1 //===- MipsISelLowering.cpp - Mips DAG Lowering Implementation ------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interfaces that Mips uses to lower LLVM code into a
12 //===----------------------------------------------------------------------===//
14 #include "MipsISelLowering.h"
15 #include "MCTargetDesc/MipsBaseInfo.h"
16 #include "MCTargetDesc/MipsInstPrinter.h"
17 #include "MCTargetDesc/MipsMCTargetDesc.h"
18 #include "MipsCCState.h"
19 #include "MipsInstrInfo.h"
20 #include "MipsMachineFunction.h"
21 #include "MipsRegisterInfo.h"
22 #include "MipsSubtarget.h"
23 #include "MipsTargetMachine.h"
24 #include "MipsTargetObjectFile.h"
25 #include "llvm/ADT/APFloat.h"
26 #include "llvm/ADT/ArrayRef.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/Statistic.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/StringSwitch.h"
31 #include "llvm/CodeGen/CallingConvLower.h"
32 #include "llvm/CodeGen/FunctionLoweringInfo.h"
33 #include "llvm/CodeGen/ISDOpcodes.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineFunction.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineJumpTableInfo.h"
40 #include "llvm/CodeGen/MachineMemOperand.h"
41 #include "llvm/CodeGen/MachineOperand.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/CodeGen/MachineValueType.h"
44 #include "llvm/CodeGen/RuntimeLibcalls.h"
45 #include "llvm/CodeGen/SelectionDAG.h"
46 #include "llvm/CodeGen/SelectionDAGNodes.h"
47 #include "llvm/CodeGen/TargetFrameLowering.h"
48 #include "llvm/CodeGen/TargetInstrInfo.h"
49 #include "llvm/CodeGen/TargetRegisterInfo.h"
50 #include "llvm/CodeGen/ValueTypes.h"
51 #include "llvm/IR/CallingConv.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Function.h"
57 #include "llvm/IR/GlobalValue.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/MC/MCContext.h"
61 #include "llvm/MC/MCRegisterInfo.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CodeGen.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/MathExtras.h"
68 #include "llvm/Target/TargetMachine.h"
69 #include "llvm/Target/TargetOptions.h"
81 #define DEBUG_TYPE "mips-lower"
83 STATISTIC(NumTailCalls
, "Number of tail calls");
86 NoZeroDivCheck("mno-check-zero-division", cl::Hidden
,
87 cl::desc("MIPS: Don't trap on integer division by zero."),
90 extern cl::opt
<bool> EmitJalrReloc
;
92 static const MCPhysReg Mips64DPRegs
[8] = {
93 Mips::D12_64
, Mips::D13_64
, Mips::D14_64
, Mips::D15_64
,
94 Mips::D16_64
, Mips::D17_64
, Mips::D18_64
, Mips::D19_64
97 // The MIPS MSA ABI passes vector arguments in the integer register set.
98 // The number of integer registers used is dependant on the ABI used.
