1 //===-- BPFInstrInfo.td - Target Description for BPF Target ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the BPF instructions in TableGen format.
11 //===----------------------------------------------------------------------===//
13 include "BPFInstrFormats.td"
15 // Instruction Operands and Patterns
17 // These are target-independent nodes, but have target-specific formats.
18 def SDT_BPFCallSeqStart : SDCallSeqStart<[SDTCisVT<0, iPTR>,
20 def SDT_BPFCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, iPTR>, SDTCisVT<1, iPTR>]>;
21 def SDT_BPFCall : SDTypeProfile<0, -1, [SDTCisVT<0, iPTR>]>;
22 def SDT_BPFSetFlag : SDTypeProfile<0, 3, [SDTCisSameAs<0, 1>]>;
23 def SDT_BPFSelectCC : SDTypeProfile<1, 5, [SDTCisSameAs<1, 2>,
26 def SDT_BPFBrCC : SDTypeProfile<0, 4, [SDTCisSameAs<0, 1>,
27 SDTCisVT<3, OtherVT>]>;
28 def SDT_BPFWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>,
30 def SDT_BPFMEMCPY : SDTypeProfile<0, 4, [SDTCisVT<0, i64>,
35 def BPFcall : SDNode<"BPFISD::CALL", SDT_BPFCall,
36 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
38 def BPFretglue : SDNode<"BPFISD::RET_GLUE", SDTNone,
39 [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>;
40 def BPFcallseq_start: SDNode<"ISD::CALLSEQ_START", SDT_BPFCallSeqStart,
41 [SDNPHasChain, SDNPOutGlue]>;
42 def BPFcallseq_end : SDNode<"ISD::CALLSEQ_END", SDT_BPFCallSeqEnd,
43 [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
44 def BPFbrcc : SDNode<"BPFISD::BR_CC", SDT_BPFBrCC,
45 [SDNPHasChain, SDNPOutGlue, SDNPInGlue]>;
47 def BPFselectcc : SDNode<"BPFISD::SELECT_CC", SDT_BPFSelectCC, [SDNPInGlue]>;
48 def BPFWrapper : SDNode<"BPFISD::Wrapper", SDT_BPFWrapper>;
49 def BPFmemcpy : SDNode<"BPFISD::MEMCPY", SDT_BPFMEMCPY,
50 [SDNPHasChain, SDNPInGlue, SDNPOutGlue,
51 SDNPMayStore, SDNPMayLoad]>;
52 def BPFIsLittleEndian : Predicate<"CurDAG->getDataLayout().isLittleEndian()">;
53 def BPFIsBigEndian : Predicate<"!CurDAG->getDataLayout().isLittleEndian()">;
54 def BPFHasALU32 : Predicate<"Subtarget->getHasAlu32()">;
55 def BPFNoALU32 : Predicate<"!Subtarget->getHasAlu32()">;
56 def BPFHasLdsx : Predicate<"Subtarget->hasLdsx()">;
57 def BPFHasMovsx : Predicate<"Subtarget->hasMovsx()">;
58 def BPFHasBswap : Predicate<"Subtarget->hasBswap()">;
59 def BPFHasSdivSmod : Predicate<"Subtarget->hasSdivSmod()">;
60 def BPFNoMovsx : Predicate<"!Subtarget->hasMovsx()">;
61 def BPFNoBswap : Predicate<"!Subtarget->hasBswap()">;
62 def BPFHasStoreImm : Predicate<"Subtarget->hasStoreImm()">;
64 class ImmediateAsmOperand<string name> : AsmOperandClass {
66 let RenderMethod = "addImmOperands";
67 let DiagnosticType = !strconcat("Invalid", name);
70 def SImm16AsmOperand : ImmediateAsmOperand<"SImm16">;
72 def brtarget : Operand<OtherVT> {
73 let PrintMethod = "printBrTargetOperand";
74 let ParserMatchClass = ImmediateAsmOperand<"BrTarget">;
76 def calltarget : Operand<i64>;
78 def u64imm : Operand<i64> {
79 let PrintMethod = "printImm64Operand";
82 def s16imm : Operand<i16> {
83 let ParserMatchClass = SImm16AsmOperand;
86 def gpr_or_imm : Operand<i64>;
88 def i64immSExt32 : PatLeaf<(i64 imm),
89 [{return isInt<32>(N->getSExtValue()); }]>;
90 def i32immSExt32 : PatLeaf<(i32 imm),
91 [{return isInt<32>(N->getSExtValue()); }]>;
92 def i64immZExt32 : PatLeaf<(i64 imm),
93 [{return isUInt<32>(N->getZExtValue()); }]>;
95 def imm_to_i64 : SDNodeXForm<timm, [{
96 return CurDAG->getTargetConstant(N->getZExtValue(), SDLoc(N), MVT::i64);
100 def ADDRri : ComplexPattern<i64, 2, "SelectAddr", [], []>;
101 def FIri : ComplexPattern<i64, 2, "SelectFIAddr", [add, or], []>;
104 def MEMri : Operand<i64> {
105 let PrintMethod = "printMemOperand";
106 let EncoderMethod = "getMemoryOpValue";
107 let DecoderMethod = "decodeMemoryOpValue";
108 let MIOperandInfo = (ops GPR, s16imm);
111 // Conditional code predicates - used for pattern matching for jump instructions
112 def BPF_CC_EQ : PatLeaf<(i64 imm),
113 [{return (N->getZExtValue() == ISD::SETEQ);}]>;
114 def BPF_CC_NE : PatLeaf<(i64 imm),
115 [{return (N->getZExtValue() == ISD::SETNE);}]>;
116 def BPF_CC_GE : PatLeaf<(i64 imm),
117 [{return (N->getZExtValue() == ISD::SETGE);}]>;
118 def BPF_CC_GT : PatLeaf<(i64 imm),
119 [{return (N->getZExtValue() == ISD::SETGT);}]>;
120 def BPF_CC_GTU : PatLeaf<(i64 imm),
121 [{return (N->getZExtValue() == ISD::SETUGT);}]>;
122 def BPF_CC_GEU : PatLeaf<(i64 imm),
123 [{return (N->getZExtValue() == ISD::SETUGE);}]>;
