1 //===- Function.cpp - Implement the Global object classes -----------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the Function class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsAArch64.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsARM.h"
37 #include "llvm/IR/IntrinsicsBPF.h"
38 #include "llvm/IR/IntrinsicsDirectX.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsLoongArch.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include "llvm/Support/ModRef.h"
74 using ProfileCount
= Function::ProfileCount
;
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits
<BasicBlock
>;
80 static cl::opt
<unsigned> NonGlobalValueMaxNameSize(
81 "non-global-value-max-name-size", cl::Hidden
, cl::init(1024),
82 cl::desc("Maximum size for the name of non-global values."));
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
88 Argument::Argument(Type
*Ty
, const Twine
&Name
, Function
*Par
, unsigned ArgNo
)
89 : Value(Ty
, Value::ArgumentVal
), Parent(Par
), ArgNo(ArgNo
) {
93 void Argument::setParent(Function
*parent
) {
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison
) const {
98 if (!getType()->isPointerTy()) return false;
99 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull
) &&
100 (AllowUndefOrPoison
||
101 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef
)))
103 else if (getDereferenceableBytes() > 0 &&
104 !NullPointerIsDefined(getParent(),
105 getType()->getPointerAddressSpace()))
110 bool Argument::hasByValAttr() const {
111 if (!getType()->isPointerTy()) return false;
112 return hasAttribute(Attribute::ByVal
);
115 bool Argument::hasByRefAttr() const {
116 if (!getType()->isPointerTy())
118 return hasAttribute(Attribute::ByRef
);
121 bool Argument::hasSwiftSelfAttr() const {
122 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf
);
125 bool Argument::hasSwiftErrorAttr() const {
126 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError
);
129 bool Argument::hasInAllocaAttr() const {
130 if (!getType()->isPointerTy()) return false;
131 return hasAttribute(Attribute::InAlloca
);
134 bool Argument::hasPreallocatedAttr() const {
135 if (!getType()->isPointerTy())
137 return hasAttribute(Attribute::Preallocated
);
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141 if (!getType()->isPointerTy()) return false;
142 AttributeList Attrs
= getParent()->getAttributes();
143 return Attrs
.hasParamAttr(getArgNo(), Attribute::ByVal
) ||
144 Attrs
.hasParamAttr(getArgNo(), Attribute::InAlloca
) ||
145 Attrs
.hasParamAttr(getArgNo(), Attribute::Preallocated
);
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149 if (!getType()->isPointerTy())
151 AttributeList Attrs
= getParent()->getAttributes();
152 return Attrs
.hasParamAttr(getArgNo(), Attribute::ByVal
) ||
153 Attrs
.hasParamAttr(getArgNo(), Attribute::StructRet
) ||
154 Attrs
.hasParamAttr(getArgNo(), Attribute::InAlloca
) ||
155 Attrs
.hasParamAttr(getArgNo(), Attribute::Preallocated
) ||
156 Attrs
.hasParamAttr(getArgNo(), Attribute::ByRef
);
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
161 static Type
*getMemoryParamAllocType(AttributeSet ParamAttrs
) {
162 // FIXME: All the type carrying attributes are mutually exclusive, so there
163 // should be a single query to get the stored type that handles any of them.
164 if (Type
*ByValTy
= ParamAttrs
.getByValType())
166 if (Type
*ByRefTy
= ParamAttrs
.getByRefType())
168 if (Type
*PreAllocTy
= ParamAttrs
.getPreallocatedType())
170 if (Type
*InAllocaTy
= ParamAttrs
.getInAllocaType())
172 if (Type
*SRetTy
= ParamAttrs
.getStructRetType())
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout
&DL
) const {
179 AttributeSet ParamAttrs
=
180 getParent()->getAttributes().getParamAttrs(getArgNo());
181 if (Type
*MemTy
= getMemoryParamAllocType(ParamAttrs
))
182 return DL
.getTypeAllocSize(MemTy
);
186 Type
*Argument::getPointeeInMemoryValueType() const {
187 AttributeSet ParamAttrs
=
188 getParent()->getAttributes().getParamAttrs(getArgNo());
189 return getMemoryParamAllocType(ParamAttrs
);
192 MaybeAlign
Argument::getParamAlign() const {
193 assert(getType()->isPointerTy() && "Only pointers have alignments");
194 return getParent()->getParamAlign(getArgNo());
197 MaybeAlign
Argument::getParamStackAlign() const {
198 return getParent()->getParamStackAlign(getArgNo());
201 Type
*Argument::getParamByValType() const {
202 assert(getType()->isPointerTy() && "Only pointers have byval types");
203 return getParent()->getParamByValType(getArgNo());
206 Type
*Argument::getParamStructRetType() const {
207 assert(getType()->isPointerTy() && "Only pointers have sret types");
208 return getParent()->getParamStructRetType(getArgNo());
211 Type
*Argument::getParamByRefType() const {
212 assert(getType()->isPointerTy() && "Only pointers have byref types");
213 return getParent()->getParamByRefType(getArgNo());
216 Type
*Argument::getParamInAllocaType() const {
217 assert(getType()->isPointerTy() && "Only pointers have inalloca types");
218 return getParent()->getParamInAllocaType(getArgNo());
221 uint64_t Argument::getDereferenceableBytes() const {
222 assert(getType()->isPointerTy() &&
223 "Only pointers have dereferenceable bytes");
224 return getParent()->getParamDereferenceableBytes(getArgNo());
227 uint64_t Argument::getDereferenceableOrNullBytes() const {
228 assert(getType()->isPointerTy() &&
229 "Only pointers have dereferenceable bytes");
230 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
233 FPClassTest
Argument::getNoFPClass() const {
234 return getParent()->getParamNoFPClass(getArgNo());
237 bool Argument::hasNestAttr() const {
238 if (!getType()->isPointerTy()) return false;
239 return hasAttribute(Attribute::Nest
);
242 bool Argument::hasNoAliasAttr() const {
243 if (!getType()->isPointerTy()) return false;
244 return hasAttribute(Attribute::NoAlias
);
247 bool Argument::hasNoCaptureAttr() const {
248 if (!getType()->isPointerTy()) return false;
249 return hasAttribute(Attribute::NoCapture
);
252 bool Argument::hasNoFreeAttr() const {
253 if (!getType()->isPointerTy()) return false;
254 return hasAttribute(Attribute::NoFree
);
257 bool Argument::hasStructRetAttr() const {
258 if (!getType()->isPointerTy()) return false;
259 return hasAttribute(Attribute::StructRet
);
262 bool Argument::hasInRegAttr() const {
263 return hasAttribute(Attribute::InReg
);
266 bool Argument::hasReturnedAttr() const {
267 return hasAttribute(Attribute::Returned
);
270 bool Argument::hasZExtAttr() const {
271 return hasAttribute(Attribute::ZExt
);
274 bool Argument::hasSExtAttr() const {
275 return hasAttribute(Attribute::SExt
);
278 bool Argument::onlyReadsMemory() const {
279 AttributeList Attrs
= getParent()->getAttributes();
280 return Attrs
.hasParamAttr(getArgNo(), Attribute::ReadOnly
) ||
281 Attrs
.hasParamAttr(getArgNo(), Attribute::ReadNone
);
284 void Argument::addAttrs(AttrBuilder
&B
) {
285 AttributeList AL
= getParent()->getAttributes();
286 AL
= AL
.addParamAttributes(Parent
->getContext(), getArgNo(), B
);
287 getParent()->setAttributes(AL
);
290 void Argument::addAttr(Attribute::AttrKind Kind
) {
291 getParent()->addParamAttr(getArgNo(), Kind
);
294 void Argument::addAttr(Attribute Attr
) {
295 getParent()->addParamAttr(getArgNo(), Attr
);
298 void Argument::removeAttr(Attribute::AttrKind Kind
) {
299 getParent()->removeParamAttr(getArgNo(), Kind
);
302 void Argument::removeAttrs(const AttributeMask
&AM
) {
303 AttributeList AL
= getParent()->getAttributes();
304 AL
= AL
.removeParamAttributes(Parent
->getContext(), getArgNo(), AM
);
305 getParent()->setAttributes(AL
);
308 bool Argument::hasAttribute(Attribute::AttrKind Kind
) const {
309 return getParent()->hasParamAttribute(getArgNo(), Kind
);
312 Attribute
Argument::getAttribute(Attribute::AttrKind Kind
) const {
313 return getParent()->getParamAttribute(getArgNo(), Kind
);
316 //===----------------------------------------------------------------------===//
317 // Helper Methods in Function
318 //===----------------------------------------------------------------------===//
320 LLVMContext
&Function::getContext() const {
321 return getType()->getContext();
324 unsigned Function::getInstructionCount() const {
325 unsigned NumInstrs
= 0;
326 for (const BasicBlock
&BB
: BasicBlocks
)
327 NumInstrs
+= std::distance(BB
.instructionsWithoutDebug().begin(),
328 BB
.instructionsWithoutDebug().end());
332 Function
*Function::Create(FunctionType
*Ty
, LinkageTypes Linkage
,
333 const Twine
&N
, Module
&M
) {
334 return Create(Ty
, Linkage
, M
.getDataLayout().getProgramAddressSpace(), N
, &M
);
337 Function
*Function::createWithDefaultAttr(FunctionType
*Ty
,
338 LinkageTypes Linkage
,
339 unsigned AddrSpace
, const Twine
&N
,
341 auto *F
= new Function(Ty
, Linkage
, AddrSpace
, N
, M
);
342 AttrBuilder
B(F
->getContext());
343 UWTableKind UWTable
= M
->getUwtable();
344 if (UWTable
!= UWTableKind::None
)
345 B
.addUWTableAttr(UWTable
);
346 switch (M
->getFramePointer()) {
347 case FramePointerKind::None
:
348 // 0 ("none") is the default.
