Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Object / IRSymtab.cpp
blob18fc2e4d4a37b211804cd1645c7dd26fbe86d594
1 //===- IRSymtab.cpp - implementation of IR symbol tables ------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Object/IRSymtab.h"
10 #include "llvm/ADT/ArrayRef.h"
11 #include "llvm/ADT/DenseMap.h"
12 #include "llvm/ADT/SmallPtrSet.h"
13 #include "llvm/ADT/SmallString.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/StringRef.h"
16 #include "llvm/Bitcode/BitcodeReader.h"
17 #include "llvm/Config/llvm-config.h"
18 #include "llvm/IR/Comdat.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/GlobalAlias.h"
21 #include "llvm/IR/GlobalObject.h"
22 #include "llvm/IR/Mangler.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/MC/StringTableBuilder.h"
26 #include "llvm/Object/ModuleSymbolTable.h"
27 #include "llvm/Object/SymbolicFile.h"
28 #include "llvm/Support/Allocator.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Support/Error.h"
32 #include "llvm/Support/StringSaver.h"
33 #include "llvm/Support/VCSRevision.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/TargetParser/Triple.h"
36 #include <cassert>
37 #include <string>
38 #include <utility>
39 #include <vector>
41 using namespace llvm;
42 using namespace irsymtab;
44 static cl::opt<bool> DisableBitcodeVersionUpgrade(
45 "disable-bitcode-version-upgrade", cl::Hidden,
46 cl::desc("Disable automatic bitcode upgrade for version mismatch"));
48 static const char *PreservedSymbols[] = {
49 #define HANDLE_LIBCALL(code, name) name,
50 #include "llvm/IR/RuntimeLibcalls.def"
51 #undef HANDLE_LIBCALL
52 // There are global variables, so put it here instead of in
53 // RuntimeLibcalls.def.
54 // TODO: Are there similar such variables?
55 "__ssp_canary_word",
56 "__stack_chk_guard",
59 namespace {
61 const char *getExpectedProducerName() {
62 static char DefaultName[] = LLVM_VERSION_STRING
63 #ifdef LLVM_REVISION
64 " " LLVM_REVISION
65 #endif
67 // Allows for testing of the irsymtab writer and upgrade mechanism. This
68 // environment variable should not be set by users.
69 if (char *OverrideName = getenv("LLVM_OVERRIDE_PRODUCER"))
70 return OverrideName;
71 return DefaultName;
74 const char *kExpectedProducerName = getExpectedProducerName();
76 /// Stores the temporary state that is required to build an IR symbol table.
77 struct Builder {
78 SmallVector<char, 0> &Symtab;
79 StringTableBuilder &StrtabBuilder;
80 StringSaver Saver;
82 // This ctor initializes a StringSaver using the passed in BumpPtrAllocator.
83 // The StringTableBuilder does not create a copy of any strings added to it,
84 // so this provides somewhere to store any strings that we create.
85 Builder(SmallVector<char, 0> &Symtab, StringTableBuilder &StrtabBuilder,
86 BumpPtrAllocator &Alloc)
87 : Symtab(Symtab), StrtabBuilder(StrtabBuilder), Saver(Alloc) {}
89 DenseMap<const Comdat *, int> ComdatMap;
90 Mangler Mang;
91 Triple TT;
93 std::vector<storage::Comdat> Comdats;
94 std::vector<storage::Module> Mods;
95 std::vector<storage::Symbol> Syms;
96 std::vector<storage::Uncommon> Uncommons;
98 std::string COFFLinkerOpts;
99 raw_string_ostream COFFLinkerOptsOS{COFFLinkerOpts};
101 std::vector<storage::Str> DependentLibraries;
103 void setStr(storage::Str &S, StringRef Value) {
104 S.Offset = StrtabBuilder.add(Value);
105 S.Size = Value.size();
108 template <typename T>
109 void writeRange(storage::Range<T> &R, const std::vector<T> &Objs) {
110 R.Offset = Symtab.size();
111 R.Size = Objs.size();
112 Symtab.insert(Symtab.end(), reinterpret_cast<const char *>(Objs.data()),
113 reinterpret_cast<const char *>(Objs.data() + Objs.size()));
116 Expected<int> getComdatIndex(const Comdat *C, const Module *M);
118 Error addModule(Module *M);
119 Error addSymbol(const ModuleSymbolTable &Msymtab,
120 const SmallPtrSet<GlobalValue *, 4> &Used,
121 ModuleSymbolTable::Symbol Sym);
123 Error build(ArrayRef<Module *> Mods);
126 Error Builder::addModule(Module *M) {
127 if (M->getDataLayoutStr().empty())
128 return make_error<StringError>("input module has no datalayout",
129 inconvertibleErrorCode());
131 // Symbols in the llvm.used list will get the FB_Used bit and will not be
132 // internalized. We do this for llvm.compiler.used as well:
134 // IR symbol table tracks module-level asm symbol references but not inline
135 // asm. A symbol only referenced by inline asm is not in the IR symbol table,
136 // so we may not know that the definition (in another translation unit) is
137 // referenced. That definition may have __attribute__((used)) (which lowers to
138 // llvm.compiler.used on ELF targets) to communicate to the compiler that it
139 // may be used by inline asm. The usage is perfectly fine, so we treat
140 // llvm.compiler.used conservatively as llvm.used to work around our own
141 // limitation.