124 def BPF_CC_LE : PatLeaf<(i64 imm),
125 [{return (N->getZExtValue() == ISD::SETLE);}]>;
126 def BPF_CC_LT : PatLeaf<(i64 imm),
127 [{return (N->getZExtValue() == ISD::SETLT);}]>;
128 def BPF_CC_LTU : PatLeaf<(i64 imm),
129 [{return (N->getZExtValue() == ISD::SETULT);}]>;
130 def BPF_CC_LEU : PatLeaf<(i64 imm),
131 [{return (N->getZExtValue() == ISD::SETULE);}]>;
132 def BPF_CC_EQ_32 : PatLeaf<(i32 imm),
133 [{return (N->getZExtValue() == ISD::SETEQ);}]>;
134 def BPF_CC_NE_32 : PatLeaf<(i32 imm),
135 [{return (N->getZExtValue() == ISD::SETNE);}]>;
136 def BPF_CC_GE_32 : PatLeaf<(i32 imm),
137 [{return (N->getZExtValue() == ISD::SETGE);}]>;
138 def BPF_CC_GT_32 : PatLeaf<(i32 imm),
139 [{return (N->getZExtValue() == ISD::SETGT);}]>;
140 def BPF_CC_GTU_32 : PatLeaf<(i32 imm),
141 [{return (N->getZExtValue() == ISD::SETUGT);}]>;
142 def BPF_CC_GEU_32 : PatLeaf<(i32 imm),
143 [{return (N->getZExtValue() == ISD::SETUGE);}]>;
144 def BPF_CC_LE_32 : PatLeaf<(i32 imm),
145 [{return (N->getZExtValue() == ISD::SETLE);}]>;
146 def BPF_CC_LT_32 : PatLeaf<(i32 imm),
147 [{return (N->getZExtValue() == ISD::SETLT);}]>;
148 def BPF_CC_LTU_32 : PatLeaf<(i32 imm),
149 [{return (N->getZExtValue() == ISD::SETULT);}]>;
150 def BPF_CC_LEU_32 : PatLeaf<(i32 imm),
151 [{return (N->getZExtValue() == ISD::SETULE);}]>;
153 // For arithmetic and jump instructions the 8-bit 'code'
154 // field is divided into three parts:
156 // +----------------+--------+--------------------+
157 // | 4 bits | 1 bit | 3 bits |
158 // | operation code | source | instruction class |
159 // +----------------+--------+--------------------+
161 class TYPE_ALU_JMP<bits<4> op, bits<1> srctype,
162 dag outs, dag ins, string asmstr, list<dag> pattern>
163 : InstBPF<outs, ins, asmstr, pattern> {
165 let Inst{63-60} = op;
166 let Inst{59} = srctype;
169 //For load and store instructions the 8-bit 'code' field is divided as:
171 // +--------+--------+-------------------+
172 // | 3 bits | 2 bits | 3 bits |
173 // | mode | size | instruction class |
174 // +--------+--------+-------------------+
176 class TYPE_LD_ST<bits<3> mode, bits<2> size,
177 dag outs, dag ins, string asmstr, list<dag> pattern>
178 : InstBPF<outs, ins, asmstr, pattern> {
180 let Inst{63-61} = mode;
181 let Inst{60-59} = size;
185 class JMP_RR<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond>
186 : TYPE_ALU_JMP<Opc.Value, BPF_X.Value,
188 (ins GPR:$dst, GPR:$src, brtarget:$BrDst),
189 "if $dst "#OpcodeStr#" $src goto $BrDst",
190 [(BPFbrcc i64:$dst, i64:$src, Cond, bb:$BrDst)]> {
195 let Inst{55-52} = src;
196 let Inst{51-48} = dst;
197 let Inst{47-32} = BrDst;
198 let BPFClass = BPF_JMP;
201 class JMP_RI<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond>
202 : TYPE_ALU_JMP<Opc.Value, BPF_K.Value,
204 (ins GPR:$dst, i64imm:$imm, brtarget:$BrDst),
205 "if $dst "#OpcodeStr#" $imm goto $BrDst",
206 [(BPFbrcc i64:$dst, i64immSExt32:$imm, Cond, bb:$BrDst)]> {
211 let Inst{51-48} = dst;
212 let Inst{47-32} = BrDst;
213 let Inst{31-0} = imm;
214 let BPFClass = BPF_JMP;
217 class JMP_RR_32<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond>
218 : TYPE_ALU_JMP<Opc.Value, BPF_X.Value,
220 (ins GPR32:$dst, GPR32:$src, brtarget:$BrDst),
221 "if $dst "#OpcodeStr#" $src goto $BrDst",
222 [(BPFbrcc i32:$dst, i32:$src, Cond, bb:$BrDst)]> {
227 let Inst{55-52} = src;
228 let Inst{51-48} = dst;
229 let Inst{47-32} = BrDst;
230 let BPFClass = BPF_JMP32;
233 class JMP_RI_32<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond>
234 : TYPE_ALU_JMP<Opc.Value, BPF_K.Value,
236 (ins GPR32:$dst, i32imm:$imm, brtarget:$BrDst),
237 "if $dst "#OpcodeStr#" $imm goto $BrDst",
238 [(BPFbrcc i32:$dst, i32immSExt32:$imm, Cond, bb:$BrDst)]> {
243 let Inst{51-48} = dst;
244 let Inst{47-32} = BrDst;
245 let Inst{31-0} = imm;
246 let BPFClass = BPF_JMP32;
249 multiclass J<BPFJumpOp Opc, string OpcodeStr, PatLeaf Cond, PatLeaf Cond32> {
250 def _rr : JMP_RR<Opc, OpcodeStr, Cond>;
251 def _ri : JMP_RI<Opc, OpcodeStr, Cond>;
252 def _rr_32 : JMP_RR_32<Opc, OpcodeStr, Cond32>;
253 def _ri_32 : JMP_RI_32<Opc, OpcodeStr, Cond32>;
256 let isBranch = 1, isTerminator = 1, hasDelaySlot=0 in {
257 // cmp+goto instructions
258 defm JEQ : J<BPF_JEQ, "==", BPF_CC_EQ, BPF_CC_EQ_32>;
259 defm JUGT : J<BPF_JGT, ">", BPF_CC_GTU, BPF_CC_GTU_32>;
260 defm JUGE : J<BPF_JGE, ">=", BPF_CC_GEU, BPF_CC_GEU_32>;
261 defm JNE : J<BPF_JNE, "!=", BPF_CC_NE, BPF_CC_NE_32>;
262 defm JSGT : J<BPF_JSGT, "s>", BPF_CC_GT, BPF_CC_GT_32>;