350 case FramePointerKind::NonLeaf
:
351 B
.addAttribute("frame-pointer", "non-leaf");
353 case FramePointerKind::All
:
354 B
.addAttribute("frame-pointer", "all");
357 if (M
->getModuleFlag("function_return_thunk_extern"))
358 B
.addAttribute(Attribute::FnRetThunkExtern
);
363 void Function::removeFromParent() {
364 getParent()->getFunctionList().remove(getIterator());
367 void Function::eraseFromParent() {
368 getParent()->getFunctionList().erase(getIterator());
371 void Function::splice(Function::iterator ToIt
, Function
*FromF
,
372 Function::iterator FromBeginIt
,
373 Function::iterator FromEndIt
) {
374 #ifdef EXPENSIVE_CHECKS
375 // Check that FromBeginIt is before FromEndIt.
376 auto FromFEnd
= FromF
->end();
377 for (auto It
= FromBeginIt
; It
!= FromEndIt
; ++It
)
378 assert(It
!= FromFEnd
&& "FromBeginIt not before FromEndIt!");
379 #endif // EXPENSIVE_CHECKS
380 BasicBlocks
.splice(ToIt
, FromF
->BasicBlocks
, FromBeginIt
, FromEndIt
);
383 Function::iterator
Function::erase(Function::iterator FromIt
,
384 Function::iterator ToIt
) {
385 return BasicBlocks
.erase(FromIt
, ToIt
);
388 //===----------------------------------------------------------------------===//
389 // Function Implementation
390 //===----------------------------------------------------------------------===//
392 static unsigned computeAddrSpace(unsigned AddrSpace
, Module
*M
) {
393 // If AS == -1 and we are passed a valid module pointer we place the function
394 // in the program address space. Otherwise we default to AS0.
395 if (AddrSpace
== static_cast<unsigned>(-1))
396 return M
? M
->getDataLayout().getProgramAddressSpace() : 0;
400 Function::Function(FunctionType
*Ty
, LinkageTypes Linkage
, unsigned AddrSpace
,
401 const Twine
&name
, Module
*ParentModule
)
402 : GlobalObject(Ty
, Value::FunctionVal
,
403 OperandTraits
<Function
>::op_begin(this), 0, Linkage
, name
,
404 computeAddrSpace(AddrSpace
, ParentModule
)),
405 NumArgs(Ty
->getNumParams()) {
406 assert(FunctionType::isValidReturnType(getReturnType()) &&
407 "invalid return type");
408 setGlobalObjectSubClassData(0);
410 // We only need a symbol table for a function if the context keeps value names
411 if (!getContext().shouldDiscardValueNames())
412 SymTab
= std::make_unique
<ValueSymbolTable
>(NonGlobalValueMaxNameSize
);
414 // If the function has arguments, mark them as lazily built.
415 if (Ty
->getNumParams())
416 setValueSubclassData(1); // Set the "has lazy arguments" bit.
419 ParentModule
->getFunctionList().push_back(this);
421 HasLLVMReservedName
= getName().startswith("llvm.");
422 // Ensure intrinsics have the right parameter attributes.
423 // Note, the IntID field will have been set in Value::setName if this function
424 // name is a valid intrinsic ID.
426 setAttributes(Intrinsic::getAttributes(getContext(), IntID
));
429 Function::~Function() {
430 dropAllReferences(); // After this it is safe to delete instructions.
432 // Delete all of the method arguments and unlink from symbol table...
436 // Remove the function from the on-the-side GC table.
440 void Function::BuildLazyArguments() const {
441 // Create the arguments vector, all arguments start out unnamed.
442 auto *FT
= getFunctionType();
444 Arguments
= std::allocator
<Argument
>().allocate(NumArgs
);
445 for (unsigned i
= 0, e
= NumArgs
; i
!= e
; ++i
) {
446 Type
*ArgTy
= FT
->getParamType(i
);
447 assert(!ArgTy
->isVoidTy() && "Cannot have void typed arguments!");
448 new (Arguments
+ i
) Argument(ArgTy
, "", const_cast<Function
*>(this), i
);
452 // Clear the lazy arguments bit.
453 unsigned SDC
= getSubclassDataFromValue();
455 const_cast<Function
*>(this)->setValueSubclassData(SDC
);
456 assert(!hasLazyArguments());
459 static MutableArrayRef
<Argument
> makeArgArray(Argument
*Args
, size_t Count
) {
460 return MutableArrayRef
<Argument
>(Args
, Count
);
463 bool Function::isConstrainedFPIntrinsic() const {
464 switch (getIntrinsicID()) {
465 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \
466 case Intrinsic::INTRINSIC:
467 #include "llvm/IR/ConstrainedOps.def"
475 void Function::clearArguments() {
476 for (Argument
&A
: makeArgArray(Arguments
, NumArgs
)) {
480 std::allocator
<Argument
>().deallocate(Arguments
, NumArgs
);
484 void Function::stealArgumentListFrom(Function
&Src
) {
485 assert(isDeclaration() && "Expected no references to current arguments");
487 // Drop the current arguments, if any, and set the lazy argument bit.
488 if (!hasLazyArguments()) {
489 assert(llvm::all_of(makeArgArray(Arguments
, NumArgs
),
490 [](const Argument
&A
) { return A
.use_empty(); }) &&
491 "Expected arguments to be unused in declaration");
493 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
496 // Nothing to steal if Src has lazy arguments.
497 if (Src
.hasLazyArguments())
500 // Steal arguments from Src, and fix the lazy argument bits.
501 assert(arg_size() == Src
.arg_size());
502 Arguments
= Src
.Arguments
;
503 Src
.Arguments
= nullptr;
504 for (Argument
&A
: makeArgArray(Arguments
, NumArgs
)) {
505 // FIXME: This does the work of transferNodesFromList inefficiently.
506 SmallString
<128> Name
;
516 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
517 assert(!hasLazyArguments());
518 Src
.setValueSubclassData(Src
.getSubclassDataFromValue() | (1 << 0));
521 void Function::deleteBodyImpl(bool ShouldDrop
) {
522 setIsMaterializable(false);
524 for (BasicBlock
&BB
: *this)
525 BB
.dropAllReferences();
527 // Delete all basic blocks. They are now unused, except possibly by
528 // blockaddresses, but BasicBlock's destructor takes care of those.
529 while (!BasicBlocks
.empty())
530 BasicBlocks
.begin()->eraseFromParent();
532 if (getNumOperands()) {
534 // Drop uses of any optional data (real or placeholder).
535 User::dropAllReferences();
536 setNumHungOffUseOperands(0);
538 // The code needs to match Function::allocHungoffUselist().
539 auto *CPN
= ConstantPointerNull::get(PointerType::get(getContext(), 0));
544 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
547 // Metadata is stored in a side-table.