99 MVT
MipsTargetLowering::getRegisterTypeForCallingConv(LLVMContext
&Context
,
103 return getRegisterType(Context
, VT
);
105 if (VT
.isPow2VectorType() && VT
.getVectorElementType().isRound())
106 return Subtarget
.isABI_O32() || VT
.getSizeInBits() == 32 ? MVT::i32
108 return getRegisterType(Context
, VT
.getVectorElementType());
111 unsigned MipsTargetLowering::getNumRegistersForCallingConv(LLVMContext
&Context
,
115 if (VT
.isPow2VectorType() && VT
.getVectorElementType().isRound())
116 return divideCeil(VT
.getSizeInBits(), Subtarget
.isABI_O32() ? 32 : 64);
117 return VT
.getVectorNumElements() *
118 getNumRegisters(Context
, VT
.getVectorElementType());
120 return MipsTargetLowering::getNumRegisters(Context
, VT
);
123 unsigned MipsTargetLowering::getVectorTypeBreakdownForCallingConv(
124 LLVMContext
&Context
, CallingConv::ID CC
, EVT VT
, EVT
&IntermediateVT
,
125 unsigned &NumIntermediates
, MVT
&RegisterVT
) const {
126 if (VT
.isPow2VectorType()) {
127 IntermediateVT
= getRegisterTypeForCallingConv(Context
, CC
, VT
);
128 RegisterVT
= IntermediateVT
.getSimpleVT();
129 NumIntermediates
= getNumRegistersForCallingConv(Context
, CC
, VT
);
130 return NumIntermediates
;
132 IntermediateVT
= VT
.getVectorElementType();
133 NumIntermediates
= VT
.getVectorNumElements();
134 RegisterVT
= getRegisterType(Context
, IntermediateVT
);
135 return NumIntermediates
* getNumRegisters(Context
, IntermediateVT
);
138 SDValue
MipsTargetLowering::getGlobalReg(SelectionDAG
&DAG
, EVT Ty
) const {
139 MachineFunction
&MF
= DAG
.getMachineFunction();
140 MipsFunctionInfo
*FI
= MF
.getInfo
<MipsFunctionInfo
>();
141 return DAG
.getRegister(FI
->getGlobalBaseReg(MF
), Ty
);
144 SDValue
MipsTargetLowering::getTargetNode(GlobalAddressSDNode
*N
, EVT Ty
,
146 unsigned Flag
) const {
147 return DAG
.getTargetGlobalAddress(N
->getGlobal(), SDLoc(N
), Ty
, 0, Flag
);
150 SDValue
MipsTargetLowering::getTargetNode(ExternalSymbolSDNode
*N
, EVT Ty
,
152 unsigned Flag
) const {
153 return DAG
.getTargetExternalSymbol(N
->getSymbol(), Ty
, Flag
);
156 SDValue
MipsTargetLowering::getTargetNode(BlockAddressSDNode
*N
, EVT Ty
,
158 unsigned Flag
) const {
159 return DAG
.getTargetBlockAddress(N
->getBlockAddress(), Ty
, 0, Flag
);
162 SDValue
MipsTargetLowering::getTargetNode(JumpTableSDNode
*N
, EVT Ty
,
164 unsigned Flag
) const {
165 return DAG
.getTargetJumpTable(N
->getIndex(), Ty
, Flag
);
168 SDValue
MipsTargetLowering::getTargetNode(ConstantPoolSDNode
*N
, EVT Ty
,
170 unsigned Flag
) const {
171 return DAG
.getTargetConstantPool(N
->getConstVal(), Ty
, N
->getAlign(),
172 N
->getOffset(), Flag
);
175 const char *MipsTargetLowering::getTargetNodeName(unsigned Opcode
) const {
176 switch ((MipsISD::NodeType
)Opcode
) {
177 case MipsISD::FIRST_NUMBER
: break;
178 case MipsISD::JmpLink
: return "MipsISD::JmpLink";
179 case MipsISD::TailCall
: return "MipsISD::TailCall";
180 case MipsISD::Highest
: return "MipsISD::Highest";
181 case MipsISD::Higher
: return "MipsISD::Higher";
182 case MipsISD::Hi
: return "MipsISD::Hi";
183 case MipsISD::Lo
: return "MipsISD::Lo";