263 defm JSGE : J<BPF_JSGE, "s>=", BPF_CC_GE, BPF_CC_GE_32>;
264 defm JULT : J<BPF_JLT, "<", BPF_CC_LTU, BPF_CC_LTU_32>;
265 defm JULE : J<BPF_JLE, "<=", BPF_CC_LEU, BPF_CC_LEU_32>;
266 defm JSLT : J<BPF_JSLT, "s<", BPF_CC_LT, BPF_CC_LT_32>;
267 defm JSLE : J<BPF_JSLE, "s<=", BPF_CC_LE, BPF_CC_LE_32>;
271 class ALU_RI<BPFOpClass Class, BPFArithOp Opc, int off,
272 dag outs, dag ins, string asmstr, list<dag> pattern>
273 : TYPE_ALU_JMP<Opc.Value, BPF_K.Value, outs, ins, asmstr, pattern> {
277 let Inst{51-48} = dst;
278 let Inst{47-32} = off;
279 let Inst{31-0} = imm;
280 let BPFClass = Class;
283 class ALU_RR<BPFOpClass Class, BPFArithOp Opc, int off,
284 dag outs, dag ins, string asmstr, list<dag> pattern>
285 : TYPE_ALU_JMP<Opc.Value, BPF_X.Value, outs, ins, asmstr, pattern> {
289 let Inst{55-52} = src;
290 let Inst{51-48} = dst;
291 let Inst{47-32} = off;
292 let BPFClass = Class;
295 multiclass ALU<BPFArithOp Opc, int off, string OpcodeStr, SDNode OpNode> {
296 def _rr : ALU_RR<BPF_ALU64, Opc, off,
298 (ins GPR:$src2, GPR:$src),
299 "$dst "#OpcodeStr#" $src",
300 [(set GPR:$dst, (OpNode i64:$src2, i64:$src))]>;
301 def _ri : ALU_RI<BPF_ALU64, Opc, off,
303 (ins GPR:$src2, i64imm:$imm),
304 "$dst "#OpcodeStr#" $imm",
305 [(set GPR:$dst, (OpNode GPR:$src2, i64immSExt32:$imm))]>;
306 def _rr_32 : ALU_RR<BPF_ALU, Opc, off,
308 (ins GPR32:$src2, GPR32:$src),
309 "$dst "#OpcodeStr#" $src",
310 [(set GPR32:$dst, (OpNode i32:$src2, i32:$src))]>;
311 def _ri_32 : ALU_RI<BPF_ALU, Opc, off,
313 (ins GPR32:$src2, i32imm:$imm),
314 "$dst "#OpcodeStr#" $imm",
315 [(set GPR32:$dst, (OpNode GPR32:$src2, i32immSExt32:$imm))]>;
318 let Constraints = "$dst = $src2" in {
319 let isAsCheapAsAMove = 1 in {
320 defm ADD : ALU<BPF_ADD, 0, "+=", add>;
321 defm SUB : ALU<BPF_SUB, 0, "-=", sub>;
322 defm OR : ALU<BPF_OR, 0, "|=", or>;
323 defm AND : ALU<BPF_AND, 0, "&=", and>;
324 defm SLL : ALU<BPF_LSH, 0, "<<=", shl>;
325 defm SRL : ALU<BPF_RSH, 0, ">>=", srl>;
326 defm XOR : ALU<BPF_XOR, 0, "^=", xor>;
327 defm SRA : ALU<BPF_ARSH, 0, "s>>=", sra>;
329 defm MUL : ALU<BPF_MUL, 0, "*=", mul>;
330 defm DIV : ALU<BPF_DIV, 0, "/=", udiv>;
331 defm MOD : ALU<BPF_MOD, 0, "%=", urem>;
333 let Predicates = [BPFHasSdivSmod] in {
334 defm SDIV : ALU<BPF_DIV, 1, "s/=", sdiv>;
335 defm SMOD : ALU<BPF_MOD, 1, "s%=", srem>;
339 class NEG_RR<BPFOpClass Class, BPFArithOp Opc,
340 dag outs, dag ins, string asmstr, list<dag> pattern>
341 : TYPE_ALU_JMP<Opc.Value, 0, outs, ins, asmstr, pattern> {
344 let Inst{51-48} = dst;
345 let BPFClass = Class;
348 let Constraints = "$dst = $src", isAsCheapAsAMove = 1 in {
349 def NEG_64: NEG_RR<BPF_ALU64, BPF_NEG, (outs GPR:$dst), (ins GPR:$src),
351 [(set GPR:$dst, (ineg i64:$src))]>;
352 def NEG_32: NEG_RR<BPF_ALU, BPF_NEG, (outs GPR32:$dst), (ins GPR32:$src),
354 [(set GPR32:$dst, (ineg i32:$src))]>;
357 class LD_IMM64<bits<4> Pseudo, string OpcodeStr>
358 : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
361 "$dst "#OpcodeStr#" ${imm} ll",
362 [(set GPR:$dst, (i64 imm:$imm))]> {
367 let Inst{51-48} = dst;
368 let Inst{55-52} = Pseudo;
370 let Inst{31-0} = imm{31-0};
371 let BPFClass = BPF_LD;
374 let isReMaterializable = 1, isAsCheapAsAMove = 1 in {
375 def LD_imm64 : LD_IMM64<0, "=">;
376 def MOV_rr : ALU_RR<BPF_ALU64, BPF_MOV, 0,
381 def MOV_ri : ALU_RI<BPF_ALU64, BPF_MOV, 0,
385 [(set GPR:$dst, (i64 i64immSExt32:$imm))]>;
386 def MOV_rr_32 : ALU_RR<BPF_ALU, BPF_MOV, 0,
391 def MOV_ri_32 : ALU_RI<BPF_ALU, BPF_MOV, 0,
395 [(set GPR32:$dst, (i32 i32immSExt32:$imm))]>;
397 let Predicates = [BPFHasMovsx] in {
398 def MOVSX_rr_8 : ALU_RR<BPF_ALU64, BPF_MOV, 8,
399 (outs GPR:$dst), (ins GPR:$src),
401 [(set GPR:$dst, (sext_inreg GPR:$src, i8))]>;
402 def MOVSX_rr_16 : ALU_RR<BPF_ALU64, BPF_MOV, 16,
403 (outs GPR:$dst), (ins GPR:$src),
405 [(set GPR:$dst, (sext_inreg GPR:$src, i16))]>;
406 def MOVSX_rr_32 : ALU_RR<BPF_ALU64, BPF_MOV, 32,
407 (outs GPR:$dst), (ins GPR:$src),
409 [(set GPR:$dst, (sext_inreg GPR:$src, i32))]>;
410 def MOVSX_rr_32_8 : ALU_RR<BPF_ALU, BPF_MOV, 8,
411 (outs GPR32:$dst), (ins GPR32:$src),
413 [(set GPR32:$dst, (sext_inreg GPR32:$src, i8))]>;
414 def MOVSX_rr_32_16 : ALU_RR<BPF_ALU, BPF_MOV, 16,
415 (outs GPR32:$dst), (ins GPR32:$src),
417 [(set GPR32:$dst, (sext_inreg GPR32:$src, i16))]>;
422 : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
426 [(set i64:$dst, FIri:$addr)]> {