551 void Function::addAttributeAtIndex(unsigned i
, Attribute Attr
) {
552 AttributeSets
= AttributeSets
.addAttributeAtIndex(getContext(), i
, Attr
);
555 void Function::addFnAttr(Attribute::AttrKind Kind
) {
556 AttributeSets
= AttributeSets
.addFnAttribute(getContext(), Kind
);
559 void Function::addFnAttr(StringRef Kind
, StringRef Val
) {
560 AttributeSets
= AttributeSets
.addFnAttribute(getContext(), Kind
, Val
);
563 void Function::addFnAttr(Attribute Attr
) {
564 AttributeSets
= AttributeSets
.addFnAttribute(getContext(), Attr
);
567 void Function::addFnAttrs(const AttrBuilder
&Attrs
) {
568 AttributeSets
= AttributeSets
.addFnAttributes(getContext(), Attrs
);
571 void Function::addRetAttr(Attribute::AttrKind Kind
) {
572 AttributeSets
= AttributeSets
.addRetAttribute(getContext(), Kind
);
575 void Function::addRetAttr(Attribute Attr
) {
576 AttributeSets
= AttributeSets
.addRetAttribute(getContext(), Attr
);
579 void Function::addRetAttrs(const AttrBuilder
&Attrs
) {
580 AttributeSets
= AttributeSets
.addRetAttributes(getContext(), Attrs
);
583 void Function::addParamAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) {
584 AttributeSets
= AttributeSets
.addParamAttribute(getContext(), ArgNo
, Kind
);
587 void Function::addParamAttr(unsigned ArgNo
, Attribute Attr
) {
588 AttributeSets
= AttributeSets
.addParamAttribute(getContext(), ArgNo
, Attr
);
591 void Function::addParamAttrs(unsigned ArgNo
, const AttrBuilder
&Attrs
) {
592 AttributeSets
= AttributeSets
.addParamAttributes(getContext(), ArgNo
, Attrs
);
595 void Function::removeAttributeAtIndex(unsigned i
, Attribute::AttrKind Kind
) {
596 AttributeSets
= AttributeSets
.removeAttributeAtIndex(getContext(), i
, Kind
);
599 void Function::removeAttributeAtIndex(unsigned i
, StringRef Kind
) {
600 AttributeSets
= AttributeSets
.removeAttributeAtIndex(getContext(), i
, Kind
);
603 void Function::removeFnAttr(Attribute::AttrKind Kind
) {
604 AttributeSets
= AttributeSets
.removeFnAttribute(getContext(), Kind
);
607 void Function::removeFnAttr(StringRef Kind
) {
608 AttributeSets
= AttributeSets
.removeFnAttribute(getContext(), Kind
);
611 void Function::removeFnAttrs(const AttributeMask
&AM
) {
612 AttributeSets
= AttributeSets
.removeFnAttributes(getContext(), AM
);
615 void Function::removeRetAttr(Attribute::AttrKind Kind
) {
616 AttributeSets
= AttributeSets
.removeRetAttribute(getContext(), Kind
);
619 void Function::removeRetAttr(StringRef Kind
) {
620 AttributeSets
= AttributeSets
.removeRetAttribute(getContext(), Kind
);
623 void Function::removeRetAttrs(const AttributeMask
&Attrs
) {
624 AttributeSets
= AttributeSets
.removeRetAttributes(getContext(), Attrs
);
627 void Function::removeParamAttr(unsigned ArgNo
, Attribute::AttrKind Kind
) {
628 AttributeSets
= AttributeSets
.removeParamAttribute(getContext(), ArgNo
, Kind
);
631 void Function::removeParamAttr(unsigned ArgNo
, StringRef Kind
) {
632 AttributeSets
= AttributeSets
.removeParamAttribute(getContext(), ArgNo
, Kind
);
635 void Function::removeParamAttrs(unsigned ArgNo
, const AttributeMask
&Attrs
) {
637 AttributeSets
.removeParamAttributes(getContext(), ArgNo
, Attrs
);
640 void Function::addDereferenceableParamAttr(unsigned ArgNo
, uint64_t Bytes
) {
642 AttributeSets
.addDereferenceableParamAttr(getContext(), ArgNo
, Bytes
);
645 bool Function::hasFnAttribute(Attribute::AttrKind Kind
) const {
646 return AttributeSets
.hasFnAttr(Kind
);
649 bool Function::hasFnAttribute(StringRef Kind
) const {
650 return AttributeSets
.hasFnAttr(Kind
);
653 bool Function::hasRetAttribute(Attribute::AttrKind Kind
) const {
654 return AttributeSets
.hasRetAttr(Kind
);
657 bool Function::hasParamAttribute(unsigned ArgNo
,
658 Attribute::AttrKind Kind
) const {
659 return AttributeSets
.hasParamAttr(ArgNo
, Kind
);
662 Attribute
Function::getAttributeAtIndex(unsigned i
,
663 Attribute::AttrKind Kind
) const {
664 return AttributeSets
.getAttributeAtIndex(i
, Kind
);
667 Attribute
Function::getAttributeAtIndex(unsigned i
, StringRef Kind
) const {
668 return AttributeSets
.getAttributeAtIndex(i
, Kind
);
671 Attribute
Function::getFnAttribute(Attribute::AttrKind Kind
) const {
672 return AttributeSets
.getFnAttr(Kind
);
675 Attribute
Function::getFnAttribute(StringRef Kind
) const {
676 return AttributeSets
.getFnAttr(Kind
);
679 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name
,
680 uint64_t Default
) const {
681 Attribute A
= getFnAttribute(Name
);
682 uint64_t Result
= Default
;
683 if (A
.isStringAttribute()) {
684 StringRef Str
= A
.getValueAsString();
685 if (Str
.getAsInteger(0, Result
))
686 getContext().emitError("cannot parse integer attribute " + Name
);
692 /// gets the specified attribute from the list of attributes.
693 Attribute
Function::getParamAttribute(unsigned ArgNo
,
694 Attribute::AttrKind Kind
) const {
695 return AttributeSets
.getParamAttr(ArgNo
, Kind
);
698 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo
,
700 AttributeSets
= AttributeSets
.addDereferenceableOrNullParamAttr(getContext(),
704 DenormalMode
Function::getDenormalMode(const fltSemantics
&FPType
) const {
705 if (&FPType
== &APFloat::IEEEsingle()) {
706 DenormalMode Mode
= getDenormalModeF32Raw();
707 // If the f32 variant of the attribute isn't specified, try to use the
713 return getDenormalModeRaw();
716 DenormalMode
Function::getDenormalModeRaw() const {
717 Attribute Attr
= getFnAttribute("denormal-fp-math");
718 StringRef Val
= Attr
.getValueAsString();
719 return parseDenormalFPAttribute(Val
);
722 DenormalMode
Function::getDenormalModeF32Raw() const {
723 Attribute Attr
= getFnAttribute("denormal-fp-math-f32");
724 if (Attr
.isValid()) {
725 StringRef Val
= Attr
.getValueAsString();
726 return parseDenormalFPAttribute(Val
);
729 return DenormalMode::getInvalid();
732 const std::string
&Function::getGC() const {
733 assert(hasGC() && "Function has no collector");
734 return getContext().getGC(*this);
737 void Function::setGC(std::string Str
) {
738 setValueSubclassDataBit(14, !Str
.empty());
739 getContext().setGC(*this, std::move(Str
));
742 void Function::clearGC() {
745 getContext().deleteGC(*this);
746 setValueSubclassDataBit(14, false);
749 bool Function::hasStackProtectorFnAttr() const {
750 return hasFnAttribute(Attribute::StackProtect
) ||
751 hasFnAttribute(Attribute::StackProtectStrong
) ||
752 hasFnAttribute(Attribute::StackProtectReq
);
755 /// Copy all additional attributes (those not needed to create a Function) from
756 /// the Function Src to this one.
757 void Function::copyAttributesFrom(const Function
*Src
) {
758 GlobalObject::copyAttributesFrom(Src
);
759 setCallingConv(Src
->getCallingConv());
760 setAttributes(Src
->getAttributes());
765 if (Src
->hasPersonalityFn())
766 setPersonalityFn(Src
->getPersonalityFn());
767 if (Src
->hasPrefixData())
768 setPrefixData(Src
->getPrefixData());
769 if (Src
->hasPrologueData())
770 setPrologueData(Src
->getPrologueData());
773 MemoryEffects
Function::getMemoryEffects() const {
774 return getAttributes().getMemoryEffects();
776 void Function::setMemoryEffects(MemoryEffects ME
) {
777 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME
));
780 /// Determine if the function does not access memory.
781 bool Function::doesNotAccessMemory() const {
782 return getMemoryEffects().doesNotAccessMemory();
784 void Function::setDoesNotAccessMemory() {
785 setMemoryEffects(MemoryEffects::none());
788 /// Determine if the function does not access or only reads memory.
789 bool Function::onlyReadsMemory() const {
790 return getMemoryEffects().onlyReadsMemory();
792 void Function::setOnlyReadsMemory() {
793 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
796 /// Determine if the function does not access or only writes memory.
797 bool Function::onlyWritesMemory() const {
798 return getMemoryEffects().onlyWritesMemory();
800 void Function::setOnlyWritesMemory() {
801 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
804 /// Determine if the call can access memmory only using pointers based
805 /// on its arguments.
806 bool Function::onlyAccessesArgMemory() const {
807 return getMemoryEffects().onlyAccessesArgPointees();
809 void Function::setOnlyAccessesArgMemory() {
810 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
813 /// Determine if the function may only access memory that is
814 /// inaccessible from the IR.
815 bool Function::onlyAccessesInaccessibleMemory() const {
816 return getMemoryEffects().onlyAccessesInaccessibleMem();
818 void Function::setOnlyAccessesInaccessibleMemory() {
819 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
822 /// Determine if the function may only access memory that is
823 /// either inaccessible from the IR or pointed to by its arguments.
824 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
825 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
827 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
828 setMemoryEffects(getMemoryEffects() &
829 MemoryEffects::inaccessibleOrArgMemOnly());
832 /// Table of string intrinsic names indexed by enum value.
833 static const char * const IntrinsicNameTable
[] = {
835 #define GET_INTRINSIC_NAME_TABLE
836 #include "llvm/IR/IntrinsicImpl.inc"
837 #undef GET_INTRINSIC_NAME_TABLE
840 /// Table of per-target intrinsic name tables.