184 case MipsISD::GotHi
: return "MipsISD::GotHi";
185 case MipsISD::TlsHi
: return "MipsISD::TlsHi";
186 case MipsISD::GPRel
: return "MipsISD::GPRel";
187 case MipsISD::ThreadPointer
: return "MipsISD::ThreadPointer";
188 case MipsISD::Ret
: return "MipsISD::Ret";
189 case MipsISD::ERet
: return "MipsISD::ERet";
190 case MipsISD::EH_RETURN
: return "MipsISD::EH_RETURN";
191 case MipsISD::FAbs
: return "MipsISD::FAbs";
192 case MipsISD::FMS
: return "MipsISD::FMS";
193 case MipsISD::FPBrcond
: return "MipsISD::FPBrcond";
194 case MipsISD::FPCmp
: return "MipsISD::FPCmp";
195 case MipsISD::FSELECT
: return "MipsISD::FSELECT";
196 case MipsISD::MTC1_D64
: return "MipsISD::MTC1_D64";
197 case MipsISD::CMovFP_T
: return "MipsISD::CMovFP_T";
198 case MipsISD::CMovFP_F
: return "MipsISD::CMovFP_F";
199 case MipsISD::TruncIntFP
: return "MipsISD::TruncIntFP";
200 case MipsISD::MFHI
: return "MipsISD::MFHI";
201 case MipsISD::MFLO
: return "MipsISD::MFLO";
202 case MipsISD::MTLOHI
: return "MipsISD::MTLOHI";
203 case MipsISD::Mult
: return "MipsISD::Mult";
204 case MipsISD::Multu
: return "MipsISD::Multu";
205 case MipsISD::MAdd
: return "MipsISD::MAdd";
206 case MipsISD::MAddu
: return "MipsISD::MAddu";
207 case MipsISD::MSub
: return "MipsISD::MSub";
208 case MipsISD::MSubu
: return "MipsISD::MSubu";
209 case MipsISD::DivRem
: return "MipsISD::DivRem";
210 case MipsISD::DivRemU
: return "MipsISD::DivRemU";
211 case MipsISD::DivRem16
: return "MipsISD::DivRem16";
212 case MipsISD::DivRemU16
: return "MipsISD::DivRemU16";
213 case MipsISD::BuildPairF64
: return "MipsISD::BuildPairF64";
214 case MipsISD::ExtractElementF64
: return "MipsISD::ExtractElementF64";
215 case MipsISD::Wrapper
: return "MipsISD::Wrapper";
216 case MipsISD::DynAlloc
: return "MipsISD::DynAlloc";
217 case MipsISD::Sync
: return "MipsISD::Sync";
218 case MipsISD::Ext
: return "MipsISD::Ext";
219 case MipsISD::Ins
: return "MipsISD::Ins";
220 case MipsISD::CIns
: return "MipsISD::CIns";
221 case MipsISD::LWL
: return "MipsISD::LWL";
222 case MipsISD::LWR
: return "MipsISD::LWR";
223 case MipsISD::SWL
: return "MipsISD::SWL";
224 case MipsISD::SWR
: return "MipsISD::SWR";
225 case MipsISD::LDL
: return "MipsISD::LDL";
226 case MipsISD::LDR
: return "MipsISD::LDR";
227 case MipsISD::SDL
: return "MipsISD::SDL";
228 case MipsISD::SDR
: return "MipsISD::SDR";
229 case MipsISD::EXTP
: return "MipsISD::EXTP";
230 case MipsISD::EXTPDP
: return "MipsISD::EXTPDP";
231 case MipsISD::EXTR_S_H
: return "MipsISD::EXTR_S_H";
232 case MipsISD::EXTR_W
: return "MipsISD::EXTR_W";
233 case MipsISD::EXTR_R_W
: return "MipsISD::EXTR_R_W";
234 case MipsISD::EXTR_RS_W
: return "MipsISD::EXTR_RS_W";
235 case MipsISD::SHILO
: return "MipsISD::SHILO";
236 case MipsISD::MTHLIP
: return "MipsISD::MTHLIP";
237 case MipsISD::MULSAQ_S_W_PH
: return "MipsISD::MULSAQ_S_W_PH";
238 case MipsISD::MAQ_S_W_PHL
: return "MipsISD::MAQ_S_W_PHL";
239 case MipsISD::MAQ_S_W_PHR
: return "MipsISD::MAQ_S_W_PHR";
240 case MipsISD::MAQ_SA_W_PHL
: return "MipsISD::MAQ_SA_W_PHL";
241 case MipsISD::MAQ_SA_W_PHR
: return "MipsISD::MAQ_SA_W_PHR";
