1 //===- CoverageMappingReader.cpp - Code coverage mapping reader -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains support for reading coverage mapping data for
10 // instrumentation based coverage.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/ProfileData/Coverage/CoverageMappingReader.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Object/Archive.h"
22 #include "llvm/Object/Binary.h"
23 #include "llvm/Object/COFF.h"
24 #include "llvm/Object/Error.h"
25 #include "llvm/Object/MachOUniversal.h"
26 #include "llvm/Object/ObjectFile.h"
27 #include "llvm/ProfileData/InstrProf.h"
28 #include "llvm/Support/Casting.h"
29 #include "llvm/Support/Compression.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/Endian.h"
32 #include "llvm/Support/Error.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/LEB128.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/Path.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include "llvm/TargetParser/Triple.h"
42 using namespace coverage
;
43 using namespace object
;
45 #define DEBUG_TYPE "coverage-mapping"
47 STATISTIC(CovMapNumRecords
, "The # of coverage function records");
48 STATISTIC(CovMapNumUsedRecords
, "The # of used coverage function records");
50 void CoverageMappingIterator::increment() {
51 if (ReadErr
!= coveragemap_error::success
)
54 // Check if all the records were read or if an error occurred while reading
56 if (auto E
= Reader
->readNextRecord(Record
))
57 handleAllErrors(std::move(E
), [&](const CoverageMapError
&CME
) {
58 if (CME
.get() == coveragemap_error::eof
)
59 *this = CoverageMappingIterator();
65 Error
RawCoverageReader::readULEB128(uint64_t &Result
) {
67 return make_error
<CoverageMapError
>(coveragemap_error::truncated
);
69 Result
= decodeULEB128(Data
.bytes_begin(), &N
);
71 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
72 "the size of ULEB128 is too big");
73 Data
= Data
.substr(N
);
74 return Error::success();
77 Error
RawCoverageReader::readIntMax(uint64_t &Result
, uint64_t MaxPlus1
) {
78 if (auto Err
= readULEB128(Result
))
80 if (Result
>= MaxPlus1
)
81 return make_error
<CoverageMapError
>(
82 coveragemap_error::malformed
,
83 "the value of ULEB128 is greater than or equal to MaxPlus1");
84 return Error::success();
87 Error
RawCoverageReader::readSize(uint64_t &Result
) {
88 if (auto Err
= readULEB128(Result
))
90 if (Result
> Data
.size())
91 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
92 "the value of ULEB128 is too big");
93 return Error::success();
96 Error
RawCoverageReader::readString(StringRef
&Result
) {
98 if (auto Err
= readSize(Length
))
100 Result
= Data
.substr(0, Length
);
101 Data
= Data
.substr(Length
);
102 return Error::success();
105 Error
RawCoverageFilenamesReader::read(CovMapVersion Version
) {
106 uint64_t NumFilenames
;
107 if (auto Err
= readSize(NumFilenames
))
110 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
111 "number of filenames is zero");
113 if (Version
< CovMapVersion::Version4
)
114 return readUncompressed(Version
, NumFilenames
);
116 // The uncompressed length may exceed the size of the encoded filenames.
117 // Skip size validation.
118 uint64_t UncompressedLen
;
119 if (auto Err
= readULEB128(UncompressedLen
))
122 uint64_t CompressedLen
;
123 if (auto Err
= readSize(CompressedLen
))
126 if (CompressedLen
> 0) {
127 if (!compression::zlib::isAvailable())
128 return make_error
<CoverageMapError
>(
129 coveragemap_error::decompression_failed
);
131 // Allocate memory for the decompressed filenames.
132 SmallVector
<uint8_t, 0> StorageBuf
;
134 // Read compressed filenames.
135 StringRef CompressedFilenames
= Data
.substr(0, CompressedLen
);
136 Data
= Data
.substr(CompressedLen
);
137 auto Err
= compression::zlib::decompress(
138 arrayRefFromStringRef(CompressedFilenames
), StorageBuf
,
141 consumeError(std::move(Err
));
142 return make_error
<CoverageMapError
>(
143 coveragemap_error::decompression_failed
);
146 RawCoverageFilenamesReader
Delegate(toStringRef(StorageBuf
), Filenames
,
148 return Delegate
.readUncompressed(Version
, NumFilenames
);
151 return readUncompressed(Version
, NumFilenames
);
154 Error
RawCoverageFilenamesReader::readUncompressed(CovMapVersion Version
,
155 uint64_t NumFilenames
) {
156 // Read uncompressed filenames.
157 if (Version
< CovMapVersion::Version6
) {
158 for (size_t I
= 0; I
< NumFilenames
; ++I
) {
160 if (auto Err
= readString(Filename
))
162 Filenames
.push_back(Filename
.str());
166 if (auto Err
= readString(CWD
))
168 Filenames
.push_back(CWD
.str());
170 for (size_t I
= 1; I
< NumFilenames
; ++I
) {
172 if (auto Err
= readString(Filename
))
174 if (sys::path::is_absolute(Filename
)) {
175 Filenames
.push_back(Filename
.str());
178 if (!CompilationDir
.empty())
179 P
.assign(CompilationDir
);
182 llvm::sys::path::append(P
, Filename
);
183 sys::path::remove_dots(P
, /*remove_dot_dot=*/true);
184 Filenames
.push_back(static_cast<std::string
>(P
.str()));
188 return Error::success();
191 Error
RawCoverageMappingReader::decodeCounter(unsigned Value
, Counter
&C
) {
192 auto Tag
= Value
& Counter::EncodingTagMask
;
195 C
= Counter::getZero();
196 return Error::success();
197 case Counter::CounterValueReference
:
198 C
= Counter::getCounter(Value
>> Counter::EncodingTagBits
);
199 return Error::success();
203 Tag
-= Counter::Expression
;
205 case CounterExpression::Subtract
:
206 case CounterExpression::Add
: {
207 auto ID
= Value
>> Counter::EncodingTagBits
;
208 if (ID
>= Expressions
.size())
209 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
210 "counter expression is invalid");
211 Expressions
[ID
].Kind
= CounterExpression::ExprKind(Tag
);
212 C
= Counter::getExpression(ID
);
216 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
217 "counter expression kind is invalid");
219 return Error::success();
222 Error
RawCoverageMappingReader::readCounter(Counter
&C
) {
223 uint64_t EncodedCounter
;
225 readIntMax(EncodedCounter
, std::numeric_limits
<unsigned>::max()))
227 if (auto Err
= decodeCounter(EncodedCounter
, C
))
229 return Error::success();
232 static const unsigned EncodingExpansionRegionBit
= 1
233 << Counter::EncodingTagBits
;
235 /// Read the sub-array of regions for the given inferred file id.