427 // This is a tentative instruction, and will be replaced
428 // with MOV_rr and ADD_ri in PEI phase
433 let BPFClass = BPF_LD;
438 : TYPE_LD_ST<BPF_IMM.Value, BPF_DW.Value,
440 (ins i64imm:$pseudo, u64imm:$imm),
441 "ld_pseudo\t$dst, $pseudo, $imm",
442 [(set GPR:$dst, (int_bpf_pseudo imm:$pseudo, imm:$imm))]> {
448 let Inst{51-48} = dst;
449 let Inst{55-52} = pseudo;
451 let Inst{31-0} = imm{31-0};
452 let BPFClass = BPF_LD;
455 // STORE instructions
456 class STORE<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
457 : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
459 (ins GPR:$src, MEMri:$addr),
460 "*("#OpcodeStr#" *)($addr) = $src",
465 let Inst{51-48} = addr{19-16}; // base reg
466 let Inst{55-52} = src;
467 let Inst{47-32} = addr{15-0}; // offset
468 let BPFClass = BPF_STX;
471 class STOREi64<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode>
472 : STORE<Opc, OpcodeStr, [(OpNode GPR:$src, ADDRri:$addr)]>;
474 let Predicates = [BPFNoALU32] in {
475 def STW : STOREi64<BPF_W, "u32", truncstorei32>;
476 def STH : STOREi64<BPF_H, "u16", truncstorei16>;
477 def STB : STOREi64<BPF_B, "u8", truncstorei8>;
479 def STD : STOREi64<BPF_DW, "u64", store>;
481 class STORE_imm<BPFWidthModifer SizeOp,
482 string OpcodeStr, dag Pattern>
483 : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
485 (ins i64imm:$imm, MEMri:$addr),
486 "*("#OpcodeStr#" *)($addr) = $imm",
491 let Inst{51-48} = addr{19-16}; // base reg
492 let Inst{47-32} = addr{15-0}; // offset
493 let Inst{31-0} = imm;
494 let BPFClass = BPF_ST;
497 let Predicates = [BPFHasStoreImm] in {
498 // Opcode (BPF_ST | BPF_MEM | BPF_DW) implies sign extension for
499 // value stored to memory:
500 // - it is fine to generate such write when immediate is -1
501 // - it is incorrect to generate such write when immediate is
504 // In the latter case two instructions would be generated instead of
506 // rA = 0xffffffff ll ; LD_imm64
507 // *(u64 *)(rB + 0) = rA ; STX
509 // For BPF_{B,H,W} the size of value stored matches size of the immediate.
510 def STD_imm : STORE_imm<BPF_DW, "u64", (store (i64 i64immSExt32:$imm), ADDRri:$addr)>;
511 def STW_imm : STORE_imm<BPF_W, "u32", (truncstorei32 (i64 i64immZExt32:$imm), ADDRri:$addr)>;
512 def STH_imm : STORE_imm<BPF_H, "u16", (truncstorei16 (i64 i64immZExt32:$imm), ADDRri:$addr)>;
513 def STB_imm : STORE_imm<BPF_B, "u8", (truncstorei8 (i64 i64immZExt32:$imm), ADDRri:$addr)>;
516 let Predicates = [BPFHasALU32, BPFHasStoreImm] in {
517 def : Pat<(store (i32 imm:$src), ADDRri:$dst),
518 (STW_imm (imm_to_i64 $src), ADDRri:$dst)>;
519 def : Pat<(truncstorei16 (i32 imm:$src), ADDRri:$dst),
520 (STH_imm (imm_to_i64 imm:$src), ADDRri:$dst)>;
521 def : Pat<(truncstorei8 (i32 imm:$src), ADDRri:$dst),
522 (STB_imm (imm_to_i64 imm:$src), ADDRri:$dst)>;
526 class LOAD<BPFWidthModifer SizeOp, BPFModeModifer ModOp, string OpcodeStr, list<dag> Pattern>
527 : TYPE_LD_ST<ModOp.Value, SizeOp.Value,
530 "$dst = *("#OpcodeStr#" *)($addr)",
535 let Inst{51-48} = dst;
536 let Inst{55-52} = addr{19-16};
537 let Inst{47-32} = addr{15-0};
538 let BPFClass = BPF_LDX;
541 class LOADi64<BPFWidthModifer SizeOp, BPFModeModifer ModOp, string OpcodeStr, PatFrag OpNode>
542 : LOAD<SizeOp, ModOp, OpcodeStr, [(set i64:$dst, (OpNode ADDRri:$addr))]>;
544 let isCodeGenOnly = 1 in {
545 class CORE_LD<RegisterClass RegClass, string Sz>
546 : TYPE_LD_ST<BPF_MEM.Value, BPF_W.Value,
547 (outs RegClass:$dst),
548 (ins u64imm:$opcode, GPR:$src, u64imm:$offset),
549 "$dst = core_ld"#Sz#"($opcode, $src, $offset)",
551 def CORE_LD64 : CORE_LD<GPR, "64">;
552 def CORE_LD32 : CORE_LD<GPR32, "32">;
553 def CORE_ST : TYPE_LD_ST<BPF_MEM.Value, BPF_W.Value,
555 (ins gpr_or_imm:$src, u64imm:$opcode, GPR:$ptr, u64imm:$offset),
556 "core_st($src, $opcode, $ptr, $offset)",
558 let Constraints = "$dst = $src" in {
559 def CORE_SHIFT : ALU_RR<BPF_ALU64, BPF_LSH, 0,
561 (ins u64imm:$opcode, GPR:$src, u64imm:$offset),
562 "$dst = core_shift($opcode, $src, $offset)",
567 let Predicates = [BPFNoALU32] in {
568 def LDW : LOADi64<BPF_W, BPF_MEM, "u32", zextloadi32>;
569 def LDH : LOADi64<BPF_H, BPF_MEM, "u16", zextloadi16>;
570 def LDB : LOADi64<BPF_B, BPF_MEM, "u8", zextloadi8>;
573 let Predicates = [BPFHasLdsx] in {
574 def LDWSX : LOADi64<BPF_W, BPF_MEMSX, "s32", sextloadi32>;
575 def LDHSX : LOADi64<BPF_H, BPF_MEMSX, "s16", sextloadi16>;
576 def LDBSX : LOADi64<BPF_B, BPF_MEMSX, "s8", sextloadi8>;
579 def LDD : LOADi64<BPF_DW, BPF_MEM, "u64", load>;
