Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / IR / Function.cpp
blob658aa67a38c937f9e5fce2ef00f71c1352c9bf88
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsAArch64.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsARM.h"
37 #include "llvm/IR/IntrinsicsBPF.h"
38 #include "llvm/IR/IntrinsicsDirectX.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsLoongArch.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/ModRef.h"
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81 "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82 cl::desc("Maximum size for the name of non-global values."));
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90 setName(Name);
93 void Argument::setParent(Function *parent) {
94 Parent = parent;
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98 if (!getType()->isPointerTy()) return false;
99 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100 (AllowUndefOrPoison ||
101 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102 return true;
103 else if (getDereferenceableBytes() > 0 &&
104 !NullPointerIsDefined(getParent(),
105 getType()->getPointerAddressSpace()))
106 return true;
107 return false;
110 bool Argument::hasByValAttr() const {
111 if (!getType()->isPointerTy()) return false;
112 return hasAttribute(Attribute::ByVal);
115 bool Argument::hasByRefAttr() const {
116 if (!getType()->isPointerTy())
117 return false;
118 return hasAttribute(Attribute::ByRef);
121 bool Argument::hasSwiftSelfAttr() const {
122 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
125 bool Argument::hasSwiftErrorAttr() const {
126 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
129 bool Argument::hasInAllocaAttr() const {
130 if (!getType()->isPointerTy()) return false;
131 return hasAttribute(Attribute::InAlloca);
134 bool Argument::hasPreallocatedAttr() const {
135 if (!getType()->isPointerTy())
136 return false;
137 return hasAttribute(Attribute::Preallocated);
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141 if (!getType()->isPointerTy()) return false;
142 AttributeList Attrs = getParent()->getAttributes();
143 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
144 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
145 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149 if (!getType()->isPointerTy())
150 return false;
151 AttributeList Attrs = getParent()->getAttributes();
152 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
153 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
154 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
155 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
156 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
162 // FIXME: All the type carrying attributes are mutually exclusive, so there
163 // should be a single query to get the stored type that handles any of them.
164 if (Type *ByValTy = ParamAttrs.getByValType())
165 return ByValTy;
166 if (Type *ByRefTy = ParamAttrs.getByRefType())
167 return ByRefTy;
168 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169 return PreAllocTy;
170 if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171 return InAllocaTy;
172 if (Type *SRetTy = ParamAttrs.getStructRetType())
173 return SRetTy;
175 return nullptr;
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179 AttributeSet ParamAttrs =
180 getParent()->getAttributes().getParamAttrs(getArgNo());
181 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
182 return DL.getTypeAllocSize(MemTy);
183 return 0;
186 Type *Argument::getPointeeInMemoryValueType() const {
187 AttributeSet ParamAttrs =
188 getParent()->getAttributes().getParamAttrs(getArgNo());
189 return getMemoryParamAllocType(ParamAttrs);
192 MaybeAlign Argument::getParamAlign() const {
193 assert(getType()->isPointerTy() && "Only pointers have alignments");
194 return getParent()->getParamAlign(getArgNo());
197 MaybeAlign Argument::getParamStackAlign() const {
198 return getParent()->getParamStackAlign(getArgNo());
201 Type *Argument::getParamByValType() const {
202 assert(getType()->isPointerTy() && "Only pointers have byval types");
203 return getParent()->getParamByValType(getArgNo());
206 Type *Argument::getParamStructRetType() const {
207 assert(getType()->isPointerTy() && "Only pointers have sret types");
208 return getParent()->getParamStructRetType(getArgNo());
211 Type *Argument::getParamByRefType() const {
212 assert(getType()->isPointerTy() && "Only pointers have byref types");
213 return getParent()->getParamByRefType(getArgNo());
216 Type *Argument::getParamInAllocaType() const {
217 assert(getType()->isPointerTy() && "Only pointers have inalloca types");
218 return getParent()->getParamInAllocaType(getArgNo());
221 uint64_t Argument::getDereferenceableBytes() const {
222 assert(getType()->isPointerTy() &&
223 "Only pointers have dereferenceable bytes");
224 return getParent()->getParamDereferenceableBytes(getArgNo());
227 uint64_t Argument::getDereferenceableOrNullBytes() const {
228 assert(getType()->isPointerTy() &&
229 "Only pointers have dereferenceable bytes");
230 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
233 FPClassTest Argument::getNoFPClass() const {
234 return getParent()->getParamNoFPClass(getArgNo());
237 bool Argument::hasNestAttr() const {
238 if (!getType()->isPointerTy()) return false;
239 return hasAttribute(Attribute::Nest);
242 bool Argument::hasNoAliasAttr() const {
243 if (!getType()->isPointerTy()) return false;
244 return hasAttribute(Attribute::NoAlias);
247 bool Argument::hasNoCaptureAttr() const {
248 if (!getType()->isPointerTy()) return false;
249 return hasAttribute(Attribute::NoCapture);
252 bool Argument::hasNoFreeAttr() const {
253 if (!getType()->isPointerTy()) return false;
254 return hasAttribute(Attribute::NoFree);
257 bool Argument::hasStructRetAttr() const {
258 if (!getType()->isPointerTy()) return false;
259 return hasAttribute(Attribute::StructRet);
262 bool Argument::hasInRegAttr() const {
263 return hasAttribute(Attribute::InReg);
266 bool Argument::hasReturnedAttr() const {
267 return hasAttribute(Attribute::Returned);
270 bool Argument::hasZExtAttr() const {
271 return hasAttribute(Attribute::ZExt);
274 bool Argument::hasSExtAttr() const {
275 return hasAttribute(Attribute::SExt);
278 bool Argument::onlyReadsMemory() const {
279 AttributeList Attrs = getParent()->getAttributes();
280 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
281 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
284 void Argument::addAttrs(AttrBuilder &B) {
285 AttributeList AL = getParent()->getAttributes();
286 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
287 getParent()->setAttributes(AL);
290 void Argument::addAttr(Attribute::AttrKind Kind) {
291 getParent()->addParamAttr(getArgNo(), Kind);
294 void Argument::addAttr(Attribute Attr) {
295 getParent()->addParamAttr(getArgNo(), Attr);
298 void Argument::removeAttr(Attribute::AttrKind Kind) {
299 getParent()->removeParamAttr(getArgNo(), Kind);
302 void Argument::removeAttrs(const AttributeMask &AM) {
303 AttributeList AL = getParent()->getAttributes();
304 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
305 getParent()->setAttributes(AL);
308 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
309 return getParent()->hasParamAttribute(getArgNo(), Kind);
312 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
313 return getParent()->getParamAttribute(getArgNo(), Kind);
316 //===----------------------------------------------------------------------===//
317 // Helper Methods in Function
318 //===----------------------------------------------------------------------===//
320 LLVMContext &Function::getContext() const {
321 return getType()->getContext();
324 unsigned Function::getInstructionCount() const {
325 unsigned NumInstrs = 0;
326 for (const BasicBlock &BB : BasicBlocks)
327 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
328 BB.instructionsWithoutDebug().end());
329 return NumInstrs;
332 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
333 const Twine &N, Module &M) {
334 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
337 Function *Function::createWithDefaultAttr(FunctionType *Ty,
338 LinkageTypes Linkage,
339 unsigned AddrSpace, const Twine &N,
340 Module *M) {
341 auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
342 AttrBuilder B(F->getContext());
343 UWTableKind UWTable = M->getUwtable();
344 if (UWTable != UWTableKind::None)
345 B.addUWTableAttr(UWTable);
346 switch (M->getFramePointer()) {
347 case FramePointerKind::None:
348 // 0 ("none") is the default.