236 /// \param NumFileIDs the number of file ids that are defined for this
238 Error
RawCoverageMappingReader::readMappingRegionsSubArray(
239 std::vector
<CounterMappingRegion
> &MappingRegions
, unsigned InferredFileID
,
242 if (auto Err
= readSize(NumRegions
))
244 unsigned LineStart
= 0;
245 for (size_t I
= 0; I
< NumRegions
; ++I
) {
247 CounterMappingRegion::RegionKind Kind
= CounterMappingRegion::CodeRegion
;
249 // Read the combined counter + region kind.
250 uint64_t EncodedCounterAndRegion
;
251 if (auto Err
= readIntMax(EncodedCounterAndRegion
,
252 std::numeric_limits
<unsigned>::max()))
254 unsigned Tag
= EncodedCounterAndRegion
& Counter::EncodingTagMask
;
255 uint64_t ExpandedFileID
= 0;
257 // If Tag does not represent a ZeroCounter, then it is understood to refer
258 // to a counter or counter expression with region kind assumed to be
259 // "CodeRegion". In that case, EncodedCounterAndRegion actually encodes the
260 // referenced counter or counter expression (and nothing else).
262 // If Tag represents a ZeroCounter and EncodingExpansionRegionBit is set,
263 // then EncodedCounterAndRegion is interpreted to represent an
264 // ExpansionRegion. In all other cases, EncodedCounterAndRegion is
265 // interpreted to refer to a specific region kind, after which additional
266 // fields may be read (e.g. BranchRegions have two encoded counters that
267 // follow an encoded region kind value).
268 if (Tag
!= Counter::Zero
) {
269 if (auto Err
= decodeCounter(EncodedCounterAndRegion
, C
))
272 // Is it an expansion region?
273 if (EncodedCounterAndRegion
& EncodingExpansionRegionBit
) {
274 Kind
= CounterMappingRegion::ExpansionRegion
;
275 ExpandedFileID
= EncodedCounterAndRegion
>>
276 Counter::EncodingCounterTagAndExpansionRegionTagBits
;
277 if (ExpandedFileID
>= NumFileIDs
)
278 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
279 "ExpandedFileID is invalid");
281 switch (EncodedCounterAndRegion
>>
282 Counter::EncodingCounterTagAndExpansionRegionTagBits
) {
283 case CounterMappingRegion::CodeRegion
:
284 // Don't do anything when we have a code region with a zero counter.
286 case CounterMappingRegion::SkippedRegion
:
287 Kind
= CounterMappingRegion::SkippedRegion
;
289 case CounterMappingRegion::BranchRegion
:
290 // For a Branch Region, read two successive counters.
291 Kind
= CounterMappingRegion::BranchRegion
;
292 if (auto Err
= readCounter(C
))
294 if (auto Err
= readCounter(C2
))
298 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
299 "region kind is incorrect");
304 // Read the source range.
305 uint64_t LineStartDelta
, ColumnStart
, NumLines
, ColumnEnd
;
307 readIntMax(LineStartDelta
, std::numeric_limits
<unsigned>::max()))
309 if (auto Err
= readULEB128(ColumnStart
))
311 if (ColumnStart
> std::numeric_limits
<unsigned>::max())
312 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
313 "start column is too big");
314 if (auto Err
= readIntMax(NumLines
, std::numeric_limits
<unsigned>::max()))
316 if (auto Err
= readIntMax(ColumnEnd
, std::numeric_limits
<unsigned>::max()))
318 LineStart
+= LineStartDelta
;
320 // If the high bit of ColumnEnd is set, this is a gap region.
321 if (ColumnEnd
& (1U << 31)) {
322 Kind
= CounterMappingRegion::GapRegion
;
323 ColumnEnd
&= ~(1U << 31);
326 // Adjust the column locations for the empty regions that are supposed to
327 // cover whole lines. Those regions should be encoded with the
328 // column range (1 -> std::numeric_limits<unsigned>::max()), but because
329 // the encoded std::numeric_limits<unsigned>::max() is several bytes long,
330 // we set the column range to (0 -> 0) to ensure that the column start and
331 // column end take up one byte each.
332 // The std::numeric_limits<unsigned>::max() is used to represent a column
333 // position at the end of the line without knowing the length of that line.
334 if (ColumnStart
== 0 && ColumnEnd
== 0) {
336 ColumnEnd
= std::numeric_limits
<unsigned>::max();
340 dbgs() << "Counter in file " << InferredFileID
<< " " << LineStart
<< ":"
341 << ColumnStart
<< " -> " << (LineStart
+ NumLines
) << ":"
342 << ColumnEnd
<< ", ";
343 if (Kind
== CounterMappingRegion::ExpansionRegion
)
344 dbgs() << "Expands to file " << ExpandedFileID
;
346 CounterMappingContext(Expressions
).dump(C
, dbgs());
350 auto CMR
= CounterMappingRegion(C
, C2
, InferredFileID
, ExpandedFileID
,
351 LineStart
, ColumnStart
,
352 LineStart
+ NumLines
, ColumnEnd
, Kind
);
353 if (CMR
.startLoc() > CMR
.endLoc())
354 return make_error
<CoverageMapError
>(
355 coveragemap_error::malformed
,
356 "counter mapping region locations are incorrect");
357 MappingRegions
.push_back(CMR
);
359 return Error::success();
362 Error
RawCoverageMappingReader::read() {
363 // Read the virtual file mapping.
364 SmallVector
<unsigned, 8> VirtualFileMapping
;
365 uint64_t NumFileMappings
;
366 if (auto Err
= readSize(NumFileMappings
))
368 for (size_t I
= 0; I
< NumFileMappings
; ++I
) {
369 uint64_t FilenameIndex
;
370 if (auto Err
= readIntMax(FilenameIndex
, TranslationUnitFilenames
.size()))
372 VirtualFileMapping
.push_back(FilenameIndex
);
375 // Construct the files using unique filenames and virtual file mapping.
376 for (auto I
: VirtualFileMapping
) {
377 Filenames
.push_back(TranslationUnitFilenames
[I
]);
380 // Read the expressions.
381 uint64_t NumExpressions
;
382 if (auto Err
= readSize(NumExpressions
))
384 // Create an array of dummy expressions that get the proper counters
385 // when the expressions are read, and the proper kinds when the counters
389 CounterExpression(CounterExpression::Subtract
, Counter(), Counter()));
390 for (size_t I
= 0; I
< NumExpressions
; ++I
) {
391 if (auto Err
= readCounter(Expressions
[I
].LHS
))
393 if (auto Err
= readCounter(Expressions
[I
].RHS
))
397 // Read the mapping regions sub-arrays.
398 for (unsigned InferredFileID
= 0, S
= VirtualFileMapping
.size();
399 InferredFileID
< S
; ++InferredFileID
) {
400 if (auto Err
= readMappingRegionsSubArray(MappingRegions
, InferredFileID
,
401 VirtualFileMapping
.size()))
405 // Set the counters for the expansion regions.