581 class BRANCH<BPFJumpOp Opc, string OpcodeStr, list<dag> Pattern>
582 : TYPE_ALU_JMP<Opc.Value, BPF_K.Value,
584 (ins brtarget:$BrDst),
585 !strconcat(OpcodeStr, " $BrDst"),
589 let Inst{47-32} = BrDst;
590 let BPFClass = BPF_JMP;
593 class BRANCH_LONG<BPFJumpOp Opc, string OpcodeStr, list<dag> Pattern>
594 : TYPE_ALU_JMP<Opc.Value, BPF_K.Value,
596 (ins brtarget:$BrDst),
597 !strconcat(OpcodeStr, " $BrDst"),
601 let Inst{31-0} = BrDst;
602 let BPFClass = BPF_JMP32;
605 class CALL<string OpcodeStr>
606 : TYPE_ALU_JMP<BPF_CALL.Value, BPF_K.Value,
608 (ins calltarget:$BrDst),
609 !strconcat(OpcodeStr, " $BrDst"),
613 let Inst{31-0} = BrDst;
614 let BPFClass = BPF_JMP;
617 class CALLX<string OpcodeStr>
618 : TYPE_ALU_JMP<BPF_CALL.Value, BPF_X.Value,
621 !strconcat(OpcodeStr, " $BrDst"),
625 let Inst{31-0} = BrDst;
626 let BPFClass = BPF_JMP;
630 let isBranch = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1 in {
631 def JMP : BRANCH<BPF_JA, "goto", [(br bb:$BrDst)]>;
632 def JMPL : BRANCH_LONG<BPF_JA, "gotol", []>;
636 let isCall=1, hasDelaySlot=0, Uses = [R11],
637 // Potentially clobbered registers
638 Defs = [R0, R1, R2, R3, R4, R5] in {
639 def JAL : CALL<"call">;
640 def JALX : CALLX<"callx">;
643 class NOP_I<string OpcodeStr>
644 : TYPE_ALU_JMP<BPF_MOV.Value, BPF_X.Value,
647 !strconcat(OpcodeStr, "\t$imm"),
652 let BPFClass = BPF_ALU64;
655 let hasSideEffects = 0, isCodeGenOnly = 1 in
656 def NOP : NOP_I<"nop">;
658 class RET<string OpcodeStr>
659 : TYPE_ALU_JMP<BPF_EXIT.Value, BPF_K.Value,
662 !strconcat(OpcodeStr, ""),
665 let BPFClass = BPF_JMP;
668 let isReturn = 1, isTerminator = 1, hasDelaySlot=0, isBarrier = 1,
669 isNotDuplicable = 1 in {
670 def RET : RET<"exit">;
673 // ADJCALLSTACKDOWN/UP pseudo insns
674 let Defs = [R11], Uses = [R11], isCodeGenOnly = 1 in {
675 def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
676 "#ADJCALLSTACKDOWN $amt1 $amt2",
677 [(BPFcallseq_start timm:$amt1, timm:$amt2)]>;
678 def ADJCALLSTACKUP : Pseudo<(outs), (ins i64imm:$amt1, i64imm:$amt2),
679 "#ADJCALLSTACKUP $amt1 $amt2",
680 [(BPFcallseq_end timm:$amt1, timm:$amt2)]>;
683 let usesCustomInserter = 1, isCodeGenOnly = 1 in {
684 def Select : Pseudo<(outs GPR:$dst),
685 (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR:$src, GPR:$src2),
686 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
688 (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i64:$src, i64:$src2))]>;
689 def Select_Ri : Pseudo<(outs GPR:$dst),
690 (ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR:$src, GPR:$src2),
691 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
693 (BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i64:$src, i64:$src2))]>;
694 def Select_64_32 : Pseudo<(outs GPR32:$dst),
695 (ins GPR:$lhs, GPR:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2),
696 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
698 (BPFselectcc i64:$lhs, i64:$rhs, (i64 imm:$imm), i32:$src, i32:$src2))]>;
699 def Select_Ri_64_32 : Pseudo<(outs GPR32:$dst),
700 (ins GPR:$lhs, i64imm:$rhs, i64imm:$imm, GPR32:$src, GPR32:$src2),
701 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
703 (BPFselectcc i64:$lhs, (i64immSExt32:$rhs), (i64 imm:$imm), i32:$src, i32:$src2))]>;
704 def Select_32 : Pseudo<(outs GPR32:$dst),
705 (ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2),
706 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
708 (BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i32:$src, i32:$src2))]>;
709 def Select_Ri_32 : Pseudo<(outs GPR32:$dst),
710 (ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR32:$src, GPR32:$src2),
711 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
713 (BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i32:$src, i32:$src2))]>;
714 def Select_32_64 : Pseudo<(outs GPR:$dst),
715 (ins GPR32:$lhs, GPR32:$rhs, i32imm:$imm, GPR:$src, GPR:$src2),
716 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
718 (BPFselectcc i32:$lhs, i32:$rhs, (i32 imm:$imm), i64:$src, i64:$src2))]>;
719 def Select_Ri_32_64 : Pseudo<(outs GPR:$dst),
720 (ins GPR32:$lhs, i32imm:$rhs, i32imm:$imm, GPR:$src, GPR:$src2),
721 "# Select PSEUDO $dst = $lhs $imm $rhs ? $src : $src2",
723 (BPFselectcc i32:$lhs, (i32immSExt32:$rhs), (i32 imm:$imm), i64:$src, i64:$src2))]>;
726 // load 64-bit global addr into register
727 def : Pat<(BPFWrapper tglobaladdr:$in), (LD_imm64 tglobaladdr:$in)>;
729 // 0xffffFFFF doesn't fit into simm32, optimize common case