142 SmallVector<GlobalValue *, 4> UsedV;
143 collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/false);
144 collectUsedGlobalVariables(*M, UsedV, /*CompilerUsed=*/true);
145 SmallPtrSet<GlobalValue *, 4> Used(UsedV.begin(), UsedV.end());
147 ModuleSymbolTable Msymtab;
148 Msymtab.addModule(M);
150 storage::Module Mod;
151 Mod.Begin = Syms.size();
152 Mod.End = Syms.size() + Msymtab.symbols().size();
153 Mod.UncBegin = Uncommons.size();
154 Mods.push_back(Mod);
156 if (TT.isOSBinFormatCOFF()) {
157 if (auto E = M->materializeMetadata())
158 return E;
159 if (NamedMDNode *LinkerOptions =
160 M->getNamedMetadata("llvm.linker.options")) {
161 for (MDNode *MDOptions : LinkerOptions->operands())
162 for (const MDOperand &MDOption : cast<MDNode>(MDOptions)->operands())
163 COFFLinkerOptsOS << " " << cast<MDString>(MDOption)->getString();
167 if (TT.isOSBinFormatELF()) {
168 if (auto E = M->materializeMetadata())
169 return E;
170 if (NamedMDNode *N = M->getNamedMetadata("llvm.dependent-libraries")) {
171 for (MDNode *MDOptions : N->operands()) {
172 const auto OperandStr =
173 cast<MDString>(cast<MDNode>(MDOptions)->getOperand(0))->getString();
174 storage::Str Specifier;
175 setStr(Specifier, OperandStr);
176 DependentLibraries.emplace_back(Specifier);
181 for (ModuleSymbolTable::Symbol Msym : Msymtab.symbols())
182 if (Error Err = addSymbol(Msymtab, Used, Msym))
183 return Err;
185 return Error::success();
188 Expected<int> Builder::getComdatIndex(const Comdat *C, const Module *M) {
189 auto P = ComdatMap.insert(std::make_pair(C, Comdats.size()));
190 if (P.second) {
191 std::string Name;
192 if (TT.isOSBinFormatCOFF()) {
193 const GlobalValue *GV = M->getNamedValue(C->getName());
194 if (!GV)
195 return make_error<StringError>("Could not find leader",
196 inconvertibleErrorCode());
197 // Internal leaders do not affect symbol resolution, therefore they do not
198 // appear in the symbol table.
199 if (GV->hasLocalLinkage()) {
200 P.first->second = -1;
201 return -1;
203 llvm::raw_string_ostream OS(Name);
204 Mang.getNameWithPrefix(OS, GV, false);
205 } else {
206 Name = std::string(C->getName());
209 storage::Comdat Comdat;
210 setStr(Comdat.Name, Saver.save(Name));
211 Comdat.SelectionKind = C->getSelectionKind();
212 Comdats.push_back(Comdat);
215 return P.first->second;
218 static DenseSet<StringRef> buildPreservedSymbolsSet() {
219 return DenseSet<StringRef>(std::begin(PreservedSymbols),
220 std::end(PreservedSymbols));
223 Error Builder::addSymbol(const ModuleSymbolTable &Msymtab,
224 const SmallPtrSet<GlobalValue *, 4> &Used,
225 ModuleSymbolTable::Symbol Msym) {
226 Syms.emplace_back();
227 storage::Symbol &Sym = Syms.back();
228 Sym = {};
230 storage::Uncommon *Unc = nullptr;
231 auto Uncommon = [&]() -> storage::Uncommon & {
232 if (Unc)
233 return *Unc;
234 Sym.Flags |= 1 << storage::Symbol::FB_has_uncommon;
235 Uncommons.emplace_back();
236 Unc = &Uncommons.back();
237 *Unc = {};
238 setStr(Unc->COFFWeakExternFallbackName, "");
239 setStr(Unc->SectionName, "");
240 return *Unc;
243 SmallString<64> Name;
245 raw_svector_ostream OS(Name);
246 Msymtab.printSymbolName(OS, Msym);
248 setStr(Sym.Name, Saver.save(Name.str()));
250 auto Flags = Msymtab.getSymbolFlags(Msym);
251 if (Flags & object::BasicSymbolRef::SF_Undefined)
252 Sym.Flags |= 1 << storage::Symbol::FB_undefined;
253 if (Flags & object::BasicSymbolRef::SF_Weak)
254 Sym.Flags |= 1 << storage::Symbol::FB_weak;
255 if (Flags & object::BasicSymbolRef::SF_Common)
256 Sym.Flags |= 1 << storage::Symbol::FB_common;
257 if (Flags & object::BasicSymbolRef::SF_Indirect)
258 Sym.Flags |= 1 << storage::Symbol::FB_indirect;
259 if (Flags & object::BasicSymbolRef::SF_Global)
260 Sym.Flags |= 1 << storage::Symbol::FB_global;
261 if (Flags & object::BasicSymbolRef::SF_FormatSpecific)
262 Sym.Flags |= 1 << storage::Symbol::FB_format_specific;
263 if (Flags & object::BasicSymbolRef::SF_Executable)
264 Sym.Flags |= 1 << storage::Symbol::FB_executable;
266 Sym.ComdatIndex = -1;
267 auto *GV = dyn_cast_if_present<GlobalValue *>(Msym);
268 if (!GV) {
269 // Undefined module asm symbols act as GC roots and are implicitly used.
