Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / IR / Constants.cpp
blob58cbde1bfb530dfad0b453ae26c98c8ac2fe3d67
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Constant* classes.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Constants.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringMap.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/ConstantFold.h"
20 #include "llvm/IR/DerivedTypes.h"
21 #include "llvm/IR/Function.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/GlobalAlias.h"
24 #include "llvm/IR/GlobalIFunc.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Instructions.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/IR/PatternMatch.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
35 using namespace llvm;
36 using namespace PatternMatch;
38 //===----------------------------------------------------------------------===//
39 // Constant Class
40 //===----------------------------------------------------------------------===//
42 bool Constant::isNegativeZeroValue() const {
43 // Floating point values have an explicit -0.0 value.
44 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
45 return CFP->isZero() && CFP->isNegative();
47 // Equivalent for a vector of -0.0's.
48 if (getType()->isVectorTy())
49 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
50 return SplatCFP->isNegativeZeroValue();
52 // We've already handled true FP case; any other FP vectors can't represent -0.0.
53 if (getType()->isFPOrFPVectorTy())
54 return false;
56 // Otherwise, just use +0.0.
57 return isNullValue();
60 // Return true iff this constant is positive zero (floating point), negative
61 // zero (floating point), or a null value.
62 bool Constant::isZeroValue() const {
63 // Floating point values have an explicit -0.0 value.
64 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
65 return CFP->isZero();
67 // Check for constant splat vectors of 1 values.
68 if (getType()->isVectorTy())
69 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
70 return SplatCFP->isZero();
72 // Otherwise, just use +0.0.
73 return isNullValue();
76 bool Constant::isNullValue() const {
77 // 0 is null.
78 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
79 return CI->isZero();
81 // +0.0 is null.
82 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
83 // ppc_fp128 determine isZero using high order double only
84 // Should check the bitwise value to make sure all bits are zero.
85 return CFP->isExactlyValue(+0.0);
87 // constant zero is zero for aggregates, cpnull is null for pointers, none for
88 // tokens.
89 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this) ||
90 isa<ConstantTokenNone>(this) || isa<ConstantTargetNone>(this);
93 bool Constant::isAllOnesValue() const {
94 // Check for -1 integers
95 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
96 return CI->isMinusOne();
98 // Check for FP which are bitcasted from -1 integers
99 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
100 return CFP->getValueAPF().bitcastToAPInt().isAllOnes();
102 // Check for constant splat vectors of 1 values.
103 if (getType()->isVectorTy())
104 if (const auto *SplatVal = getSplatValue())
105 return SplatVal->isAllOnesValue();
107 return false;
110 bool Constant::isOneValue() const {
111 // Check for 1 integers
112 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
113 return CI->isOne();
115 // Check for FP which are bitcasted from 1 integers
116 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117 return CFP->getValueAPF().bitcastToAPInt().isOne();
119 // Check for constant splat vectors of 1 values.
120 if (getType()->isVectorTy())
121 if (const auto *SplatVal = getSplatValue())
122 return SplatVal->isOneValue();
124 return false;
127 bool Constant::isNotOneValue() const {
128 // Check for 1 integers
129 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
130 return !CI->isOneValue();
132 // Check for FP which are bitcasted from 1 integers
133 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
134 return !CFP->getValueAPF().bitcastToAPInt().isOne();
136 // Check that vectors don't contain 1
137 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
138 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
139 Constant *Elt = getAggregateElement(I);
140 if (!Elt || !Elt->isNotOneValue())
141 return false;
143 return true;
146 // Check for splats that don't contain 1
147 if (getType()->isVectorTy())
148 if (const auto *SplatVal = getSplatValue())
149 return SplatVal->isNotOneValue();
151 // It *may* contain 1, we can't tell.
152 return false;
155 bool Constant::isMinSignedValue() const {
156 // Check for INT_MIN integers
157 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
158 return CI->isMinValue(/*isSigned=*/true);
160 // Check for FP which are bitcasted from INT_MIN integers
161 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
162 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
164 // Check for splats of INT_MIN values.
165 if (getType()->isVectorTy())
166 if (const auto *SplatVal = getSplatValue())
167 return SplatVal->isMinSignedValue();
169 return false;
172 bool Constant::isNotMinSignedValue() const {
173 // Check for INT_MIN integers
174 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
175 return !CI->isMinValue(/*isSigned=*/true);
177 // Check for FP which are bitcasted from INT_MIN integers
178 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
179 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
181 // Check that vectors don't contain INT_MIN
182 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
183 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
184 Constant *Elt = getAggregateElement(I);
185 if (!Elt || !Elt->isNotMinSignedValue())
186 return false;
188 return true;
191 // Check for splats that aren't INT_MIN
192 if (getType()->isVectorTy())
193 if (const auto *SplatVal = getSplatValue())
194 return SplatVal->isNotMinSignedValue();
196 // It *may* contain INT_MIN, we can't tell.
197 return false;
200 bool Constant::isFiniteNonZeroFP() const {
201 if (auto *CFP = dyn_cast<ConstantFP>(this))
202 return CFP->getValueAPF().isFiniteNonZero();
204 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
205 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
206 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
207 if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
208 return false;
210 return true;
213 if (getType()->isVectorTy())
214 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
215 return SplatCFP->isFiniteNonZeroFP();
217 // It *may* contain finite non-zero, we can't tell.
218 return false;
221 bool Constant::isNormalFP() const {
222 if (auto *CFP = dyn_cast<ConstantFP>(this))
223 return CFP->getValueAPF().isNormal();
225 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
226 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
227 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
228 if (!CFP || !CFP->getValueAPF().isNormal())
229 return false;
231 return true;
234 if (getType()->isVectorTy())
235 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
236 return SplatCFP->isNormalFP();
238 // It *may* contain a normal fp value, we can't tell.
239 return false;
242 bool Constant::hasExactInverseFP() const {
243 if (auto *CFP = dyn_cast<ConstantFP>(this))
244 return CFP->getValueAPF().getExactInverse(nullptr);
246 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
247 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
248 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
249 if (!CFP || !CFP->getValueAPF().getExactInverse(nullptr))
250 return false;
252 return true;
255 if (getType()->isVectorTy())
256 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
257 return SplatCFP->hasExactInverseFP();
259 // It *may* have an exact inverse fp value, we can't tell.
260 return false;
263 bool Constant::isNaN() const {
264 if (auto *CFP = dyn_cast<ConstantFP>(this))
265 return CFP->isNaN();
267 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
268 for (unsigned I = 0, E = VTy->getNumElements(); I != E; ++I) {
269 auto *CFP = dyn_cast_or_null<ConstantFP>(getAggregateElement(I));
270 if (!CFP || !CFP->isNaN())
271 return false;
273 return true;
276 if (getType()->isVectorTy())
277 if (const auto *SplatCFP = dyn_cast_or_null<ConstantFP>(getSplatValue()))
278 return SplatCFP->isNaN();
280 // It *may* be NaN, we can't tell.
281 return false;
284 bool Constant::isElementWiseEqual(Value *Y) const {
285 // Are they fully identical?
286 if (this == Y)
287 return true;
289 // The input value must be a vector constant with the same type.
290 auto *VTy = dyn_cast<VectorType>(getType());
291 if (!isa<Constant>(Y) || !VTy || VTy != Y->getType())
292 return false;
294 // TODO: Compare pointer constants?
295 if (!(VTy->getElementType()->isIntegerTy() ||
296 VTy->getElementType()->isFloatingPointTy()))
297 return false;
299 // They may still be identical element-wise (if they have `undef`s).
300 // Bitcast to integer to allow exact bitwise comparison for all types.
301 Type *IntTy = VectorType::getInteger(VTy);
302 Constant *C0 = ConstantExpr::getBitCast(const_cast<Constant *>(this), IntTy);
303 Constant *C1 = ConstantExpr::getBitCast(cast<Constant>(Y), IntTy);
304 Constant *CmpEq = ConstantExpr::getICmp(ICmpInst::ICMP_EQ, C0, C1);
305 return isa<UndefValue>(CmpEq) || match(CmpEq, m_One());
308 static bool
309 containsUndefinedElement(const Constant *C,
310 function_ref<bool(const Constant *)> HasFn) {
311 if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
312 if (HasFn(C))
313 return true;
314 if (isa<ConstantAggregateZero>(C))
315 return false;
316 if (isa<ScalableVectorType>(C->getType()))
317 return false;
319 for (unsigned i = 0, e = cast<FixedVectorType>(VTy)->getNumElements();
320 i != e; ++i) {
321 if (Constant *Elem = C->getAggregateElement(i))
322 if (HasFn(Elem))
323 return true;
327 return false;
330 bool Constant::containsUndefOrPoisonElement() const {
331 return containsUndefinedElement(
332 this, [&](const auto *C) { return isa<UndefValue>(C); });
335 bool Constant::containsPoisonElement() const {
336 return containsUndefinedElement(
337 this, [&](const auto *C) { return isa<PoisonValue>(C); });
340 bool Constant::containsUndefElement() const {
341 return containsUndefinedElement(this, [&](const auto *C) {
342 return isa<UndefValue>(C) && !isa<PoisonValue>(C);
346 bool Constant::containsConstantExpression() const {
347 if (auto *VTy = dyn_cast<FixedVectorType>(getType())) {
348 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
349 if (isa<ConstantExpr>(getAggregateElement(i)))
350 return true;
352 return false;
355 /// Constructor to create a '0' constant of arbitrary type.
356 Constant *Constant::getNullValue(Type *Ty) {
357 switch (Ty->getTypeID()) {
358 case Type::IntegerTyID:
359 return ConstantInt::get(Ty, 0);
360 case Type::HalfTyID:
361 case Type::BFloatTyID:
362 case Type::FloatTyID:
363 case Type::DoubleTyID:
364 case Type::X86_FP80TyID:
365 case Type::FP128TyID:
366 case Type::PPC_FP128TyID:
367 return ConstantFP::get(Ty->getContext(),
368 APFloat::getZero(Ty->getFltSemantics()));
369 case Type::PointerTyID:
370 return ConstantPointerNull::get(cast<PointerType>(Ty));
371 case Type::StructTyID:
372 case Type::ArrayTyID:
373 case Type::FixedVectorTyID:
374 case Type::ScalableVectorTyID:
375 return ConstantAggregateZero::get(Ty);
376 case Type::TokenTyID:
377 return ConstantTokenNone::get(Ty->getContext());
378 case Type::TargetExtTyID:
379 return ConstantTargetNone::get(cast<TargetExtType>(Ty));
380 default:
381 // Function, Label, or Opaque type?
382 llvm_unreachable("Cannot create a null constant of that type!");
386 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
387 Type *ScalarTy = Ty->getScalarType();
389 // Create the base integer constant.
390 Constant *C = ConstantInt::get(Ty->getContext(), V);
392 // Convert an integer to a pointer, if necessary.
393 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
394 C = ConstantExpr::getIntToPtr(C, PTy);
396 // Broadcast a scalar to a vector, if necessary.
397 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
398 C = ConstantVector::getSplat(VTy->getElementCount(), C);
400 return C;
403 Constant *Constant::getAllOnesValue(Type *Ty) {
404 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
405 return ConstantInt::get(Ty->getContext(),
406 APInt::getAllOnes(ITy->getBitWidth()));
408 if (Ty->isFloatingPointTy()) {
409 APFloat FL = APFloat::getAllOnesValue(Ty->getFltSemantics());
410 return ConstantFP::get(Ty->getContext(), FL);
413 VectorType *VTy = cast<VectorType>(Ty);
414 return ConstantVector::getSplat(VTy->getElementCount(),
415 getAllOnesValue(VTy->getElementType()));
418 Constant *Constant::getAggregateElement(unsigned Elt) const {
419 assert((getType()->isAggregateType() || getType()->isVectorTy()) &&
420 "Must be an aggregate/vector constant");
422 if (const auto *CC = dyn_cast<ConstantAggregate>(this))
423 return Elt < CC->getNumOperands() ? CC->getOperand(Elt) : nullptr;
425 if (const auto *CAZ = dyn_cast<ConstantAggregateZero>(this))
426 return Elt < CAZ->getElementCount().getKnownMinValue()
427 ? CAZ->getElementValue(Elt)
428 : nullptr;
430 // FIXME: getNumElements() will fail for non-fixed vector types.
431 if (isa<ScalableVectorType>(getType()))
432 return nullptr;
434 if (const auto *PV = dyn_cast<PoisonValue>(this))
435 return Elt < PV->getNumElements() ? PV->getElementValue(Elt) : nullptr;
437 if (const auto *UV = dyn_cast<UndefValue>(this))
438 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
440 if (const auto *CDS = dyn_cast<ConstantDataSequential>(this))
441 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
442 : nullptr;
444 return nullptr;
447 Constant *Constant::getAggregateElement(Constant *Elt) const {
448 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
449 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) {
450 // Check if the constant fits into an uint64_t.
451 if (CI->getValue().getActiveBits() > 64)
452 return nullptr;
453 return getAggregateElement(CI->getZExtValue());
455 return nullptr;
458 void Constant::destroyConstant() {
459 /// First call destroyConstantImpl on the subclass. This gives the subclass
460 /// a chance to remove the constant from any maps/pools it's contained in.
461 switch (getValueID()) {
462 default:
463 llvm_unreachable("Not a constant!");
464 #define HANDLE_CONSTANT(Name) \
465 case Value::Name##Val: \
466 cast<Name>(this)->destroyConstantImpl(); \
467 break;
468 #include "llvm/IR/Value.def"
471 // When a Constant is destroyed, there may be lingering
472 // references to the constant by other constants in the constant pool. These
473 // constants are implicitly dependent on the module that is being deleted,
474 // but they don't know that. Because we only find out when the CPV is
475 // deleted, we must now notify all of our users (that should only be
476 // Constants) that they are, in fact, invalid now and should be deleted.
478 while (!use_empty()) {
479 Value *V = user_back();
480 #ifndef NDEBUG // Only in -g mode...