841 #define GET_INTRINSIC_TARGET_DATA
842 #include "llvm/IR/IntrinsicImpl.inc"
843 #undef GET_INTRINSIC_TARGET_DATA
845 bool Function::isTargetIntrinsic(Intrinsic::ID IID
) {
846 return IID
> TargetInfos
[0].Count
;
849 bool Function::isTargetIntrinsic() const {
850 return isTargetIntrinsic(IntID
);
853 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
854 /// target as \c Name, or the generic table if \c Name is not target specific.
856 /// Returns the relevant slice of \c IntrinsicNameTable
857 static ArrayRef
<const char *> findTargetSubtable(StringRef Name
) {
858 assert(Name
.startswith("llvm."));
860 ArrayRef
<IntrinsicTargetInfo
> Targets(TargetInfos
);
861 // Drop "llvm." and take the first dotted component. That will be the target
862 // if this is target specific.
863 StringRef Target
= Name
.drop_front(5).split('.').first
;
864 auto It
= partition_point(
865 Targets
, [=](const IntrinsicTargetInfo
&TI
) { return TI
.Name
< Target
; });
866 // We've either found the target or just fall back to the generic set, which
868 const auto &TI
= It
!= Targets
.end() && It
->Name
== Target
? *It
: Targets
[0];
869 return ArrayRef(&IntrinsicNameTable
[1] + TI
.Offset
, TI
.Count
);
872 /// This does the actual lookup of an intrinsic ID which
873 /// matches the given function name.
874 Intrinsic::ID
Function::lookupIntrinsicID(StringRef Name
) {
875 ArrayRef
<const char *> NameTable
= findTargetSubtable(Name
);
876 int Idx
= Intrinsic::lookupLLVMIntrinsicByName(NameTable
, Name
);
878 return Intrinsic::not_intrinsic
;
880 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
881 // an index into a sub-table.
882 int Adjust
= NameTable
.data() - IntrinsicNameTable
;
883 Intrinsic::ID ID
= static_cast<Intrinsic::ID
>(Idx
+ Adjust
);
885 // If the intrinsic is not overloaded, require an exact match. If it is
886 // overloaded, require either exact or prefix match.
887 const auto MatchSize
= strlen(NameTable
[Idx
]);
888 assert(Name
.size() >= MatchSize
&& "Expected either exact or prefix match");
889 bool IsExactMatch
= Name
.size() == MatchSize
;
890 return IsExactMatch
|| Intrinsic::isOverloaded(ID
) ? ID
891 : Intrinsic::not_intrinsic
;
894 void Function::recalculateIntrinsicID() {
895 StringRef Name
= getName();
896 if (!Name
.startswith("llvm.")) {
897 HasLLVMReservedName
= false;
898 IntID
= Intrinsic::not_intrinsic
;
901 HasLLVMReservedName
= true;
902 IntID
= lookupIntrinsicID(Name
);
905 /// Returns a stable mangling for the type specified for use in the name
906 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
907 /// of named types is simply their name. Manglings for unnamed types consist
908 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
909 /// combined with the mangling of their component types. A vararg function
910 /// type will have a suffix of 'vararg'. Since function types can contain
911 /// other function types, we close a function type mangling with suffix 'f'
912 /// which can't be confused with it's prefix. This ensures we don't have
913 /// collisions between two unrelated function types. Otherwise, you might
914 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
915 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
916 /// indicating that extra care must be taken to ensure a unique name.
917 static std::string
getMangledTypeStr(Type
*Ty
, bool &HasUnnamedType
) {
919 if (PointerType
*PTyp
= dyn_cast
<PointerType
>(Ty
)) {
920 Result
+= "p" + utostr(PTyp
->getAddressSpace());
921 } else if (ArrayType
*ATyp
= dyn_cast
<ArrayType
>(Ty
)) {
922 Result
+= "a" + utostr(ATyp
->getNumElements()) +
923 getMangledTypeStr(ATyp
->getElementType(), HasUnnamedType
);
924 } else if (StructType
*STyp
= dyn_cast
<StructType
>(Ty
)) {
925 if (!STyp
->isLiteral()) {
928 Result
+= STyp
->getName();
930 HasUnnamedType
= true;
933 for (auto *Elem
: STyp
->elements())
934 Result
+= getMangledTypeStr(Elem
, HasUnnamedType
);
936 // Ensure nested structs are distinguishable.
938 } else if (FunctionType
*FT
= dyn_cast
<FunctionType
>(Ty
)) {
939 Result
+= "f_" + getMangledTypeStr(FT
->getReturnType(), HasUnnamedType
);
940 for (size_t i
= 0; i
< FT
->getNumParams(); i
++)
941 Result
+= getMangledTypeStr(FT
->getParamType(i
), HasUnnamedType
);
944 // Ensure nested function types are distinguishable.
946 } else if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
)) {
947 ElementCount EC
= VTy
->getElementCount();
950 Result
+= "v" + utostr(EC
.getKnownMinValue()) +
951 getMangledTypeStr(VTy
->getElementType(), HasUnnamedType
);
952 } else if (TargetExtType
*TETy
= dyn_cast
<TargetExtType
>(Ty
)) {
954 Result
+= TETy
->getName();
955 for (Type
*ParamTy
: TETy
->type_params())
956 Result
+= "_" + getMangledTypeStr(ParamTy
, HasUnnamedType
);
957 for (unsigned IntParam
: TETy
->int_params())
958 Result
+= "_" + utostr(IntParam
);
959 // Ensure nested target extension types are distinguishable.
962 switch (Ty
->getTypeID()) {
963 default: llvm_unreachable("Unhandled type");
964 case Type::VoidTyID
: Result
+= "isVoid"; break;
965 case Type::MetadataTyID
: Result
+= "Metadata"; break;
966 case Type::HalfTyID
: Result
+= "f16"; break;
967 case Type::BFloatTyID
: Result
+= "bf16"; break;
968 case Type::FloatTyID
: Result
+= "f32"; break;
969 case Type::DoubleTyID
: Result
+= "f64"; break;
970 case Type::X86_FP80TyID
: Result
+= "f80"; break;
971 case Type::FP128TyID
: Result
+= "f128"; break;
972 case Type::PPC_FP128TyID
: Result
+= "ppcf128"; break;
973 case Type::X86_MMXTyID
: Result
+= "x86mmx"; break;
974 case Type::X86_AMXTyID
: Result
+= "x86amx"; break;
975 case Type::IntegerTyID
:
976 Result
+= "i" + utostr(cast
<IntegerType
>(Ty
)->getBitWidth());
983 StringRef
Intrinsic::getBaseName(ID id
) {
984 assert(id
< num_intrinsics
&& "Invalid intrinsic ID!");
985 return IntrinsicNameTable
[id
];
988 StringRef
Intrinsic::getName(ID id
) {
989 assert(id
< num_intrinsics
&& "Invalid intrinsic ID!");
990 assert(!Intrinsic::isOverloaded(id
) &&
991 "This version of getName does not support overloading");
992 return getBaseName(id
);
995 static std::string
getIntrinsicNameImpl(Intrinsic::ID Id
, ArrayRef
<Type
*> Tys
,
996 Module
*M
, FunctionType
*FT
,
997 bool EarlyModuleCheck
) {
999 assert(Id
< Intrinsic::num_intrinsics
&& "Invalid intrinsic ID!");
1000 assert((Tys
.empty() || Intrinsic::isOverloaded(Id
)) &&
1001 "This version of getName is for overloaded intrinsics only");
1002 (void)EarlyModuleCheck
;
1003 assert((!EarlyModuleCheck
|| M
||
1004 !any_of(Tys
, [](Type
*T
) { return isa
<PointerType
>(T
); })) &&
1005 "Intrinsic overloading on pointer types need to provide a Module");
1006 bool HasUnnamedType
= false;
1007 std::string
Result(Intrinsic::getBaseName(Id
));
1008 for (Type
*Ty
: Tys
)
1009 Result
+= "." + getMangledTypeStr(Ty
, HasUnnamedType
);
1010 if (HasUnnamedType
) {
1011 assert(M
&& "unnamed types need a module");
1013 FT
= Intrinsic::getType(M
->getContext(), Id
, Tys
);
1015 assert((FT
== Intrinsic::getType(M
->getContext(), Id
, Tys
)) &&
1016 "Provided FunctionType must match arguments");
1017 return M
->getUniqueIntrinsicName(Result
, Id
, FT
);
1022 std::string
Intrinsic::getName(ID Id
, ArrayRef
<Type
*> Tys
, Module
*M
,
1024 assert(M
&& "We need to have a Module");
1025 return getIntrinsicNameImpl(Id
, Tys
, M
, FT
, true);
1028 std::string
Intrinsic::getNameNoUnnamedTypes(ID Id
, ArrayRef
<Type
*> Tys
) {
1029 return getIntrinsicNameImpl(Id
, Tys
, nullptr, nullptr, false);
1032 /// IIT_Info - These are enumerators that describe the entries returned by the
1033 /// getIntrinsicInfoTableEntries function.
1035 /// Defined in Intrinsics.td.