349 break;
350 case FramePointerKind::NonLeaf:
351 B.addAttribute("frame-pointer", "non-leaf");
352 break;
353 case FramePointerKind::All:
354 B.addAttribute("frame-pointer", "all");
355 break;
357 if (M->getModuleFlag("function_return_thunk_extern"))
358 B.addAttribute(Attribute::FnRetThunkExtern);
359 F->addFnAttrs(B);
360 return F;
363 void Function::removeFromParent() {
364 getParent()->getFunctionList().remove(getIterator());
367 void Function::eraseFromParent() {
368 getParent()->getFunctionList().erase(getIterator());
371 void Function::splice(Function::iterator ToIt, Function *FromF,
372 Function::iterator FromBeginIt,
373 Function::iterator FromEndIt) {
374 #ifdef EXPENSIVE_CHECKS
375 // Check that FromBeginIt is before FromEndIt.
376 auto FromFEnd = FromF->end();
377 for (auto It = FromBeginIt; It != FromEndIt; ++It)
378 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
379 #endif // EXPENSIVE_CHECKS
380 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
383 Function::iterator Function::erase(Function::iterator FromIt,
384 Function::iterator ToIt) {
385 return BasicBlocks.erase(FromIt, ToIt);
388 //===----------------------------------------------------------------------===//
389 // Function Implementation
390 //===----------------------------------------------------------------------===//
392 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
393 // If AS == -1 and we are passed a valid module pointer we place the function
394 // in the program address space. Otherwise we default to AS0.
395 if (AddrSpace == static_cast<unsigned>(-1))
396 return M ? M->getDataLayout().getProgramAddressSpace() : 0;
397 return AddrSpace;
400 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
401 const Twine &name, Module *ParentModule)
402 : GlobalObject(Ty, Value::FunctionVal,
403 OperandTraits<Function>::op_begin(this), 0, Linkage, name,
404 computeAddrSpace(AddrSpace, ParentModule)),
405 NumArgs(Ty->getNumParams()) {
406 assert(FunctionType::isValidReturnType(getReturnType()) &&
407 "invalid return type");
408 setGlobalObjectSubClassData(0);
410 // We only need a symbol table for a function if the context keeps value names
411 if (!getContext().shouldDiscardValueNames())
412 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
414 // If the function has arguments, mark them as lazily built.
415 if (Ty->getNumParams())
416 setValueSubclassData(1); // Set the "has lazy arguments" bit.
418 if (ParentModule)
419 ParentModule->getFunctionList().push_back(this);
421 HasLLVMReservedName = getName().startswith("llvm.");
422 // Ensure intrinsics have the right parameter attributes.
423 // Note, the IntID field will have been set in Value::setName if this function
424 // name is a valid intrinsic ID.
425 if (IntID)
426 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
429 Function::~Function() {
430 dropAllReferences(); // After this it is safe to delete instructions.
432 // Delete all of the method arguments and unlink from symbol table...
433 if (Arguments)
434 clearArguments();
436 // Remove the function from the on-the-side GC table.
437 clearGC();
440 void Function::BuildLazyArguments() const {
441 // Create the arguments vector, all arguments start out unnamed.
442 auto *FT = getFunctionType();
443 if (NumArgs > 0) {
444 Arguments = std::allocator<Argument>().allocate(NumArgs);
445 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
446 Type *ArgTy = FT->getParamType(i);
447 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
448 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
452 // Clear the lazy arguments bit.
453 unsigned SDC = getSubclassDataFromValue();
454 SDC &= ~(1 << 0);
455 const_cast<Function*>(this)->setValueSubclassData(SDC);
456 assert(!hasLazyArguments());
459 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
460 return MutableArrayRef<Argument>(Args, Count);
463 bool Function::isConstrainedFPIntrinsic() const {
464 switch (getIntrinsicID()) {
465 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
466 case Intrinsic::INTRINSIC:
467 #include "llvm/IR/ConstrainedOps.def"
468 return true;
469 #undef INSTRUCTION
470 default:
471 return false;
475 void Function::clearArguments() {
476 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
477 A.setName("");
478 A.~Argument();
480 std::allocator<Argument>().deallocate(Arguments, NumArgs);
481 Arguments = nullptr;
484 void Function::stealArgumentListFrom(Function &Src) {
485 assert(isDeclaration() && "Expected no references to current arguments");
487 // Drop the current arguments, if any, and set the lazy argument bit.
488 if (!hasLazyArguments()) {
489 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
490 [](const Argument &A) { return A.use_empty(); }) &&
491 "Expected arguments to be unused in declaration");
492 clearArguments();
493 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
496 // Nothing to steal if Src has lazy arguments.
497 if (Src.hasLazyArguments())
498 return;
500 // Steal arguments from Src, and fix the lazy argument bits.
501 assert(arg_size() == Src.arg_size());
502 Arguments = Src.Arguments;
503 Src.Arguments = nullptr;
504 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
505 // FIXME: This does the work of transferNodesFromList inefficiently.
506 SmallString<128> Name;
507 if (A.hasName())
508 Name = A.getName();
509 if (!Name.empty())
510 A.setName("");
511 A.setParent(this);
512 if (!Name.empty())
513 A.setName(Name);
516 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
517 assert(!hasLazyArguments());
518 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
521 void Function::deleteBodyImpl(bool ShouldDrop) {
522 setIsMaterializable(false);
524 for (BasicBlock &BB : *this)
525 BB.dropAllReferences();
527 // Delete all basic blocks. They are now unused, except possibly by
528 // blockaddresses, but BasicBlock's destructor takes care of those.
529 while (!BasicBlocks.empty())
530 BasicBlocks.begin()->eraseFromParent();
532 if (getNumOperands()) {
533 if (ShouldDrop) {
534 // Drop uses of any optional data (real or placeholder).
535 User::dropAllReferences();
536 setNumHungOffUseOperands(0);
537 } else {
538 // The code needs to match Function::allocHungoffUselist().
539 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
540 Op<0>().set(CPN);
541 Op<1>().set(CPN);
542 Op<2>().set(CPN);
544 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
547 // Metadata is stored in a side-table.