242 case MipsISD::DPAU_H_QBL
: return "MipsISD::DPAU_H_QBL";
243 case MipsISD::DPAU_H_QBR
: return "MipsISD::DPAU_H_QBR";
244 case MipsISD::DPSU_H_QBL
: return "MipsISD::DPSU_H_QBL";
245 case MipsISD::DPSU_H_QBR
: return "MipsISD::DPSU_H_QBR";
246 case MipsISD::DPAQ_S_W_PH
: return "MipsISD::DPAQ_S_W_PH";
247 case MipsISD::DPSQ_S_W_PH
: return "MipsISD::DPSQ_S_W_PH";
248 case MipsISD::DPAQ_SA_L_W
: return "MipsISD::DPAQ_SA_L_W";
249 case MipsISD::DPSQ_SA_L_W
: return "MipsISD::DPSQ_SA_L_W";
250 case MipsISD::DPA_W_PH
: return "MipsISD::DPA_W_PH";
251 case MipsISD::DPS_W_PH
: return "MipsISD::DPS_W_PH";
252 case MipsISD::DPAQX_S_W_PH
: return "MipsISD::DPAQX_S_W_PH";
253 case MipsISD::DPAQX_SA_W_PH
: return "MipsISD::DPAQX_SA_W_PH";
254 case MipsISD::DPAX_W_PH
: return "MipsISD::DPAX_W_PH";
255 case MipsISD::DPSX_W_PH
: return "MipsISD::DPSX_W_PH";
256 case MipsISD::DPSQX_S_W_PH
: return "MipsISD::DPSQX_S_W_PH";
257 case MipsISD::DPSQX_SA_W_PH
: return "MipsISD::DPSQX_SA_W_PH";
258 case MipsISD::MULSA_W_PH
: return "MipsISD::MULSA_W_PH";
259 case MipsISD::MULT
: return "MipsISD::MULT";
260 case MipsISD::MULTU
: return "MipsISD::MULTU";
261 case MipsISD::MADD_DSP
: return "MipsISD::MADD_DSP";
262 case MipsISD::MADDU_DSP
: return "MipsISD::MADDU_DSP";
263 case MipsISD::MSUB_DSP
: return "MipsISD::MSUB_DSP";
264 case MipsISD::MSUBU_DSP
: return "MipsISD::MSUBU_DSP";
265 case MipsISD::SHLL_DSP
: return "MipsISD::SHLL_DSP";
266 case MipsISD::SHRA_DSP
: return "MipsISD::SHRA_DSP";
267 case MipsISD::SHRL_DSP
: return "MipsISD::SHRL_DSP";
268 case MipsISD::SETCC_DSP
: return "MipsISD::SETCC_DSP";
269 case MipsISD::SELECT_CC_DSP
: return "MipsISD::SELECT_CC_DSP";
270 case MipsISD::VALL_ZERO
: return "MipsISD::VALL_ZERO";
271 case MipsISD::VANY_ZERO
: return "MipsISD::VANY_ZERO";
272 case MipsISD::VALL_NONZERO
: return "MipsISD::VALL_NONZERO";
273 case MipsISD::VANY_NONZERO
: return "MipsISD::VANY_NONZERO";
274 case MipsISD::VCEQ
: return "MipsISD::VCEQ";
275 case MipsISD::VCLE_S
: return "MipsISD::VCLE_S";
276 case MipsISD::VCLE_U
: return "MipsISD::VCLE_U";
277 case MipsISD::VCLT_S
: return "MipsISD::VCLT_S";
278 case MipsISD::VCLT_U
: return "MipsISD::VCLT_U";
279 case MipsISD::VEXTRACT_SEXT_ELT
: return "MipsISD::VEXTRACT_SEXT_ELT";
280 case MipsISD::VEXTRACT_ZEXT_ELT
: return "MipsISD::VEXTRACT_ZEXT_ELT";
281 case MipsISD::VNOR
: return "MipsISD::VNOR";
282 case MipsISD::VSHF
: return "MipsISD::VSHF";
283 case MipsISD::SHF
: return "MipsISD::SHF";
284 case MipsISD::ILVEV
: return "MipsISD::ILVEV";
285 case MipsISD::ILVOD
: return "MipsISD::ILVOD";
286 case MipsISD::ILVL
: return "MipsISD::ILVL";
287 case MipsISD::ILVR
: return "MipsISD::ILVR";
288 case MipsISD::PCKEV
: return "MipsISD::PCKEV";
289 case MipsISD::PCKOD
: return "MipsISD::PCKOD";
290 case MipsISD::INSVE
: return "MipsISD::INSVE";
295 MipsTargetLowering::MipsTargetLowering(const MipsTargetMachine
&TM
,
296 const MipsSubtarget
&STI
)
297 : TargetLowering(TM
), Subtarget(STI
), ABI(TM
.getABI()) {
298 // Mips does not have i1 type, so use i32 for
299 // setcc operations results (slt, sgt, ...).