481 if (!isa<Constant>(V)) {
482 dbgs() << "While deleting: " << *this
483 << "\n\nUse still stuck around after Def is destroyed: " << *V
484 << "\n\n";
486 #endif
487 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
488 cast<Constant>(V)->destroyConstant();
490 // The constant should remove itself from our use list...
491 assert((use_empty() || user_back() != V) && "Constant not removed!");
494 // Value has no outstanding references it is safe to delete it now...
495 deleteConstant(this);
498 void llvm::deleteConstant(Constant *C) {
499 switch (C->getValueID()) {
500 case Constant::ConstantIntVal:
501 delete static_cast<ConstantInt *>(C);
502 break;
503 case Constant::ConstantFPVal:
504 delete static_cast<ConstantFP *>(C);
505 break;
506 case Constant::ConstantAggregateZeroVal:
507 delete static_cast<ConstantAggregateZero *>(C);
508 break;
509 case Constant::ConstantArrayVal:
510 delete static_cast<ConstantArray *>(C);
511 break;
512 case Constant::ConstantStructVal:
513 delete static_cast<ConstantStruct *>(C);
514 break;
515 case Constant::ConstantVectorVal:
516 delete static_cast<ConstantVector *>(C);
517 break;
518 case Constant::ConstantPointerNullVal:
519 delete static_cast<ConstantPointerNull *>(C);
520 break;
521 case Constant::ConstantDataArrayVal:
522 delete static_cast<ConstantDataArray *>(C);
523 break;
524 case Constant::ConstantDataVectorVal:
525 delete static_cast<ConstantDataVector *>(C);
526 break;
527 case Constant::ConstantTokenNoneVal:
528 delete static_cast<ConstantTokenNone *>(C);
529 break;
530 case Constant::BlockAddressVal:
531 delete static_cast<BlockAddress *>(C);
532 break;
533 case Constant::DSOLocalEquivalentVal:
534 delete static_cast<DSOLocalEquivalent *>(C);
535 break;
536 case Constant::NoCFIValueVal:
537 delete static_cast<NoCFIValue *>(C);
538 break;
539 case Constant::UndefValueVal:
540 delete static_cast<UndefValue *>(C);
541 break;
542 case Constant::PoisonValueVal:
543 delete static_cast<PoisonValue *>(C);
544 break;
545 case Constant::ConstantExprVal:
546 if (isa<CastConstantExpr>(C))
547 delete static_cast<CastConstantExpr *>(C);
548 else if (isa<BinaryConstantExpr>(C))
549 delete static_cast<BinaryConstantExpr *>(C);
550 else if (isa<ExtractElementConstantExpr>(C))
551 delete static_cast<ExtractElementConstantExpr *>(C);
552 else if (isa<InsertElementConstantExpr>(C))
553 delete static_cast<InsertElementConstantExpr *>(C);
554 else if (isa<ShuffleVectorConstantExpr>(C))
555 delete static_cast<ShuffleVectorConstantExpr *>(C);
556 else if (isa<GetElementPtrConstantExpr>(C))
557 delete static_cast<GetElementPtrConstantExpr *>(C);
558 else if (isa<CompareConstantExpr>(C))
559 delete static_cast<CompareConstantExpr *>(C);
560 else
561 llvm_unreachable("Unexpected constant expr");
562 break;
563 default:
564 llvm_unreachable("Unexpected constant");
568 /// Check if C contains a GlobalValue for which Predicate is true.
569 static bool
570 ConstHasGlobalValuePredicate(const Constant *C,
571 bool (*Predicate)(const GlobalValue *)) {
572 SmallPtrSet<const Constant *, 8> Visited;
573 SmallVector<const Constant *, 8> WorkList;
574 WorkList.push_back(C);
575 Visited.insert(C);
577 while (!WorkList.empty()) {
578 const Constant *WorkItem = WorkList.pop_back_val();
579 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
580 if (Predicate(GV))
581 return true;
582 for (const Value *Op : WorkItem->operands()) {
583 const Constant *ConstOp = dyn_cast<Constant>(Op);
584 if (!ConstOp)
585 continue;
586 if (Visited.insert(ConstOp).second)
587 WorkList.push_back(ConstOp);
590 return false;
593 bool Constant::isThreadDependent() const {
594 auto DLLImportPredicate = [](const GlobalValue *GV) {
595 return GV->isThreadLocal();
597 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
600 bool Constant::isDLLImportDependent() const {
601 auto DLLImportPredicate = [](const GlobalValue *GV) {
602 return GV->hasDLLImportStorageClass();
604 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
607 bool Constant::isConstantUsed() const {
608 for (const User *U : users()) {
609 const Constant *UC = dyn_cast<Constant>(U);
610 if (!UC || isa<GlobalValue>(UC))
611 return true;
613 if (UC->isConstantUsed())
614 return true;
616 return false;
619 bool Constant::needsDynamicRelocation() const {
620 return getRelocationInfo() == GlobalRelocation;
623 bool Constant::needsRelocation() const {
624 return getRelocationInfo() != NoRelocation;
627 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
628 if (isa<GlobalValue>(this))
629 return GlobalRelocation; // Global reference.
631 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
632 return BA->getFunction()->getRelocationInfo();
634 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) {
635 if (CE->getOpcode() == Instruction::Sub) {
636 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
637 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
638 if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt &&
639 RHS->getOpcode() == Instruction::PtrToInt) {
640 Constant *LHSOp0 = LHS->getOperand(0);
641 Constant *RHSOp0 = RHS->getOperand(0);
643 // While raw uses of blockaddress need to be relocated, differences
644 // between two of them don't when they are for labels in the same
645 // function. This is a common idiom when creating a table for the
646 // indirect goto extension, so we handle it efficiently here.
647 if (isa<BlockAddress>(LHSOp0) && isa<BlockAddress>(RHSOp0) &&
648 cast<BlockAddress>(LHSOp0)->getFunction() ==
649 cast<BlockAddress>(RHSOp0)->getFunction())
650 return NoRelocation;
652 // Relative pointers do not need to be dynamically relocated.
653 if (auto *RHSGV =
654 dyn_cast<GlobalValue>(RHSOp0->stripInBoundsConstantOffsets())) {
655 auto *LHS = LHSOp0->stripInBoundsConstantOffsets();
656 if (auto *LHSGV = dyn_cast<GlobalValue>(LHS)) {
657 if (LHSGV->isDSOLocal() && RHSGV->isDSOLocal())
658 return LocalRelocation;
659 } else if (isa<DSOLocalEquivalent>(LHS)) {
660 if (RHSGV->isDSOLocal())
661 return LocalRelocation;
668 PossibleRelocationsTy Result = NoRelocation;
669 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
670 Result =
671 std::max(cast<Constant>(getOperand(i))->getRelocationInfo(), Result);
673 return Result;
676 /// Return true if the specified constantexpr is dead. This involves
677 /// recursively traversing users of the constantexpr.
678 /// If RemoveDeadUsers is true, also remove dead users at the same time.
679 static bool constantIsDead(const Constant *C, bool RemoveDeadUsers) {
680 if (isa<GlobalValue>(C)) return false; // Cannot remove this
682 Value::const_user_iterator I = C->user_begin(), E = C->user_end();
683 while (I != E) {
684 const Constant *User = dyn_cast<Constant>(*I);
685 if (!User) return false; // Non-constant usage;
686 if (!constantIsDead(User, RemoveDeadUsers))
687 return false; // Constant wasn't dead
689 // Just removed User, so the iterator was invalidated.
690 // Since we return immediately upon finding a live user, we can always
691 // restart from user_begin().
692 if (RemoveDeadUsers)
693 I = C->user_begin();
694 else
695 ++I;
698 if (RemoveDeadUsers) {
699 // If C is only used by metadata, it should not be preserved but should
700 // have its uses replaced.
701 ReplaceableMetadataImpl::SalvageDebugInfo(*C);
702 const_cast<Constant *>(C)->destroyConstant();
705 return true;
708 void Constant::removeDeadConstantUsers() const {
709 Value::const_user_iterator I = user_begin(), E = user_end();
710 Value::const_user_iterator LastNonDeadUser = E;
711 while (I != E) {
712 const Constant *User = dyn_cast<Constant>(*I);
713 if (!User) {
714 LastNonDeadUser = I;
715 ++I;
716 continue;
719 if (!constantIsDead(User, /* RemoveDeadUsers= */ true)) {
720 // If the constant wasn't dead, remember that this was the last live use
721 // and move on to the next constant.
722 LastNonDeadUser = I;
723 ++I;
724 continue;
727 // If the constant was dead, then the iterator is invalidated.
728 if (LastNonDeadUser == E)
729 I = user_begin();
730 else
731 I = std::next(LastNonDeadUser);
735 bool Constant::hasOneLiveUse() const { return hasNLiveUses(1); }
737 bool Constant::hasZeroLiveUses() const { return hasNLiveUses(0); }
739 bool Constant::hasNLiveUses(unsigned N) const {
740 unsigned NumUses = 0;
741 for (const Use &U : uses()) {
742 const Constant *User = dyn_cast<Constant>(U.getUser());
743 if (!User || !constantIsDead(User, /* RemoveDeadUsers= */ false)) {
744 ++NumUses;
746 if (NumUses > N)
747 return false;
750 return NumUses == N;
753 Constant *Constant::replaceUndefsWith(Constant *C, Constant *Replacement) {
754 assert(C && Replacement && "Expected non-nullptr constant arguments");
755 Type *Ty = C->getType();
756 if (match(C, m_Undef())) {
757 assert(Ty == Replacement->getType() && "Expected matching types");
758 return Replacement;
761 // Don't know how to deal with this constant.
762 auto *VTy = dyn_cast<FixedVectorType>(Ty);
763 if (!VTy)
764 return C;
766 unsigned NumElts = VTy->getNumElements();
767 SmallVector<Constant *, 32> NewC(NumElts);
768 for (unsigned i = 0; i != NumElts; ++i) {
769 Constant *EltC = C->getAggregateElement(i);
770 assert((!EltC || EltC->getType() == Replacement->getType()) &&
771 "Expected matching types");
772 NewC[i] = EltC && match(EltC, m_Undef()) ? Replacement : EltC;
774 return ConstantVector::get(NewC);
777 Constant *Constant::mergeUndefsWith(Constant *C, Constant *Other) {
778 assert(C && Other && "Expected non-nullptr constant arguments");
779 if (match(C, m_Undef()))
780 return C;
782 Type *Ty = C->getType();
783 if (match(Other, m_Undef()))
784 return UndefValue::get(Ty);
786 auto *VTy = dyn_cast<FixedVectorType>(Ty);
787 if (!VTy)
788 return C;
790 Type *EltTy = VTy->getElementType();
791 unsigned NumElts = VTy->getNumElements();
792 assert(isa<FixedVectorType>(Other->getType()) &&
793 cast<FixedVectorType>(Other->getType())->getNumElements() == NumElts &&
794 "Type mismatch");
796 bool FoundExtraUndef = false;
797 SmallVector<Constant *, 32> NewC(NumElts);
798 for (unsigned I = 0; I != NumElts; ++I) {
799 NewC[I] = C->getAggregateElement(I);
800 Constant *OtherEltC = Other->getAggregateElement(I);
801 assert(NewC[I] && OtherEltC && "Unknown vector element");
802 if (!match(NewC[I], m_Undef()) && match(OtherEltC, m_Undef())) {
803 NewC[I] = UndefValue::get(EltTy);
804 FoundExtraUndef = true;
807 if (FoundExtraUndef)
808 return ConstantVector::get(NewC);
809 return C;
812 bool Constant::isManifestConstant() const {
813 if (isa<ConstantData>(this))
814 return true;
815 if (isa<ConstantAggregate>(this) || isa<ConstantExpr>(this)) {
816 for (const Value *Op : operand_values())
817 if (!cast<Constant>(Op)->isManifestConstant())
818 return false;
819 return true;
821 return false;
824 //===----------------------------------------------------------------------===//
825 // ConstantInt
826 //===----------------------------------------------------------------------===//
828 ConstantInt::ConstantInt(IntegerType *Ty, const APInt &V)
829 : ConstantData(Ty, ConstantIntVal), Val(V) {
830 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
833 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
834 LLVMContextImpl *pImpl = Context.pImpl;
835 if (!pImpl->TheTrueVal)
836 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
837 return pImpl->TheTrueVal;
840 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
841 LLVMContextImpl *pImpl = Context.pImpl;
842 if (!pImpl->TheFalseVal)
843 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
844 return pImpl->TheFalseVal;
847 ConstantInt *ConstantInt::getBool(LLVMContext &Context, bool V) {
848 return V ? getTrue(Context) : getFalse(Context);
851 Constant *ConstantInt::getTrue(Type *Ty) {
852 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
853 ConstantInt *TrueC = ConstantInt::getTrue(Ty->getContext());
854 if (auto *VTy = dyn_cast<VectorType>(Ty))
855 return ConstantVector::getSplat(VTy->getElementCount(), TrueC);
856 return TrueC;
859 Constant *ConstantInt::getFalse(Type *Ty) {
860 assert(Ty->isIntOrIntVectorTy(1) && "Type not i1 or vector of i1.");
861 ConstantInt *FalseC = ConstantInt::getFalse(Ty->getContext());
862 if (auto *VTy = dyn_cast<VectorType>(Ty))
863 return ConstantVector::getSplat(VTy->getElementCount(), FalseC);
864 return FalseC;
867 Constant *ConstantInt::getBool(Type *Ty, bool V) {
868 return V ? getTrue(Ty) : getFalse(Ty);
871 // Get a ConstantInt from an APInt.
872 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
873 // get an existing value or the insertion position
874 LLVMContextImpl *pImpl = Context.pImpl;
875 std::unique_ptr<ConstantInt> &Slot =
876 V.isZero() ? pImpl->IntZeroConstants[V.getBitWidth()]
877 : V.isOne() ? pImpl->IntOneConstants[V.getBitWidth()]
878 : pImpl->IntConstants[V];
879 if (!Slot) {
880 // Get the corresponding integer type for the bit width of the value.