548 clearMetadata();
551 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
552 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
555 void Function::addFnAttr(Attribute::AttrKind Kind) {
556 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
559 void Function::addFnAttr(StringRef Kind, StringRef Val) {
560 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
563 void Function::addFnAttr(Attribute Attr) {
564 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
567 void Function::addFnAttrs(const AttrBuilder &Attrs) {
568 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
571 void Function::addRetAttr(Attribute::AttrKind Kind) {
572 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
575 void Function::addRetAttr(Attribute Attr) {
576 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
579 void Function::addRetAttrs(const AttrBuilder &Attrs) {
580 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
583 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
584 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
587 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
588 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
591 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
592 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
595 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
596 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
599 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
600 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
603 void Function::removeFnAttr(Attribute::AttrKind Kind) {
604 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
607 void Function::removeFnAttr(StringRef Kind) {
608 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
611 void Function::removeFnAttrs(const AttributeMask &AM) {
612 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
615 void Function::removeRetAttr(Attribute::AttrKind Kind) {
616 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
619 void Function::removeRetAttr(StringRef Kind) {
620 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
623 void Function::removeRetAttrs(const AttributeMask &Attrs) {
624 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
627 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
628 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
631 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
632 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
635 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
636 AttributeSets =
637 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
640 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
641 AttributeSets =
642 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
645 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
646 return AttributeSets.hasFnAttr(Kind);
649 bool Function::hasFnAttribute(StringRef Kind) const {
650 return AttributeSets.hasFnAttr(Kind);
653 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
654 return AttributeSets.hasRetAttr(Kind);
657 bool Function::hasParamAttribute(unsigned ArgNo,
658 Attribute::AttrKind Kind) const {
659 return AttributeSets.hasParamAttr(ArgNo, Kind);
662 Attribute Function::getAttributeAtIndex(unsigned i,
663 Attribute::AttrKind Kind) const {
664 return AttributeSets.getAttributeAtIndex(i, Kind);
667 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
668 return AttributeSets.getAttributeAtIndex(i, Kind);
671 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
672 return AttributeSets.getFnAttr(Kind);
675 Attribute Function::getFnAttribute(StringRef Kind) const {
676 return AttributeSets.getFnAttr(Kind);
679 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
680 uint64_t Default) const {
681 Attribute A = getFnAttribute(Name);
682 uint64_t Result = Default;
683 if (A.isStringAttribute()) {
684 StringRef Str = A.getValueAsString();
685 if (Str.getAsInteger(0, Result))
686 getContext().emitError("cannot parse integer attribute " + Name);
689 return Result;
692 /// gets the specified attribute from the list of attributes.
693 Attribute Function::getParamAttribute(unsigned ArgNo,
694 Attribute::AttrKind Kind) const {
695 return AttributeSets.getParamAttr(ArgNo, Kind);
698 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
699 uint64_t Bytes) {
700 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
701 ArgNo, Bytes);
704 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
705 if (&FPType == &APFloat::IEEEsingle()) {
706 DenormalMode Mode = getDenormalModeF32Raw();
707 // If the f32 variant of the attribute isn't specified, try to use the
708 // generic one.
709 if (Mode.isValid())
710 return Mode;
713 return getDenormalModeRaw();
716 DenormalMode Function::getDenormalModeRaw() const {
717 Attribute Attr = getFnAttribute("denormal-fp-math");
718 StringRef Val = Attr.getValueAsString();
719 return parseDenormalFPAttribute(Val);
722 DenormalMode Function::getDenormalModeF32Raw() const {
723 Attribute Attr = getFnAttribute("denormal-fp-math-f32");
724 if (Attr.isValid()) {
725 StringRef Val = Attr.getValueAsString();
726 return parseDenormalFPAttribute(Val);
729 return DenormalMode::getInvalid();
732 const std::string &Function::getGC() const {
733 assert(hasGC() && "Function has no collector");
734 return getContext().getGC(*this);
737 void Function::setGC(std::string Str) {
738 setValueSubclassDataBit(14, !Str.empty());
739 getContext().setGC(*this, std::move(Str));
742 void Function::clearGC() {
743 if (!hasGC())
744 return;
745 getContext().deleteGC(*this);
746 setValueSubclassDataBit(14, false);
749 bool Function::hasStackProtectorFnAttr() const {
750 return hasFnAttribute(Attribute::StackProtect) ||
751 hasFnAttribute(Attribute::StackProtectStrong) ||
752 hasFnAttribute(Attribute::StackProtectReq);
755 /// Copy all additional attributes (those not needed to create a Function) from
756 /// the Function Src to this one.
757 void Function::copyAttributesFrom(const Function *Src) {
758 GlobalObject::copyAttributesFrom(Src);
759 setCallingConv(Src->getCallingConv());
760 setAttributes(Src->getAttributes());
761 if (Src->hasGC())
762 setGC(Src->getGC());
763 else
764 clearGC();
765 if (Src->hasPersonalityFn())
766 setPersonalityFn(Src->getPersonalityFn());
767 if (Src->hasPrefixData())
768 setPrefixData(Src->getPrefixData());
769 if (Src->hasPrologueData())
770 setPrologueData(Src->getPrologueData());
773 MemoryEffects Function::getMemoryEffects() const {
774 return getAttributes().getMemoryEffects();
776 void Function::setMemoryEffects(MemoryEffects ME) {
777 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
780 /// Determine if the function does not access memory.
781 bool Function::doesNotAccessMemory() const {
782 return getMemoryEffects().doesNotAccessMemory();
784 void Function::setDoesNotAccessMemory() {
785 setMemoryEffects(MemoryEffects::none());
788 /// Determine if the function does not access or only reads memory.
789 bool Function::onlyReadsMemory() const {
790 return getMemoryEffects().onlyReadsMemory();
792 void Function::setOnlyReadsMemory() {
793 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
796 /// Determine if the function does not access or only writes memory.
797 bool Function::onlyWritesMemory() const {
798 return getMemoryEffects().onlyWritesMemory();
800 void Function::setOnlyWritesMemory() {
801 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
804 /// Determine if the call can access memmory only using pointers based
805 /// on its arguments.
806 bool Function::onlyAccessesArgMemory() const {
807 return getMemoryEffects().onlyAccessesArgPointees();
809 void Function::setOnlyAccessesArgMemory() {
810 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
813 /// Determine if the function may only access memory that is
814 /// inaccessible from the IR.
815 bool Function::onlyAccessesInaccessibleMemory() const {
816 return getMemoryEffects().onlyAccessesInaccessibleMem();
818 void Function::setOnlyAccessesInaccessibleMemory() {
819 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
822 /// Determine if the function may only access memory that is
823 /// either inaccessible from the IR or pointed to by its arguments.
824 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
825 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
827 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
828 setMemoryEffects(getMemoryEffects() &
829 MemoryEffects::inaccessibleOrArgMemOnly());
832 /// Table of string intrinsic names indexed by enum value.
833 static const char * const IntrinsicNameTable[] = {
834 "not_intrinsic",
835 #define GET_INTRINSIC_NAME_TABLE
836 #include "llvm/IR/IntrinsicImpl.inc"
837 #undef GET_INTRINSIC_NAME_TABLE
840 /// Table of per-target intrinsic name tables.