1037 #define GET_INTRINSIC_IITINFO
1038 #include "llvm/IR/IntrinsicImpl.inc"
1039 #undef GET_INTRINSIC_IITINFO
1042 static void DecodeIITType(unsigned &NextElt
, ArrayRef
<unsigned char> Infos
,
1044 SmallVectorImpl
<Intrinsic::IITDescriptor
> &OutputTable
) {
1045 using namespace Intrinsic
;
1047 bool IsScalableVector
= (LastInfo
== IIT_SCALABLE_VEC
);
1049 IIT_Info Info
= IIT_Info(Infos
[NextElt
++]);
1050 unsigned StructElts
= 2;
1054 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Void
, 0));
1057 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::VarArg
, 0));
1060 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::MMX
, 0));
1063 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::AMX
, 0));
1066 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Token
, 0));
1069 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Metadata
, 0));
1072 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Half
, 0));
1075 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::BFloat
, 0));
1078 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Float
, 0));
1081 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Double
, 0));
1084 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Quad
, 0));
1087 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::PPCQuad
, 0));
1090 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 1));
1093 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 2));
1096 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 4));
1098 case IIT_AARCH64_SVCOUNT
:
1099 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount
, 0));
1102 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 8));
1105 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
,16));
1108 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 32));
1111 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 64));
1114 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Integer
, 128));
1117 OutputTable
.push_back(IITDescriptor::getVector(1, IsScalableVector
));
1118 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1121 OutputTable
.push_back(IITDescriptor::getVector(2, IsScalableVector
));
1122 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1125 OutputTable
.push_back(IITDescriptor::getVector(3, IsScalableVector
));
1126 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1129 OutputTable
.push_back(IITDescriptor::getVector(4, IsScalableVector
));
1130 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1133 OutputTable
.push_back(IITDescriptor::getVector(8, IsScalableVector
));
1134 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1137 OutputTable
.push_back(IITDescriptor::getVector(16, IsScalableVector
));
1138 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1141 OutputTable
.push_back(IITDescriptor::getVector(32, IsScalableVector
));
1142 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1145 OutputTable
.push_back(IITDescriptor::getVector(64, IsScalableVector
));
1146 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1149 OutputTable
.push_back(IITDescriptor::getVector(128, IsScalableVector
));
1150 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1153 OutputTable
.push_back(IITDescriptor::getVector(256, IsScalableVector
));
1154 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1157 OutputTable
.push_back(IITDescriptor::getVector(512, IsScalableVector
));
1158 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1161 OutputTable
.push_back(IITDescriptor::getVector(1024, IsScalableVector
));
1162 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1165 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Pointer
, 10));
1168 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Pointer
, 20));
1171 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Pointer
, 0));
1173 case IIT_ANYPTR
: // [ANYPTR addrspace]
1174 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Pointer
,
1178 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1179 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Argument
, ArgInfo
));
1182 case IIT_EXTEND_ARG
: {
1183 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1184 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument
,
1188 case IIT_TRUNC_ARG
: {
1189 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1190 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::TruncArgument
,
1194 case IIT_HALF_VEC_ARG
: {
1195 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1196 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument
,
1200 case IIT_SAME_VEC_WIDTH_ARG
: {
1201 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1202 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument
,
1206 case IIT_VEC_OF_ANYPTRS_TO_ELT
: {
1207 unsigned short ArgNo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1208 unsigned short RefNo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1209 OutputTable
.push_back(
1210 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt
, ArgNo
, RefNo
));
1213 case IIT_EMPTYSTRUCT
:
1214 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Struct
, 0));
1216 case IIT_STRUCT9
: ++StructElts
; [[fallthrough
]];
1217 case IIT_STRUCT8
: ++StructElts
; [[fallthrough
]];
1218 case IIT_STRUCT7
: ++StructElts
; [[fallthrough
]];
1219 case IIT_STRUCT6
: ++StructElts
; [[fallthrough
]];
1220 case IIT_STRUCT5
: ++StructElts
; [[fallthrough
]];
1221 case IIT_STRUCT4
: ++StructElts
; [[fallthrough
]];
1222 case IIT_STRUCT3
: ++StructElts
; [[fallthrough
]];
1224 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Struct
,StructElts
));
1226 for (unsigned i
= 0; i
!= StructElts
; ++i
)
1227 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1230 case IIT_SUBDIVIDE2_ARG
: {
1231 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1232 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument
,
1236 case IIT_SUBDIVIDE4_ARG
: {
1237 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1238 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument
,
1242 case IIT_VEC_ELEMENT
: {
1243 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1244 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument
,
1248 case IIT_SCALABLE_VEC
: {
1249 DecodeIITType(NextElt
, Infos
, Info
, OutputTable
);
1252 case IIT_VEC_OF_BITCASTS_TO_INT
: {
1253 unsigned ArgInfo
= (NextElt
== Infos
.size() ? 0 : Infos
[NextElt
++]);
1254 OutputTable
.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt
,
1259 llvm_unreachable("unhandled");
1262 #define GET_INTRINSIC_GENERATOR_GLOBAL
1263 #include "llvm/IR/IntrinsicImpl.inc"
1264 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1266 void Intrinsic::getIntrinsicInfoTableEntries(ID id
,
1267 SmallVectorImpl
<IITDescriptor
> &T
){
1268 // Check to see if the intrinsic's type was expressible by the table.
1269 unsigned TableVal
= IIT_Table
[id
-1];
1271 // Decode the TableVal into an array of IITValues.
1272 SmallVector
<unsigned char, 8> IITValues
;
1273 ArrayRef
<unsigned char> IITEntries
;
1274 unsigned NextElt
= 0;
1275 if ((TableVal
>> 31) != 0) {
1276 // This is an offset into the IIT_LongEncodingTable.
1277 IITEntries
= IIT_LongEncodingTable
;
1279 // Strip sentinel bit.
1280 NextElt
= (TableVal
<< 1) >> 1;
1282 // Decode the TableVal into an array of IITValues. If the entry was encoded
1283 // into a single word in the table itself, decode it now.
1285 IITValues
.push_back(TableVal
& 0xF);
1289 IITEntries
= IITValues
;
1293 // Okay, decode the table into the output vector of IITDescriptors.
1294 DecodeIITType(NextElt
, IITEntries
, IIT_Done
, T
);
1295 while (NextElt
!= IITEntries
.size() && IITEntries
[NextElt
] != 0)
1296 DecodeIITType(NextElt
, IITEntries
, IIT_Done
, T
);
1299 static Type
*DecodeFixedType(ArrayRef
<Intrinsic::IITDescriptor
> &Infos
,
1300 ArrayRef
<Type
*> Tys
, LLVMContext
&Context
) {
1301 using namespace Intrinsic
;
1303 IITDescriptor D
= Infos
.front();
1304 Infos
= Infos
.slice(1);
1307 case IITDescriptor::Void
: return Type::getVoidTy(Context
);
1308 case IITDescriptor::VarArg
: return Type::getVoidTy(Context
);
1309 case IITDescriptor::MMX
: return Type::getX86_MMXTy(Context
);
1310 case IITDescriptor::AMX
: return Type::getX86_AMXTy(Context
);
1311 case IITDescriptor::Token
: return Type::getTokenTy(Context
);
1312 case IITDescriptor::Metadata
: return Type::getMetadataTy(Context
);
1313 case IITDescriptor::Half
: return Type::getHalfTy(Context
);
1314 case IITDescriptor::BFloat
: return Type::getBFloatTy(Context
);
1315 case IITDescriptor::Float
: return Type::getFloatTy(Context
);
1316 case IITDescriptor::Double
: return Type::getDoubleTy(Context
);
1317 case IITDescriptor::Quad