300 setBooleanContents(ZeroOrOneBooleanContent
);
301 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent
);
302 // The cmp.cond.fmt instruction in MIPS32r6/MIPS64r6 uses 0 and -1 like MSA
303 // does. Integer booleans still use 0 and 1.
304 if (Subtarget
.hasMips32r6())
305 setBooleanContents(ZeroOrOneBooleanContent
,
306 ZeroOrNegativeOneBooleanContent
);
308 // Load extented operations for i1 types must be promoted
309 for (MVT VT
: MVT::integer_valuetypes()) {
310 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::i1
, Promote
);
311 setLoadExtAction(ISD::ZEXTLOAD
, VT
, MVT::i1
, Promote
);
312 setLoadExtAction(ISD::SEXTLOAD
, VT
, MVT::i1
, Promote
);
315 // MIPS doesn't have extending float->double load/store. Set LoadExtAction
317 for (MVT VT
: MVT::fp_valuetypes()) {
318 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f32
, Expand
);
319 setLoadExtAction(ISD::EXTLOAD
, VT
, MVT::f16
, Expand
);
322 // Set LoadExtAction for f16 vectors to Expand
323 for (MVT VT
: MVT::fp_fixedlen_vector_valuetypes()) {
324 MVT F16VT
= MVT::getVectorVT(MVT::f16
, VT
.getVectorNumElements());
326 setLoadExtAction(ISD::EXTLOAD
, VT
, F16VT
, Expand
);
329 setTruncStoreAction(MVT::f32
, MVT::f16
, Expand
);
330 setTruncStoreAction(MVT::f64
, MVT::f16
, Expand
);
332 setTruncStoreAction(MVT::f64
, MVT::f32
, Expand
);
334 // Used by legalize types to correctly generate the setcc result.
335 // Without this, every float setcc comes with a AND/OR with the result,
336 // we don't want this, since the fpcmp result goes to a flag register,
337 // which is used implicitly by brcond and select operations.