406 // i.e. Counter of expansion region = counter of the first region
407 // from the expanded file.
408 // Perform multiple passes to correctly propagate the counters through
409 // all the nested expansion regions.
410 SmallVector
<CounterMappingRegion
*, 8> FileIDExpansionRegionMapping
;
411 FileIDExpansionRegionMapping
.resize(VirtualFileMapping
.size(), nullptr);
412 for (unsigned Pass
= 1, S
= VirtualFileMapping
.size(); Pass
< S
; ++Pass
) {
413 for (auto &R
: MappingRegions
) {
414 if (R
.Kind
!= CounterMappingRegion::ExpansionRegion
)
416 assert(!FileIDExpansionRegionMapping
[R
.ExpandedFileID
]);
417 FileIDExpansionRegionMapping
[R
.ExpandedFileID
] = &R
;
419 for (auto &R
: MappingRegions
) {
420 if (FileIDExpansionRegionMapping
[R
.FileID
]) {
421 FileIDExpansionRegionMapping
[R
.FileID
]->Count
= R
.Count
;
422 FileIDExpansionRegionMapping
[R
.FileID
] = nullptr;
427 return Error::success();
430 Expected
<bool> RawCoverageMappingDummyChecker::isDummy() {
431 // A dummy coverage mapping data consists of just one region with zero count.
432 uint64_t NumFileMappings
;
433 if (Error Err
= readSize(NumFileMappings
))
434 return std::move(Err
);
435 if (NumFileMappings
!= 1)
437 // We don't expect any specific value for the filename index, just skip it.
438 uint64_t FilenameIndex
;
440 readIntMax(FilenameIndex
, std::numeric_limits
<unsigned>::max()))
441 return std::move(Err
);
442 uint64_t NumExpressions
;
443 if (Error Err
= readSize(NumExpressions
))
444 return std::move(Err
);
445 if (NumExpressions
!= 0)
448 if (Error Err
= readSize(NumRegions
))
449 return std::move(Err
);
452 uint64_t EncodedCounterAndRegion
;
453 if (Error Err
= readIntMax(EncodedCounterAndRegion
,
454 std::numeric_limits
<unsigned>::max()))
455 return std::move(Err
);
456 unsigned Tag
= EncodedCounterAndRegion
& Counter::EncodingTagMask
;
457 return Tag
== Counter::Zero
;
460 Error
InstrProfSymtab::create(SectionRef
&Section
) {
461 Expected
<StringRef
> DataOrErr
= Section
.getContents();
463 return DataOrErr
.takeError();
465 Address
= Section
.getAddress();
467 // If this is a linked PE/COFF file, then we have to skip over the null byte
468 // that is allocated in the .lprfn$A section in the LLVM profiling runtime.
469 const ObjectFile
*Obj
= Section
.getObject();
470 if (isa
<COFFObjectFile
>(Obj
) && !Obj
->isRelocatableObject())
471 Data
= Data
.drop_front(1);
473 return Error::success();
476 StringRef
InstrProfSymtab::getFuncName(uint64_t Pointer
, size_t Size
) {
477 if (Pointer
< Address
)
479 auto Offset
= Pointer
- Address
;
480 if (Offset
+ Size
> Data
.size())
482 return Data
.substr(Pointer
- Address
, Size
);
485 // Check if the mapping data is a dummy, i.e. is emitted for an unused function.
486 static Expected
<bool> isCoverageMappingDummy(uint64_t Hash
, StringRef Mapping
) {
487 // The hash value of dummy mapping records is always zero.
490 return RawCoverageMappingDummyChecker(Mapping
).isDummy();
493 /// A range of filename indices. Used to specify the location of a batch of
494 /// filenames in a vector-like container.
495 struct FilenameRange
{
496 unsigned StartingIndex
;
499 FilenameRange(unsigned StartingIndex
, unsigned Length
)
500 : StartingIndex(StartingIndex
), Length(Length
) {}
502 void markInvalid() { Length
= 0; }
503 bool isInvalid() const { return Length
== 0; }
508 /// The interface to read coverage mapping function records for a module.
509 struct CovMapFuncRecordReader
{
510 virtual ~CovMapFuncRecordReader() = default;
512 // Read a coverage header.
514 // \p CovBuf points to the buffer containing the \c CovHeader of the coverage
515 // mapping data associated with the module.
517 // Returns a pointer to the next \c CovHeader if it exists, or to an address
518 // greater than \p CovEnd if not.
519 virtual Expected
<const char *> readCoverageHeader(const char *CovBuf
,
520 const char *CovBufEnd
) = 0;
522 // Read function records.
524 // \p FuncRecBuf points to the buffer containing a batch of function records.
525 // \p FuncRecBufEnd points past the end of the batch of records.
527 // Prior to Version4, \p OutOfLineFileRange points to a sequence of filenames
528 // associated with the function records. It is unused in Version4.
530 // Prior to Version4, \p OutOfLineMappingBuf points to a sequence of coverage
531 // mappings associated with the function records. It is unused in Version4.
533 readFunctionRecords(const char *FuncRecBuf
, const char *FuncRecBufEnd
,
534 std::optional
<FilenameRange
> OutOfLineFileRange
,
535 const char *OutOfLineMappingBuf
,
536 const char *OutOfLineMappingBufEnd
) = 0;
538 template <class IntPtrT
, llvm::endianness Endian
>
539 static Expected
<std::unique_ptr
<CovMapFuncRecordReader
>>
540 get(CovMapVersion Version
, InstrProfSymtab
&P
,
541 std::vector
<BinaryCoverageReader::ProfileMappingRecord
> &R
, StringRef D
,
542 std::vector
<std::string
> &F
);
545 // A class for reading coverage mapping function records for a module.
546 template <CovMapVersion Version
, class IntPtrT
, llvm::endianness Endian
>
547 class VersionedCovMapFuncRecordReader
: public CovMapFuncRecordReader
{
548 using FuncRecordType
=
549 typename CovMapTraits
<Version
, IntPtrT
>::CovMapFuncRecordType
;
550 using NameRefType
= typename CovMapTraits
<Version
, IntPtrT
>::NameRefType
;
552 // Maps function's name references to the indexes of their records
554 DenseMap
<NameRefType
, size_t> FunctionRecords
;
555 InstrProfSymtab
&ProfileNames
;
556 StringRef CompilationDir
;
557 std::vector
<std::string
> &Filenames
;
558 std::vector
<BinaryCoverageReader::ProfileMappingRecord
> &Records
;
560 // Maps a hash of the filenames in a TU to a \c FileRange. The range
561 // specifies the location of the hashed filenames in \c Filenames.