: return Type::getFP128Ty(Context
);
1318 case IITDescriptor::PPCQuad
: return Type::getPPC_FP128Ty(Context
);
1319 case IITDescriptor::AArch64Svcount
:
1320 return TargetExtType::get(Context
, "aarch64.svcount");
1322 case IITDescriptor::Integer
:
1323 return IntegerType::get(Context
, D
.Integer_Width
);
1324 case IITDescriptor::Vector
:
1325 return VectorType::get(DecodeFixedType(Infos
, Tys
, Context
),
1327 case IITDescriptor::Pointer
:
1328 return PointerType::get(Context
, D
.Pointer_AddressSpace
);
1329 case IITDescriptor::Struct
: {
1330 SmallVector
<Type
*, 8> Elts
;
1331 for (unsigned i
= 0, e
= D
.Struct_NumElements
; i
!= e
; ++i
)
1332 Elts
.push_back(DecodeFixedType(Infos
, Tys
, Context
));
1333 return StructType::get(Context
, Elts
);
1335 case IITDescriptor::Argument
:
1336 return Tys
[D
.getArgumentNumber()];
1337 case IITDescriptor::ExtendArgument
: {
1338 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1339 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
1340 return VectorType::getExtendedElementVectorType(VTy
);
1342 return IntegerType::get(Context
, 2 * cast
<IntegerType
>(Ty
)->getBitWidth());
1344 case IITDescriptor::TruncArgument
: {
1345 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1346 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
1347 return VectorType::getTruncatedElementVectorType(VTy
);
1349 IntegerType
*ITy
= cast
<IntegerType
>(Ty
);
1350 assert(ITy
->getBitWidth() % 2 == 0);
1351 return IntegerType::get(Context
, ITy
->getBitWidth() / 2);
1353 case IITDescriptor::Subdivide2Argument
:
1354 case IITDescriptor::Subdivide4Argument
: {
1355 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1356 VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1357 assert(VTy
&& "Expected an argument of Vector Type");
1358 int SubDivs
= D
.Kind
== IITDescriptor::Subdivide2Argument
? 1 : 2;
1359 return VectorType::getSubdividedVectorType(VTy
, SubDivs
);
1361 case IITDescriptor::HalfVecArgument
:
1362 return VectorType::getHalfElementsVectorType(cast
<VectorType
>(
1363 Tys
[D
.getArgumentNumber()]));
1364 case IITDescriptor::SameVecWidthArgument
: {
1365 Type
*EltTy
= DecodeFixedType(Infos
, Tys
, Context
);
1366 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1367 if (auto *VTy
= dyn_cast
<VectorType
>(Ty
))
1368 return VectorType::get(EltTy
, VTy
->getElementCount());
1371 case IITDescriptor::VecElementArgument
: {
1372 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1373 if (VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
))
1374 return VTy
->getElementType();
1375 llvm_unreachable("Expected an argument of Vector Type");
1377 case IITDescriptor::VecOfBitcastsToInt
: {
1378 Type
*Ty
= Tys
[D
.getArgumentNumber()];
1379 VectorType
*VTy
= dyn_cast
<VectorType
>(Ty
);
1380 assert(VTy
&& "Expected an argument of Vector Type");
1381 return VectorType::getInteger(VTy
);
1383 case IITDescriptor::VecOfAnyPtrsToElt
:
1384 // Return the overloaded type (which determines the pointers address space)
1385 return Tys
[D
.getOverloadArgNumber()];
1387 llvm_unreachable("unhandled");
1390 FunctionType
*Intrinsic::getType(LLVMContext
&Context
,
1391 ID id
, ArrayRef
<Type
*> Tys
) {
1392 SmallVector
<IITDescriptor
, 8> Table
;
1393 getIntrinsicInfoTableEntries(id
, Table
);
1395 ArrayRef
<IITDescriptor
> TableRef
= Table
;
1396 Type
*ResultTy
= DecodeFixedType(TableRef
, Tys
, Context
);
1398 SmallVector
<Type
*, 8> ArgTys
;
1399 while (!TableRef
.empty())
1400 ArgTys
.push_back(DecodeFixedType(TableRef
, Tys
, Context
));
1402 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1403 // If we see void type as the type of the last argument, it is vararg intrinsic
1404 if (!ArgTys
.empty() && ArgTys
.back()->isVoidTy()) {
1406 return FunctionType::get(ResultTy
, ArgTys
, true);
1408 return FunctionType::get(ResultTy
, ArgTys
, false);
1411 bool Intrinsic::isOverloaded(ID id
) {
1412 #define GET_INTRINSIC_OVERLOAD_TABLE
1413 #include "llvm/IR/IntrinsicImpl.inc"
1414 #undef GET_INTRINSIC_OVERLOAD_TABLE
1417 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1418 #define GET_INTRINSIC_ATTRIBUTES
1419 #include "llvm/IR/IntrinsicImpl.inc"
1420 #undef GET_INTRINSIC_ATTRIBUTES
1422 Function
*Intrinsic::getDeclaration(Module
*M
, ID id
, ArrayRef
<Type
*> Tys
) {
1423 // There can never be multiple globals with the same name of different types,
1424 // because intrinsics must be a specific type.
1425 auto *FT
= getType(M
->getContext(), id
, Tys
);
1426 return cast
<Function
>(
1427 M
->getOrInsertFunction(
1428 Tys
.empty() ? getName(id
) : getName(id
, Tys
, M
, FT
), FT
)
1432 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1433 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1434 #include "llvm/IR/IntrinsicImpl.inc"
1435 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1437 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1438 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1439 #include "llvm/IR/IntrinsicImpl.inc"
1440 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1442 using DeferredIntrinsicMatchPair
=
1443 std::pair
<Type
*, ArrayRef
<Intrinsic::IITDescriptor
>>;
1445 static bool matchIntrinsicType(
1446 Type
*Ty
, ArrayRef
<Intrinsic::IITDescriptor
> &Infos
,
1447 SmallVectorImpl
<Type
*> &ArgTys
,
1448 SmallVectorImpl
<DeferredIntrinsicMatchPair
> &DeferredChecks
,
1449 bool IsDeferredCheck
) {
1450 using namespace Intrinsic
;
1452 // If we ran out of descriptors, there are too many arguments.
1453 if (Infos
.empty()) return true;
1455 // Do this before slicing off the 'front' part
1456 auto InfosRef
= Infos
;
1457 auto DeferCheck
= [&DeferredChecks
, &InfosRef
](Type
*T
) {
1458 DeferredChecks
.emplace_back(T
, InfosRef
);
1462 IITDescriptor D
= Infos
.front();
1463 Infos
= Infos
.slice(1);
1466 case IITDescriptor::Void
: return !Ty
->isVoidTy();
1467 case IITDescriptor::VarArg
: return true;
1468 case IITDescriptor::MMX
: return !Ty
->isX86_MMXTy();
1469 case IITDescriptor::AMX
: return !Ty
->isX86_AMXTy();
1470 case IITDescriptor::Token
: return !Ty
->isTokenTy();
1471 case IITDescriptor::Metadata
: return !Ty
->isMetadataTy();
1472 case IITDescriptor::Half
: return !Ty
->isHalfTy();
1473 case IITDescriptor::BFloat
: return !Ty
->isBFloatTy();
1474 case IITDescriptor::Float
: return !Ty
->isFloatTy();
1475 case IITDescriptor::Double
: return !Ty
->isDoubleTy();
1476 case IITDescriptor::Quad
: return !Ty
->isFP128Ty();
1477 case IITDescriptor::PPCQuad
: return !Ty
->isPPC_FP128Ty();
1478 case IITDescriptor::Integer
: return !Ty
->isIntegerTy(D
.Integer_Width
);
1479 case IITDescriptor::AArch64Svcount
:
1480 return !isa
<TargetExtType
>(Ty
) ||
1481 cast
<TargetExtType
>(Ty
)->getName() != "aarch64.svcount";
1482 case IITDescriptor::Vector
: {
1483 VectorType
*VT
= dyn_cast
<VectorType
>(Ty
);
1484 return !VT
|| VT
->getElementCount() != D
.Vector_Width
||
1485 matchIntrinsicType(VT
->getElementType(), Infos
, ArgTys
,
1486 DeferredChecks
, IsDeferredCheck
);
1488 case IITDescriptor::Pointer
: {
1489 PointerType
*PT
= dyn_cast
<PointerType
>(Ty
);
1490 return !PT
|| PT
->getAddressSpace() != D
.Pointer_AddressSpace
;
1493 case IITDescriptor::Struct
: {
1494 StructType
*ST
= dyn_cast
<StructType
>(Ty
);
1495 if (!ST
|| !ST
->isLiteral() || ST
->isPacked() ||
1496 ST
->getNumElements() != D
.Struct_NumElements
)
1499 for (unsigned i
= 0, e
= D
.Struct_NumElements
; i
!= e
; ++i
)
1500 if (matchIntrinsicType(ST
->getElementType(i
), Infos
, ArgTys
,
1501 DeferredChecks
, IsDeferredCheck
))
1506 case IITDescriptor::Argument
:
1507 // If this is the second occurrence of an argument,
1508 // verify that the later instance matches the previous instance.
1509 if (D
.getArgumentNumber() < ArgTys
.size())
1510 return Ty
!= ArgTys
[D
.getArgumentNumber()];
1512 if (D
.getArgumentNumber() > ArgTys
.size() ||
1513 D
.getArgumentKind() == IITDescriptor::AK_MatchType
)
1514 return IsDeferredCheck
|| DeferCheck(Ty
);
1516 assert(D
.getArgumentNumber() == ArgTys
.size() && !IsDeferredCheck
&&
1517 "Table consistency error");
1518 ArgTys
.push_back(Ty
);
1520 switch (D
.getArgumentKind()) {
1521 case IITDescriptor::AK_Any
: return false; // Success
1522 case IITDescriptor::AK_AnyInteger
: return !Ty
->isIntOrIntVectorTy();
1523 case IITDescriptor::AK_AnyFloat
: return !Ty
->isFPOrFPVectorTy();
1524 case IITDescriptor::AK_AnyVector
: return !isa
<VectorType
>(Ty
);
1525 case IITDescriptor::AK_AnyPointer
: return !isa
<PointerType
>(Ty
);
1528 llvm_unreachable("all argument kinds not covered");
1530 case IITDescriptor::ExtendArgument
: {
1531 // If this is a forward reference, defer the check for later.