881 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
882 Slot.reset(new ConstantInt(ITy, V));
884 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
885 return Slot.get();
888 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
889 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
891 // For vectors, broadcast the value.
892 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
893 return ConstantVector::getSplat(VTy->getElementCount(), C);
895 return C;
898 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) {
899 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
902 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
903 ConstantInt *C = get(Ty->getContext(), V);
904 assert(C->getType() == Ty->getScalarType() &&
905 "ConstantInt type doesn't match the type implied by its value!");
907 // For vectors, broadcast the value.
908 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
909 return ConstantVector::getSplat(VTy->getElementCount(), C);
911 return C;
914 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) {
915 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
918 /// Remove the constant from the constant table.
919 void ConstantInt::destroyConstantImpl() {
920 llvm_unreachable("You can't ConstantInt->destroyConstantImpl()!");
923 //===----------------------------------------------------------------------===//
924 // ConstantFP
925 //===----------------------------------------------------------------------===//
927 Constant *ConstantFP::get(Type *Ty, double V) {
928 LLVMContext &Context = Ty->getContext();
930 APFloat FV(V);
931 bool ignored;
932 FV.convert(Ty->getScalarType()->getFltSemantics(),
933 APFloat::rmNearestTiesToEven, &ignored);
934 Constant *C = get(Context, FV);
936 // For vectors, broadcast the value.
937 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
938 return ConstantVector::getSplat(VTy->getElementCount(), C);
940 return C;
943 Constant *ConstantFP::get(Type *Ty, const APFloat &V) {
944 ConstantFP *C = get(Ty->getContext(), V);
945 assert(C->getType() == Ty->getScalarType() &&
946 "ConstantFP type doesn't match the type implied by its value!");
948 // For vectors, broadcast the value.
949 if (auto *VTy = dyn_cast<VectorType>(Ty))
950 return ConstantVector::getSplat(VTy->getElementCount(), C);
952 return C;
955 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
956 LLVMContext &Context = Ty->getContext();
958 APFloat FV(Ty->getScalarType()->getFltSemantics(), Str);
959 Constant *C = get(Context, FV);
961 // For vectors, broadcast the value.
962 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
963 return ConstantVector::getSplat(VTy->getElementCount(), C);
965 return C;
968 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, uint64_t Payload) {
969 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
970 APFloat NaN = APFloat::getNaN(Semantics, Negative, Payload);
971 Constant *C = get(Ty->getContext(), NaN);
973 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
974 return ConstantVector::getSplat(VTy->getElementCount(), C);
976 return C;
979 Constant *ConstantFP::getQNaN(Type *Ty, bool Negative, APInt *Payload) {
980 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
981 APFloat NaN = APFloat::getQNaN(Semantics, Negative, Payload);
982 Constant *C = get(Ty->getContext(), NaN);
984 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
985 return ConstantVector::getSplat(VTy->getElementCount(), C);
987 return C;
990 Constant *ConstantFP::getSNaN(Type *Ty, bool Negative, APInt *Payload) {
991 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
992 APFloat NaN = APFloat::getSNaN(Semantics, Negative, Payload);
993 Constant *C = get(Ty->getContext(), NaN);
995 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
996 return ConstantVector::getSplat(VTy->getElementCount(), C);
998 return C;
1001 Constant *ConstantFP::getZero(Type *Ty, bool Negative) {
1002 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1003 APFloat NegZero = APFloat::getZero(Semantics, Negative);
1004 Constant *C = get(Ty->getContext(), NegZero);
1006 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1007 return ConstantVector::getSplat(VTy->getElementCount(), C);
1009 return C;
1013 // ConstantFP accessors.
1014 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
1015 LLVMContextImpl* pImpl = Context.pImpl;
1017 std::unique_ptr<ConstantFP> &Slot = pImpl->FPConstants[V];
1019 if (!Slot) {
1020 Type *Ty = Type::getFloatingPointTy(Context, V.getSemantics());
1021 Slot.reset(new ConstantFP(Ty, V));
1024 return Slot.get();
1027 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
1028 const fltSemantics &Semantics = Ty->getScalarType()->getFltSemantics();
1029 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
1031 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1032 return ConstantVector::getSplat(VTy->getElementCount(), C);
1034 return C;
1037 ConstantFP::ConstantFP(Type *Ty, const APFloat &V)
1038 : ConstantData(Ty, ConstantFPVal), Val(V) {
1039 assert(&V.getSemantics() == &Ty->getFltSemantics() &&
1040 "FP type Mismatch");
1043 bool ConstantFP::isExactlyValue(const APFloat &V) const {
1044 return Val.bitwiseIsEqual(V);
1047 /// Remove the constant from the constant table.
1048 void ConstantFP::destroyConstantImpl() {
1049 llvm_unreachable("You can't ConstantFP->destroyConstantImpl()!");
1052 //===----------------------------------------------------------------------===//
1053 // ConstantAggregateZero Implementation
1054 //===----------------------------------------------------------------------===//
1056 Constant *ConstantAggregateZero::getSequentialElement() const {
1057 if (auto *AT = dyn_cast<ArrayType>(getType()))
1058 return Constant::getNullValue(AT->getElementType());
1059 return Constant::getNullValue(cast<VectorType>(getType())->getElementType());
1062 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
1063 return Constant::getNullValue(getType()->getStructElementType(Elt));
1066 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
1067 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1068 return getSequentialElement();
1069 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1072 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
1073 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1074 return getSequentialElement();
1075 return getStructElement(Idx);
1078 ElementCount ConstantAggregateZero::getElementCount() const {
1079 Type *Ty = getType();
1080 if (auto *AT = dyn_cast<ArrayType>(Ty))
1081 return ElementCount::getFixed(AT->getNumElements());
1082 if (auto *VT = dyn_cast<VectorType>(Ty))
1083 return VT->getElementCount();
1084 return ElementCount::getFixed(Ty->getStructNumElements());
1087 //===----------------------------------------------------------------------===//
1088 // UndefValue Implementation
1089 //===----------------------------------------------------------------------===//
1091 UndefValue *UndefValue::getSequentialElement() const {
1092 if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1093 return UndefValue::get(ATy->getElementType());
1094 return UndefValue::get(cast<VectorType>(getType())->getElementType());
1097 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
1098 return UndefValue::get(getType()->getStructElementType(Elt));
1101 UndefValue *UndefValue::getElementValue(Constant *C) const {
1102 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1103 return getSequentialElement();
1104 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1107 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
1108 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1109 return getSequentialElement();
1110 return getStructElement(Idx);
1113 unsigned UndefValue::getNumElements() const {
1114 Type *Ty = getType();
1115 if (auto *AT = dyn_cast<ArrayType>(Ty))
1116 return AT->getNumElements();
1117 if (auto *VT = dyn_cast<VectorType>(Ty))
1118 return cast<FixedVectorType>(VT)->getNumElements();
1119 return Ty->getStructNumElements();
1122 //===----------------------------------------------------------------------===//
1123 // PoisonValue Implementation
1124 //===----------------------------------------------------------------------===//
1126 PoisonValue *PoisonValue::getSequentialElement() const {
1127 if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
1128 return PoisonValue::get(ATy->getElementType());
1129 return PoisonValue::get(cast<VectorType>(getType())->getElementType());
1132 PoisonValue *PoisonValue::getStructElement(unsigned Elt) const {
1133 return PoisonValue::get(getType()->getStructElementType(Elt));
1136 PoisonValue *PoisonValue::getElementValue(Constant *C) const {
1137 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1138 return getSequentialElement();
1139 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
1142 PoisonValue *PoisonValue::getElementValue(unsigned Idx) const {
1143 if (isa<ArrayType>(getType()) || isa<VectorType>(getType()))
1144 return getSequentialElement();
1145 return getStructElement(Idx);
1148 //===----------------------------------------------------------------------===//
1149 // ConstantXXX Classes
1150 //===----------------------------------------------------------------------===//
1152 template <typename ItTy, typename EltTy>
1153 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
1154 for (; Start != End; ++Start)
1155 if (*Start != Elt)
1156 return false;
1157 return true;
1160 template <typename SequentialTy, typename ElementTy>
1161 static Constant *getIntSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1162 assert(!V.empty() && "Cannot get empty int sequence.");
1164 SmallVector<ElementTy, 16> Elts;
1165 for (Constant *C : V)
1166 if (auto *CI = dyn_cast<ConstantInt>(C))
1167 Elts.push_back(CI->getZExtValue());
1168 else
1169 return nullptr;
1170 return SequentialTy::get(V[0]->getContext(), Elts);
1173 template <typename SequentialTy, typename ElementTy>
1174 static Constant *getFPSequenceIfElementsMatch(ArrayRef<Constant *> V) {
1175 assert(!V.empty() && "Cannot get empty FP sequence.");
1177 SmallVector<ElementTy, 16> Elts;
1178 for (Constant *C : V)
1179 if (auto *CFP = dyn_cast<ConstantFP>(C))
1180 Elts.push_back(CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1181 else
1182 return nullptr;
1183 return SequentialTy::getFP(V[0]->getType(), Elts);
1186 template <typename SequenceTy>
1187 static Constant *getSequenceIfElementsMatch(Constant *C,
1188 ArrayRef<Constant *> V) {
1189 // We speculatively build the elements here even if it turns out that there is
1190 // a constantexpr or something else weird, since it is so uncommon for that to
1191 // happen.
1192 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1193 if (CI->getType()->isIntegerTy(8))
1194 return getIntSequenceIfElementsMatch<SequenceTy, uint8_t>(V);
1195 else if (CI->getType()->isIntegerTy(16))
1196 return getIntSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1197 else if (CI->getType()->isIntegerTy(32))
1198 return getIntSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1199 else if (CI->getType()->isIntegerTy(64))
1200 return getIntSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1201 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1202 if (CFP->getType()->isHalfTy() || CFP->getType()->isBFloatTy())
1203 return getFPSequenceIfElementsMatch<SequenceTy, uint16_t>(V);
1204 else if (CFP->getType()->isFloatTy())
1205 return getFPSequenceIfElementsMatch<SequenceTy, uint32_t>(V);
1206 else if (CFP->getType()->isDoubleTy())
1207 return getFPSequenceIfElementsMatch<SequenceTy, uint64_t>(V);
1210 return nullptr;
1213 ConstantAggregate::ConstantAggregate(Type *T, ValueTy VT,
1214 ArrayRef<Constant *> V)
1215 : Constant(T, VT, OperandTraits<ConstantAggregate>::op_end(this) - V.size(),
1216 V.size()) {
1217 llvm::copy(V, op_begin());
1219 // Check that types match, unless this is an opaque struct.
1220 if (auto *ST = dyn_cast<StructType>(T)) {
1221 if (ST->isOpaque())
1222 return;
1223 for (unsigned I = 0, E = V.size(); I != E; ++I)
1224 assert(V[I]->getType() == ST->getTypeAtIndex(I) &&
1225 "Initializer for struct element doesn't match!");
1229 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
1230 : ConstantAggregate(T, ConstantArrayVal, V) {
1231 assert(V.size() == T->getNumElements() &&
1232 "Invalid initializer for constant array");
1235 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
1236 if (Constant *C = getImpl(Ty, V))
1237 return C;
1238 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
1241 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
1242 // Empty arrays are canonicalized to ConstantAggregateZero.
1243 if (V.empty())
1244 return ConstantAggregateZero::get(Ty);
1246 for (Constant *C : V) {
1247 assert(C->getType() == Ty->getElementType() &&
1248 "Wrong type in array element initializer");
1249 (void)C;
1252 // If this is an all-zero array, return a ConstantAggregateZero object. If
1253 // all undef, return an UndefValue, if "all simple", then return a
1254 // ConstantDataArray.
1255 Constant *C = V[0];
1256 if (isa<PoisonValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1257 return PoisonValue::get(Ty);
1259 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
1260 return UndefValue::get(Ty);
1262 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
1263 return ConstantAggregateZero::get(Ty);
1265 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1266 // the element type is compatible with ConstantDataVector. If so, use it.
1267 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1268 return getSequenceIfElementsMatch<ConstantDataArray>(C, V);
1270 // Otherwise, we really do want to create a ConstantArray.
1271 return nullptr;
1274 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
1275 ArrayRef<Constant*> V,
1276 bool Packed) {
1277 unsigned VecSize = V.size();
1278 SmallVector<Type*, 16> EltTypes(VecSize);
1279 for (unsigned i = 0; i != VecSize; ++i)
1280 EltTypes[i] = V[i]->getType();
1282 return StructType::get(Context, EltTypes, Packed);
1286 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
1287 bool Packed) {
1288 assert(!V.empty() &&
1289 "ConstantStruct::getTypeForElements cannot be called on empty list");
1290 return getTypeForElements(V[0]->getContext(), V, Packed);
1293 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
1294 : ConstantAggregate(T, ConstantStructVal, V) {
1295 assert((T->isOpaque() || V.size() == T->getNumElements()) &&
1296 "Invalid initializer for constant struct");
1299 // ConstantStruct accessors.
1300 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
1301 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
1302 "Incorrect # elements specified to ConstantStruct::get");
1304 // Create a ConstantAggregateZero value if all elements are zeros.
1305 bool isZero = true;
1306 bool isUndef = false;
1307 bool isPoison = false;
1309 if (!V.empty()) {
1310 isUndef = isa<UndefValue>(V[0]);
1311 isPoison = isa<PoisonValue>(V[0]);
1312 isZero = V[0]->isNullValue();
1313 // PoisonValue inherits UndefValue, so its check is not necessary.
1314 if (isUndef || isZero) {
1315 for (Constant *C : V) {
1316 if (!C->isNullValue())
1317 isZero = false;
1318 if (!isa<PoisonValue>(C))
1319 isPoison = false;
1320 if (isa<PoisonValue>(C) || !isa<UndefValue>(C))
1321 isUndef = false;
1325 if (isZero)
1326 return ConstantAggregateZero::get(ST);
1327 if (isPoison)
1328 return PoisonValue::get(ST);
1329 if (isUndef)
1330 return UndefValue::get(ST);
1332 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1335 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1336 : ConstantAggregate(T, ConstantVectorVal, V) {
1337 assert(V.size() == cast<FixedVectorType>(T)->getNumElements() &&
1338 "Invalid initializer for constant vector");
1341 // ConstantVector accessors.
