) {
1715 // We have in input interval of kind [0, 1). In this case we cannot
1716 // really help but return empty-set.
1717 return getEmpty();
1720 // Compute the resulting range by excluding zero from Lower.
1721 return ConstantRange(
1722 APInt(getBitWidth(), (getUpper() - 1).countl_zero()),
1723 APInt(getBitWidth(), (getLower() + 1).countl_zero() + 1));
1724 } else if ((getUpper() - 1).isZero()) {
1725 // Compute the resulting range by excluding zero from Upper.
1726 return ConstantRange(Zero,
1727 APInt(getBitWidth(), getLower().countl_zero() + 1));
1728 } else {
1729 return ConstantRange(Zero, APInt(getBitWidth(), getBitWidth()));
1733 // Zero is either safe or not in the range. The output range is composed by
1734 // the result of countLeadingZero of the two extremes.
1735 return getNonEmpty(APInt(getBitWidth(), getUnsignedMax().countl_zero()),
1736 APInt(getBitWidth(), getUnsignedMin().countl_zero() + 1));
1739 ConstantRange::OverflowResult ConstantRange::unsignedAddMayOverflow(
1740 const ConstantRange &Other) const {
1741 if (isEmptySet() || Other.isEmptySet())
1742 return OverflowResult::MayOverflow;
1744 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1745 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1747 // a u+ b overflows high iff a u> ~b.
1748 if (Min.ugt(~OtherMin))
1749 return OverflowResult::AlwaysOverflowsHigh;
1750 if (Max.ugt(~OtherMax))
1751 return OverflowResult::MayOverflow;
1752 return OverflowResult::NeverOverflows;
1755 ConstantRange::OverflowResult ConstantRange::signedAddMayOverflow(
1756 const ConstantRange &Other) const {
1757 if (isEmptySet() || Other.isEmptySet())
1758 return OverflowResult::MayOverflow;
1760 APInt Min = getSignedMin(), Max = getSignedMax();
1761 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1763 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1764 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1766 // a s+ b overflows high iff a s>=0 && b s>= 0 && a s> smax - b.
1767 // a s+ b overflows low iff a s< 0 && b s< 0 && a s< smin - b.
1768 if (Min.isNonNegative() && OtherMin.isNonNegative() &&
1769 Min.sgt(SignedMax - OtherMin))
1770 return OverflowResult::AlwaysOverflowsHigh;
1771 if (Max.isNegative() && OtherMax.isNegative() &&
1772 Max.slt(SignedMin - OtherMax))
1773 return OverflowResult::AlwaysOverflowsLow;
1775 if (Max.isNonNegative() && OtherMax.isNonNegative() &&
1776 Max.sgt(SignedMax - OtherMax))
1777 return OverflowResult::MayOverflow;
1778 if (Min.isNegative() && OtherMin.isNegative() &&
1779 Min.slt(SignedMin - OtherMin))
1780 return OverflowResult::MayOverflow;
1782 return OverflowResult::NeverOverflows;
1785 ConstantRange::OverflowResult ConstantRange::unsignedSubMayOverflow(
1786 const ConstantRange &Other) const {
1787 if (isEmptySet() || Other.isEmptySet())
1788 return OverflowResult::MayOverflow;
1790 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1791 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1793 // a u- b overflows low iff a u< b.
1794 if (Max.ult(OtherMin))
1795 return OverflowResult::AlwaysOverflowsLow;
1796 if (Min.ult(OtherMax))
1797 return OverflowResult::MayOverflow;
1798 return OverflowResult::NeverOverflows;
1801 ConstantRange::OverflowResult ConstantRange::signedSubMayOverflow(
1802 const ConstantRange &Other) const {
1803 if (isEmptySet() || Other.isEmptySet())
1804 return OverflowResult::MayOverflow;
1806 APInt Min = getSignedMin(), Max = getSignedMax();
1807 APInt OtherMin = Other.getSignedMin(), OtherMax = Other.getSignedMax();
1809 APInt SignedMin = APInt::getSignedMinValue(getBitWidth());
1810 APInt SignedMax = APInt::getSignedMaxValue(getBitWidth());
1812 // a s- b overflows high iff a s>=0 && b s< 0 && a s> smax + b.
1813 // a s- b overflows low iff a s< 0 && b s>= 0 && a s< smin + b.
1814 if (Min.isNonNegative() && OtherMax.isNegative() &&
1815 Min.sgt(SignedMax + OtherMax))
1816 return OverflowResult::AlwaysOverflowsHigh;
1817 if (Max.isNegative() && OtherMin.isNonNegative() &&
1818 Max.slt(SignedMin + OtherMin))
1819 return OverflowResult::AlwaysOverflowsLow;
1821 if (Max.isNonNegative() && OtherMin.isNegative() &&
1822 Max.sgt(SignedMax + OtherMin))
1823 return OverflowResult::MayOverflow;
1824 if (Min.isNegative() && OtherMax.isNonNegative() &&
1825 Min.slt(SignedMin + OtherMax))
1826 return OverflowResult::MayOverflow;
1828 return OverflowResult::NeverOverflows;
1831 ConstantRange::OverflowResult ConstantRange::unsignedMulMayOverflow(
1832 const ConstantRange &Other) const {
1833 if (isEmptySet() || Other.isEmptySet())
1834 return OverflowResult::MayOverflow;
1836 APInt Min = getUnsignedMin(), Max = getUnsignedMax();
1837 APInt OtherMin = Other.getUnsignedMin(), OtherMax = Other.getUnsignedMax();
1838 bool Overflow;
1840 (void) Min.umul_ov(OtherMin, Overflow);
1841 if (Overflow)
1842 return OverflowResult::AlwaysOverflowsHigh;
1844 (void) Max.umul_ov(OtherMax, Overflow);
1845 if (Overflow)
1846 return OverflowResult::MayOverflow;
1848 return OverflowResult::NeverOverflows;
1851 void ConstantRange::print(raw_ostream &OS) const {
1852 if (isFullSet())
1853 OS << "full-set";
1854 else if (isEmptySet())
1855 OS << "empty-set";
1856 else
1857 OS << "[" << Lower << "," << Upper << ")";
1860 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1861 LLVM_DUMP_METHOD void ConstantRange::dump() const {
1862 print(dbgs());
1864 #endif
1866 ConstantRange llvm::getConstantRangeFromMetadata(const MDNode &Ranges) {
1867 const unsigned NumRanges = Ranges.getNumOperands() / 2;
1868 assert(NumRanges >= 1 && "Must have at least one range!");
1869 assert(Ranges.getNumOperands() % 2 == 0 && "Must be a sequence of pairs");
1871 auto *FirstLow = mdconst::extract<ConstantInt>(Ranges.getOperand(0));
1872 auto *FirstHigh = mdconst::extract<ConstantInt>(Ranges.getOperand(1));
1874 ConstantRange CR(FirstLow->getValue(), FirstHigh->getValue());
1876 for (unsigned i = 1; i < NumRanges; ++i) {
1877 auto *Low = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 0));
1878 auto *High = mdconst::extract<ConstantInt>(Ranges.getOperand(2 * i + 1));
1880 // Note: unionWith will potentially create a range that contains values not
1881 // contained in any of the original N ranges.
1882 CR = CR.unionWith(ConstantRange(Low->getValue(), High->getValue()));
1885 return CR;