1532 if (D
.getArgumentNumber() >= ArgTys
.size())
1533 return IsDeferredCheck
|| DeferCheck(Ty
);
1535 Type
*NewTy
= ArgTys
[D
.getArgumentNumber()];
1536 if (VectorType
*VTy
= dyn_cast
<VectorType
>(NewTy
))
1537 NewTy
= VectorType::getExtendedElementVectorType(VTy
);
1538 else if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(NewTy
))
1539 NewTy
= IntegerType::get(ITy
->getContext(), 2 * ITy
->getBitWidth());
1545 case IITDescriptor::TruncArgument
: {
1546 // If this is a forward reference, defer the check for later.
1547 if (D
.getArgumentNumber() >= ArgTys
.size())
1548 return IsDeferredCheck
|| DeferCheck(Ty
);
1550 Type
*NewTy
= ArgTys
[D
.getArgumentNumber()];
1551 if (VectorType
*VTy
= dyn_cast
<VectorType
>(NewTy
))
1552 NewTy
= VectorType::getTruncatedElementVectorType(VTy
);
1553 else if (IntegerType
*ITy
= dyn_cast
<IntegerType
>(NewTy
))
1554 NewTy
= IntegerType::get(ITy
->getContext(), ITy
->getBitWidth() / 2);
1560 case IITDescriptor::HalfVecArgument
:
1561 // If this is a forward reference, defer the check for later.
1562 if (D
.getArgumentNumber() >= ArgTys
.size())
1563 return IsDeferredCheck
|| DeferCheck(Ty
);
1564 return !isa
<VectorType
>(ArgTys
[D
.getArgumentNumber()]) ||
1565 VectorType::getHalfElementsVectorType(
1566 cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()])) != Ty
;
1567 case IITDescriptor::SameVecWidthArgument
: {
1568 if (D
.getArgumentNumber() >= ArgTys
.size()) {
1569 // Defer check and subsequent check for the vector element type.
1570 Infos
= Infos
.slice(1);
1571 return IsDeferredCheck
|| DeferCheck(Ty
);
1573 auto *ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()]);
1574 auto *ThisArgType
= dyn_cast
<VectorType
>(Ty
);
1575 // Both must be vectors of the same number of elements or neither.
1576 if ((ReferenceType
!= nullptr) != (ThisArgType
!= nullptr))
1580 if (ReferenceType
->getElementCount() !=
1581 ThisArgType
->getElementCount())
1583 EltTy
= ThisArgType
->getElementType();
1585 return matchIntrinsicType(EltTy
, Infos
, ArgTys
, DeferredChecks
,
1588 case IITDescriptor::VecOfAnyPtrsToElt
: {
1589 unsigned RefArgNumber
= D
.getRefArgNumber();
1590 if (RefArgNumber
>= ArgTys
.size()) {
1591 if (IsDeferredCheck
)
1593 // If forward referencing, already add the pointer-vector type and
1594 // defer the checks for later.
1595 ArgTys
.push_back(Ty
);
1596 return DeferCheck(Ty
);
1599 if (!IsDeferredCheck
){
1600 assert(D
.getOverloadArgNumber() == ArgTys
.size() &&
1601 "Table consistency error");
1602 ArgTys
.push_back(Ty
);
1605 // Verify the overloaded type "matches" the Ref type.
1606 // i.e. Ty is a vector with the same width as Ref.
1607 // Composed of pointers to the same element type as Ref.
1608 auto *ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[RefArgNumber
]);
1609 auto *ThisArgVecTy
= dyn_cast
<VectorType
>(Ty
);
1610 if (!ThisArgVecTy
|| !ReferenceType
||
1611 (ReferenceType
->getElementCount() != ThisArgVecTy
->getElementCount()))
1613 return !ThisArgVecTy
->getElementType()->isPointerTy();
1615 case IITDescriptor::VecElementArgument
: {
1616 if (D
.getArgumentNumber() >= ArgTys
.size())
1617 return IsDeferredCheck
? true : DeferCheck(Ty
);
1618 auto *ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()]);
1619 return !ReferenceType
|| Ty
!= ReferenceType
->getElementType();
1621 case IITDescriptor::Subdivide2Argument
:
1622 case IITDescriptor::Subdivide4Argument
: {
1623 // If this is a forward reference, defer the check for later.
1624 if (D
.getArgumentNumber() >= ArgTys
.size())
1625 return IsDeferredCheck
|| DeferCheck(Ty
);
1627 Type
*NewTy
= ArgTys
[D
.getArgumentNumber()];
1628 if (auto *VTy
= dyn_cast
<VectorType
>(NewTy
)) {
1629 int SubDivs
= D
.Kind
== IITDescriptor::Subdivide2Argument
? 1 : 2;
1630 NewTy
= VectorType::getSubdividedVectorType(VTy
, SubDivs
);
1635 case IITDescriptor::VecOfBitcastsToInt
: {
1636 if (D
.getArgumentNumber() >= ArgTys
.size())
1637 return IsDeferredCheck
|| DeferCheck(Ty
);
1638 auto *ReferenceType
= dyn_cast
<VectorType
>(ArgTys
[D
.getArgumentNumber()]);
1639 auto *ThisArgVecTy
= dyn_cast
<VectorType
>(Ty
);
1640 if (!ThisArgVecTy
|| !ReferenceType
)
1642 return ThisArgVecTy
!= VectorType::getInteger(ReferenceType
);
1645 llvm_unreachable("unhandled");
1648 Intrinsic::MatchIntrinsicTypesResult
1649 Intrinsic::matchIntrinsicSignature(FunctionType
*FTy
,
1650 ArrayRef
<Intrinsic::IITDescriptor
> &Infos
,
1651 SmallVectorImpl
<Type
*> &ArgTys
) {
1652 SmallVector
<DeferredIntrinsicMatchPair
, 2> DeferredChecks
;
1653 if (matchIntrinsicType(FTy
->getReturnType(), Infos
, ArgTys
, DeferredChecks
,
1655 return MatchIntrinsicTypes_NoMatchRet
;
1657 unsigned NumDeferredReturnChecks
= DeferredChecks
.size();
1659 for (auto *Ty
: FTy
->params())
1660 if (matchIntrinsicType(Ty
, Infos
, ArgTys
, DeferredChecks
, false))
1661 return MatchIntrinsicTypes_NoMatchArg
;
1663 for (unsigned I
= 0, E
= DeferredChecks
.size(); I
!= E
; ++I
) {
1664 DeferredIntrinsicMatchPair
&Check
= DeferredChecks
[I
];
1665 if (matchIntrinsicType(Check
.first
, Check
.second
, ArgTys
, DeferredChecks
,
1667 return I
< NumDeferredReturnChecks
? MatchIntrinsicTypes_NoMatchRet
1668 : MatchIntrinsicTypes_NoMatchArg
;
1671 return MatchIntrinsicTypes_Match
;
1675 Intrinsic::matchIntrinsicVarArg(bool isVarArg
,
1676 ArrayRef
<Intrinsic::IITDescriptor
> &Infos
) {
1677 // If there are no descriptors left, then it can't be a vararg.
1681 // There should be only one descriptor remaining at this point.
1682 if (Infos
.size() != 1)
1685 // Check and verify the descriptor.
1686 IITDescriptor D
= Infos
.front();
1687 Infos
= Infos
.slice(1);
1688 if (D
.Kind
== IITDescriptor::VarArg
)
1694 bool Intrinsic::getIntrinsicSignature(Function
*F
,
1695 SmallVectorImpl
<Type
*> &ArgTys
) {
1696 Intrinsic::ID ID
= F
->getIntrinsicID();
1700 SmallVector
<Intrinsic::IITDescriptor
, 8> Table
;
1701 getIntrinsicInfoTableEntries(ID
, Table
);
1702 ArrayRef
<Intrinsic::IITDescriptor
> TableRef
= Table
;
1704 if (Intrinsic::matchIntrinsicSignature(F
->getFunctionType(), TableRef
,
1706 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match
) {
1709 if (Intrinsic::matchIntrinsicVarArg(F
->getFunctionType()->isVarArg(),
1715 std::optional
<Function
*> Intrinsic::remangleIntrinsicFunction(Function
*F
) {
1716 SmallVector
<Type
*, 4> ArgTys
;
1717 if (!getIntrinsicSignature(F
, ArgTys
))
1718 return std::nullopt
;
1720 Intrinsic::ID ID
= F
->getIntrinsicID();
1721 StringRef Name
= F
->getName();
1722 std::string WantedName
=
1723 Intrinsic::getName(ID
, ArgTys
, F
->getParent(), F
->getFunctionType());
1724 if (Name
== WantedName
)
1725 return std::nullopt
;
1727 Function
*NewDecl
= [&] {
1728 if (auto *ExistingGV
= F
->getParent()->getNamedValue(WantedName
)) {
1729 if (auto *ExistingF
= dyn_cast
<Function
>(ExistingGV
))
1730 if (ExistingF
->getFunctionType() == F
->getFunctionType())
1733 // The name already exists, but is not a function or has the wrong
1734 // prototype. Make place for the new one by renaming the old version.