841 #define GET_INTRINSIC_TARGET_DATA
842 #include "llvm/IR/IntrinsicImpl.inc"
843 #undef GET_INTRINSIC_TARGET_DATA
845 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
846 return IID > TargetInfos[0].Count;
849 bool Function::isTargetIntrinsic() const {
850 return isTargetIntrinsic(IntID);
853 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
854 /// target as \c Name, or the generic table if \c Name is not target specific.
856 /// Returns the relevant slice of \c IntrinsicNameTable
857 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
858 assert(Name.startswith("llvm."));
860 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
861 // Drop "llvm." and take the first dotted component. That will be the target
862 // if this is target specific.
863 StringRef Target = Name.drop_front(5).split('.').first;
864 auto It = partition_point(
865 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
866 // We've either found the target or just fall back to the generic set, which
867 // is always first.
868 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
869 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
872 /// This does the actual lookup of an intrinsic ID which
873 /// matches the given function name.
874 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
875 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
876 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
877 if (Idx == -1)
878 return Intrinsic::not_intrinsic;
880 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
881 // an index into a sub-table.
882 int Adjust = NameTable.data() - IntrinsicNameTable;
883 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
885 // If the intrinsic is not overloaded, require an exact match. If it is
886 // overloaded, require either exact or prefix match.
887 const auto MatchSize = strlen(NameTable[Idx]);
888 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
889 bool IsExactMatch = Name.size() == MatchSize;
890 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
891 : Intrinsic::not_intrinsic;
894 void Function::recalculateIntrinsicID() {
895 StringRef Name = getName();
896 if (!Name.startswith("llvm.")) {
897 HasLLVMReservedName = false;
898 IntID = Intrinsic::not_intrinsic;
899 return;
901 HasLLVMReservedName = true;
902 IntID = lookupIntrinsicID(Name);
905 /// Returns a stable mangling for the type specified for use in the name
906 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
907 /// of named types is simply their name. Manglings for unnamed types consist
908 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
909 /// combined with the mangling of their component types. A vararg function
910 /// type will have a suffix of 'vararg'. Since function types can contain
911 /// other function types, we close a function type mangling with suffix 'f'
912 /// which can't be confused with it's prefix. This ensures we don't have
913 /// collisions between two unrelated function types. Otherwise, you might
914 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
915 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
916 /// indicating that extra care must be taken to ensure a unique name.
917 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
918 std::string Result;
919 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
920 Result += "p" + utostr(PTyp->getAddressSpace());
921 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
922 Result += "a" + utostr(ATyp->getNumElements()) +
923 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
924 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
925 if (!STyp->isLiteral()) {
926 Result += "s_";
927 if (STyp->hasName())
928 Result += STyp->getName();
929 else
930 HasUnnamedType = true;
931 } else {
932 Result += "sl_";
933 for (auto *Elem : STyp->elements())
934 Result += getMangledTypeStr(Elem, HasUnnamedType);
936 // Ensure nested structs are distinguishable.
937 Result += "s";
938 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
939 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
940 for (size_t i = 0; i < FT->getNumParams(); i++)
941 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
942 if (FT->isVarArg())
943 Result += "vararg";
944 // Ensure nested function types are distinguishable.
945 Result += "f";
946 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
947 ElementCount EC = VTy->getElementCount();
948 if (EC.isScalable())
949 Result += "nx";
950 Result += "v" + utostr(EC.getKnownMinValue()) +
951 getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
952 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
953 Result += "t";
954 Result += TETy->getName();
955 for (Type *ParamTy : TETy->type_params())
956 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
957 for (unsigned IntParam : TETy->int_params())
958 Result += "_" + utostr(IntParam);
959 // Ensure nested target extension types are distinguishable.
960 Result += "t";
961 } else if (Ty) {
962 switch (Ty->getTypeID()) {
963 default: llvm_unreachable("Unhandled type");
964 case Type::VoidTyID: Result += "isVoid"; break;
965 case Type::MetadataTyID: Result += "Metadata"; break;
966 case Type::HalfTyID: Result += "f16"; break;
967 case Type::BFloatTyID: Result += "bf16"; break;
968 case Type::FloatTyID: Result += "f32"; break;
969 case Type::DoubleTyID: Result += "f64"; break;
970 case Type::X86_FP80TyID: Result += "f80"; break;
971 case Type::FP128TyID: Result += "f128"; break;
972 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
973 case Type::X86_MMXTyID: Result += "x86mmx"; break;
974 case Type::X86_AMXTyID: Result += "x86amx"; break;
975 case Type::IntegerTyID:
976 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
977 break;
980 return Result;
983 StringRef Intrinsic::getBaseName(ID id) {
984 assert(id < num_intrinsics && "Invalid intrinsic ID!");
985 return IntrinsicNameTable[id];
988 StringRef Intrinsic::getName(ID id) {
989 assert(id < num_intrinsics && "Invalid intrinsic ID!");
990 assert(!Intrinsic::isOverloaded(id) &&
991 "This version of getName does not support overloading");
992 return getBaseName(id);
995 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
996 Module *M, FunctionType *FT,
997 bool EarlyModuleCheck) {
999 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1000 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1001 "This version of getName is for overloaded intrinsics only");
1002 (void)EarlyModuleCheck;
1003 assert((!EarlyModuleCheck || M ||
1004 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1005 "Intrinsic overloading on pointer types need to provide a Module");
1006 bool HasUnnamedType = false;
1007 std::string Result(Intrinsic::getBaseName(Id));
1008 for (Type *Ty : Tys)
1009 Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1010 if (HasUnnamedType) {
1011 assert(M && "unnamed types need a module");
1012 if (!FT)
1013 FT = Intrinsic::getType(M->getContext(), Id, Tys);
1014 else
1015 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1016 "Provided FunctionType must match arguments");
1017 return M->getUniqueIntrinsicName(Result, Id, FT);
1019 return Result;
1022 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1023 FunctionType *FT) {
1024 assert(M && "We need to have a Module");
1025 return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1028 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1029 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1032 /// IIT_Info - These are enumerators that describe the entries returned by the
1033 /// getIntrinsicInfoTableEntries function.
1035 /// Defined in Intrinsics.td.