730 def : Pat<(i64 (and (i64 GPR:$src), 0xffffFFFF)),
731 (SRL_ri (SLL_ri (i64 GPR:$src), 32), 32)>;
734 def : Pat<(BPFcall tglobaladdr:$dst), (JAL tglobaladdr:$dst)>;
735 def : Pat<(BPFcall texternalsym:$dst), (JAL texternalsym:$dst)>;
736 def : Pat<(BPFcall imm:$dst), (JAL imm:$dst)>;
737 def : Pat<(BPFcall GPR:$dst), (JALX GPR:$dst)>;
740 let Predicates = [BPFNoALU32] in {
741 def : Pat<(i64 (extloadi8 ADDRri:$src)), (i64 (LDB ADDRri:$src))>;
742 def : Pat<(i64 (extloadi16 ADDRri:$src)), (i64 (LDH ADDRri:$src))>;
743 def : Pat<(i64 (extloadi32 ADDRri:$src)), (i64 (LDW ADDRri:$src))>;
746 // Atomic XADD for BPFNoALU32
747 class XADD<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
748 : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value,
750 (ins MEMri:$addr, GPR:$val),
751 "lock *("#OpcodeStr#" *)($addr) += $val",
752 [(set GPR:$dst, (OpNode ADDRri:$addr, GPR:$val))]> {
756 let Inst{51-48} = addr{19-16}; // base reg
757 let Inst{55-52} = dst;
758 let Inst{47-32} = addr{15-0}; // offset
759 let Inst{7-4} = BPF_ADD.Value;
760 let BPFClass = BPF_STX;
763 let Constraints = "$dst = $val" in {
764 let Predicates = [BPFNoALU32] in {
765 def XADDW : XADD<BPF_W, "u32", atomic_load_add_32>;
769 // Atomic add, and, or, xor
770 class ATOMIC_NOFETCH<BPFArithOp Opc, string Opstr>
771 : TYPE_LD_ST<BPF_ATOMIC.Value, BPF_DW.Value,
773 (ins MEMri:$addr, GPR:$val),
774 "lock *(u64 *)($addr) " #Opstr# "= $val",
779 let Inst{51-48} = addr{19-16}; // base reg
780 let Inst{55-52} = dst;
781 let Inst{47-32} = addr{15-0}; // offset
782 let Inst{7-4} = Opc.Value;
783 let BPFClass = BPF_STX;
786 class ATOMIC32_NOFETCH<BPFArithOp Opc, string Opstr>
787 : TYPE_LD_ST<BPF_ATOMIC.Value, BPF_W.Value,
789 (ins MEMri:$addr, GPR32:$val),
790 "lock *(u32 *)($addr) " #Opstr# "= $val",
795 let Inst{51-48} = addr{19-16}; // base reg
796 let Inst{55-52} = dst;
797 let Inst{47-32} = addr{15-0}; // offset
798 let Inst{7-4} = Opc.Value;
799 let BPFClass = BPF_STX;
802 let Constraints = "$dst = $val" in {
803 let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
804 def XADDW32 : ATOMIC32_NOFETCH<BPF_ADD, "+">;
805 def XANDW32 : ATOMIC32_NOFETCH<BPF_AND, "&">;
806 def XORW32 : ATOMIC32_NOFETCH<BPF_OR, "|">;
807 def XXORW32 : ATOMIC32_NOFETCH<BPF_XOR, "^">;
810 def XADDD : ATOMIC_NOFETCH<BPF_ADD, "+">;
811 def XANDD : ATOMIC_NOFETCH<BPF_AND, "&">;
812 def XORD : ATOMIC_NOFETCH<BPF_OR, "|">;
813 def XXORD : ATOMIC_NOFETCH<BPF_XOR, "^">;
816 // Atomic Fetch-and-<add, and, or, xor> operations
817 class XFALU64<BPFWidthModifer SizeOp, BPFArithOp Opc, string OpcodeStr,
818 string OpcStr, PatFrag OpNode>
819 : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value,
821 (ins MEMri:$addr, GPR:$val),
822 "$dst = atomic_fetch_"#OpcStr#"(("#OpcodeStr#" *)($addr), $val)",
823 [(set GPR:$dst, (OpNode ADDRri:$addr, GPR:$val))]> {
827 let Inst{51-48} = addr{19-16}; // base reg
828 let Inst{55-52} = dst;
829 let Inst{47-32} = addr{15-0}; // offset
830 let Inst{7-4} = Opc.Value;
831 let Inst{3-0} = BPF_FETCH.Value;
832 let BPFClass = BPF_STX;
835 class XFALU32<BPFWidthModifer SizeOp, BPFArithOp Opc, string OpcodeStr,
836 string OpcStr, PatFrag OpNode>
837 : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value,
839 (ins MEMri:$addr, GPR32:$val),
840 "$dst = atomic_fetch_"#OpcStr#"(("#OpcodeStr#" *)($addr), $val)",
841 [(set GPR32:$dst, (OpNode ADDRri:$addr, GPR32:$val))]> {
845 let Inst{51-48} = addr{19-16}; // base reg
846 let Inst{55-52} = dst;
847 let Inst{47-32} = addr{15-0}; // offset
848 let Inst{7-4} = Opc.Value;
849 let Inst{3-0} = BPF_FETCH.Value;
850 let BPFClass = BPF_STX;
853 let Constraints = "$dst = $val" in {
854 let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
855 def XFADDW32 : XFALU32<BPF_W, BPF_ADD, "u32", "add", atomic_load_add_32>;
856 def XFANDW32 : XFALU32<BPF_W, BPF_AND, "u32", "and", atomic_load_and_32>;
857 def XFORW32 : XFALU32<BPF_W, BPF_OR, "u32", "or", atomic_load_or_32>;
858 def XFXORW32 : XFALU32<BPF_W, BPF_XOR, "u32", "xor", atomic_load_xor_32>;
861 def XFADDD : XFALU64<BPF_DW, BPF_ADD, "u64", "add", atomic_load_add_64>;
862 def XFANDD : XFALU64<BPF_DW, BPF_AND, "u64", "and", atomic_load_and_64>;
863 def XFORD : XFALU64<BPF_DW, BPF_OR, "u64", "or", atomic_load_or_64>;
864 def XFXORD : XFALU64<BPF_DW, BPF_XOR, "u64", "xor", atomic_load_xor_64>;
867 // atomic_load_sub can be represented as a neg followed
868 // by an atomic_load_add.