1342 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1343 if (Constant *C = getImpl(V))
1344 return C;
1345 auto *Ty = FixedVectorType::get(V.front()->getType(), V.size());
1346 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1349 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1350 assert(!V.empty() && "Vectors can't be empty");
1351 auto *T = FixedVectorType::get(V.front()->getType(), V.size());
1353 // If this is an all-undef or all-zero vector, return a
1354 // ConstantAggregateZero or UndefValue.
1355 Constant *C = V[0];
1356 bool isZero = C->isNullValue();
1357 bool isUndef = isa<UndefValue>(C);
1358 bool isPoison = isa<PoisonValue>(C);
1360 if (isZero || isUndef) {
1361 for (unsigned i = 1, e = V.size(); i != e; ++i)
1362 if (V[i] != C) {
1363 isZero = isUndef = isPoison = false;
1364 break;
1368 if (isZero)
1369 return ConstantAggregateZero::get(T);
1370 if (isPoison)
1371 return PoisonValue::get(T);
1372 if (isUndef)
1373 return UndefValue::get(T);
1375 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1376 // the element type is compatible with ConstantDataVector. If so, use it.
1377 if (ConstantDataSequential::isElementTypeCompatible(C->getType()))
1378 return getSequenceIfElementsMatch<ConstantDataVector>(C, V);
1380 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1381 // the operand list contains a ConstantExpr or something else strange.
1382 return nullptr;
1385 Constant *ConstantVector::getSplat(ElementCount EC, Constant *V) {
1386 if (!EC.isScalable()) {
1387 // If this splat is compatible with ConstantDataVector, use it instead of
1388 // ConstantVector.
1389 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1390 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1391 return ConstantDataVector::getSplat(EC.getKnownMinValue(), V);
1393 SmallVector<Constant *, 32> Elts(EC.getKnownMinValue(), V);
1394 return get(Elts);
1397 Type *VTy = VectorType::get(V->getType(), EC);
1399 if (V->isNullValue())
1400 return ConstantAggregateZero::get(VTy);
1401 else if (isa<UndefValue>(V))
1402 return UndefValue::get(VTy);
1404 Type *IdxTy = Type::getInt64Ty(VTy->getContext());
1406 // Move scalar into vector.
1407 Constant *PoisonV = PoisonValue::get(VTy);
1408 V = ConstantExpr::getInsertElement(PoisonV, V, ConstantInt::get(IdxTy, 0));
1409 // Build shuffle mask to perform the splat.
1410 SmallVector<int, 8> Zeros(EC.getKnownMinValue(), 0);
1411 // Splat.
1412 return ConstantExpr::getShuffleVector(V, PoisonV, Zeros);
1415 ConstantTokenNone *ConstantTokenNone::get(LLVMContext &Context) {
1416 LLVMContextImpl *pImpl = Context.pImpl;
1417 if (!pImpl->TheNoneToken)
1418 pImpl->TheNoneToken.reset(new ConstantTokenNone(Context));
1419 return pImpl->TheNoneToken.get();
1422 /// Remove the constant from the constant table.
1423 void ConstantTokenNone::destroyConstantImpl() {
1424 llvm_unreachable("You can't ConstantTokenNone->destroyConstantImpl()!");
1427 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1428 // can't be inline because we don't want to #include Instruction.h into
1429 // Constant.h
1430 bool ConstantExpr::isCast() const {
1431 return Instruction::isCast(getOpcode());
1434 bool ConstantExpr::isCompare() const {
1435 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1438 unsigned ConstantExpr::getPredicate() const {
1439 return cast<CompareConstantExpr>(this)->predicate;
1442 ArrayRef<int> ConstantExpr::getShuffleMask() const {
1443 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMask;
1446 Constant *ConstantExpr::getShuffleMaskForBitcode() const {
1447 return cast<ShuffleVectorConstantExpr>(this)->ShuffleMaskForBitcode;
1450 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1451 bool OnlyIfReduced, Type *SrcTy) const {
1452 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1454 // If no operands changed return self.
1455 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1456 return const_cast<ConstantExpr*>(this);
1458 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1459 switch (getOpcode()) {
1460 case Instruction::Trunc:
1461 case Instruction::ZExt:
1462 case Instruction::SExt:
1463 case Instruction::FPTrunc:
1464 case Instruction::FPExt:
1465 case Instruction::UIToFP:
1466 case Instruction::SIToFP:
1467 case Instruction::FPToUI:
1468 case Instruction::FPToSI:
1469 case Instruction::PtrToInt:
1470 case Instruction::IntToPtr:
1471 case Instruction::BitCast:
1472 case Instruction::AddrSpaceCast:
1473 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1474 case Instruction::InsertElement:
1475 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1476 OnlyIfReducedTy);
1477 case Instruction::ExtractElement:
1478 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1479 case Instruction::ShuffleVector:
1480 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], getShuffleMask(),
1481 OnlyIfReducedTy);
1482 case Instruction::GetElementPtr: {
1483 auto *GEPO = cast<GEPOperator>(this);
1484 assert(SrcTy || (Ops[0]->getType() == getOperand(0)->getType()));
1485 return ConstantExpr::getGetElementPtr(
1486 SrcTy ? SrcTy : GEPO->getSourceElementType(), Ops[0], Ops.slice(1),
1487 GEPO->isInBounds(), GEPO->getInRangeIndex(), OnlyIfReducedTy);
1489 case Instruction::ICmp:
1490 case Instruction::FCmp:
1491 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1492 OnlyIfReducedTy);
1493 default:
1494 assert(getNumOperands() == 2 && "Must be binary operator?");
1495 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1496 OnlyIfReducedTy);
1501 //===----------------------------------------------------------------------===//
1502 // isValueValidForType implementations
1504 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1505 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1506 if (Ty->isIntegerTy(1))
1507 return Val == 0 || Val == 1;
1508 return isUIntN(NumBits, Val);
1511 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1512 unsigned NumBits = Ty->getIntegerBitWidth();
1513 if (Ty->isIntegerTy(1))
1514 return Val == 0 || Val == 1 || Val == -1;
1515 return isIntN(NumBits, Val);
1518 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1519 // convert modifies in place, so make a copy.
1520 APFloat Val2 = APFloat(Val);
1521 bool losesInfo;
1522 switch (Ty->getTypeID()) {
1523 default:
1524 return false; // These can't be represented as floating point!
1526 // FIXME rounding mode needs to be more flexible
1527 case Type::HalfTyID: {
1528 if (&Val2.getSemantics() == &APFloat::IEEEhalf())
1529 return true;
1530 Val2.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &losesInfo);
1531 return !losesInfo;
1533 case Type::BFloatTyID: {
1534 if (&Val2.getSemantics() == &APFloat::BFloat())
1535 return true;
1536 Val2.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, &losesInfo);
1537 return !losesInfo;
1539 case Type::FloatTyID: {
1540 if (&Val2.getSemantics() == &APFloat::IEEEsingle())
1541 return true;
1542 Val2.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &losesInfo);
1543 return !losesInfo;
1545 case Type::DoubleTyID: {
1546 if (&Val2.getSemantics() == &APFloat::IEEEhalf() ||
1547 &Val2.getSemantics() == &APFloat::BFloat() ||
1548 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1549 &Val2.getSemantics() == &APFloat::IEEEdouble())
1550 return true;
1551 Val2.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &losesInfo);
1552 return !losesInfo;
1554 case Type::X86_FP80TyID:
1555 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1556 &Val2.getSemantics() == &APFloat::BFloat() ||
1557 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1558 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1559 &Val2.getSemantics() == &APFloat::x87DoubleExtended();
1560 case Type::FP128TyID:
1561 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1562 &Val2.getSemantics() == &APFloat::BFloat() ||
1563 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1564 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1565 &Val2.getSemantics() == &APFloat::IEEEquad();
1566 case Type::PPC_FP128TyID:
1567 return &Val2.getSemantics() == &APFloat::IEEEhalf() ||
1568 &Val2.getSemantics() == &APFloat::BFloat() ||
1569 &Val2.getSemantics() == &APFloat::IEEEsingle() ||
1570 &Val2.getSemantics() == &APFloat::IEEEdouble() ||
1571 &Val2.getSemantics() == &APFloat::PPCDoubleDouble();
1576 //===----------------------------------------------------------------------===//
1577 // Factory Function Implementation
1579 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1580 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1581 "Cannot create an aggregate zero of non-aggregate type!");
1583 std::unique_ptr<ConstantAggregateZero> &Entry =
1584 Ty->getContext().pImpl->CAZConstants[Ty];
1585 if (!Entry)
1586 Entry.reset(new ConstantAggregateZero(Ty));
1588 return Entry.get();
1591 /// Remove the constant from the constant table.
1592 void ConstantAggregateZero::destroyConstantImpl() {
1593 getContext().pImpl->CAZConstants.erase(getType());
1596 /// Remove the constant from the constant table.
1597 void ConstantArray::destroyConstantImpl() {
1598 getType()->getContext().pImpl->ArrayConstants.remove(this);
1602 //---- ConstantStruct::get() implementation...
1605 /// Remove the constant from the constant table.
1606 void ConstantStruct::destroyConstantImpl() {
1607 getType()->getContext().pImpl->StructConstants.remove(this);
1610 /// Remove the constant from the constant table.
1611 void ConstantVector::destroyConstantImpl() {
1612 getType()->getContext().pImpl->VectorConstants.remove(this);
1615 Constant *Constant::getSplatValue(bool AllowUndefs) const {
1616 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1617 if (isa<ConstantAggregateZero>(this))
1618 return getNullValue(cast<VectorType>(getType())->getElementType());
1619 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1620 return CV->getSplatValue();
1621 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1622 return CV->getSplatValue(AllowUndefs);
1624 // Check if this is a constant expression splat of the form returned by
1625 // ConstantVector::getSplat()
1626 const auto *Shuf = dyn_cast<ConstantExpr>(this);
1627 if (Shuf && Shuf->getOpcode() == Instruction::ShuffleVector &&
1628 isa<UndefValue>(Shuf->getOperand(1))) {
1630 const auto *IElt = dyn_cast<ConstantExpr>(Shuf->getOperand(0));
1631 if (IElt && IElt->getOpcode() == Instruction::InsertElement &&
1632 isa<UndefValue>(IElt->getOperand(0))) {
1634 ArrayRef<int> Mask = Shuf->getShuffleMask();
1635 Constant *SplatVal = IElt->getOperand(1);
1636 ConstantInt *Index = dyn_cast<ConstantInt>(IElt->getOperand(2));
1638 if (Index && Index->getValue() == 0 &&
1639 llvm::all_of(Mask, [](int I) { return I == 0; }))
1640 return SplatVal;
1644 return nullptr;
1647 Constant *ConstantVector::getSplatValue(bool AllowUndefs) const {
1648 // Check out first element.
1649 Constant *Elt = getOperand(0);
1650 // Then make sure all remaining elements point to the same value.
1651 for (unsigned I = 1, E = getNumOperands(); I < E; ++I) {
1652 Constant *OpC = getOperand(I);
1653 if (OpC == Elt)
1654 continue;
1656 // Strict mode: any mismatch is not a splat.
1657 if (!AllowUndefs)
1658 return nullptr;
1660 // Allow undefs mode: ignore undefined elements.
1661 if (isa<UndefValue>(OpC))
1662 continue;
1664 // If we do not have a defined element yet, use the current operand.
1665 if (isa<UndefValue>(Elt))
1666 Elt = OpC;
1668 if (OpC != Elt)
1669 return nullptr;
1671 return Elt;
1674 const APInt &Constant::getUniqueInteger() const {
1675 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1676 return CI->getValue();
1677 // Scalable vectors can use a ConstantExpr to build a splat.
1678 if (isa<ConstantExpr>(this))
1679 return cast<ConstantInt>(this->getSplatValue())->getValue();
1680 // For non-ConstantExpr we use getAggregateElement as a fast path to avoid
1681 // calling getSplatValue in release builds.
1682 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1683 const Constant *C = this->getAggregateElement(0U);
1684 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1685 return cast<ConstantInt>(C)->getValue();
1688 //---- ConstantPointerNull::get() implementation.
1691 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1692 std::unique_ptr<ConstantPointerNull> &Entry =
1693 Ty->getContext().pImpl->CPNConstants[Ty];
1694 if (!Entry)
1695 Entry.reset(new ConstantPointerNull(Ty));
1697 return Entry.get();
1700 /// Remove the constant from the constant table.
1701 void ConstantPointerNull::destroyConstantImpl() {
1702 getContext().pImpl->CPNConstants.erase(getType());
1705 //---- ConstantTargetNone::get() implementation.
1708 ConstantTargetNone *ConstantTargetNone::get(TargetExtType *Ty) {
1709 assert(Ty->hasProperty(TargetExtType::HasZeroInit) &&
1710 "Target extension type not allowed to have a zeroinitializer");
1711 std::unique_ptr<ConstantTargetNone> &Entry =
1712 Ty->getContext().pImpl->CTNConstants[Ty];
1713 if (!Entry)
1714 Entry.reset(new ConstantTargetNone(Ty));
1716 return Entry.get();
1719 /// Remove the constant from the constant table.
1720 void ConstantTargetNone::destroyConstantImpl() {
1721 getContext().pImpl->CTNConstants.erase(getType());
1724 UndefValue *UndefValue::get(Type *Ty) {
1725 std::unique_ptr<UndefValue> &Entry = Ty->getContext().pImpl->UVConstants[Ty];
1726 if (!Entry)
1727 Entry.reset(new UndefValue(Ty));
1729 return Entry.get();
1732 /// Remove the constant from the constant table.
1733 void UndefValue::destroyConstantImpl() {
1734 // Free the constant and any dangling references to it.