562 DenseMap
<uint64_t, FilenameRange
> FileRangeMap
;
564 // Add the record to the collection if we don't already have a record that
565 // points to the same function name. This is useful to ignore the redundant
566 // records for the functions with ODR linkage.
567 // In addition, prefer records with real coverage mapping data to dummy
568 // records, which were emitted for inline functions which were seen but
569 // not used in the corresponding translation unit.
570 Error
insertFunctionRecordIfNeeded(const FuncRecordType
*CFR
,
572 FilenameRange FileRange
) {
574 uint64_t FuncHash
= CFR
->template getFuncHash
<Endian
>();
575 NameRefType NameRef
= CFR
->template getFuncNameRef
<Endian
>();
577 FunctionRecords
.insert(std::make_pair(NameRef
, Records
.size()));
578 if (InsertResult
.second
) {
580 if (Error Err
= CFR
->template getFuncName
<Endian
>(ProfileNames
, FuncName
))
582 if (FuncName
.empty())
583 return make_error
<InstrProfError
>(instrprof_error::malformed
,
584 "function name is empty");
585 ++CovMapNumUsedRecords
;
586 Records
.emplace_back(Version
, FuncName
, FuncHash
, Mapping
,
587 FileRange
.StartingIndex
, FileRange
.Length
);
588 return Error::success();
590 // Update the existing record if it's a dummy and the new record is real.
591 size_t OldRecordIndex
= InsertResult
.first
->second
;
592 BinaryCoverageReader::ProfileMappingRecord
&OldRecord
=
593 Records
[OldRecordIndex
];
594 Expected
<bool> OldIsDummyExpected
= isCoverageMappingDummy(
595 OldRecord
.FunctionHash
, OldRecord
.CoverageMapping
);
596 if (Error Err
= OldIsDummyExpected
.takeError())
598 if (!*OldIsDummyExpected
)
599 return Error::success();
600 Expected
<bool> NewIsDummyExpected
=
601 isCoverageMappingDummy(FuncHash
, Mapping
);
602 if (Error Err
= NewIsDummyExpected
.takeError())
604 if (*NewIsDummyExpected
)
605 return Error::success();
606 ++CovMapNumUsedRecords
;
607 OldRecord
.FunctionHash
= FuncHash
;
608 OldRecord
.CoverageMapping
= Mapping
;
609 OldRecord
.FilenamesBegin
= FileRange
.StartingIndex
;
610 OldRecord
.FilenamesSize
= FileRange
.Length
;
611 return Error::success();
615 VersionedCovMapFuncRecordReader(
617 std::vector
<BinaryCoverageReader::ProfileMappingRecord
> &R
, StringRef D
,
618 std::vector
<std::string
> &F
)
619 : ProfileNames(P
), CompilationDir(D
), Filenames(F
), Records(R
) {}
621 ~VersionedCovMapFuncRecordReader() override
= default;
623 Expected
<const char *> readCoverageHeader(const char *CovBuf
,
624 const char *CovBufEnd
) override
{
625 using namespace support
;
627 if (CovBuf
+ sizeof(CovMapHeader
) > CovBufEnd
)
628 return make_error
<CoverageMapError
>(
629 coveragemap_error::malformed
,
630 "coverage mapping header section is larger than buffer size");
631 auto CovHeader
= reinterpret_cast<const CovMapHeader
*>(CovBuf
);
632 uint32_t NRecords
= CovHeader
->getNRecords
<Endian
>();
633 uint32_t FilenamesSize
= CovHeader
->getFilenamesSize
<Endian
>();
634 uint32_t CoverageSize
= CovHeader
->getCoverageSize
<Endian
>();
635 assert((CovMapVersion
)CovHeader
->getVersion
<Endian
>() == Version
);
636 CovBuf
= reinterpret_cast<const char *>(CovHeader
+ 1);
638 // Skip past the function records, saving the start and end for later.
639 // This is a no-op in Version4 (function records are read after all headers
641 const char *FuncRecBuf
= nullptr;
642 const char *FuncRecBufEnd
= nullptr;
643 if (Version
< CovMapVersion::Version4
)
645 CovBuf
+= NRecords
* sizeof(FuncRecordType
);
646 if (Version
< CovMapVersion::Version4
)
647 FuncRecBufEnd
= CovBuf
;
649 // Get the filenames.
650 if (CovBuf
+ FilenamesSize
> CovBufEnd
)
651 return make_error
<CoverageMapError
>(
652 coveragemap_error::malformed
,
653 "filenames section is larger than buffer size");
654 size_t FilenamesBegin
= Filenames
.size();
655 StringRef
FilenameRegion(CovBuf
, FilenamesSize
);
656 RawCoverageFilenamesReader
Reader(FilenameRegion
, Filenames
,
658 if (auto Err
= Reader
.read(Version
))
659 return std::move(Err
);
660 CovBuf
+= FilenamesSize
;
661 FilenameRange
FileRange(FilenamesBegin
, Filenames
.size() - FilenamesBegin
);
663 if (Version
>= CovMapVersion::Version4
) {
664 // Map a hash of the filenames region to the filename range associated
665 // with this coverage header.
666 int64_t FilenamesRef
=
667 llvm::IndexedInstrProf::ComputeHash(FilenameRegion
);
669 FileRangeMap
.insert(std::make_pair(FilenamesRef
, FileRange
));
670 if (!Insert
.second
) {
671 // The same filenames ref was encountered twice. It's possible that
672 // the associated filenames are the same.
673 auto It
= Filenames
.begin();
674 FilenameRange
&OrigRange
= Insert
.first
->getSecond();
675 if (std::equal(It
+ OrigRange
.StartingIndex
,
676 It
+ OrigRange
.StartingIndex
+ OrigRange
.Length
,
677 It
+ FileRange
.StartingIndex
,
678 It
+ FileRange
.StartingIndex
+ FileRange
.Length
))
679 // Map the new range to the original one.
680 FileRange
= OrigRange
;
682 // This is a hash collision. Mark the filenames ref invalid.
683 OrigRange
.markInvalid();
687 // We'll read the coverage mapping records in the loop below.
688 // This is a no-op in Version4 (coverage mappings are not affixed to the
690 const char *MappingBuf
= CovBuf
;
691 if (Version
>= CovMapVersion::Version4
&& CoverageSize
!= 0)
692 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
693 "coverage mapping size is not zero");
694 CovBuf
+= CoverageSize
;
695 const char *MappingEnd
= CovBuf
;
697 if (CovBuf
> CovBufEnd
)
698 return make_error
<CoverageMapError
>(
699 coveragemap_error::malformed
,
700 "function records section is larger than buffer size");
702 if (Version
< CovMapVersion::Version4
) {
703 // Read each function record.