270 if (Flags & object::BasicSymbolRef::SF_Undefined)
271 Sym.Flags |= 1 << storage::Symbol::FB_used;
272 setStr(Sym.IRName, "");
273 return Error::success();
276 setStr(Sym.IRName, GV->getName());
278 static const DenseSet<StringRef> PreservedSymbolsSet =
279 buildPreservedSymbolsSet();
280 bool IsPreservedSymbol = PreservedSymbolsSet.contains(GV->getName());
282 if (Used.count(GV) || IsPreservedSymbol)
283 Sym.Flags |= 1 << storage::Symbol::FB_used;
284 if (GV->isThreadLocal())
285 Sym.Flags |= 1 << storage::Symbol::FB_tls;
286 if (GV->hasGlobalUnnamedAddr())
287 Sym.Flags |= 1 << storage::Symbol::FB_unnamed_addr;
288 if (GV->canBeOmittedFromSymbolTable())
289 Sym.Flags |= 1 << storage::Symbol::FB_may_omit;
290 Sym.Flags |= unsigned(GV->getVisibility()) << storage::Symbol::FB_visibility;
292 if (Flags & object::BasicSymbolRef::SF_Common) {
293 auto *GVar = dyn_cast<GlobalVariable>(GV);
294 if (!GVar)
295 return make_error<StringError>("Only variables can have common linkage!",
296 inconvertibleErrorCode());
297 Uncommon().CommonSize =
298 GV->getParent()->getDataLayout().getTypeAllocSize(GV->getValueType());
299 Uncommon().CommonAlign = GVar->getAlign() ? GVar->getAlign()->value() : 0;
302 const GlobalObject *GO = GV->getAliaseeObject();
303 if (!GO) {
304 if (isa<GlobalIFunc>(GV))
305 GO = cast<GlobalIFunc>(GV)->getResolverFunction();
306 if (!GO)
307 return make_error<StringError>("Unable to determine comdat of alias!",
308 inconvertibleErrorCode());
310 if (const Comdat *C = GO->getComdat()) {
311 Expected<int> ComdatIndexOrErr = getComdatIndex(C, GV->getParent());
312 if (!ComdatIndexOrErr)
313 return ComdatIndexOrErr.takeError();
314 Sym.ComdatIndex = *ComdatIndexOrErr;
317 if (TT.isOSBinFormatCOFF()) {
318 emitLinkerFlagsForGlobalCOFF(COFFLinkerOptsOS, GV, TT, Mang);
320 if ((Flags & object::BasicSymbolRef::SF_Weak) &&
321 (Flags & object::BasicSymbolRef::SF_Indirect)) {
322 auto *Fallback = dyn_cast<GlobalValue>(
323 cast<GlobalAlias>(GV)->getAliasee()->stripPointerCasts());
324 if (!Fallback)
325 return make_error<StringError>("Invalid weak external",
326 inconvertibleErrorCode());
327 std::string FallbackName;
328 raw_string_ostream OS(FallbackName);
329 Msymtab.printSymbolName(OS, Fallback);
330 OS.flush();
331 setStr(Uncommon().COFFWeakExternFallbackName, Saver.save(FallbackName));
335 if (!GO->getSection().empty())
336 setStr(Uncommon().SectionName, Saver.save(GO->getSection()));
338 return Error::success();
341 Error Builder::build(ArrayRef<Module *> IRMods) {
342 storage::Header Hdr;
344 assert(!IRMods.empty());
345 Hdr.Version = storage::Header::kCurrentVersion;
346 setStr(Hdr.Producer, kExpectedProducerName);
347 setStr(Hdr.TargetTriple, IRMods[0]->getTargetTriple());
348 setStr(Hdr.SourceFileName, IRMods[0]->getSourceFileName());
349 TT = Triple(IRMods[0]->getTargetTriple());
351 for (auto *M : IRMods)
352 if (Error Err = addModule(M))
353 return Err;
355 COFFLinkerOptsOS.flush();
356 setStr(Hdr.COFFLinkerOpts, Saver.save(COFFLinkerOpts));
358 // We are about to fill in the header's range fields, so reserve space for it
359 // and copy it in afterwards.