1036 enum IIT_Info {
1037 #define GET_INTRINSIC_IITINFO
1038 #include "llvm/IR/IntrinsicImpl.inc"
1039 #undef GET_INTRINSIC_IITINFO
1042 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1043 IIT_Info LastInfo,
1044 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1045 using namespace Intrinsic;
1047 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1049 IIT_Info Info = IIT_Info(Infos[NextElt++]);
1050 unsigned StructElts = 2;
1052 switch (Info) {
1053 case IIT_Done:
1054 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1055 return;
1056 case IIT_VARARG:
1057 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1058 return;
1059 case IIT_MMX:
1060 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1061 return;
1062 case IIT_AMX:
1063 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1064 return;
1065 case IIT_TOKEN:
1066 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1067 return;
1068 case IIT_METADATA:
1069 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1070 return;
1071 case IIT_F16:
1072 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1073 return;
1074 case IIT_BF16:
1075 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1076 return;
1077 case IIT_F32:
1078 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1079 return;
1080 case IIT_F64:
1081 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1082 return;
1083 case IIT_F128:
1084 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1085 return;
1086 case IIT_PPCF128:
1087 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1088 return;
1089 case IIT_I1:
1090 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1091 return;
1092 case IIT_I2:
1093 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1094 return;
1095 case IIT_I4:
1096 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1097 return;
1098 case IIT_AARCH64_SVCOUNT:
1099 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
1100 return;
1101 case IIT_I8:
1102 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1103 return;
1104 case IIT_I16:
1105 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1106 return;
1107 case IIT_I32:
1108 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1109 return;
1110 case IIT_I64:
1111 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1112 return;
1113 case IIT_I128:
1114 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1115 return;
1116 case IIT_V1:
1117 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1118 DecodeIITType(NextElt, Infos, Info, OutputTable);
1119 return;
1120 case IIT_V2:
1121 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1122 DecodeIITType(NextElt, Infos, Info, OutputTable);
1123 return;
1124 case IIT_V3:
1125 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1126 DecodeIITType(NextElt, Infos, Info, OutputTable);
1127 return;
1128 case IIT_V4:
1129 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1130 DecodeIITType(NextElt, Infos, Info, OutputTable);
1131 return;
1132 case IIT_V8:
1133 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1134 DecodeIITType(NextElt, Infos, Info, OutputTable);
1135 return;
1136 case IIT_V16:
1137 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1138 DecodeIITType(NextElt, Infos, Info, OutputTable);
1139 return;
1140 case IIT_V32:
1141 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1142 DecodeIITType(NextElt, Infos, Info, OutputTable);
1143 return;
1144 case IIT_V64:
1145 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1146 DecodeIITType(NextElt, Infos, Info, OutputTable);
1147 return;
1148 case IIT_V128:
1149 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1150 DecodeIITType(NextElt, Infos, Info, OutputTable);
1151 return;
1152 case IIT_V256:
1153 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1154 DecodeIITType(NextElt, Infos, Info, OutputTable);
1155 return;
1156 case IIT_V512:
1157 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1158 DecodeIITType(NextElt, Infos, Info, OutputTable);
1159 return;
1160 case IIT_V1024:
1161 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1162 DecodeIITType(NextElt, Infos, Info, OutputTable);
1163 return;
1164 case IIT_EXTERNREF:
1165 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1166 return;
1167 case IIT_FUNCREF:
1168 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1169 return;
1170 case IIT_PTR:
1171 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1172 return;
1173 case IIT_ANYPTR: // [ANYPTR addrspace]
1174 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1175 Infos[NextElt++]));
1176 return;
1177 case IIT_ARG: {
1178 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1179 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1180 return;
1182 case IIT_EXTEND_ARG: {
1183 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1184 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1185 ArgInfo));
1186 return;
1188 case IIT_TRUNC_ARG: {
1189 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1190 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1191 ArgInfo));
1192 return;
1194 case IIT_HALF_VEC_ARG: {
1195 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1196 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1197 ArgInfo));
1198 return;
1200 case IIT_SAME_VEC_WIDTH_ARG: {
1201 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1202 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1203 ArgInfo));
1204 return;
1206 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1207 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1208 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1209 OutputTable.push_back(
1210 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1211 return;
1213 case IIT_EMPTYSTRUCT:
1214 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1215 return;
1216 case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1217 case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1218 case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1219 case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1220 case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1221 case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1222 case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1223 case IIT_STRUCT2: {
1224 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1226 for (unsigned i = 0; i != StructElts; ++i)
1227 DecodeIITType(NextElt, Infos, Info, OutputTable);
1228 return;
1230 case IIT_SUBDIVIDE2_ARG: {
1231 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1232 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1233 ArgInfo));
1234 return;
1236 case IIT_SUBDIVIDE4_ARG: {
1237 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1238 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1239 ArgInfo));
1240 return;
1242 case IIT_VEC_ELEMENT: {
1243 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1244 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1245 ArgInfo));
1246 return;
1248 case IIT_SCALABLE_VEC: {
1249 DecodeIITType(NextElt, Infos, Info, OutputTable);
1250 return;
1252 case IIT_VEC_OF_BITCASTS_TO_INT: {
1253 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1254 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1255 ArgInfo));
1256 return;
1259 llvm_unreachable("unhandled");
1262 #define GET_INTRINSIC_GENERATOR_GLOBAL
1263 #include "llvm/IR/IntrinsicImpl.inc"
1264 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1266 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1267 SmallVectorImpl<IITDescriptor> &T){
1268 // Check to see if the intrinsic's type was expressible by the table.
1269 unsigned TableVal = IIT_Table[id-1];
1271 // Decode the TableVal into an array of IITValues.
1272 SmallVector<unsigned char, 8> IITValues;
1273 ArrayRef<unsigned char> IITEntries;
1274 unsigned NextElt = 0;
1275 if ((TableVal >> 31) != 0) {
1276 // This is an offset into the IIT_LongEncodingTable.
1277 IITEntries = IIT_LongEncodingTable;
1279 // Strip sentinel bit.
1280 NextElt = (TableVal << 1) >> 1;
1281 } else {
1282 // Decode the TableVal into an array of IITValues. If the entry was encoded
1283 // into a single word in the table itself, decode it now.
1284 do {
1285 IITValues.push_back(TableVal & 0xF);
1286 TableVal >>= 4;
1287 } while (TableVal);
1289 IITEntries = IITValues;
1290 NextElt = 0;
1293 // Okay, decode the table into the output vector of IITDescriptors.