704 if (Error E
= readFunctionRecords(FuncRecBuf
, FuncRecBufEnd
, FileRange
,
705 MappingBuf
, MappingEnd
))
709 // Each coverage map has an alignment of 8, so we need to adjust alignment
710 // before reading the next map.
711 CovBuf
+= offsetToAlignedAddr(CovBuf
, Align(8));
716 Error
readFunctionRecords(const char *FuncRecBuf
, const char *FuncRecBufEnd
,
717 std::optional
<FilenameRange
> OutOfLineFileRange
,
718 const char *OutOfLineMappingBuf
,
719 const char *OutOfLineMappingBufEnd
) override
{
720 auto CFR
= reinterpret_cast<const FuncRecordType
*>(FuncRecBuf
);
721 while ((const char *)CFR
< FuncRecBufEnd
) {
722 // Validate the length of the coverage mapping for this function.
723 const char *NextMappingBuf
;
724 const FuncRecordType
*NextCFR
;
725 std::tie(NextMappingBuf
, NextCFR
) =
726 CFR
->template advanceByOne
<Endian
>(OutOfLineMappingBuf
);
727 if (Version
< CovMapVersion::Version4
)
728 if (NextMappingBuf
> OutOfLineMappingBufEnd
)
729 return make_error
<CoverageMapError
>(
730 coveragemap_error::malformed
,
731 "next mapping buffer is larger than buffer size");
733 // Look up the set of filenames associated with this function record.
734 std::optional
<FilenameRange
> FileRange
;
735 if (Version
< CovMapVersion::Version4
) {
736 FileRange
= OutOfLineFileRange
;
738 uint64_t FilenamesRef
= CFR
->template getFilenamesRef
<Endian
>();
739 auto It
= FileRangeMap
.find(FilenamesRef
);
740 if (It
== FileRangeMap
.end())
741 return make_error
<CoverageMapError
>(
742 coveragemap_error::malformed
,
743 "no filename found for function with hash=0x" +
744 Twine::utohexstr(FilenamesRef
));
746 FileRange
= It
->getSecond();
749 // Now, read the coverage data.
750 if (FileRange
&& !FileRange
->isInvalid()) {
752 CFR
->template getCoverageMapping
<Endian
>(OutOfLineMappingBuf
);
753 if (Version
>= CovMapVersion::Version4
&&
754 Mapping
.data() + Mapping
.size() > FuncRecBufEnd
)
755 return make_error
<CoverageMapError
>(
756 coveragemap_error::malformed
,
757 "coverage mapping data is larger than buffer size");
758 if (Error Err
= insertFunctionRecordIfNeeded(CFR
, Mapping
, *FileRange
))
762 std::tie(OutOfLineMappingBuf
, CFR
) = std::tie(NextMappingBuf
, NextCFR
);
764 return Error::success();
768 } // end anonymous namespace
770 template <class IntPtrT
, llvm::endianness Endian
>
771 Expected
<std::unique_ptr
<CovMapFuncRecordReader
>> CovMapFuncRecordReader::get(
772 CovMapVersion Version
, InstrProfSymtab
&P
,
773 std::vector
<BinaryCoverageReader::ProfileMappingRecord
> &R
, StringRef D
,
774 std::vector
<std::string
> &F
) {
775 using namespace coverage
;
778 case CovMapVersion::Version1
:
779 return std::make_unique
<VersionedCovMapFuncRecordReader
<
780 CovMapVersion::Version1
, IntPtrT
, Endian
>>(P
, R
, D
, F
);
781 case CovMapVersion::Version2
:
782 case CovMapVersion::Version3
:
783 case CovMapVersion::Version4
:
784 case CovMapVersion::Version5
:
785 case CovMapVersion::Version6
:
786 case CovMapVersion::Version7
:
787 // Decompress the name data.
788 if (Error E
= P
.create(P
.getNameData()))
790 if (Version
== CovMapVersion::Version2
)
791 return std::make_unique
<VersionedCovMapFuncRecordReader
<
792 CovMapVersion::Version2
, IntPtrT
, Endian
>>(P
, R
, D
, F
);
793 else if (Version
== CovMapVersion::Version3
)
794 return std::make_unique
<VersionedCovMapFuncRecordReader
<
795 CovMapVersion::Version3
, IntPtrT
, Endian
>>(P
, R
, D
, F
);
796 else if (Version
== CovMapVersion::Version4
)
797 return std::make_unique
<VersionedCovMapFuncRecordReader
<
798 CovMapVersion::Version4
, IntPtrT
, Endian
>>(P
, R
, D
, F
);
799 else if (Version
== CovMapVersion::Version5
)
800 return std::make_unique
<VersionedCovMapFuncRecordReader
<
801 CovMapVersion::Version5
, IntPtrT
, Endian
>>(P
, R
, D
, F
);
802 else if (Version
== CovMapVersion::Version6
)
803 return std::make_unique
<VersionedCovMapFuncRecordReader
<
804 CovMapVersion::Version6
, IntPtrT
, Endian
>>(P
, R
, D
, F
);
805 else if (Version
== CovMapVersion::Version7
)
806 return std::make_unique
<VersionedCovMapFuncRecordReader
<
807 CovMapVersion::Version7
, IntPtrT
, Endian
>>(P
, R
, D
, F
);
809 llvm_unreachable("Unsupported version");
812 template <typename T
, llvm::endianness Endian
>
813 static Error
readCoverageMappingData(
814 InstrProfSymtab
&ProfileNames
, StringRef CovMap
, StringRef FuncRecords
,
815 std::vector
<BinaryCoverageReader::ProfileMappingRecord
> &Records
,
816 StringRef CompilationDir
, std::vector
<std::string
> &Filenames
) {
817 using namespace coverage
;
819 // Read the records in the coverage data section.
821 reinterpret_cast<const CovMapHeader
*>(CovMap
.data());
822 CovMapVersion Version
= (CovMapVersion
)CovHeader
->getVersion
<Endian
>();
823 if (Version
> CovMapVersion::CurrentVersion
)
824 return make_error
<CoverageMapError
>(coveragemap_error::unsupported_version
);
825 Expected
<std::unique_ptr
<CovMapFuncRecordReader
>> ReaderExpected
=
826 CovMapFuncRecordReader::get
<T
, Endian
>(Version
, ProfileNames
, Records
,
827 CompilationDir
, Filenames
);
828 if (Error E
= ReaderExpected
.takeError())
830 auto Reader
= std::move(ReaderExpected
.get());
831 const char *CovBuf
= CovMap
.data();
832 const char *CovBufEnd
= CovBuf
+ CovMap
.size();
833 const char *FuncRecBuf
= FuncRecords
.data();
834 const char *FuncRecBufEnd
= FuncRecords
.data() + FuncRecords
.size();
835 while (CovBuf
< CovBufEnd
) {
836 // Read the current coverage header & filename data.