869 def : Pat<(atomic_load_sub_32 ADDRri:$addr, GPR32:$val),
870 (XFADDW32 ADDRri:$addr, (NEG_32 GPR32:$val))>;
871 def : Pat<(atomic_load_sub_64 ADDRri:$addr, GPR:$val),
872 (XFADDD ADDRri:$addr, (NEG_64 GPR:$val))>;
875 class XCHG<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
876 : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value,
878 (ins MEMri:$addr, GPR:$val),
879 "$dst = xchg_"#OpcodeStr#"($addr, $val)",
880 [(set GPR:$dst, (OpNode ADDRri:$addr,GPR:$val))]> {
884 let Inst{51-48} = addr{19-16}; // base reg
885 let Inst{55-52} = dst;
886 let Inst{47-32} = addr{15-0}; // offset
887 let Inst{7-4} = BPF_XCHG.Value;
888 let Inst{3-0} = BPF_FETCH.Value;
889 let BPFClass = BPF_STX;
892 class XCHG32<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
893 : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value,
895 (ins MEMri:$addr, GPR32:$val),
896 "$dst = xchg32_"#OpcodeStr#"($addr, $val)",
897 [(set GPR32:$dst, (OpNode ADDRri:$addr,GPR32:$val))]> {
901 let Inst{51-48} = addr{19-16}; // base reg
902 let Inst{55-52} = dst;
903 let Inst{47-32} = addr{15-0}; // offset
904 let Inst{7-4} = BPF_XCHG.Value;
905 let Inst{3-0} = BPF_FETCH.Value;
906 let BPFClass = BPF_STX;
909 let Constraints = "$dst = $val" in {
910 let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
911 def XCHGW32 : XCHG32<BPF_W, "32", atomic_swap_32>;
914 def XCHGD : XCHG<BPF_DW, "64", atomic_swap_64>;
917 // Compare-And-Exchange
918 class CMPXCHG<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
919 : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value,
921 (ins MEMri:$addr, GPR:$new),
922 "r0 = cmpxchg_"#OpcodeStr#"($addr, r0, $new)",
923 [(set R0, (OpNode ADDRri:$addr, R0, GPR:$new))]> {
927 let Inst{51-48} = addr{19-16}; // base reg
928 let Inst{55-52} = new;
929 let Inst{47-32} = addr{15-0}; // offset
930 let Inst{7-4} = BPF_CMPXCHG.Value;
931 let Inst{3-0} = BPF_FETCH.Value;
932 let BPFClass = BPF_STX;
935 class CMPXCHG32<BPFWidthModifer SizeOp, string OpcodeStr, PatFrag OpNode>
936 : TYPE_LD_ST<BPF_ATOMIC.Value, SizeOp.Value,
938 (ins MEMri:$addr, GPR32:$new),
939 "w0 = cmpxchg32_"#OpcodeStr#"($addr, w0, $new)",
940 [(set W0, (OpNode ADDRri:$addr, W0, GPR32:$new))]> {
944 let Inst{51-48} = addr{19-16}; // base reg
945 let Inst{55-52} = new;
946 let Inst{47-32} = addr{15-0}; // offset
947 let Inst{7-4} = BPF_CMPXCHG.Value;
948 let Inst{3-0} = BPF_FETCH.Value;
949 let BPFClass = BPF_STX;
952 let Predicates = [BPFHasALU32], Defs = [W0], Uses = [W0],
953 DecoderNamespace = "BPFALU32" in {
954 def CMPXCHGW32 : CMPXCHG32<BPF_W, "32", atomic_cmp_swap_32>;
957 let Defs = [R0], Uses = [R0] in {
958 def CMPXCHGD : CMPXCHG<BPF_DW, "64", atomic_cmp_swap_64>;
961 // bswap16, bswap32, bswap64
962 class BSWAP<BPFOpClass Class, bits<32> SizeOp, string OpcodeStr, BPFSrcType SrcType, list<dag> Pattern>
963 : TYPE_ALU_JMP<BPF_END.Value, SrcType.Value,
966 "$dst = "#OpcodeStr#" $src",
970 let Inst{51-48} = dst;
971 let Inst{31-0} = SizeOp;
972 let BPFClass = Class;
976 let Constraints = "$dst = $src" in {
977 let Predicates = [BPFHasBswap] in {
978 def BSWAP16 : BSWAP<BPF_ALU64, 16, "bswap16", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>;
979 def BSWAP32 : BSWAP<BPF_ALU64, 32, "bswap32", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>;
980 def BSWAP64 : BSWAP<BPF_ALU64, 64, "bswap64", BPF_TO_LE, [(set GPR:$dst, (bswap GPR:$src))]>;
983 let Predicates = [BPFNoBswap] in {
984 let Predicates = [BPFIsLittleEndian] in {
985 def BE16 : BSWAP<BPF_ALU, 16, "be16", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>;
986 def BE32 : BSWAP<BPF_ALU, 32, "be32", BPF_TO_BE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>;
987 def BE64 : BSWAP<BPF_ALU, 64, "be64", BPF_TO_BE, [(set GPR:$dst, (bswap GPR:$src))]>;
989 let Predicates = [BPFIsBigEndian] in {
990 def LE16 : BSWAP<BPF_ALU, 16, "le16", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 48)))]>;
991 def LE32 : BSWAP<BPF_ALU, 32, "le32", BPF_TO_LE, [(set GPR:$dst, (srl (bswap GPR:$src), (i64 32)))]>;
992 def LE64 : BSWAP<BPF_ALU, 64, "le64", BPF_TO_LE, [(set GPR:$dst, (bswap GPR:$src))]>;
997 let Defs = [R0, R1, R2, R3, R4, R5], Uses = [R6], hasSideEffects = 1,
998 hasExtraDefRegAllocReq = 1, hasExtraSrcRegAllocReq = 1, mayLoad = 1 in {
999 class LOAD_ABS<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode>
1000 : TYPE_LD_ST<BPF_ABS.Value, SizeOp.Value,
1002 (ins GPR:$skb, i64imm:$imm),
1003 "r0 = *("#OpcodeStr#" *)skb[$imm]",
1004 [(set R0, (OpNode GPR:$skb, i64immSExt32:$imm))]> {
1007 let Inst{31-0} = imm;
1008 let BPFClass = BPF_LD;
1011 class LOAD_IND<BPFWidthModifer SizeOp, string OpcodeStr, Intrinsic OpNode>
1012 : TYPE_LD_ST<BPF_IND.Value, SizeOp.Value,
1014 (ins GPR:$skb, GPR:$val),
1015 "r0 = *("#OpcodeStr#" *)skb[$val]",
1016 [(set R0, (OpNode GPR:$skb, GPR:$val))]> {
1019 let Inst{55-52} = val;
1020 let BPFClass = BPF_LD;
1024 def LD_ABS_B : LOAD_ABS<BPF_B, "u8", int_bpf_load_byte>;
1025 def LD_ABS_H : LOAD_ABS<BPF_H, "u16", int_bpf_load_half>;
1026 def LD_ABS_W : LOAD_ABS<BPF_W, "u32", int_bpf_load_word>;
1028 def LD_IND_B : LOAD_IND<BPF_B, "u8", int_bpf_load_byte>;
1029 def LD_IND_H : LOAD_IND<BPF_H, "u16", int_bpf_load_half>;
1030 def LD_IND_W : LOAD_IND<BPF_W, "u32", int_bpf_load_word>;
1032 let isCodeGenOnly = 1 in {
1033 def MOV_32_64 : ALU_RR<BPF_ALU, BPF_MOV, 0,
1034 (outs GPR:$dst), (ins GPR32:$src),
1038 let Predicates = [BPFNoMovsx] in {
1039 def : Pat<(i64 (sext GPR32:$src)),
1040 (SRA_ri (SLL_ri (MOV_32_64 GPR32:$src), 32), 32)>;
1043 let Predicates = [BPFHasMovsx] in {
1044 def : Pat<(i64 (sext GPR32:$src)),
1045 (MOVSX_rr_32 (MOV_32_64 GPR32:$src))>;
1048 def : Pat<(i64 (zext GPR32:$src)), (MOV_32_64 GPR32:$src)>;
1050 // For i64 -> i32 truncation, use the 32-bit subregister directly.