360 Symtab.resize(sizeof(storage::Header));
361 writeRange(Hdr.Modules, Mods);
362 writeRange(Hdr.Comdats, Comdats);
363 writeRange(Hdr.Symbols, Syms);
364 writeRange(Hdr.Uncommons, Uncommons);
365 writeRange(Hdr.DependentLibraries, DependentLibraries);
366 *reinterpret_cast<storage::Header *>(Symtab.data()) = Hdr;
367 return Error::success();
370 } // end anonymous namespace
372 Error irsymtab::build(ArrayRef<Module *> Mods, SmallVector<char, 0> &Symtab,
373 StringTableBuilder &StrtabBuilder,
374 BumpPtrAllocator &Alloc) {
375 return Builder(Symtab, StrtabBuilder, Alloc).build(Mods);
378 // Upgrade a vector of bitcode modules created by an old version of LLVM by
379 // creating an irsymtab for them in the current format.
380 static Expected<FileContents> upgrade(ArrayRef<BitcodeModule> BMs) {
381 FileContents FC;
383 LLVMContext Ctx;
384 std::vector<Module *> Mods;
385 std::vector<std::unique_ptr<Module>> OwnedMods;
386 for (auto BM : BMs) {
387 Expected<std::unique_ptr<Module>> MOrErr =
388 BM.getLazyModule(Ctx, /*ShouldLazyLoadMetadata*/ true,
389 /*IsImporting*/ false);
390 if (!MOrErr)
391 return MOrErr.takeError();
393 Mods.push_back(MOrErr->get());
394 OwnedMods.push_back(std::move(*MOrErr));
397 StringTableBuilder StrtabBuilder(StringTableBuilder::RAW);
398 BumpPtrAllocator Alloc;
399 if (Error E = build(Mods, FC.Symtab, StrtabBuilder, Alloc))
400 return std::move(E);
402 StrtabBuilder.finalizeInOrder();
403 FC.Strtab.resize(StrtabBuilder.getSize());
404 StrtabBuilder.write((uint8_t *)FC.Strtab.data());
406 FC.TheReader = {{FC.Symtab.data(), FC.Symtab.size()},
407 {FC.Strtab.data(), FC.Strtab.size()}};
408 return std::move(FC);
411 Expected<FileContents> irsymtab::readBitcode(const BitcodeFileContents &BFC) {
412 if (BFC.Mods.empty())
413 return make_error<StringError>("Bitcode file does not contain any modules",
414 inconvertibleErrorCode());
416 if (!DisableBitcodeVersionUpgrade) {
417 if (BFC.StrtabForSymtab.empty() ||
418 BFC.Symtab.size() < sizeof(storage::Header))
419 return upgrade(BFC.Mods);
421 // We cannot use the regular reader to read the version and producer,
422 // because it will expect the header to be in the current format. The only
423 // thing we can rely on is that the version and producer will be present as
424 // the first struct elements.
425 auto *Hdr = reinterpret_cast<const storage::Header *>(BFC.Symtab.data());
426 unsigned Version = Hdr->Version;
427 StringRef Producer = Hdr->Producer.get(BFC.StrtabForSymtab);
428 if (Version != storage::Header::kCurrentVersion ||
429 Producer != kExpectedProducerName)
430 return upgrade(BFC.Mods);
433 FileContents FC;
434 FC.TheReader = {{BFC.Symtab.data(), BFC.Symtab.size()},
435 {BFC.StrtabForSymtab.data(), BFC.StrtabForSymtab.size()}};
437 // Finally, make sure that the number of modules in the symbol table matches
438 // the number of modules in the bitcode file. If they differ, it may mean that
439 // the bitcode file was created by binary concatenation, so we need to create
440 // a new symbol table from scratch.
441 if (FC.TheReader.getNumModules() != BFC.Mods.size())
442 return upgrade(std::move(BFC.Mods));
444 return std::move(FC);