838 // Prior to Version4, this also reads all function records affixed to the
841 // Return a pointer to the next coverage header.
842 auto NextOrErr
= Reader
->readCoverageHeader(CovBuf
, CovBufEnd
);
843 if (auto E
= NextOrErr
.takeError())
845 CovBuf
= NextOrErr
.get();
847 // In Version4, function records are not affixed to coverage headers. Read
848 // the records from their dedicated section.
849 if (Version
>= CovMapVersion::Version4
)
850 return Reader
->readFunctionRecords(FuncRecBuf
, FuncRecBufEnd
, std::nullopt
,
852 return Error::success();
855 Expected
<std::unique_ptr
<BinaryCoverageReader
>>
856 BinaryCoverageReader::createCoverageReaderFromBuffer(
857 StringRef Coverage
, FuncRecordsStorage
&&FuncRecords
,
858 InstrProfSymtab
&&ProfileNames
, uint8_t BytesInAddress
,
859 llvm::endianness Endian
, StringRef CompilationDir
) {
860 std::unique_ptr
<BinaryCoverageReader
> Reader(
861 new BinaryCoverageReader(std::move(FuncRecords
)));
862 Reader
->ProfileNames
= std::move(ProfileNames
);
863 StringRef FuncRecordsRef
= Reader
->FuncRecords
->getBuffer();
864 if (BytesInAddress
== 4 && Endian
== llvm::endianness::little
) {
865 if (Error E
= readCoverageMappingData
<uint32_t, llvm::endianness::little
>(
866 Reader
->ProfileNames
, Coverage
, FuncRecordsRef
,
867 Reader
->MappingRecords
, CompilationDir
, Reader
->Filenames
))
869 } else if (BytesInAddress
== 4 && Endian
== llvm::endianness::big
) {
870 if (Error E
= readCoverageMappingData
<uint32_t, llvm::endianness::big
>(
871 Reader
->ProfileNames
, Coverage
, FuncRecordsRef
,
872 Reader
->MappingRecords
, CompilationDir
, Reader
->Filenames
))
874 } else if (BytesInAddress
== 8 && Endian
== llvm::endianness::little
) {
875 if (Error E
= readCoverageMappingData
<uint64_t, llvm::endianness::little
>(
876 Reader
->ProfileNames
, Coverage
, FuncRecordsRef
,
877 Reader
->MappingRecords
, CompilationDir
, Reader
->Filenames
))
879 } else if (BytesInAddress
== 8 && Endian
== llvm::endianness::big
) {
880 if (Error E
= readCoverageMappingData
<uint64_t, llvm::endianness::big
>(
881 Reader
->ProfileNames
, Coverage
, FuncRecordsRef
,
882 Reader
->MappingRecords
, CompilationDir
, Reader
->Filenames
))
885 return make_error
<CoverageMapError
>(
886 coveragemap_error::malformed
,
887 "not supported endianness or bytes in address");
888 return std::move(Reader
);
891 static Expected
<std::unique_ptr
<BinaryCoverageReader
>>
892 loadTestingFormat(StringRef Data
, StringRef CompilationDir
) {
893 uint8_t BytesInAddress
= 8;
894 llvm::endianness Endian
= llvm::endianness::little
;
896 // Read the magic and version.
897 Data
= Data
.substr(sizeof(TestingFormatMagic
));
898 if (Data
.size() < sizeof(uint64_t))
899 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
900 "the size of data is too small");
901 auto TestingVersion
=
902 support::endian::byte_swap
<uint64_t, llvm::endianness::little
>(
903 *reinterpret_cast<const uint64_t *>(Data
.data()));
904 Data
= Data
.substr(sizeof(uint64_t));
906 // Read the ProfileNames data.
908 return make_error
<CoverageMapError
>(coveragemap_error::truncated
);
910 uint64_t ProfileNamesSize
= decodeULEB128(Data
.bytes_begin(), &N
);
912 return make_error
<CoverageMapError
>(
913 coveragemap_error::malformed
,
914 "the size of TestingFormatMagic is too big");
915 Data
= Data
.substr(N
);
917 return make_error
<CoverageMapError
>(coveragemap_error::truncated
);
919 uint64_t Address
= decodeULEB128(Data
.bytes_begin(), &N
);
921 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
922 "the size of ULEB128 is too big");
923 Data
= Data
.substr(N
);
924 if (Data
.size() < ProfileNamesSize
)
925 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
926 "the size of ProfileNames is too big");
927 InstrProfSymtab ProfileNames
;
928 if (Error E
= ProfileNames
.create(Data
.substr(0, ProfileNamesSize
), Address
))
930 Data
= Data
.substr(ProfileNamesSize
);
932 // In Version2, the size of CoverageMapping is stored directly.
933 uint64_t CoverageMappingSize
;
934 if (TestingVersion
== uint64_t(TestingFormatVersion::Version2
)) {
936 CoverageMappingSize
= decodeULEB128(Data
.bytes_begin(), &N
);
938 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
939 "the size of ULEB128 is too big");
940 Data
= Data
.substr(N
);
941 if (CoverageMappingSize
< sizeof(CovMapHeader
))
942 return make_error
<CoverageMapError
>(
943 coveragemap_error::malformed
,
944 "the size of CoverageMapping is teoo small");
945 } else if (TestingVersion
!= uint64_t(TestingFormatVersion::Version1
)) {
946 return make_error
<CoverageMapError
>(coveragemap_error::unsupported_version
);
949 // Skip the padding bytes because coverage map data has an alignment of 8.
950 auto Pad
= offsetToAlignedAddr(Data
.data(), Align(8));
951 if (Data
.size() < Pad
)
952 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
953 "insufficient padding");
954 Data
= Data
.substr(Pad
);
955 if (Data
.size() < sizeof(CovMapHeader
))
956 return make_error
<CoverageMapError
>(
957 coveragemap_error::malformed
,
958 "coverage mapping header section is larger than data size");
959 auto const *CovHeader
= reinterpret_cast<const CovMapHeader
*>(
960 Data
.substr(0, sizeof(CovMapHeader
)).data());
962 CovMapVersion(CovHeader
->getVersion
<llvm::endianness::little
>());
964 // In Version1, the size of CoverageMapping is calculated.
965 if (TestingVersion
== uint64_t(TestingFormatVersion::Version1
)) {
966 if (Version
< CovMapVersion::Version4
) {
967 CoverageMappingSize
= Data
.size();
970 CovHeader
->getFilenamesSize
<llvm::endianness::little
>();
971 CoverageMappingSize
= sizeof(CovMapHeader
) + FilenamesSize
;
975 auto CoverageMapping
= Data
.substr(0, CoverageMappingSize
);
976 Data
= Data
.substr(CoverageMappingSize
);
978 // Read the CoverageRecords data.