1051 def : Pat<(i32 (trunc GPR:$src)),
1052 (i32 (EXTRACT_SUBREG GPR:$src, sub_32))>;
1054 // For i32 -> i64 anyext, we don't care about the high bits.
1055 def : Pat<(i64 (anyext GPR32:$src)),
1056 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GPR32:$src, sub_32)>;
1058 class STORE32<BPFWidthModifer SizeOp, string OpcodeStr, list<dag> Pattern>
1059 : TYPE_LD_ST<BPF_MEM.Value, SizeOp.Value,
1061 (ins GPR32:$src, MEMri:$addr),
1062 "*("#OpcodeStr#" *)($addr) = $src",
1067 let Inst{51-48} = addr{19-16}; // base reg
1068 let Inst{55-52} = src;
1069 let Inst{47-32} = addr{15-0}; // offset
1070 let BPFClass = BPF_STX;
1073 class STOREi32<BPFWidthModifer Opc, string OpcodeStr, PatFrag OpNode>
1074 : STORE32<Opc, OpcodeStr, [(OpNode GPR32:$src, ADDRri:$addr)]>;
1076 let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
1077 def STW32 : STOREi32<BPF_W, "u32", store>;
1078 def STH32 : STOREi32<BPF_H, "u16", truncstorei16>;
1079 def STB32 : STOREi32<BPF_B, "u8", truncstorei8>;
1082 class LOAD32<BPFWidthModifer SizeOp, BPFModeModifer ModOp, string OpcodeStr, list<dag> Pattern>
1083 : TYPE_LD_ST<ModOp.Value, SizeOp.Value,
1086 "$dst = *("#OpcodeStr#" *)($addr)",
1091 let Inst{51-48} = dst;
1092 let Inst{55-52} = addr{19-16};
1093 let Inst{47-32} = addr{15-0};
1094 let BPFClass = BPF_LDX;
1097 class LOADi32<BPFWidthModifer SizeOp, BPFModeModifer ModOp, string OpcodeStr, PatFrag OpNode>
1098 : LOAD32<SizeOp, ModOp, OpcodeStr, [(set i32:$dst, (OpNode ADDRri:$addr))]>;
1100 let Predicates = [BPFHasALU32], DecoderNamespace = "BPFALU32" in {
1101 def LDW32 : LOADi32<BPF_W, BPF_MEM, "u32", load>;
1102 def LDH32 : LOADi32<BPF_H, BPF_MEM, "u16", zextloadi16>;
1103 def LDB32 : LOADi32<BPF_B, BPF_MEM, "u8", zextloadi8>;
1106 let Predicates = [BPFHasALU32] in {
1107 def : Pat<(truncstorei8 GPR:$src, ADDRri:$dst),
1108 (STB32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
1109 def : Pat<(truncstorei16 GPR:$src, ADDRri:$dst),
1110 (STH32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
1111 def : Pat<(truncstorei32 GPR:$src, ADDRri:$dst),
1112 (STW32 (EXTRACT_SUBREG GPR:$src, sub_32), ADDRri:$dst)>;
1113 def : Pat<(i32 (extloadi8 ADDRri:$src)), (i32 (LDB32 ADDRri:$src))>;
1114 def : Pat<(i32 (extloadi16 ADDRri:$src)), (i32 (LDH32 ADDRri:$src))>;
1116 let Predicates = [BPFHasLdsx] in {
1117 def : Pat<(i32 (sextloadi8 ADDRri:$src)), (EXTRACT_SUBREG (LDBSX ADDRri:$src), sub_32)>;
1118 def : Pat<(i32 (sextloadi16 ADDRri:$src)), (EXTRACT_SUBREG (LDHSX ADDRri:$src), sub_32)>;
1121 def : Pat<(i64 (zextloadi8 ADDRri:$src)),
1122 (SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>;
1123 def : Pat<(i64 (zextloadi16 ADDRri:$src)),
1124 (SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>;
1125 def : Pat<(i64 (zextloadi32 ADDRri:$src)),
1126 (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>;
1127 def : Pat<(i64 (extloadi8 ADDRri:$src)),
1128 (SUBREG_TO_REG (i64 0), (LDB32 ADDRri:$src), sub_32)>;
1129 def : Pat<(i64 (extloadi16 ADDRri:$src)),
1130 (SUBREG_TO_REG (i64 0), (LDH32 ADDRri:$src), sub_32)>;
1131 def : Pat<(i64 (extloadi32 ADDRri:$src)),
1132 (SUBREG_TO_REG (i64 0), (LDW32 ADDRri:$src), sub_32)>;
1135 let usesCustomInserter = 1, isCodeGenOnly = 1 in {
1136 def MEMCPY : Pseudo<
1138 (ins GPR:$dst, GPR:$src, i64imm:$len, i64imm:$align, variable_ops),
1139 "#memcpy dst: $dst, src: $src, len: $len, align: $align",
1140 [(BPFmemcpy GPR:$dst, GPR:$src, imm:$len, imm:$align)]>;