338 AddPromotedToType(ISD::SETCC
, MVT::i1
, MVT::i32
);
340 // Mips Custom Operations
341 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
342 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
343 setOperationAction(ISD::BlockAddress
, MVT::i32
, Custom
);
344 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
345 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
346 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
347 setOperationAction(ISD::SELECT
, MVT::f32
, Custom
);
348 setOperationAction(ISD::SELECT
, MVT::f64
, Custom
);
349 setOperationAction(ISD::SELECT
, MVT::i32
, Custom
);
350 setOperationAction(ISD::SETCC
, MVT::f32
, Custom
);
351 setOperationAction(ISD::SETCC
, MVT::f64
, Custom
);
352 setOperationAction(ISD::BRCOND
, MVT::Other
, Custom
);
353 setOperationAction(ISD::FABS
, MVT::f32
, Custom
);
354 setOperationAction(ISD::FABS
, MVT::f64
, Custom
);
355 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Custom
);
356 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Custom
);
357 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
359 if (Subtarget
.isGP64bit()) {
360 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
361 setOperationAction(ISD::BlockAddress
, MVT::i64
, Custom
);
362 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
363 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
364 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
365 setOperationAction(ISD::SELECT
, MVT::i64
, Custom
);
366 setOperationAction(ISD::LOAD
, MVT::i64
, Custom
);
367 setOperationAction(ISD::STORE
, MVT::i64
, Custom
);
368 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
369 setOperationAction(ISD::SHL_PARTS
, MVT::i64
, Custom
);
370 setOperationAction(ISD::SRA_PARTS
, MVT::i64
, Custom
);
371 setOperationAction(ISD::SRL_PARTS
, MVT::i64
, Custom
);
374 if (!Subtarget
.isGP64bit()) {
375 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
376 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
377 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
380 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i32
, Custom
);
381 if (Subtarget
.isGP64bit())
382 setOperationAction(ISD::EH_DWARF_CFA
, MVT::i64
, Custom
);
384 setOperationAction(ISD::SDIV
, MVT::i32
, Expand
);
385 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
386 setOperationAction(ISD::UDIV
, MVT::i32
, Expand
);
387 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
388 setOperationAction(ISD::SDIV
, MVT::i64
, Expand
);
389 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
390 setOperationAction(ISD::UDIV
, MVT::i64
, Expand
);
391 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
393 // Operations not directly supported by Mips.
394 setOperationAction(ISD::BR_CC
, MVT::f32
, Expand
);
395 setOperationAction(ISD::BR_CC
, MVT::f64
, Expand
);
396 setOperationAction(ISD::BR_CC
, MVT::i32
, Expand
);
397 setOperationAction(ISD::BR_CC
, MVT::i64
, Expand
);
398 setOperationAction(ISD::SELECT_CC
, MVT::i32
, Expand
);
399 setOperationAction(ISD::SELECT_CC
, MVT::i64
, Expand
);
400 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Expand
);
401 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Expand
);
402 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
403 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
404 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
405 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
406 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
407 if (Subtarget
.hasCnMips()) {
408 setOperationAction(ISD::CTPOP
, MVT::i32
, Legal
);
409 setOperationAction(ISD::CTPOP
, MVT::i64
, Legal
);
411 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
412 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
414 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
415 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
416 setOperationAction(ISD::ROTL
, MVT::i32
, Expand
);
417 setOperationAction(ISD::ROTL
, MVT::i64
, Expand
);
418 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Expand
);
419 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Expand
);
421 if (!Subtarget
.hasMips32r2())
422 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
424 if (!Subtarget
.hasMips64r2())
425 setOperationAction(ISD::ROTR
, MVT::i64
, Expand
);
427 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
428 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
429 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
430 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
431 setOperationAction(ISD::FSINCOS
, MVT::f32
, Expand
);
432 setOperationAction(ISD::FSINCOS
, MVT::f64
, Expand
);
433 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
434 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
435 setOperationAction(ISD::FLOG
, MVT::f32
, Expand
);
436 setOperationAction(ISD::FLOG2
, MVT::f32
, Expand
);
437 setOperationAction(ISD::FLOG10
, MVT::f32
, Expand
);
438 setOperationAction(ISD::FEXP
, MVT::f32
, Expand
);
439 setOperationAction(ISD::FMA
, MVT::f32
, Expand
);
440 setOperationAction(ISD::FMA
, MVT::f64
, Expand
);
441 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
442 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
444 // Lower f16 conversion operations into library calls
445 setOperationAction(ISD::FP16_TO_FP
, MVT::f32
, Expand
);
446 setOperationAction(ISD::FP_TO_FP16
, MVT::f32
, Expand
);
447 setOperationAction(ISD::FP16_TO_FP
, MVT::f64
, Expand
);
448 setOperationAction(ISD::FP_TO_FP16
, MVT::f64
, Expand
);
450 setOperationAction(ISD::EH_RETURN
, MVT::Other
, Custom
);
452 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
453 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
454 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
455 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
457 // Use the default for now
458 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
459 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Expand
);
461 if (!Subtarget
.isGP64bit()) {
462 setOperationAction(ISD::ATOMIC_LOAD
, MVT::i64
, Expand
);
463 setOperationAction(ISD::ATOMIC_STORE
, MVT::i64
, Expand
);
466 if (!Subtarget
.hasMips32r2()) {
467 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i8
, Expand
);
468 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i16
, Expand
);
471 // MIPS16 lacks MIPS32's clz and clo instructions.