1294 DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1295 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1296 DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1299 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1300 ArrayRef<Type*> Tys, LLVMContext &Context) {
1301 using namespace Intrinsic;
1303 IITDescriptor D = Infos.front();
1304 Infos = Infos.slice(1);
1306 switch (D.Kind) {
1307 case IITDescriptor::Void: return Type::getVoidTy(Context);
1308 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1309 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1310 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1311 case IITDescriptor::Token: return Type::getTokenTy(Context);
1312 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1313 case IITDescriptor::Half: return Type::getHalfTy(Context);
1314 case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1315 case IITDescriptor::Float: return Type::getFloatTy(Context);
1316 case IITDescriptor::Double: return Type::getDoubleTy(Context);
1317 case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1318 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1319 case IITDescriptor::AArch64Svcount:
1320 return TargetExtType::get(Context, "aarch64.svcount");
1322 case IITDescriptor::Integer:
1323 return IntegerType::get(Context, D.Integer_Width);
1324 case IITDescriptor::Vector:
1325 return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1326 D.Vector_Width);
1327 case IITDescriptor::Pointer:
1328 return PointerType::get(Context, D.Pointer_AddressSpace);
1329 case IITDescriptor::Struct: {
1330 SmallVector<Type *, 8> Elts;
1331 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1332 Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1333 return StructType::get(Context, Elts);
1335 case IITDescriptor::Argument:
1336 return Tys[D.getArgumentNumber()];
1337 case IITDescriptor::ExtendArgument: {
1338 Type *Ty = Tys[D.getArgumentNumber()];
1339 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1340 return VectorType::getExtendedElementVectorType(VTy);
1342 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1344 case IITDescriptor::TruncArgument: {
1345 Type *Ty = Tys[D.getArgumentNumber()];
1346 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1347 return VectorType::getTruncatedElementVectorType(VTy);
1349 IntegerType *ITy = cast<IntegerType>(Ty);
1350 assert(ITy->getBitWidth() % 2 == 0);
1351 return IntegerType::get(Context, ITy->getBitWidth() / 2);
1353 case IITDescriptor::Subdivide2Argument:
1354 case IITDescriptor::Subdivide4Argument: {
1355 Type *Ty = Tys[D.getArgumentNumber()];
1356 VectorType *VTy = dyn_cast<VectorType>(Ty);
1357 assert(VTy && "Expected an argument of Vector Type");
1358 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1359 return VectorType::getSubdividedVectorType(VTy, SubDivs);
1361 case IITDescriptor::HalfVecArgument:
1362 return VectorType::getHalfElementsVectorType(cast<VectorType>(
1363 Tys[D.getArgumentNumber()]));
1364 case IITDescriptor::SameVecWidthArgument: {
1365 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1366 Type *Ty = Tys[D.getArgumentNumber()];
1367 if (auto *VTy = dyn_cast<VectorType>(Ty))
1368 return VectorType::get(EltTy, VTy->getElementCount());
1369 return EltTy;
1371 case IITDescriptor::VecElementArgument: {
1372 Type *Ty = Tys[D.getArgumentNumber()];
1373 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1374 return VTy->getElementType();
1375 llvm_unreachable("Expected an argument of Vector Type");
1377 case IITDescriptor::VecOfBitcastsToInt: {
1378 Type *Ty = Tys[D.getArgumentNumber()];
1379 VectorType *VTy = dyn_cast<VectorType>(Ty);
1380 assert(VTy && "Expected an argument of Vector Type");
1381 return VectorType::getInteger(VTy);
1383 case IITDescriptor::VecOfAnyPtrsToElt:
1384 // Return the overloaded type (which determines the pointers address space)
1385 return Tys[D.getOverloadArgNumber()];
1387 llvm_unreachable("unhandled");
1390 FunctionType *Intrinsic::getType(LLVMContext &Context,
1391 ID id, ArrayRef<Type*> Tys) {
1392 SmallVector<IITDescriptor, 8> Table;
1393 getIntrinsicInfoTableEntries(id, Table);
1395 ArrayRef<IITDescriptor> TableRef = Table;
1396 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1398 SmallVector<Type*, 8> ArgTys;
1399 while (!TableRef.empty())
1400 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1402 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1403 // If we see void type as the type of the last argument, it is vararg intrinsic
1404 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1405 ArgTys.pop_back();
1406 return FunctionType::get(ResultTy, ArgTys, true);
1408 return FunctionType::get(ResultTy, ArgTys, false);
1411 bool Intrinsic::isOverloaded(ID id) {
1412 #define GET_INTRINSIC_OVERLOAD_TABLE
1413 #include "llvm/IR/IntrinsicImpl.inc"
1414 #undef GET_INTRINSIC_OVERLOAD_TABLE
1417 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1418 #define GET_INTRINSIC_ATTRIBUTES
1419 #include "llvm/IR/IntrinsicImpl.inc"
1420 #undef GET_INTRINSIC_ATTRIBUTES
1422 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1423 // There can never be multiple globals with the same name of different types,
1424 // because intrinsics must be a specific type.
1425 auto *FT = getType(M->getContext(), id, Tys);
1426 return cast<Function>(
1427 M->getOrInsertFunction(
1428 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1429 .getCallee());
1432 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1433 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1434 #include "llvm/IR/IntrinsicImpl.inc"
1435 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1437 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1438 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1439 #include "llvm/IR/IntrinsicImpl.inc"
1440 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1442 using DeferredIntrinsicMatchPair =
1443 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1445 static bool matchIntrinsicType(
1446 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1447 SmallVectorImpl<Type *> &ArgTys,
1448 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1449 bool IsDeferredCheck) {
1450 using namespace Intrinsic;
1452 // If we ran out of descriptors, there are too many arguments.
1453 if (Infos.empty()) return true;
1455 // Do this before slicing off the 'front' part
1456 auto InfosRef = Infos;
1457 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1458 DeferredChecks.emplace_back(T, InfosRef);
1459 return false;
1462 IITDescriptor D = Infos.front();
1463 Infos = Infos.slice(1);
1465 switch (D.Kind) {
1466 case IITDescriptor::Void: return !Ty->isVoidTy();
1467 case IITDescriptor::VarArg: return true;
1468 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1469 case IITDescriptor::AMX: return !Ty->isX86_AMXTy();
1470 case IITDescriptor::Token: return !Ty->isTokenTy();
1471 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1472 case IITDescriptor::Half: return !Ty->isHalfTy();
1473 case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1474 case IITDescriptor::Float: return !Ty->isFloatTy();
1475 case IITDescriptor::Double: return !Ty->isDoubleTy();
1476 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1477 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1478 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1479 case IITDescriptor::AArch64Svcount:
1480 return !isa<TargetExtType>(Ty) ||
1481 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
1482 case IITDescriptor::Vector: {
1483 VectorType *VT = dyn_cast<VectorType>(Ty);
1484 return !VT || VT->getElementCount() != D.Vector_Width ||
1485 matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1486 DeferredChecks, IsDeferredCheck);
1488 case IITDescriptor::Pointer: {
1489 PointerType *PT = dyn_cast<PointerType>(Ty);
1490 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1493 case IITDescriptor::Struct: {
1494 StructType *ST = dyn_cast<StructType>(Ty);
1495 if (!ST || !ST->isLiteral() || ST->isPacked() ||
1496 ST->getNumElements() != D.Struct_NumElements)
1497 return true;
1499 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1500 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1501 DeferredChecks, IsDeferredCheck))
1502 return true;
1503 return false;
1506 case IITDescriptor::Argument:
1507 // If this is the second occurrence of an argument,
1508 // verify that the later instance matches the previous instance.
1509 if (D.getArgumentNumber() < ArgTys.size())
1510 return Ty != ArgTys[D.getArgumentNumber()];
1512 if (D.getArgumentNumber() > ArgTys.size() ||
1513 D.getArgumentKind() == IITDescriptor::AK_MatchType)
1514 return IsDeferredCheck || DeferCheck(Ty);
1516 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1517 "Table consistency error");
1518 ArgTys.push_back(Ty);
1520 switch (D.getArgumentKind()) {
1521 case IITDescriptor::AK_Any: return false; // Success
1522 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1523 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1524 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1525 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1526 default: break;
1528 llvm_unreachable("all argument kinds not covered");
1530 case IITDescriptor::ExtendArgument: {
1531 // If this is a forward reference, defer the check for later.