979 if (Version
< CovMapVersion::Version4
) {
981 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
982 "data is not empty");
984 // Skip the padding bytes because coverage records data has an alignment
986 Pad
= offsetToAlignedAddr(Data
.data(), Align(8));
987 if (Data
.size() < Pad
)
988 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
989 "insufficient padding");
990 Data
= Data
.substr(Pad
);
992 BinaryCoverageReader::FuncRecordsStorage CoverageRecords
=
993 MemoryBuffer::getMemBuffer(Data
);
995 return BinaryCoverageReader::createCoverageReaderFromBuffer(
996 CoverageMapping
, std::move(CoverageRecords
), std::move(ProfileNames
),
997 BytesInAddress
, Endian
, CompilationDir
);
1000 /// Find all sections that match \p Name. There may be more than one if comdats
1001 /// are in use, e.g. for the __llvm_covfun section on ELF.
1002 static Expected
<std::vector
<SectionRef
>> lookupSections(ObjectFile
&OF
,
1004 // On COFF, the object file section name may end in "$M". This tells the
1005 // linker to sort these sections between "$A" and "$Z". The linker removes the
1006 // dollar and everything after it in the final binary. Do the same to match.
1007 bool IsCOFF
= isa
<COFFObjectFile
>(OF
);
1008 auto stripSuffix
= [IsCOFF
](StringRef N
) {
1009 return IsCOFF
? N
.split('$').first
: N
;
1011 Name
= stripSuffix(Name
);
1013 std::vector
<SectionRef
> Sections
;
1014 for (const auto &Section
: OF
.sections()) {
1015 Expected
<StringRef
> NameOrErr
= Section
.getName();
1017 return NameOrErr
.takeError();
1018 if (stripSuffix(*NameOrErr
) == Name
)
1019 Sections
.push_back(Section
);
1021 if (Sections
.empty())
1022 return make_error
<CoverageMapError
>(coveragemap_error::no_data_found
);
1026 static Expected
<std::unique_ptr
<BinaryCoverageReader
>>
1027 loadBinaryFormat(std::unique_ptr
<Binary
> Bin
, StringRef Arch
,
1028 StringRef CompilationDir
= "",
1029 object::BuildIDRef
*BinaryID
= nullptr) {
1030 std::unique_ptr
<ObjectFile
> OF
;
1031 if (auto *Universal
= dyn_cast
<MachOUniversalBinary
>(Bin
.get())) {
1032 // If we have a universal binary, try to look up the object for the
1033 // appropriate architecture.
1034 auto ObjectFileOrErr
= Universal
->getMachOObjectForArch(Arch
);
1035 if (!ObjectFileOrErr
)
1036 return ObjectFileOrErr
.takeError();
1037 OF
= std::move(ObjectFileOrErr
.get());
1038 } else if (isa
<ObjectFile
>(Bin
.get())) {
1039 // For any other object file, upcast and take ownership.
1040 OF
.reset(cast
<ObjectFile
>(Bin
.release()));
1041 // If we've asked for a particular arch, make sure they match.
1042 if (!Arch
.empty() && OF
->getArch() != Triple(Arch
).getArch())
1043 return errorCodeToError(object_error::arch_not_found
);
1045 // We can only handle object files.
1046 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
1047 "binary is not an object file");
1049 // The coverage uses native pointer sizes for the object it's written in.
1050 uint8_t BytesInAddress
= OF
->getBytesInAddress();
1051 llvm::endianness Endian
=
1052 OF
->isLittleEndian() ? llvm::endianness::little
: llvm::endianness::big
;
1054 // Look for the sections that we are interested in.
1055 auto ObjFormat
= OF
->getTripleObjectFormat();
1057 lookupSections(*OF
, getInstrProfSectionName(IPSK_name
, ObjFormat
,
1058 /*AddSegmentInfo=*/false));
1059 if (auto E
= NamesSection
.takeError())
1060 return std::move(E
);
1061 auto CoverageSection
=
1062 lookupSections(*OF
, getInstrProfSectionName(IPSK_covmap
, ObjFormat
,
1063 /*AddSegmentInfo=*/false));
1064 if (auto E
= CoverageSection
.takeError())
1065 return std::move(E
);
1066 std::vector
<SectionRef
> CoverageSectionRefs
= *CoverageSection
;
1067 if (CoverageSectionRefs
.size() != 1)
1068 return make_error
<CoverageMapError
>(coveragemap_error::malformed
,
1069 "the size of name section is not one");
1070 auto CoverageMappingOrErr
= CoverageSectionRefs
.back().getContents();
1071 if (!CoverageMappingOrErr
)
1072 return CoverageMappingOrErr
.takeError();
1073 StringRef CoverageMapping
= CoverageMappingOrErr
.get();
1075 InstrProfSymtab ProfileNames
;
1076 std::vector
<SectionRef
> NamesSectionRefs
= *NamesSection
;
1077 if (NamesSectionRefs
.size() != 1)
1078 return make_error
<CoverageMapError
>(
1079 coveragemap_error::malformed
,
1080 "the size of coverage mapping section is not one");
1081 if (Error E
= ProfileNames
.create(NamesSectionRefs
.back()))
1082 return std::move(E
);
1084 // Look for the coverage records section (Version4 only).
1085 auto CoverageRecordsSections
=
1086 lookupSections(*OF
, getInstrProfSectionName(IPSK_covfun
, ObjFormat
,
1087 /*AddSegmentInfo=*/false));
1089 BinaryCoverageReader::FuncRecordsStorage FuncRecords
;
1090 if (auto E
= CoverageRecordsSections
.takeError()) {
1091 consumeError(std::move(E
));
1092 FuncRecords
= MemoryBuffer::getMemBuffer("");
1094 // Compute the FuncRecordsBuffer of the buffer, taking into account the
1095 // padding between each record, and making sure the first block is aligned
1096 // in memory to maintain consistency between buffer address and size
1098 const Align
RecordAlignment(8);
1099 uint64_t FuncRecordsSize
= 0;
1100 for (SectionRef Section
: *CoverageRecordsSections
) {
1101 auto CoverageRecordsOrErr
= Section
.getContents();
1102 if (!CoverageRecordsOrErr
)
1103 return CoverageRecordsOrErr
.takeError();
1104 FuncRecordsSize
+= alignTo(CoverageRecordsOrErr
->size(), RecordAlignment
);
1106 auto WritableBuffer
=
1107 WritableMemoryBuffer::getNewUninitMemBuffer(FuncRecordsSize
);
1108 char *FuncRecordsBuffer
= WritableBuffer
->getBufferStart();
1109 assert(isAddrAligned(RecordAlignment
, FuncRecordsBuffer
) &&
1110 "Allocated memory is correctly aligned");
1112 for (SectionRef Section
: *CoverageRecordsSections
) {
1113 auto CoverageRecordsOrErr
= Section
.getContents();
1114 if (!CoverageRecordsOrErr
)
1115 return CoverageRecordsOrErr
.takeError();
1116 const auto &CoverageRecords
= CoverageRecordsOrErr
.get();
1117 FuncRecordsBuffer
= std::copy(CoverageRecords
.begin(),
1118 CoverageRecords
.end(), FuncRecordsBuffer
);
1120 std::fill_n(FuncRecordsBuffer
,
1121 alignAddr(FuncRecordsBuffer
, RecordAlignment
) -
1122 (uintptr_t)FuncRecordsBuffer
,
1125 assert(FuncRecordsBuffer
== WritableBuffer
->getBufferEnd() &&
1127 FuncRecords
= std::move(WritableBuffer
);
1131 *BinaryID
= getBuildID(OF
.get());
1133 return BinaryCoverageReader::createCoverageReaderFromBuffer(
1134 CoverageMapping
, std::move(FuncRecords
), std::move(ProfileNames
),
1135 BytesInAddress
, Endian
, CompilationDir
);
1138 /// Determine whether \p Arch is invalid or empty, given \p Bin.