1735 if (getValueID() == UndefValueVal) {
1736 getContext().pImpl->UVConstants.erase(getType());
1737 } else if (getValueID() == PoisonValueVal) {
1738 getContext().pImpl->PVConstants.erase(getType());
1740 llvm_unreachable("Not a undef or a poison!");
1743 PoisonValue *PoisonValue::get(Type *Ty) {
1744 std::unique_ptr<PoisonValue> &Entry = Ty->getContext().pImpl->PVConstants[Ty];
1745 if (!Entry)
1746 Entry.reset(new PoisonValue(Ty));
1748 return Entry.get();
1751 /// Remove the constant from the constant table.
1752 void PoisonValue::destroyConstantImpl() {
1753 // Free the constant and any dangling references to it.
1754 getContext().pImpl->PVConstants.erase(getType());
1757 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1758 assert(BB->getParent() && "Block must have a parent");
1759 return get(BB->getParent(), BB);
1762 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1763 BlockAddress *&BA =
1764 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1765 if (!BA)
1766 BA = new BlockAddress(F, BB);
1768 assert(BA->getFunction() == F && "Basic block moved between functions");
1769 return BA;
1772 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1773 : Constant(PointerType::get(F->getContext(), F->getAddressSpace()),
1774 Value::BlockAddressVal, &Op<0>(), 2) {
1775 setOperand(0, F);
1776 setOperand(1, BB);
1777 BB->AdjustBlockAddressRefCount(1);
1780 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1781 if (!BB->hasAddressTaken())
1782 return nullptr;
1784 const Function *F = BB->getParent();
1785 assert(F && "Block must have a parent");
1786 BlockAddress *BA =
1787 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1788 assert(BA && "Refcount and block address map disagree!");
1789 return BA;
1792 /// Remove the constant from the constant table.
1793 void BlockAddress::destroyConstantImpl() {
1794 getFunction()->getType()->getContext().pImpl
1795 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1796 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1799 Value *BlockAddress::handleOperandChangeImpl(Value *From, Value *To) {
1800 // This could be replacing either the Basic Block or the Function. In either
1801 // case, we have to remove the map entry.
1802 Function *NewF = getFunction();
1803 BasicBlock *NewBB = getBasicBlock();
1805 if (From == NewF)
1806 NewF = cast<Function>(To->stripPointerCasts());
1807 else {
1808 assert(From == NewBB && "From does not match any operand");
1809 NewBB = cast<BasicBlock>(To);
1812 // See if the 'new' entry already exists, if not, just update this in place
1813 // and return early.
1814 BlockAddress *&NewBA =
1815 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1816 if (NewBA)
1817 return NewBA;
1819 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1821 // Remove the old entry, this can't cause the map to rehash (just a
1822 // tombstone will get added).
1823 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1824 getBasicBlock()));
1825 NewBA = this;
1826 setOperand(0, NewF);
1827 setOperand(1, NewBB);
1828 getBasicBlock()->AdjustBlockAddressRefCount(1);
1830 // If we just want to keep the existing value, then return null.
1831 // Callers know that this means we shouldn't delete this value.
1832 return nullptr;
1835 DSOLocalEquivalent *DSOLocalEquivalent::get(GlobalValue *GV) {
1836 DSOLocalEquivalent *&Equiv = GV->getContext().pImpl->DSOLocalEquivalents[GV];
1837 if (!Equiv)
1838 Equiv = new DSOLocalEquivalent(GV);
1840 assert(Equiv->getGlobalValue() == GV &&
1841 "DSOLocalFunction does not match the expected global value");
1842 return Equiv;
1845 DSOLocalEquivalent::DSOLocalEquivalent(GlobalValue *GV)
1846 : Constant(GV->getType(), Value::DSOLocalEquivalentVal, &Op<0>(), 1) {
1847 setOperand(0, GV);
1850 /// Remove the constant from the constant table.
1851 void DSOLocalEquivalent::destroyConstantImpl() {
1852 const GlobalValue *GV = getGlobalValue();
1853 GV->getContext().pImpl->DSOLocalEquivalents.erase(GV);
1856 Value *DSOLocalEquivalent::handleOperandChangeImpl(Value *From, Value *To) {
1857 assert(From == getGlobalValue() && "Changing value does not match operand.");
1858 assert(isa<Constant>(To) && "Can only replace the operands with a constant");
1860 // The replacement is with another global value.
1861 if (const auto *ToObj = dyn_cast<GlobalValue>(To)) {
1862 DSOLocalEquivalent *&NewEquiv =
1863 getContext().pImpl->DSOLocalEquivalents[ToObj];
1864 if (NewEquiv)
1865 return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1868 // If the argument is replaced with a null value, just replace this constant
1869 // with a null value.
1870 if (cast<Constant>(To)->isNullValue())
1871 return To;
1873 // The replacement could be a bitcast or an alias to another function. We can
1874 // replace it with a bitcast to the dso_local_equivalent of that function.
1875 auto *Func = cast<Function>(To->stripPointerCastsAndAliases());
1876 DSOLocalEquivalent *&NewEquiv = getContext().pImpl->DSOLocalEquivalents[Func];
1877 if (NewEquiv)
1878 return llvm::ConstantExpr::getBitCast(NewEquiv, getType());
1880 // Replace this with the new one.
1881 getContext().pImpl->DSOLocalEquivalents.erase(getGlobalValue());
1882 NewEquiv = this;
1883 setOperand(0, Func);
1885 if (Func->getType() != getType()) {
1886 // It is ok to mutate the type here because this constant should always
1887 // reflect the type of the function it's holding.
1888 mutateType(Func->getType());
1890 return nullptr;
1893 NoCFIValue *NoCFIValue::get(GlobalValue *GV) {
1894 NoCFIValue *&NC = GV->getContext().pImpl->NoCFIValues[GV];
1895 if (!NC)
1896 NC = new NoCFIValue(GV);
1898 assert(NC->getGlobalValue() == GV &&
1899 "NoCFIValue does not match the expected global value");
1900 return NC;
1903 NoCFIValue::NoCFIValue(GlobalValue *GV)
1904 : Constant(GV->getType(), Value::NoCFIValueVal, &Op<0>(), 1) {
1905 setOperand(0, GV);
1908 /// Remove the constant from the constant table.
1909 void NoCFIValue::destroyConstantImpl() {
1910 const GlobalValue *GV = getGlobalValue();
1911 GV->getContext().pImpl->NoCFIValues.erase(GV);
1914 Value *NoCFIValue::handleOperandChangeImpl(Value *From, Value *To) {
1915 assert(From == getGlobalValue() && "Changing value does not match operand.");
1917 GlobalValue *GV = dyn_cast<GlobalValue>(To->stripPointerCasts());
1918 assert(GV && "Can only replace the operands with a global value");
1920 NoCFIValue *&NewNC = getContext().pImpl->NoCFIValues[GV];
1921 if (NewNC)
1922 return llvm::ConstantExpr::getBitCast(NewNC, getType());
1924 getContext().pImpl->NoCFIValues.erase(getGlobalValue());
1925 NewNC = this;
1926 setOperand(0, GV);
1928 if (GV->getType() != getType())
1929 mutateType(GV->getType());
1931 return nullptr;
1934 //---- ConstantExpr::get() implementations.
1937 /// This is a utility function to handle folding of casts and lookup of the
1938 /// cast in the ExprConstants map. It is used by the various get* methods below.
1939 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1940 bool OnlyIfReduced = false) {
1941 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1942 // Fold a few common cases
1943 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1944 return FC;
1946 if (OnlyIfReduced)
1947 return nullptr;
1949 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1951 // Look up the constant in the table first to ensure uniqueness.
1952 ConstantExprKeyType Key(opc, C);
1954 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1957 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1958 bool OnlyIfReduced) {
1959 Instruction::CastOps opc = Instruction::CastOps(oc);
1960 assert(Instruction::isCast(opc) && "opcode out of range");
1961 assert(C && Ty && "Null arguments to getCast");
1962 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1964 switch (opc) {
1965 default:
1966 llvm_unreachable("Invalid cast opcode");
1967 case Instruction::Trunc:
1968 return getTrunc(C, Ty, OnlyIfReduced);
1969 case Instruction::ZExt:
1970 return getZExt(C, Ty, OnlyIfReduced);
1971 case Instruction::SExt:
1972 return getSExt(C, Ty, OnlyIfReduced);
1973 case Instruction::FPTrunc:
1974 return getFPTrunc(C, Ty, OnlyIfReduced);
1975 case Instruction::FPExt:
1976 return getFPExtend(C, Ty, OnlyIfReduced);
1977 case Instruction::UIToFP:
1978 return getUIToFP(C, Ty, OnlyIfReduced);
1979 case Instruction::SIToFP:
1980 return getSIToFP(C, Ty, OnlyIfReduced);
1981 case Instruction::FPToUI:
1982 return getFPToUI(C, Ty, OnlyIfReduced);
1983 case Instruction::FPToSI:
1984 return getFPToSI(C, Ty, OnlyIfReduced);
1985 case Instruction::PtrToInt:
1986 return getPtrToInt(C, Ty, OnlyIfReduced);
1987 case Instruction::IntToPtr:
1988 return getIntToPtr(C, Ty, OnlyIfReduced);
1989 case Instruction::BitCast:
1990 return getBitCast(C, Ty, OnlyIfReduced);
1991 case Instruction::AddrSpaceCast:
1992 return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1996 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1997 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1998 return getBitCast(C, Ty);
1999 return getZExt(C, Ty);
2002 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
2003 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2004 return getBitCast(C, Ty);
2005 return getSExt(C, Ty);
2008 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
2009 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2010 return getBitCast(C, Ty);
2011 return getTrunc(C, Ty);
2014 Constant *ConstantExpr::getSExtOrTrunc(Constant *C, Type *Ty) {
2015 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2016 "Can only sign extend/truncate integers!");
2017 Type *CTy = C->getType();
2018 if (CTy->getScalarSizeInBits() < Ty->getScalarSizeInBits())
2019 return getSExt(C, Ty);
2020 if (CTy->getScalarSizeInBits() > Ty->getScalarSizeInBits())
2021 return getTrunc(C, Ty);
2022 return C;
2025 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
2026 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2027 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2028 "Invalid cast");
2030 if (Ty->isIntOrIntVectorTy())
2031 return getPtrToInt(S, Ty);
2033 unsigned SrcAS = S->getType()->getPointerAddressSpace();
2034 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
2035 return getAddrSpaceCast(S, Ty);
2037 return getBitCast(S, Ty);
2040 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
2041 Type *Ty) {
2042 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2043 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2045 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2046 return getAddrSpaceCast(S, Ty);
2048 return getBitCast(S, Ty);
2051 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) {
2052 assert(C->getType()->isIntOrIntVectorTy() &&
2053 Ty->isIntOrIntVectorTy() && "Invalid cast");
2054 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2055 unsigned DstBits = Ty->getScalarSizeInBits();
2056 Instruction::CastOps opcode =
2057 (SrcBits == DstBits ? Instruction::BitCast :
2058 (SrcBits > DstBits ? Instruction::Trunc :
2059 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2060 return getCast(opcode, C, Ty);
2063 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
2064 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2065 "Invalid cast");
2066 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2067 unsigned DstBits = Ty->getScalarSizeInBits();
2068 if (SrcBits == DstBits)
2069 return C; // Avoid a useless cast
2070 Instruction::CastOps opcode =
2071 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
2072 return getCast(opcode, C, Ty);
2075 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2076 #ifndef NDEBUG
2077 bool fromVec = isa<VectorType>(C->getType());
2078 bool toVec = isa<VectorType>(Ty);
2079 #endif
2080 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2081 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
2082 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
2083 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2084 "SrcTy must be larger than DestTy for Trunc!");
2086 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
2089 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2090 #ifndef NDEBUG
2091 bool fromVec = isa<VectorType>(C->getType());
2092 bool toVec = isa<VectorType>(Ty);
2093 #endif
2094 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2095 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
2096 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
2097 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2098 "SrcTy must be smaller than DestTy for SExt!");
2100 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
2103 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
2104 #ifndef NDEBUG
2105 bool fromVec = isa<VectorType>(C->getType());
2106 bool toVec = isa<VectorType>(Ty);
2107 #endif
2108 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2109 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
2110 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
2111 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2112 "SrcTy must be smaller than DestTy for ZExt!");
2114 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
2117 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
2118 #ifndef NDEBUG
2119 bool fromVec = isa<VectorType>(C->getType());
2120 bool toVec = isa<VectorType>(Ty);
2121 #endif
2122 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2123 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2124 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
2125 "This is an illegal floating point truncation!");
2126 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
2129 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
2130 #ifndef NDEBUG
2131 bool fromVec = isa<VectorType>(C->getType());
2132 bool toVec = isa<VectorType>(Ty);
2133 #endif
2134 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2135 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2136 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
2137 "This is an illegal floating point extension!");
2138 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
2141 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2142 #ifndef NDEBUG
2143 bool fromVec = isa<VectorType>(C->getType());
2144 bool toVec = isa<VectorType>(Ty);
2145 #endif
2146 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2147 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2148 "This is an illegal uint to floating point cast!");
2149 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
2152 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
2153 #ifndef NDEBUG
2154 bool fromVec = isa<VectorType>(C->getType());
2155 bool toVec = isa<VectorType>(Ty);
2156 #endif
2157 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2158 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
2159 "This is an illegal sint to floating point cast!");
2160 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
2163 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2164 #ifndef NDEBUG
2165 bool fromVec = isa<VectorType>(C->getType());
2166 bool toVec = isa<VectorType>(Ty);
2167 #endif
2168 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2169 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2170 "This is an illegal floating point to uint cast!");
2171 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
2174 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
2175 #ifndef NDEBUG
2176 bool fromVec = isa<VectorType>(C->getType());
2177 bool toVec = isa<VectorType>(Ty);
2178 #endif
2179 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
2180 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
2181 "This is an illegal floating point to sint cast!");
2182 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
2185 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
2186 bool OnlyIfReduced) {
2187 assert(C->getType()->isPtrOrPtrVectorTy() &&
2188 "PtrToInt source must be pointer or pointer vector");
2189 assert(DstTy->isIntOrIntVectorTy() &&
2190 "PtrToInt destination must be integer or integer vector");
2191 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2192 if (isa<VectorType>(C->getType()))
2193 assert(cast<VectorType>(C->getType())->getElementCount() ==
2194 cast<VectorType>(DstTy)->getElementCount() &&
2195 "Invalid cast between a different number of vector elements");
2196 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
2199 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
2200 bool OnlyIfReduced) {
2201 assert(C->getType()->isIntOrIntVectorTy() &&
2202 "IntToPtr source must be integer or integer vector");
2203 assert(DstTy->isPtrOrPtrVectorTy() &&
2204 "IntToPtr destination must be a pointer or pointer vector");
2205 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
2206 if (isa<VectorType>(C->getType()))
2207 assert(cast<VectorType>(C->getType())->getElementCount() ==
2208 cast<VectorType>(DstTy)->getElementCount() &&
2209 "Invalid cast between a different number of vector elements");
2210 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
2213 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
2214 bool OnlyIfReduced) {
2215 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
2216 "Invalid constantexpr bitcast!");
2218 // It is common to ask for a bitcast of a value to its own type, handle this
2219 // speedily.