1532 if (D.getArgumentNumber() >= ArgTys.size())
1533 return IsDeferredCheck || DeferCheck(Ty);
1535 Type *NewTy = ArgTys[D.getArgumentNumber()];
1536 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1537 NewTy = VectorType::getExtendedElementVectorType(VTy);
1538 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1539 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1540 else
1541 return true;
1543 return Ty != NewTy;
1545 case IITDescriptor::TruncArgument: {
1546 // If this is a forward reference, defer the check for later.
1547 if (D.getArgumentNumber() >= ArgTys.size())
1548 return IsDeferredCheck || DeferCheck(Ty);
1550 Type *NewTy = ArgTys[D.getArgumentNumber()];
1551 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1552 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1553 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1554 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1555 else
1556 return true;
1558 return Ty != NewTy;
1560 case IITDescriptor::HalfVecArgument:
1561 // If this is a forward reference, defer the check for later.
1562 if (D.getArgumentNumber() >= ArgTys.size())
1563 return IsDeferredCheck || DeferCheck(Ty);
1564 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1565 VectorType::getHalfElementsVectorType(
1566 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1567 case IITDescriptor::SameVecWidthArgument: {
1568 if (D.getArgumentNumber() >= ArgTys.size()) {
1569 // Defer check and subsequent check for the vector element type.
1570 Infos = Infos.slice(1);
1571 return IsDeferredCheck || DeferCheck(Ty);
1573 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1574 auto *ThisArgType = dyn_cast<VectorType>(Ty);
1575 // Both must be vectors of the same number of elements or neither.
1576 if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1577 return true;
1578 Type *EltTy = Ty;
1579 if (ThisArgType) {
1580 if (ReferenceType->getElementCount() !=
1581 ThisArgType->getElementCount())
1582 return true;
1583 EltTy = ThisArgType->getElementType();
1585 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1586 IsDeferredCheck);
1588 case IITDescriptor::VecOfAnyPtrsToElt: {
1589 unsigned RefArgNumber = D.getRefArgNumber();
1590 if (RefArgNumber >= ArgTys.size()) {
1591 if (IsDeferredCheck)
1592 return true;
1593 // If forward referencing, already add the pointer-vector type and
1594 // defer the checks for later.
1595 ArgTys.push_back(Ty);
1596 return DeferCheck(Ty);
1599 if (!IsDeferredCheck){
1600 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1601 "Table consistency error");
1602 ArgTys.push_back(Ty);
1605 // Verify the overloaded type "matches" the Ref type.
1606 // i.e. Ty is a vector with the same width as Ref.
1607 // Composed of pointers to the same element type as Ref.
1608 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1609 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1610 if (!ThisArgVecTy || !ReferenceType ||
1611 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1612 return true;
1613 return !ThisArgVecTy->getElementType()->isPointerTy();
1615 case IITDescriptor::VecElementArgument: {
1616 if (D.getArgumentNumber() >= ArgTys.size())
1617 return IsDeferredCheck ? true : DeferCheck(Ty);
1618 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1619 return !ReferenceType || Ty != ReferenceType->getElementType();
1621 case IITDescriptor::Subdivide2Argument:
1622 case IITDescriptor::Subdivide4Argument: {
1623 // If this is a forward reference, defer the check for later.
1624 if (D.getArgumentNumber() >= ArgTys.size())
1625 return IsDeferredCheck || DeferCheck(Ty);
1627 Type *NewTy = ArgTys[D.getArgumentNumber()];
1628 if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1629 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1630 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1631 return Ty != NewTy;
1633 return true;
1635 case IITDescriptor::VecOfBitcastsToInt: {
1636 if (D.getArgumentNumber() >= ArgTys.size())
1637 return IsDeferredCheck || DeferCheck(Ty);
1638 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1639 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1640 if (!ThisArgVecTy || !ReferenceType)
1641 return true;
1642 return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1645 llvm_unreachable("unhandled");
1648 Intrinsic::MatchIntrinsicTypesResult
1649 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1650 ArrayRef<Intrinsic::IITDescriptor> &Infos,
1651 SmallVectorImpl<Type *> &ArgTys) {
1652 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1653 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1654 false))
1655 return MatchIntrinsicTypes_NoMatchRet;
1657 unsigned NumDeferredReturnChecks = DeferredChecks.size();
1659 for (auto *Ty : FTy->params())
1660 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1661 return MatchIntrinsicTypes_NoMatchArg;
1663 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1664 DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1665 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1666 true))
1667 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1668 : MatchIntrinsicTypes_NoMatchArg;
1671 return MatchIntrinsicTypes_Match;
1674 bool
1675 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1676 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1677 // If there are no descriptors left, then it can't be a vararg.
1678 if (Infos.empty())
1679 return isVarArg;
1681 // There should be only one descriptor remaining at this point.
1682 if (Infos.size() != 1)
1683 return true;
1685 // Check and verify the descriptor.
1686 IITDescriptor D = Infos.front();
1687 Infos = Infos.slice(1);
1688 if (D.Kind == IITDescriptor::VarArg)
1689 return !isVarArg;
1691 return true;
1694 bool Intrinsic::getIntrinsicSignature(Function *F,
1695 SmallVectorImpl<Type *> &ArgTys) {
1696 Intrinsic::ID ID = F->getIntrinsicID();
1697 if (!ID)
1698 return false;
1700 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1701 getIntrinsicInfoTableEntries(ID, Table);
1702 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1704 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1705 ArgTys) !=
1706 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1707 return false;
1709 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1710 TableRef))
1711 return false;
1712 return true;
1715 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1716 SmallVector<Type *, 4> ArgTys;
1717 if (!getIntrinsicSignature(F, ArgTys))
1718 return std::nullopt;
1720 Intrinsic::ID ID = F->getIntrinsicID();
1721 StringRef Name = F->getName();
1722 std::string WantedName =
1723 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1724 if (Name == WantedName)
1725 return std::nullopt;
1727 Function *NewDecl = [&] {
1728 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1729 if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1730 if (ExistingF->getFunctionType() == F->getFunctionType())
1731 return ExistingF;
1733 // The name already exists, but is not a function or has the wrong
1734 // prototype. Make place for the new one by renaming the old version.
1735 // Either this old version will be removed later on or the module is
1736 // invalid and we'll get an error.
1737 ExistingGV->setName(WantedName + ".renamed");
1739 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1740 }();
1742 NewDecl->setCallingConv(F->getCallingConv());
1743 assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1744 "Shouldn't change the signature");
1745 return NewDecl;
1748 /// hasAddressTaken - returns true if there are any uses of this function
1749 /// other than direct calls or invokes to it. Optionally ignores callback
1750 /// uses, assume like pointer annotation calls, and references in llvm.used
1751 /// and llvm.compiler.used variables.