1735 // Either this old version will be removed later on or the module is
1736 // invalid and we'll get an error.
1737 ExistingGV
->setName(WantedName
+ ".renamed");
1739 return Intrinsic::getDeclaration(F
->getParent(), ID
, ArgTys
);
1742 NewDecl
->setCallingConv(F
->getCallingConv());
1743 assert(NewDecl
->getFunctionType() == F
->getFunctionType() &&
1744 "Shouldn't change the signature");
1748 /// hasAddressTaken - returns true if there are any uses of this function
1749 /// other than direct calls or invokes to it. Optionally ignores callback
1750 /// uses, assume like pointer annotation calls, and references in llvm.used
1751 /// and llvm.compiler.used variables.
1752 bool Function::hasAddressTaken(const User
**PutOffender
,
1753 bool IgnoreCallbackUses
,
1754 bool IgnoreAssumeLikeCalls
, bool IgnoreLLVMUsed
,
1755 bool IgnoreARCAttachedCall
,
1756 bool IgnoreCastedDirectCall
) const {
1757 for (const Use
&U
: uses()) {
1758 const User
*FU
= U
.getUser();
1759 if (isa
<BlockAddress
>(FU
))
1762 if (IgnoreCallbackUses
) {
1763 AbstractCallSite
ACS(&U
);
1764 if (ACS
&& ACS
.isCallbackCall())
1768 const auto *Call
= dyn_cast
<CallBase
>(FU
);
1770 if (IgnoreAssumeLikeCalls
&&
1771 isa
<BitCastOperator
, AddrSpaceCastOperator
>(FU
) &&
1772 all_of(FU
->users(), [](const User
*U
) {
1773 if (const auto *I
= dyn_cast
<IntrinsicInst
>(U
))
1774 return I
->isAssumeLikeIntrinsic();
1780 if (IgnoreLLVMUsed
&& !FU
->user_empty()) {
1781 const User
*FUU
= FU
;
1782 if (isa
<BitCastOperator
, AddrSpaceCastOperator
>(FU
) &&
1783 FU
->hasOneUse() && !FU
->user_begin()->user_empty())
1784 FUU
= *FU
->user_begin();
1785 if (llvm::all_of(FUU
->users(), [](const User
*U
) {
1786 if (const auto *GV
= dyn_cast
<GlobalVariable
>(U
))
1787 return GV
->hasName() &&
1788 (GV
->getName().equals("llvm.compiler.used") ||
1789 GV
->getName().equals("llvm.used"));
1799 if (IgnoreAssumeLikeCalls
) {
1800 if (const auto *I
= dyn_cast
<IntrinsicInst
>(Call
))
1801 if (I
->isAssumeLikeIntrinsic())
1805 if (!Call
->isCallee(&U
) || (!IgnoreCastedDirectCall
&&
1806 Call
->getFunctionType() != getFunctionType())) {
1807 if (IgnoreARCAttachedCall
&&
1808 Call
->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall
,
1820 bool Function::isDefTriviallyDead() const {
1821 // Check the linkage
1822 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1823 !hasAvailableExternallyLinkage())
1826 // Check if the function is used by anything other than a blockaddress.
1827 for (const User
*U
: users())
1828 if (!isa
<BlockAddress
>(U
))
1834 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1835 /// setjmp or other function that gcc recognizes as "returning twice".
1836 bool Function::callsFunctionThatReturnsTwice() const {
1837 for (const Instruction
&I
: instructions(this))
1838 if (const auto *Call
= dyn_cast
<CallBase
>(&I
))
1839 if (Call
->hasFnAttr(Attribute::ReturnsTwice
))
1845 Constant
*Function::getPersonalityFn() const {
1846 assert(hasPersonalityFn() && getNumOperands());
1847 return cast
<Constant
>(Op
<0>());
1850 void Function::setPersonalityFn(Constant
*Fn
) {
1851 setHungoffOperand
<0>(Fn
);
1852 setValueSubclassDataBit(3, Fn
!= nullptr);
1855 Constant
*Function::getPrefixData() const {
1856 assert(hasPrefixData() && getNumOperands());
1857 return cast
<Constant
>(Op
<1>());
1860 void Function::setPrefixData(Constant
*PrefixData
) {
1861 setHungoffOperand
<1>(PrefixData
);
1862 setValueSubclassDataBit(1, PrefixData
!= nullptr);
1865 Constant
*Function::getPrologueData() const {
1866 assert(hasPrologueData() && getNumOperands());
1867 return cast
<Constant
>(Op
<2>());
1870 void Function::setPrologueData(Constant
*PrologueData
) {
1871 setHungoffOperand
<2>(PrologueData
);
1872 setValueSubclassDataBit(2, PrologueData
!= nullptr);
1875 void Function::allocHungoffUselist() {
1876 // If we've already allocated a uselist, stop here.
1877 if (getNumOperands())
1880 allocHungoffUses(3, /*IsPhi=*/ false);
1881 setNumHungOffUseOperands(3);
1883 // Initialize the uselist with placeholder operands to allow traversal.
1884 auto *CPN
= ConstantPointerNull::get(PointerType::get(getContext(), 0));
1891 void Function::setHungoffOperand(Constant
*C
) {
1893 allocHungoffUselist();
1895 } else if (getNumOperands()) {
1896 Op
<Idx
>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0)));
1900 void Function::setValueSubclassDataBit(unsigned Bit
, bool On
) {
1901 assert(Bit
< 16 && "SubclassData contains only 16 bits");
1903 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit
));
1905 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit
));
1908 void Function::setEntryCount(ProfileCount Count
,
1909 const DenseSet
<GlobalValue::GUID
> *S
) {
1910 #if !defined(NDEBUG)
1911 auto PrevCount
= getEntryCount();
1912 assert(!PrevCount
|| PrevCount
->getType() == Count
.getType());
1915 auto ImportGUIDs
= getImportGUIDs();
1916 if (S
== nullptr && ImportGUIDs
.size())
1919 MDBuilder
MDB(getContext());
1921 LLVMContext::MD_prof
,
1922 MDB
.createFunctionEntryCount(Count
.getCount(), Count
.isSynthetic(), S
));
1925 void Function::setEntryCount(uint64_t Count
, Function::ProfileCountType Type
,
1926 const DenseSet
<GlobalValue::GUID
> *Imports
) {
1927 setEntryCount(ProfileCount(Count
, Type
), Imports
);
1930 std::optional
<ProfileCount
> Function::getEntryCount(bool AllowSynthetic
) const {
1931 MDNode
*MD
= getMetadata(LLVMContext::MD_prof
);
1932 if (MD
&& MD
->getOperand(0))
1933 if (MDString
*MDS
= dyn_cast
<MDString
>(MD
->getOperand(0))) {
1934 if (MDS
->getString().equals("function_entry_count")) {
1935 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(1));
1936 uint64_t Count
= CI
->getValue().getZExtValue();
1937 // A value of -1 is used for SamplePGO when there were no samples.
1938 // Treat this the same as unknown.
1939 if (Count
== (uint64_t)-1)
1940 return std::nullopt
;
1941 return ProfileCount(Count
, PCT_Real
);
1942 } else if (AllowSynthetic
&&
1943 MDS
->getString().equals("synthetic_function_entry_count")) {
1944 ConstantInt
*CI
= mdconst::extract
<ConstantInt
>(MD
->getOperand(1));
1945 uint64_t Count
= CI
->getValue().getZExtValue();
1946 return ProfileCount(Count
, PCT_Synthetic
);
1949 return std::nullopt
;
1952 DenseSet
<GlobalValue::GUID
> Function::getImportGUIDs() const {
1953 DenseSet
<GlobalValue::GUID
> R
;
1954 if (MDNode
*MD
= getMetadata(LLVMContext::MD_prof
))
1955 if (MDString
*MDS
= dyn_cast
<MDString
>(MD
->getOperand(0)))
1956 if (MDS
->getString().equals("function_entry_count"))
1957 for (unsigned i
= 2; i
< MD
->getNumOperands(); i
++)
1958 R
.insert(mdconst::extract
<ConstantInt
>(MD
->getOperand(i
))
1964 void Function::setSectionPrefix(StringRef Prefix
) {
1965 MDBuilder
MDB(getContext());
1966 setMetadata(LLVMContext::MD_section_prefix
,
1967 MDB
.createFunctionSectionPrefix(Prefix
));
1970 std::optional
<StringRef
> Function::getSectionPrefix() const {
1971 if (MDNode
*MD
= getMetadata(LLVMContext::MD_section_prefix
)) {
1972 assert(cast
<MDString
>(MD
->getOperand(0))
1974 .equals("function_section_prefix") &&
1975 "Metadata not match");
1976 return cast
<MDString
>(MD
->getOperand(1))->getString();
1978 return std::nullopt
;
1981 bool Function::nullPointerIsDefined() const {
1982 return hasFnAttribute(Attribute::NullPointerIsValid
);
1985 bool llvm::NullPointerIsDefined(const Function
*F
, unsigned AS
) {
1986 if (F
&& F
->nullPointerIsDefined())