1139 static bool isArchSpecifierInvalidOrMissing(Binary
*Bin
, StringRef Arch
) {
1140 // If we have a universal binary and Arch doesn't identify any of its slices,
1142 if (auto *Universal
= dyn_cast
<MachOUniversalBinary
>(Bin
)) {
1143 for (auto &ObjForArch
: Universal
->objects())
1144 if (Arch
== ObjForArch
.getArchFlagName())
1151 Expected
<std::vector
<std::unique_ptr
<BinaryCoverageReader
>>>
1152 BinaryCoverageReader::create(
1153 MemoryBufferRef ObjectBuffer
, StringRef Arch
,
1154 SmallVectorImpl
<std::unique_ptr
<MemoryBuffer
>> &ObjectFileBuffers
,
1155 StringRef CompilationDir
, SmallVectorImpl
<object::BuildIDRef
> *BinaryIDs
) {
1156 std::vector
<std::unique_ptr
<BinaryCoverageReader
>> Readers
;
1158 if (ObjectBuffer
.getBuffer().size() > sizeof(TestingFormatMagic
)) {
1160 support::endian::byte_swap
<uint64_t, llvm::endianness::little
>(
1161 *reinterpret_cast<const uint64_t *>(ObjectBuffer
.getBufferStart()));
1162 if (Magic
== TestingFormatMagic
) {
1163 // This is a special format used for testing.
1165 loadTestingFormat(ObjectBuffer
.getBuffer(), CompilationDir
);
1167 return ReaderOrErr
.takeError();
1168 Readers
.push_back(std::move(ReaderOrErr
.get()));
1169 return std::move(Readers
);
1173 auto BinOrErr
= createBinary(ObjectBuffer
);
1175 return BinOrErr
.takeError();
1176 std::unique_ptr
<Binary
> Bin
= std::move(BinOrErr
.get());
1178 if (isArchSpecifierInvalidOrMissing(Bin
.get(), Arch
))
1179 return make_error
<CoverageMapError
>(
1180 coveragemap_error::invalid_or_missing_arch_specifier
);
1182 // MachO universal binaries which contain archives need to be treated as
1183 // archives, not as regular binaries.
1184 if (auto *Universal
= dyn_cast
<MachOUniversalBinary
>(Bin
.get())) {
1185 for (auto &ObjForArch
: Universal
->objects()) {
1186 // Skip slices within the universal binary which target the wrong arch.
1187 std::string ObjArch
= ObjForArch
.getArchFlagName();
1188 if (Arch
!= ObjArch
)
1191 auto ArchiveOrErr
= ObjForArch
.getAsArchive();
1192 if (!ArchiveOrErr
) {
1193 // If this is not an archive, try treating it as a regular object.
1194 consumeError(ArchiveOrErr
.takeError());
1198 return BinaryCoverageReader::create(
1199 ArchiveOrErr
.get()->getMemoryBufferRef(), Arch
, ObjectFileBuffers
,
1200 CompilationDir
, BinaryIDs
);
1204 // Load coverage out of archive members.
1205 if (auto *Ar
= dyn_cast
<Archive
>(Bin
.get())) {
1206 Error Err
= Error::success();
1207 for (auto &Child
: Ar
->children(Err
)) {
1208 Expected
<MemoryBufferRef
> ChildBufOrErr
= Child
.getMemoryBufferRef();
1210 return ChildBufOrErr
.takeError();
1212 auto ChildReadersOrErr
= BinaryCoverageReader::create(
1213 ChildBufOrErr
.get(), Arch
, ObjectFileBuffers
, CompilationDir
,
1215 if (!ChildReadersOrErr
)
1216 return ChildReadersOrErr
.takeError();
1217 for (auto &Reader
: ChildReadersOrErr
.get())
1218 Readers
.push_back(std::move(Reader
));
1221 return std::move(Err
);
1223 // Thin archives reference object files outside of the archive file, i.e.
1224 // files which reside in memory not owned by the caller. Transfer ownership
1227 for (auto &Buffer
: Ar
->takeThinBuffers())
1228 ObjectFileBuffers
.push_back(std::move(Buffer
));
1230 return std::move(Readers
);
1233 object::BuildIDRef BinaryID
;
1234 auto ReaderOrErr
= loadBinaryFormat(std::move(Bin
), Arch
, CompilationDir
,
1235 BinaryIDs
? &BinaryID
: nullptr);
1237 return ReaderOrErr
.takeError();
1238 Readers
.push_back(std::move(ReaderOrErr
.get()));
1239 if (!BinaryID
.empty())
1240 BinaryIDs
->push_back(BinaryID
);
1241 return std::move(Readers
);
1244 Error
BinaryCoverageReader::readNextRecord(CoverageMappingRecord
&Record
) {
1245 if (CurrentRecord
>= MappingRecords
.size())
1246 return make_error
<CoverageMapError
>(coveragemap_error::eof
);
1248 FunctionsFilenames
.clear();
1249 Expressions
.clear();
1250 MappingRegions
.clear();
1251 auto &R
= MappingRecords
[CurrentRecord
];
1252 auto F
= ArrayRef(Filenames
).slice(R
.FilenamesBegin
, R
.FilenamesSize
);
1253 RawCoverageMappingReader
Reader(R
.CoverageMapping
, F
, FunctionsFilenames
,
1254 Expressions
, MappingRegions
);
1255 if (auto Err
= Reader
.read())
1258 Record
.FunctionName
= R
.FunctionName
;
1259 Record
.FunctionHash
= R
.FunctionHash
;
1260 Record
.Filenames
= FunctionsFilenames
;
1261 Record
.Expressions
= Expressions
;
1262 Record
.MappingRegions
= MappingRegions
;
1265 return Error::success();