472 if (!Subtarget
.hasMips32() || Subtarget
.inMips16Mode())
473 setOperationAction(ISD::CTLZ
, MVT::i32
, Expand
);
474 if (!Subtarget
.hasMips64())
475 setOperationAction(ISD::CTLZ
, MVT::i64
, Expand
);
477 if (!Subtarget
.hasMips32r2())
478 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
479 if (!Subtarget
.hasMips64r2())
480 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
482 if (Subtarget
.isGP64bit()) {
483 setLoadExtAction(ISD::SEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
484 setLoadExtAction(ISD::ZEXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
485 setLoadExtAction(ISD::EXTLOAD
, MVT::i64
, MVT::i32
, Custom
);
486 setTruncStoreAction(MVT::i64
, MVT::i32
, Custom
);
489 setOperationAction(ISD::TRAP
, MVT::Other
, Legal
);
491 setTargetDAGCombine({ISD::SDIVREM
, ISD::UDIVREM
, ISD::SELECT
, ISD::AND
,
492 ISD::OR
, ISD::ADD
, ISD::SUB
, ISD::AssertZext
, ISD::SHL
});
495 // These libcalls are not available in 32-bit.
496 setLibcallName(RTLIB::SHL_I128
, nullptr);
497 setLibcallName(RTLIB::SRL_I128
, nullptr);
498 setLibcallName(RTLIB::SRA_I128
, nullptr);
499 setLibcallName(RTLIB::MUL_I128
, nullptr);
500 setLibcallName(RTLIB::MULO_I64
, nullptr);
501 setLibcallName(RTLIB::MULO_I128
, nullptr);
504 if (Subtarget
.isGP64bit())
505 setMaxAtomicSizeInBitsSupported(64);
507 setMaxAtomicSizeInBitsSupported(32);
509 setMinFunctionAlignment(Subtarget
.isGP64bit() ? Align(8) : Align(4));
511 // The arguments on the stack are defined in terms of 4-byte slots on O32
512 // and 8-byte slots on N32/N64.
513 setMinStackArgumentAlignment((ABI
.IsN32() || ABI
.IsN64()) ? Align(8)
516 setStackPointerRegisterToSaveRestore(ABI
.IsN64() ? Mips::SP_64
: Mips::SP
);
518 MaxStoresPerMemcpy
= 16;
520 isMicroMips
= Subtarget
.inMicroMipsMode();
523 const MipsTargetLowering
*
524 MipsTargetLowering::create(const MipsTargetMachine
&TM
,
525 const MipsSubtarget
&STI
) {
526 if (STI
.inMips16Mode())
527 return createMips16TargetLowering(TM
, STI
);
529 return createMipsSETargetLowering(TM
, STI
);
532 // Create a fast isel object.
534 MipsTargetLowering::createFastISel(FunctionLoweringInfo
&funcInfo
,
535 const TargetLibraryInfo
*libInfo
) const {
536 const MipsTargetMachine
&TM
=
537 static_cast<const MipsTargetMachine
&>(funcInfo
.MF
->getTarget());
539 // We support only the standard encoding [MIPS32,MIPS32R5] ISAs.