2220 if (C->getType() == DstTy) return C;
2222 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
2225 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
2226 bool OnlyIfReduced) {
2227 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
2228 "Invalid constantexpr addrspacecast!");
2229 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
2232 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
2233 unsigned Flags, Type *OnlyIfReducedTy) {
2234 // Check the operands for consistency first.
2235 assert(Instruction::isBinaryOp(Opcode) &&
2236 "Invalid opcode in binary constant expression");
2237 assert(isSupportedBinOp(Opcode) &&
2238 "Binop not supported as constant expression");
2239 assert(C1->getType() == C2->getType() &&
2240 "Operand types in binary constant expression should match");
2242 #ifndef NDEBUG
2243 switch (Opcode) {
2244 case Instruction::Add:
2245 case Instruction::Sub:
2246 case Instruction::Mul:
2247 assert(C1->getType()->isIntOrIntVectorTy() &&
2248 "Tried to create an integer operation on a non-integer type!");
2249 break;
2250 case Instruction::And:
2251 case Instruction::Or:
2252 case Instruction::Xor:
2253 assert(C1->getType()->isIntOrIntVectorTy() &&
2254 "Tried to create a logical operation on a non-integral type!");
2255 break;
2256 case Instruction::Shl:
2257 case Instruction::LShr:
2258 case Instruction::AShr:
2259 assert(C1->getType()->isIntOrIntVectorTy() &&
2260 "Tried to create a shift operation on a non-integer type!");
2261 break;
2262 default:
2263 break;
2265 #endif
2267 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
2268 return FC;
2270 if (OnlyIfReducedTy == C1->getType())
2271 return nullptr;
2273 Constant *ArgVec[] = { C1, C2 };
2274 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
2276 LLVMContextImpl *pImpl = C1->getContext().pImpl;
2277 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
2280 bool ConstantExpr::isDesirableBinOp(unsigned Opcode) {
2281 switch (Opcode) {
2282 case Instruction::UDiv:
2283 case Instruction::SDiv:
2284 case Instruction::URem:
2285 case Instruction::SRem:
2286 case Instruction::FAdd:
2287 case Instruction::FSub:
2288 case Instruction::FMul:
2289 case Instruction::FDiv:
2290 case Instruction::FRem:
2291 case Instruction::And:
2292 case Instruction::Or:
2293 return false;
2294 case Instruction::Add:
2295 case Instruction::Sub:
2296 case Instruction::Mul:
2297 case Instruction::Shl:
2298 case Instruction::LShr:
2299 case Instruction::AShr:
2300 case Instruction::Xor:
2301 return true;
2302 default:
2303 llvm_unreachable("Argument must be binop opcode");
2307 bool ConstantExpr::isSupportedBinOp(unsigned Opcode) {
2308 switch (Opcode) {
2309 case Instruction::UDiv:
2310 case Instruction::SDiv:
2311 case Instruction::URem:
2312 case Instruction::SRem:
2313 case Instruction::FAdd:
2314 case Instruction::FSub:
2315 case Instruction::FMul:
2316 case Instruction::FDiv:
2317 case Instruction::FRem:
2318 case Instruction::And:
2319 case Instruction::Or:
2320 return false;
2321 case Instruction::Add:
2322 case Instruction::Sub:
2323 case Instruction::Mul:
2324 case Instruction::Shl:
2325 case Instruction::LShr:
2326 case Instruction::AShr:
2327 case Instruction::Xor:
2328 return true;
2329 default:
2330 llvm_unreachable("Argument must be binop opcode");
2334 bool ConstantExpr::isDesirableCastOp(unsigned Opcode) {
2335 switch (Opcode) {
2336 case Instruction::ZExt:
2337 case Instruction::SExt:
2338 return false;
2339 case Instruction::Trunc:
2340 case Instruction::FPTrunc:
2341 case Instruction::FPExt:
2342 case Instruction::UIToFP:
2343 case Instruction::SIToFP:
2344 case Instruction::FPToUI:
2345 case Instruction::FPToSI:
2346 case Instruction::PtrToInt:
2347 case Instruction::IntToPtr:
2348 case Instruction::BitCast:
2349 case Instruction::AddrSpaceCast:
2350 return true;
2351 default:
2352 llvm_unreachable("Argument must be cast opcode");
2356 Constant *ConstantExpr::getSizeOf(Type* Ty) {
2357 // sizeof is implemented as: (i64) gep (Ty*)null, 1
2358 // Note that a non-inbounds gep is used, as null isn't within any object.
2359 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2360 Constant *GEP = getGetElementPtr(
2361 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
2362 return getPtrToInt(GEP,
2363 Type::getInt64Ty(Ty->getContext()));
2366 Constant *ConstantExpr::getAlignOf(Type* Ty) {
2367 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
2368 // Note that a non-inbounds gep is used, as null isn't within any object.
2369 Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty);
2370 Constant *NullPtr = Constant::getNullValue(PointerType::getUnqual(AligningTy->getContext()));
2371 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
2372 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
2373 Constant *Indices[2] = { Zero, One };
2374 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
2375 return getPtrToInt(GEP,
2376 Type::getInt64Ty(Ty->getContext()));
2379 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
2380 Constant *C2, bool OnlyIfReduced) {
2381 assert(C1->getType() == C2->getType() && "Op types should be identical!");
2383 switch (Predicate) {
2384 default: llvm_unreachable("Invalid CmpInst predicate");
2385 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
2386 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
2387 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
2388 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
2389 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
2390 case CmpInst::FCMP_TRUE:
2391 return getFCmp(Predicate, C1, C2, OnlyIfReduced);
2393 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
2394 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
2395 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
2396 case CmpInst::ICMP_SLE:
2397 return getICmp(Predicate, C1, C2, OnlyIfReduced);
2401 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2402 ArrayRef<Value *> Idxs, bool InBounds,
2403 std::optional<unsigned> InRangeIndex,
2404 Type *OnlyIfReducedTy) {
2405 assert(Ty && "Must specify element type");
2406 assert(isSupportedGetElementPtr(Ty) && "Element type is unsupported!");
2408 if (Constant *FC =
2409 ConstantFoldGetElementPtr(Ty, C, InBounds, InRangeIndex, Idxs))
2410 return FC; // Fold a few common cases.
2412 assert(GetElementPtrInst::getIndexedType(Ty, Idxs) &&
2413 "GEP indices invalid!");;
2415 // Get the result type of the getelementptr!
2416 Type *ReqTy = GetElementPtrInst::getGEPReturnType(C, Idxs);
2417 if (OnlyIfReducedTy == ReqTy)
2418 return nullptr;
2420 auto EltCount = ElementCount::getFixed(0);
2421 if (VectorType *VecTy = dyn_cast<VectorType>(ReqTy))
2422 EltCount = VecTy->getElementCount();
2424 // Look up the constant in the table first to ensure uniqueness
2425 std::vector<Constant*> ArgVec;
2426 ArgVec.reserve(1 + Idxs.size());
2427 ArgVec.push_back(C);
2428 auto GTI = gep_type_begin(Ty, Idxs), GTE = gep_type_end(Ty, Idxs);
2429 for (; GTI != GTE; ++GTI) {
2430 auto *Idx = cast<Constant>(GTI.getOperand());
2431 assert(
2432 (!isa<VectorType>(Idx->getType()) ||
2433 cast<VectorType>(Idx->getType())->getElementCount() == EltCount) &&
2434 "getelementptr index type missmatch");
2436 if (GTI.isStruct() && Idx->getType()->isVectorTy()) {
2437 Idx = Idx->getSplatValue();
2438 } else if (GTI.isSequential() && EltCount.isNonZero() &&
2439 !Idx->getType()->isVectorTy()) {
2440 Idx = ConstantVector::getSplat(EltCount, Idx);
2442 ArgVec.push_back(Idx);
2445 unsigned SubClassOptionalData = InBounds ? GEPOperator::IsInBounds : 0;
2446 if (InRangeIndex && *InRangeIndex < 63)
2447 SubClassOptionalData |= (*InRangeIndex + 1) << 1;
2448 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2449 SubClassOptionalData, std::nullopt, Ty);
2451 LLVMContextImpl *pImpl = C->getContext().pImpl;
2452 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2455 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2456 Constant *RHS, bool OnlyIfReduced) {
2457 auto Predicate = static_cast<CmpInst::Predicate>(pred);
2458 assert(LHS->getType() == RHS->getType());
2459 assert(CmpInst::isIntPredicate(Predicate) && "Invalid ICmp Predicate");
2461 if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS))
2462 return FC; // Fold a few common cases...
2464 if (OnlyIfReduced)
2465 return nullptr;
2467 // Look up the constant in the table first to ensure uniqueness
2468 Constant *ArgVec[] = { LHS, RHS };
2469 // Get the key type with both the opcode and predicate
2470 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, Predicate);
2472 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2473 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2474 ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2476 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2477 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2480 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2481 Constant *RHS, bool OnlyIfReduced) {
2482 auto Predicate = static_cast<CmpInst::Predicate>(pred);
2483 assert(LHS->getType() == RHS->getType());
2484 assert(CmpInst::isFPPredicate(Predicate) && "Invalid FCmp Predicate");
2486 if (Constant *FC = ConstantFoldCompareInstruction(Predicate, LHS, RHS))
2487 return FC; // Fold a few common cases...
2489 if (OnlyIfReduced)
2490 return nullptr;
2492 // Look up the constant in the table first to ensure uniqueness
2493 Constant *ArgVec[] = { LHS, RHS };
2494 // Get the key type with both the opcode and predicate
2495 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, Predicate);
2497 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2498 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2499 ResultTy = VectorType::get(ResultTy, VT->getElementCount());
2501 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2502 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2505 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2506 Type *OnlyIfReducedTy) {
2507 assert(Val->getType()->isVectorTy() &&
2508 "Tried to create extractelement operation on non-vector type!");
2509 assert(Idx->getType()->isIntegerTy() &&
2510 "Extractelement index must be an integer type!");
2512 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2513 return FC; // Fold a few common cases.
2515 Type *ReqTy = cast<VectorType>(Val->getType())->getElementType();
2516 if (OnlyIfReducedTy == ReqTy)
2517 return nullptr;
2519 // Look up the constant in the table first to ensure uniqueness
2520 Constant *ArgVec[] = { Val, Idx };
2521 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2523 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2524 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2527 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2528 Constant *Idx, Type *OnlyIfReducedTy) {
2529 assert(Val->getType()->isVectorTy() &&
2530 "Tried to create insertelement operation on non-vector type!");
2531 assert(Elt->getType() == cast<VectorType>(Val->getType())->getElementType() &&
2532 "Insertelement types must match!");
2533 assert(Idx->getType()->isIntegerTy() &&
2534 "Insertelement index must be i32 type!");
2536 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2537 return FC; // Fold a few common cases.
2539 if (OnlyIfReducedTy == Val->getType())
2540 return nullptr;
2542 // Look up the constant in the table first to ensure uniqueness
2543 Constant *ArgVec[] = { Val, Elt, Idx };
2544 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2546 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2547 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2550 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2551 ArrayRef<int> Mask,
2552 Type *OnlyIfReducedTy) {
2553 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2554 "Invalid shuffle vector constant expr operands!");
2556 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2557 return FC; // Fold a few common cases.
2559 unsigned NElts = Mask.size();
2560 auto V1VTy = cast<VectorType>(V1->getType());
2561 Type *EltTy = V1VTy->getElementType();
2562 bool TypeIsScalable = isa<ScalableVectorType>(V1VTy);
2563 Type *ShufTy = VectorType::get(EltTy, NElts, TypeIsScalable);
2565 if (OnlyIfReducedTy == ShufTy)
2566 return nullptr;
2568 // Look up the constant in the table first to ensure uniqueness
2569 Constant *ArgVec[] = {V1, V2};
2570 ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec, 0, 0, Mask);
2572 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2573 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2576 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2577 assert(C->getType()->isIntOrIntVectorTy() &&
2578 "Cannot NEG a nonintegral value!");
2579 return getSub(ConstantInt::get(C->getType(), 0), C, HasNUW, HasNSW);
2582 Constant *ConstantExpr::getNot(Constant *C) {
2583 assert(C->getType()->isIntOrIntVectorTy() &&
2584 "Cannot NOT a nonintegral value!");
2585 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2588 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2589 bool HasNUW, bool HasNSW) {
2590 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2591 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2592 return get(Instruction::Add, C1, C2, Flags);
2595 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2596 bool HasNUW, bool HasNSW) {
2597 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2598 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2599 return get(Instruction::Sub, C1, C2, Flags);
2602 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2603 bool HasNUW, bool HasNSW) {
2604 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2605 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2606 return get(Instruction::Mul, C1, C2, Flags);
2609 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2610 return get(Instruction::Xor, C1, C2);
2613 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2614 bool HasNUW, bool HasNSW) {
2615 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2616 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2617 return get(Instruction::Shl, C1, C2, Flags);
2620 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2621 return get(Instruction::LShr, C1, C2,
2622 isExact ? PossiblyExactOperator::IsExact : 0);
2625 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2626 return get(Instruction::AShr, C1, C2,
2627 isExact ? PossiblyExactOperator::IsExact : 0);
2630 Constant *ConstantExpr::getExactLogBase2(Constant *C) {
2631 Type *Ty = C->getType();
2632 const APInt *IVal;
2633 if (match(C, m_APInt(IVal)) && IVal->isPowerOf2())
2634 return ConstantInt::get(Ty, IVal->logBase2());
2636 // FIXME: We can extract pow of 2 of splat constant for scalable vectors.