1752 bool Function::hasAddressTaken(const User **PutOffender,
1753 bool IgnoreCallbackUses,
1754 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1755 bool IgnoreARCAttachedCall,
1756 bool IgnoreCastedDirectCall) const {
1757 for (const Use &U : uses()) {
1758 const User *FU = U.getUser();
1759 if (isa<BlockAddress>(FU))
1760 continue;
1762 if (IgnoreCallbackUses) {
1763 AbstractCallSite ACS(&U);
1764 if (ACS && ACS.isCallbackCall())
1765 continue;
1768 const auto *Call = dyn_cast<CallBase>(FU);
1769 if (!Call) {
1770 if (IgnoreAssumeLikeCalls &&
1771 isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1772 all_of(FU->users(), [](const User *U) {
1773 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1774 return I->isAssumeLikeIntrinsic();
1775 return false;
1776 })) {
1777 continue;
1780 if (IgnoreLLVMUsed && !FU->user_empty()) {
1781 const User *FUU = FU;
1782 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1783 FU->hasOneUse() && !FU->user_begin()->user_empty())
1784 FUU = *FU->user_begin();
1785 if (llvm::all_of(FUU->users(), [](const User *U) {
1786 if (const auto *GV = dyn_cast<GlobalVariable>(U))
1787 return GV->hasName() &&
1788 (GV->getName().equals("llvm.compiler.used") ||
1789 GV->getName().equals("llvm.used"));
1790 return false;
1792 continue;
1794 if (PutOffender)
1795 *PutOffender = FU;
1796 return true;
1799 if (IgnoreAssumeLikeCalls) {
1800 if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1801 if (I->isAssumeLikeIntrinsic())
1802 continue;
1805 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall &&
1806 Call->getFunctionType() != getFunctionType())) {
1807 if (IgnoreARCAttachedCall &&
1808 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1809 U.getOperandNo()))
1810 continue;
1812 if (PutOffender)
1813 *PutOffender = FU;
1814 return true;
1817 return false;
1820 bool Function::isDefTriviallyDead() const {
1821 // Check the linkage
1822 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1823 !hasAvailableExternallyLinkage())
1824 return false;
1826 // Check if the function is used by anything other than a blockaddress.
1827 for (const User *U : users())
1828 if (!isa<BlockAddress>(U))
1829 return false;
1831 return true;
1834 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1835 /// setjmp or other function that gcc recognizes as "returning twice".
1836 bool Function::callsFunctionThatReturnsTwice() const {
1837 for (const Instruction &I : instructions(this))
1838 if (const auto *Call = dyn_cast<CallBase>(&I))
1839 if (Call->hasFnAttr(Attribute::ReturnsTwice))
1840 return true;
1842 return false;
1845 Constant *Function::getPersonalityFn() const {
1846 assert(hasPersonalityFn() && getNumOperands());
1847 return cast<Constant>(Op<0>());
1850 void Function::setPersonalityFn(Constant *Fn) {
1851 setHungoffOperand<0>(Fn);
1852 setValueSubclassDataBit(3, Fn != nullptr);
1855 Constant *Function::getPrefixData() const {
1856 assert(hasPrefixData() && getNumOperands());
1857 return cast<Constant>(Op<1>());
1860 void Function::setPrefixData(Constant *PrefixData) {
1861 setHungoffOperand<1>(PrefixData);
1862 setValueSubclassDataBit(1, PrefixData != nullptr);
1865 Constant *Function::getPrologueData() const {
1866 assert(hasPrologueData() && getNumOperands());
1867 return cast<Constant>(Op<2>());
1870 void Function::setPrologueData(Constant *PrologueData) {
1871 setHungoffOperand<2>(PrologueData);
1872 setValueSubclassDataBit(2, PrologueData != nullptr);
1875 void Function::allocHungoffUselist() {
1876 // If we've already allocated a uselist, stop here.
1877 if (getNumOperands())
1878 return;
1880 allocHungoffUses(3, /*IsPhi=*/ false);
1881 setNumHungOffUseOperands(3);
1883 // Initialize the uselist with placeholder operands to allow traversal.
1884 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
1885 Op<0>().set(CPN);
1886 Op<1>().set(CPN);
1887 Op<2>().set(CPN);
1890 template <int Idx>
1891 void Function::setHungoffOperand(Constant *C) {
1892 if (C) {
1893 allocHungoffUselist();
1894 Op<Idx>().set(C);
1895 } else if (getNumOperands()) {
1896 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0)));
1900 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1901 assert(Bit < 16 && "SubclassData contains only 16 bits");
1902 if (On)
1903 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1904 else
1905 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1908 void Function::setEntryCount(ProfileCount Count,
1909 const DenseSet<GlobalValue::GUID> *S) {
1910 #if !defined(NDEBUG)
1911 auto PrevCount = getEntryCount();
1912 assert(!PrevCount || PrevCount->getType() == Count.getType());
1913 #endif
1915 auto ImportGUIDs = getImportGUIDs();
1916 if (S == nullptr && ImportGUIDs.size())
1917 S = &ImportGUIDs;
1919 MDBuilder MDB(getContext());
1920 setMetadata(
1921 LLVMContext::MD_prof,
1922 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1925 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1926 const DenseSet<GlobalValue::GUID> *Imports) {
1927 setEntryCount(ProfileCount(Count, Type), Imports);
1930 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1931 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1932 if (MD && MD->getOperand(0))
1933 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1934 if (MDS->getString().equals("function_entry_count")) {
1935 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1936 uint64_t Count = CI->getValue().getZExtValue();
1937 // A value of -1 is used for SamplePGO when there were no samples.
1938 // Treat this the same as unknown.
1939 if (Count == (uint64_t)-1)
1940 return std::nullopt;
1941 return ProfileCount(Count, PCT_Real);
1942 } else if (AllowSynthetic &&
1943 MDS->getString().equals("synthetic_function_entry_count")) {
1944 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1945 uint64_t Count = CI->getValue().getZExtValue();
1946 return ProfileCount(Count, PCT_Synthetic);
1949 return std::nullopt;
1952 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1953 DenseSet<GlobalValue::GUID> R;
1954 if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1955 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1956 if (MDS->getString().equals("function_entry_count"))
1957 for (unsigned i = 2; i < MD->getNumOperands(); i++)
1958 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1959 ->getValue()
1960 .getZExtValue());
1961 return R;
1964 void Function::setSectionPrefix(StringRef Prefix) {
1965 MDBuilder MDB(getContext());
1966 setMetadata(LLVMContext::MD_section_prefix,
1967 MDB.createFunctionSectionPrefix(Prefix));
1970 std::optional<StringRef> Function::getSectionPrefix() const {
1971 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1972 assert(cast<MDString>(MD->getOperand(0))
1973 ->getString()
1974 .equals("function_section_prefix") &&
1975 "Metadata not match");
1976 return cast<MDString>(MD->getOperand(1))->getString();
1978 return std::nullopt;
1981 bool Function::nullPointerIsDefined() const {
1982 return hasFnAttribute(Attribute::NullPointerIsValid);
1985 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1986 if (F && F->nullPointerIsDefined())
1987 return true;
1989 if (AS != 0)
1990 return true;
1992 return false;