2637 auto *VecTy = dyn_cast<FixedVectorType>(Ty);
2638 if (!VecTy)
2639 return nullptr;
2641 SmallVector<Constant *, 4> Elts;
2642 for (unsigned I = 0, E = VecTy->getNumElements(); I != E; ++I) {
2643 Constant *Elt = C->getAggregateElement(I);
2644 if (!Elt)
2645 return nullptr;
2646 // Note that log2(iN undef) is *NOT* iN undef, because log2(iN undef) u< N.
2647 if (isa<UndefValue>(Elt)) {
2648 Elts.push_back(Constant::getNullValue(Ty->getScalarType()));
2649 continue;
2651 if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
2652 return nullptr;
2653 Elts.push_back(ConstantInt::get(Ty->getScalarType(), IVal->logBase2()));
2656 return ConstantVector::get(Elts);
2659 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty,
2660 bool AllowRHSConstant, bool NSZ) {
2661 assert(Instruction::isBinaryOp(Opcode) && "Only binops allowed");
2663 // Commutative opcodes: it does not matter if AllowRHSConstant is set.
2664 if (Instruction::isCommutative(Opcode)) {
2665 switch (Opcode) {
2666 case Instruction::Add: // X + 0 = X
2667 case Instruction::Or: // X | 0 = X
2668 case Instruction::Xor: // X ^ 0 = X
2669 return Constant::getNullValue(Ty);
2670 case Instruction::Mul: // X * 1 = X
2671 return ConstantInt::get(Ty, 1);
2672 case Instruction::And: // X & -1 = X
2673 return Constant::getAllOnesValue(Ty);
2674 case Instruction::FAdd: // X + -0.0 = X
2675 return ConstantFP::getZero(Ty, !NSZ);
2676 case Instruction::FMul: // X * 1.0 = X
2677 return ConstantFP::get(Ty, 1.0);
2678 default:
2679 llvm_unreachable("Every commutative binop has an identity constant");
2683 // Non-commutative opcodes: AllowRHSConstant must be set.
2684 if (!AllowRHSConstant)
2685 return nullptr;
2687 switch (Opcode) {
2688 case Instruction::Sub: // X - 0 = X
2689 case Instruction::Shl: // X << 0 = X
2690 case Instruction::LShr: // X >>u 0 = X
2691 case Instruction::AShr: // X >> 0 = X
2692 case Instruction::FSub: // X - 0.0 = X
2693 return Constant::getNullValue(Ty);
2694 case Instruction::SDiv: // X / 1 = X
2695 case Instruction::UDiv: // X /u 1 = X
2696 return ConstantInt::get(Ty, 1);
2697 case Instruction::FDiv: // X / 1.0 = X
2698 return ConstantFP::get(Ty, 1.0);
2699 default:
2700 return nullptr;
2704 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2705 switch (Opcode) {
2706 default:
2707 // Doesn't have an absorber.
2708 return nullptr;
2710 case Instruction::Or:
2711 return Constant::getAllOnesValue(Ty);
2713 case Instruction::And:
2714 case Instruction::Mul:
2715 return Constant::getNullValue(Ty);
2719 /// Remove the constant from the constant table.
2720 void ConstantExpr::destroyConstantImpl() {
2721 getType()->getContext().pImpl->ExprConstants.remove(this);
2724 const char *ConstantExpr::getOpcodeName() const {
2725 return Instruction::getOpcodeName(getOpcode());
2728 GetElementPtrConstantExpr::GetElementPtrConstantExpr(
2729 Type *SrcElementTy, Constant *C, ArrayRef<Constant *> IdxList, Type *DestTy)
2730 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2731 OperandTraits<GetElementPtrConstantExpr>::op_end(this) -
2732 (IdxList.size() + 1),
2733 IdxList.size() + 1),
2734 SrcElementTy(SrcElementTy),
2735 ResElementTy(GetElementPtrInst::getIndexedType(SrcElementTy, IdxList)) {
2736 Op<0>() = C;
2737 Use *OperandList = getOperandList();
2738 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2739 OperandList[i+1] = IdxList[i];
2742 Type *GetElementPtrConstantExpr::getSourceElementType() const {
2743 return SrcElementTy;
2746 Type *GetElementPtrConstantExpr::getResultElementType() const {
2747 return ResElementTy;
2750 //===----------------------------------------------------------------------===//
2751 // ConstantData* implementations
2753 Type *ConstantDataSequential::getElementType() const {
2754 if (ArrayType *ATy = dyn_cast<ArrayType>(getType()))
2755 return ATy->getElementType();
2756 return cast<VectorType>(getType())->getElementType();
2759 StringRef ConstantDataSequential::getRawDataValues() const {
2760 return StringRef(DataElements, getNumElements()*getElementByteSize());
2763 bool ConstantDataSequential::isElementTypeCompatible(Type *Ty) {
2764 if (Ty->isHalfTy() || Ty->isBFloatTy() || Ty->isFloatTy() || Ty->isDoubleTy())
2765 return true;
2766 if (auto *IT = dyn_cast<IntegerType>(Ty)) {
2767 switch (IT->getBitWidth()) {
2768 case 8:
2769 case 16:
2770 case 32:
2771 case 64:
2772 return true;
2773 default: break;
2776 return false;
2779 unsigned ConstantDataSequential::getNumElements() const {
2780 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2781 return AT->getNumElements();
2782 return cast<FixedVectorType>(getType())->getNumElements();
2786 uint64_t ConstantDataSequential::getElementByteSize() const {
2787 return getElementType()->getPrimitiveSizeInBits()/8;
2790 /// Return the start of the specified element.
2791 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2792 assert(Elt < getNumElements() && "Invalid Elt");
2793 return DataElements+Elt*getElementByteSize();
2797 /// Return true if the array is empty or all zeros.
2798 static bool isAllZeros(StringRef Arr) {
2799 for (char I : Arr)
2800 if (I != 0)
2801 return false;
2802 return true;
2805 /// This is the underlying implementation of all of the
2806 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2807 /// the correct element type. We take the bytes in as a StringRef because
2808 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2809 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2810 #ifndef NDEBUG
2811 if (ArrayType *ATy = dyn_cast<ArrayType>(Ty))
2812 assert(isElementTypeCompatible(ATy->getElementType()));
2813 else
2814 assert(isElementTypeCompatible(cast<VectorType>(Ty)->getElementType()));
2815 #endif
2816 // If the elements are all zero or there are no elements, return a CAZ, which
2817 // is more dense and canonical.
2818 if (isAllZeros(Elements))
2819 return ConstantAggregateZero::get(Ty);
2821 // Do a lookup to see if we have already formed one of these.
2822 auto &Slot =
2823 *Ty->getContext()
2824 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2825 .first;
2827 // The bucket can point to a linked list of different CDS's that have the same
2828 // body but different types. For example, 0,0,0,1 could be a 4 element array
2829 // of i8, or a 1-element array of i32. They'll both end up in the same
2830 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2831 std::unique_ptr<ConstantDataSequential> *Entry = &Slot.second;
2832 for (; *Entry; Entry = &(*Entry)->Next)
2833 if ((*Entry)->getType() == Ty)
2834 return Entry->get();
2836 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2837 // and return it.
2838 if (isa<ArrayType>(Ty)) {
2839 // Use reset because std::make_unique can't access the constructor.
2840 Entry->reset(new ConstantDataArray(Ty, Slot.first().data()));
2841 return Entry->get();
2844 assert(isa<VectorType>(Ty));
2845 // Use reset because std::make_unique can't access the constructor.
2846 Entry->reset(new ConstantDataVector(Ty, Slot.first().data()));
2847 return Entry->get();
2850 void ConstantDataSequential::destroyConstantImpl() {
2851 // Remove the constant from the StringMap.
2852 StringMap<std::unique_ptr<ConstantDataSequential>> &CDSConstants =
2853 getType()->getContext().pImpl->CDSConstants;
2855 auto Slot = CDSConstants.find(getRawDataValues());
2857 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2859 std::unique_ptr<ConstantDataSequential> *Entry = &Slot->getValue();
2861 // Remove the entry from the hash table.
2862 if (!(*Entry)->Next) {
2863 // If there is only one value in the bucket (common case) it must be this
2864 // entry, and removing the entry should remove the bucket completely.
2865 assert(Entry->get() == this && "Hash mismatch in ConstantDataSequential");
2866 getContext().pImpl->CDSConstants.erase(Slot);
2867 return;
2870 // Otherwise, there are multiple entries linked off the bucket, unlink the
2871 // node we care about but keep the bucket around.
2872 while (true) {
2873 std::unique_ptr<ConstantDataSequential> &Node = *Entry;
2874 assert(Node && "Didn't find entry in its uniquing hash table!");
2875 // If we found our entry, unlink it from the list and we're done.
2876 if (Node.get() == this) {
2877 Node = std::move(Node->Next);
2878 return;
2881 Entry = &Node->Next;
2885 /// getFP() constructors - Return a constant of array type with a float
2886 /// element type taken from argument `ElementType', and count taken from
2887 /// argument `Elts'. The amount of bits of the contained type must match the
2888 /// number of bits of the type contained in the passed in ArrayRef.
2889 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
2890 /// that this can return a ConstantAggregateZero object.
2891 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint16_t> Elts) {
2892 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2893 "Element type is not a 16-bit float type");
2894 Type *Ty = ArrayType::get(ElementType, Elts.size());
2895 const char *Data = reinterpret_cast<const char *>(Elts.data());
2896 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2898 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint32_t> Elts) {
2899 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
2900 Type *Ty = ArrayType::get(ElementType, Elts.size());
2901 const char *Data = reinterpret_cast<const char *>(Elts.data());
2902 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2904 Constant *ConstantDataArray::getFP(Type *ElementType, ArrayRef<uint64_t> Elts) {
2905 assert(ElementType->isDoubleTy() &&
2906 "Element type is not a 64-bit float type");
2907 Type *Ty = ArrayType::get(ElementType, Elts.size());
2908 const char *Data = reinterpret_cast<const char *>(Elts.data());
2909 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2912 Constant *ConstantDataArray::getString(LLVMContext &Context,
2913 StringRef Str, bool AddNull) {
2914 if (!AddNull) {
2915 const uint8_t *Data = Str.bytes_begin();
2916 return get(Context, ArrayRef(Data, Str.size()));
2919 SmallVector<uint8_t, 64> ElementVals;
2920 ElementVals.append(Str.begin(), Str.end());
2921 ElementVals.push_back(0);
2922 return get(Context, ElementVals);
2925 /// get() constructors - Return a constant with vector type with an element
2926 /// count and element type matching the ArrayRef passed in. Note that this
2927 /// can return a ConstantAggregateZero object.
2928 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2929 auto *Ty = FixedVectorType::get(Type::getInt8Ty(Context), Elts.size());
2930 const char *Data = reinterpret_cast<const char *>(Elts.data());
2931 return getImpl(StringRef(Data, Elts.size() * 1), Ty);
2933 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2934 auto *Ty = FixedVectorType::get(Type::getInt16Ty(Context), Elts.size());
2935 const char *Data = reinterpret_cast<const char *>(Elts.data());
2936 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2938 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2939 auto *Ty = FixedVectorType::get(Type::getInt32Ty(Context), Elts.size());
2940 const char *Data = reinterpret_cast<const char *>(Elts.data());
2941 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2943 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2944 auto *Ty = FixedVectorType::get(Type::getInt64Ty(Context), Elts.size());
2945 const char *Data = reinterpret_cast<const char *>(Elts.data());
2946 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2948 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2949 auto *Ty = FixedVectorType::get(Type::getFloatTy(Context), Elts.size());
2950 const char *Data = reinterpret_cast<const char *>(Elts.data());
2951 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2953 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2954 auto *Ty = FixedVectorType::get(Type::getDoubleTy(Context), Elts.size());
2955 const char *Data = reinterpret_cast<const char *>(Elts.data());
2956 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2959 /// getFP() constructors - Return a constant of vector type with a float
2960 /// element type taken from argument `ElementType', and count taken from
2961 /// argument `Elts'. The amount of bits of the contained type must match the
2962 /// number of bits of the type contained in the passed in ArrayRef.
2963 /// (i.e. half or bfloat for 16bits, float for 32bits, double for 64bits) Note
2964 /// that this can return a ConstantAggregateZero object.
2965 Constant *ConstantDataVector::getFP(Type *ElementType,
2966 ArrayRef<uint16_t> Elts) {
2967 assert((ElementType->isHalfTy() || ElementType->isBFloatTy()) &&
2968 "Element type is not a 16-bit float type");
2969 auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2970 const char *Data = reinterpret_cast<const char *>(Elts.data());
2971 return getImpl(StringRef(Data, Elts.size() * 2), Ty);
2973 Constant *ConstantDataVector::getFP(Type *ElementType,
2974 ArrayRef<uint32_t> Elts) {
2975 assert(ElementType->isFloatTy() && "Element type is not a 32-bit float type");
2976 auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2977 const char *Data = reinterpret_cast<const char *>(Elts.data());
2978 return getImpl(StringRef(Data, Elts.size() * 4), Ty);
2980 Constant *ConstantDataVector::getFP(Type *ElementType,
2981 ArrayRef<uint64_t> Elts) {
2982 assert(ElementType->isDoubleTy() &&
2983 "Element type is not a 64-bit float type");
2984 auto *Ty = FixedVectorType::get(ElementType, Elts.size());
2985 const char *Data = reinterpret_cast<const char *>(Elts.data());
2986 return getImpl(StringRef(Data, Elts.size() * 8), Ty);
2989 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2990 assert(isElementTypeCompatible(V->getType()) &&
2991 "Element type not compatible with ConstantData");
2992 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2993 if (CI->getType()->isIntegerTy(8)) {
2994 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2995 return get(V->getContext(), Elts);
2997 if (CI->getType()->isIntegerTy(16)) {
2998 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2999 return get(V->getContext(), Elts);
3001 if (CI->getType()->isIntegerTy(32)) {
3002 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
3003 return get(V->getContext(), Elts);
3005 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
3006 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
3007 return get(V->getContext(), Elts);
3010 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
3011 if (CFP->getType()->isHalfTy()) {
3012 SmallVector<uint16_t, 16> Elts(
3013 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3014 return getFP(V->getType(), Elts);
3016 if (CFP->getType()->isBFloatTy()) {
3017 SmallVector<uint16_t, 16> Elts(
3018 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3019 return getFP(V->getType(), Elts);
3021 if (CFP->getType()->isFloatTy()) {
3022 SmallVector<uint32_t, 16> Elts(
3023 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3024 return getFP(V->getType(), Elts);
3026 if (CFP->getType()->isDoubleTy()) {
3027 SmallVector<uint64_t, 16> Elts(
3028 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
3029 return getFP(V->getType(), Elts);
3032 return ConstantVector::getSplat(ElementCount::getFixed(NumElts), V);
3036 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
3037 assert(isa<IntegerType>(getElementType()) &&
3038 "Accessor can only be used when element is an integer");
3039 const char *EltPtr = getElementPointer(Elt);
3041 // The data is stored in host byte order, make sure to cast back to the right
3042 // type to load with the right endianness.
3043 switch (getElementType()->getIntegerBitWidth()) {
3044 default: llvm_unreachable("Invalid bitwidth for CDS");
3045 case 8:
3046 return *reinterpret_cast<const uint8_t *>(EltPtr);
3047 case 16:
3048 return *reinterpret_cast<const uint16_t *>(EltPtr);
3049 case 32:
3050 return *reinterpret_cast<const uint32_t *>(EltPtr);
3051 case 64:
3052 return *reinterpret_cast<const uint64_t *>(EltPtr);
3056 APInt ConstantDataSequential::getElementAsAPInt(unsigned Elt) const {
3057 assert(isa<IntegerType>(getElementType()) &&
3058 "Accessor can only be used when element is an integer");
3059 const char *EltPtr = getElementPointer(Elt);
3061 // The data is stored in host byte order, make sure to cast back to the right
3062 // type to load with the right endianness.
3063 switch (getElementType()->getIntegerBitWidth()) {
3064 default: llvm_unreachable("Invalid bitwidth for CDS");
3065 case 8: {
3066 auto EltVal = *reinterpret_cast<const uint8_t *>(EltPtr);
3067 return APInt(8, EltVal);
3069 case 16: {
3070 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3071 return APInt(16, EltVal);
3073 case 32: {
3074 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3075 return APInt(32, EltVal);
3077 case 64: {
3078 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3079 return APInt(64, EltVal);
3084 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
3085 const char *EltPtr = getElementPointer(Elt);
3087 switch (getElementType()->getTypeID()) {
3088 default:
3089 llvm_unreachable("Accessor can only be used when element is float/double!");
3090 case Type::HalfTyID: {
3091 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3092 return APFloat(APFloat::IEEEhalf(), APInt(16, EltVal));
3094 case Type::BFloatTyID: {
3095 auto EltVal = *reinterpret_cast<const uint16_t *>(EltPtr);
3096 return APFloat(APFloat::BFloat(), APInt(16, EltVal));
3098 case Type::FloatTyID: {
3099 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
3100 return APFloat(APFloat::IEEEsingle(), APInt(32, EltVal));
3102 case Type::DoubleTyID: {
3103 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
3104 return APFloat(APFloat::IEEEdouble(), APInt(64, EltVal));
3109 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
3110 assert(getElementType()->isFloatTy() &&
3111 "Accessor can only be used when element is a 'float'");
3112 return *reinterpret_cast<const float *>(getElementPointer(Elt));
3115 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
3116 assert(getElementType()->isDoubleTy() &&
3117 "Accessor can only be used when element is a 'float'");
3118 return *reinterpret_cast<const double *>(getElementPointer(Elt));
3121 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
3122 if (getElementType()->isHalfTy() || getElementType()->isBFloatTy() ||
3123 getElementType()->isFloatTy() || getElementType()->isDoubleTy())
3124 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
3126 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
3129 bool ConstantDataSequential::isString(unsigned CharSize) const {
3130 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(CharSize);
3133 bool ConstantDataSequential::isCString() const {
3134 if (!isString())
3135 return false;
3137 StringRef Str = getAsString();
3139 // The last value must be nul.
3140 if (Str.back() != 0) return false;
3142 // Other elements must be non-nul.
3143 return !Str.drop_back().contains(0);
3146 bool ConstantDataVector::isSplatData() const {
3147 const char *Base = getRawDataValues().data();
3149 // Compare elements 1+ to the 0'th element.
3150 unsigned EltSize = getElementByteSize();
3151 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
3152 if (memcmp(Base, Base+i*EltSize, EltSize))
3153 return false;
3155 return true;
3158 bool ConstantDataVector::isSplat() const {
3159 if (!IsSplatSet) {
3160 IsSplatSet = true;
3161 IsSplat = isSplatData();
3163 return IsSplat;
3166 Constant *ConstantDataVector::getSplatValue() const {
3167 // If they're all the same, return the 0th one as a representative.
3168 return isSplat() ? getElementAsConstant(0) : nullptr;
3171 //===----------------------------------------------------------------------===//
3172 // handleOperandChange implementations
3174 /// Update this constant array to change uses of
3175 /// 'From' to be uses of 'To'. This must update the uniquing data structures
3176 /// etc.
3178 /// Note that we intentionally replace all uses of From with To here. Consider
3179 /// a large array that uses 'From' 1000 times. By handling this case all here,
3180 /// ConstantArray::handleOperandChange is only invoked once, and that
3181 /// single invocation handles all 1000 uses. Handling them one at a time would
3182 /// work, but would be really slow because it would have to unique each updated
3183 /// array instance.
3185 void Constant::handleOperandChange(Value *From, Value *To) {
3186 Value *Replacement = nullptr;
3187 switch (getValueID()) {
3188 default:
3189 llvm_unreachable("Not a constant!");
3190 #define HANDLE_CONSTANT(Name) \
3191 case Value::Name##Val: \
3192 Replacement = cast<Name>(this)->handleOperandChangeImpl(From, To); \
3193 break;
3194 #include "llvm/IR/Value.def"
3197 // If handleOperandChangeImpl returned nullptr, then it handled
3198 // replacing itself and we don't want to delete or replace anything else here.
3199 if (!Replacement)
3200 return;
3202 // I do need to replace this with an existing value.
3203 assert(Replacement != this && "I didn't contain From!");
3205 // Everyone using this now uses the replacement.
3206 replaceAllUsesWith(Replacement);
3208 // Delete the old constant!
3209 destroyConstant();
3212 Value *ConstantArray::handleOperandChangeImpl(Value *From, Value *To) {
3213 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3214 Constant *ToC = cast<Constant>(To);
3216 SmallVector<Constant*, 8> Values;
3217 Values.reserve(getNumOperands()); // Build replacement array.
3219 // Fill values with the modified operands of the constant array. Also,
3220 // compute whether this turns into an all-zeros array.
3221 unsigned NumUpdated = 0;
3223 // Keep track of whether all the values in the array are "ToC".
3224 bool AllSame = true;
3225 Use *OperandList = getOperandList();
3226 unsigned OperandNo = 0;
3227 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
3228 Constant *Val = cast<Constant>(O->get());
3229 if (Val == From) {
3230 OperandNo = (O - OperandList);
3231 Val = ToC;
3232 ++NumUpdated;
3234 Values.push_back(Val);
3235 AllSame &= Val == ToC;
3238 if (AllSame && ToC->isNullValue())
3239 return ConstantAggregateZero::get(getType());
3241 if (AllSame && isa<UndefValue>(ToC))
3242 return UndefValue::get(getType());
3244 // Check for any other type of constant-folding.
3245 if (Constant *C = getImpl(getType(), Values))
3246 return C;
3248 // Update to the new value.
3249 return getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
3250 Values, this, From, ToC, NumUpdated, OperandNo);
3253 Value *ConstantStruct::handleOperandChangeImpl(Value *From, Value *To) {
3254 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3255 Constant *ToC = cast<Constant>(To);
3257 Use *OperandList = getOperandList();
3259 SmallVector<Constant*, 8> Values;
3260 Values.reserve(getNumOperands()); // Build replacement struct.
3262 // Fill values with the modified operands of the constant struct. Also,
3263 // compute whether this turns into an all-zeros struct.
3264 unsigned NumUpdated = 0;
3265 bool AllSame = true;
3266 unsigned OperandNo = 0;
3267 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) {
3268 Constant *Val = cast<Constant>(O->get());
3269 if (Val == From) {
3270 OperandNo = (O - OperandList);
3271 Val = ToC;
3272 ++NumUpdated;
3274 Values.push_back(Val);
3275 AllSame &= Val == ToC;
3278 if (AllSame && ToC->isNullValue())
3279 return ConstantAggregateZero::get(getType());
3281 if (AllSame && isa<UndefValue>(ToC))
3282 return UndefValue::get(getType());
3284 // Update to the new value.
3285 return getContext().pImpl->StructConstants.replaceOperandsInPlace(
3286 Values, this, From, ToC, NumUpdated, OperandNo);
3289 Value *ConstantVector::handleOperandChangeImpl(Value *From, Value *To) {
3290 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
3291 Constant *ToC = cast<Constant>(To);
3293 SmallVector<Constant*, 8> Values;
3294 Values.reserve(getNumOperands()); // Build replacement array...
3295 unsigned NumUpdated = 0;
3296 unsigned OperandNo = 0;
3297 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3298 Constant *Val = getOperand(i);
3299 if (Val == From) {
3300 OperandNo = i;
3301 ++NumUpdated;
3302 Val = ToC;
3304 Values.push_back(Val);
3307 if (Constant *C = getImpl(Values))
3308 return C;
3310 // Update to the new value.
3311 return getContext().pImpl->VectorConstants.replaceOperandsInPlace(
3312 Values, this, From, ToC, NumUpdated, OperandNo);
3315 Value *ConstantExpr::handleOperandChangeImpl(Value *From, Value *ToV) {
3316 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
3317 Constant *To = cast<Constant>(ToV);
3319 SmallVector<Constant*, 8> NewOps;
3320 unsigned NumUpdated = 0;
3321 unsigned OperandNo = 0;
3322 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
3323 Constant *Op = getOperand(i);
3324 if (Op == From) {
3325 OperandNo = i;
3326 ++NumUpdated;
3327 Op = To;
3329 NewOps.push_back(Op);
3331 assert(NumUpdated && "I didn't contain From!");
3333 if (Constant *C = getWithOperands(NewOps, getType(), true))
3334 return C;
3336 // Update to the new value.
3337 return getContext().pImpl->ExprConstants.replaceOperandsInPlace(
3338 NewOps, this, From, To, NumUpdated, OperandNo);
3341 Instruction *ConstantExpr::getAsInstruction(Instruction *InsertBefore) const {
3342 SmallVector<Value *, 4> ValueOperands(operands());
3343 ArrayRef<Value*> Ops(ValueOperands);
3345 switch (getOpcode()) {
3346 case Instruction::Trunc:
3347 case Instruction::ZExt:
3348 case Instruction::SExt:
3349 case Instruction::FPTrunc:
3350 case Instruction::FPExt:
3351 case Instruction::UIToFP:
3352 case Instruction::SIToFP:
3353 case Instruction::FPToUI:
3354 case Instruction::FPToSI:
3355 case Instruction::PtrToInt:
3356 case Instruction::IntToPtr:
3357 case Instruction::BitCast:
3358 case Instruction::AddrSpaceCast:
3359 return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0],
3360 getType(), "", InsertBefore);
3361 case Instruction::InsertElement:
3362 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2], "", InsertBefore);
3363 case Instruction::ExtractElement:
3364 return ExtractElementInst::Create(Ops[0], Ops[1], "", InsertBefore);
3365 case Instruction::ShuffleVector:
3366 return new ShuffleVectorInst(Ops[0], Ops[1], getShuffleMask(), "",
3367 InsertBefore);
3369 case Instruction::GetElementPtr: {
3370 const auto *GO = cast<GEPOperator>(this);
3371 if (GO->isInBounds())
3372 return GetElementPtrInst::CreateInBounds(
3373 GO->getSourceElementType(), Ops[0], Ops.slice(1), "", InsertBefore);
3374 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3375 Ops.slice(1), "", InsertBefore);
3377 case Instruction::ICmp:
3378 case Instruction::FCmp:
3379 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3380 (CmpInst::Predicate)getPredicate(), Ops[0], Ops[1],
3381 "", InsertBefore);
3382 default:
3383 assert(getNumOperands() == 2 && "Must be binary operator?");
3384 BinaryOperator *BO = BinaryOperator::Create(
3385 (Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1], "", InsertBefore);
3386 if (isa<OverflowingBinaryOperator>(BO)) {
3387 BO->setHasNoUnsignedWrap(SubclassOptionalData &
3388 OverflowingBinaryOperator::NoUnsignedWrap);
3389 BO->setHasNoSignedWrap(SubclassOptionalData &
3390 OverflowingBinaryOperator::NoSignedWrap);
3392 if (isa<PossiblyExactOperator>(BO))
3393 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
3394 return BO;