540 bool UseFastISel
= TM
.Options
.EnableFastISel
&& Subtarget
.hasMips32() &&
541 !Subtarget
.hasMips32r6() && !Subtarget
.inMips16Mode() &&
542 !Subtarget
.inMicroMipsMode();
544 // Disable if either of the following is true:
545 // We do not generate PIC, the ABI is not O32, XGOT is being used.
546 if (!TM
.isPositionIndependent() || !TM
.getABI().IsO32() ||
550 return UseFastISel
? Mips::createFastISel(funcInfo
, libInfo
) : nullptr;
553 EVT
MipsTargetLowering::getSetCCResultType(const DataLayout
&, LLVMContext
&,
557 return VT
.changeVectorElementTypeToInteger();
560 static SDValue
performDivRemCombine(SDNode
*N
, SelectionDAG
&DAG
,
561 TargetLowering::DAGCombinerInfo
&DCI
,
562 const MipsSubtarget
&Subtarget
) {
563 if (DCI
.isBeforeLegalizeOps())
566 EVT Ty
= N
->getValueType(0);
567 unsigned LO
= (Ty
== MVT::i32
) ? Mips::LO0
: Mips::LO0_64
;
568 unsigned HI
= (Ty
== MVT::i32
) ? Mips::HI0
: Mips::HI0_64
;
569 unsigned Opc
= N
->getOpcode() == ISD::SDIVREM
? MipsISD::DivRem16
:
573 SDValue DivRem
= DAG
.getNode(Opc
, DL
, MVT::Glue
,
574 N
->getOperand(0), N
->getOperand(1));
575 SDValue InChain
= DAG
.getEntryNode();
576 SDValue InGlue
= DivRem
;
579 if (N
->hasAnyUseOfValue(0)) {
580 SDValue CopyFromLo
= DAG
.getCopyFromReg(InChain
, DL
, LO
, Ty
,
582 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 0), CopyFromLo
);
583 InChain
= CopyFromLo
.getValue(1);
584 InGlue
= CopyFromLo
.getValue(2);
588 if (N
->hasAnyUseOfValue(1)) {
589 SDValue CopyFromHi
= DAG
.getCopyFromReg(InChain
, DL
,
591 DAG
.ReplaceAllUsesOfValueWith(SDValue(N
, 1), CopyFromHi
);
597 static Mips::CondCode
condCodeToFCC(ISD::CondCode CC
) {
599 default: llvm_unreachable("Unknown fp condition code!");
601 case ISD::SETOEQ
: return Mips::FCOND_OEQ
;
602 case ISD::SETUNE
: return Mips::FCOND_UNE
;
604 case ISD::SETOLT
: return Mips::FCOND_OLT
;
606 case ISD::SETOGT
: return Mips::FCOND_OGT
;
608 case ISD::SETOLE
: return Mips::FCOND_OLE
;
610 case ISD::SETOGE
: return Mips::FCOND_OGE
;
611 case ISD::SETULT
: return Mips::FCOND_ULT
;
612 case ISD::SETULE
: return Mips::FCOND_ULE
;
613 case ISD::SETUGT
: return Mips::FCOND_UGT
;
614 case ISD::SETUGE
: return Mips::FCOND_UGE
;
615 case ISD::SETUO
: return Mips::FCOND_UN
;
616 case ISD::SETO
: return Mips::FCOND_OR
;
618 case ISD::SETONE
: return Mips::FCOND_ONE
;
619 case ISD::SETUEQ
: return Mips::FCOND_UEQ
;
623 /// This function returns true if the floating point conditional branches and
624 /// conditional moves which use condition code CC should be inverted.
625 static bool invertFPCondCodeUser(Mips::CondCode CC
) {
626 if (CC
>= Mips::FCOND_F
&& CC
<= Mips::FCOND_NGT
)
629 assert((CC
>= Mips::FCOND_T
&& CC
<= Mips::FCOND_GT
) &&
630 "Illegal Condition Code");
635 // Creates and returns an FPCmp node from a setcc node.
636 // Returns Op if setcc is not a floating point comparison.
637 static SDValue
createFPCmp(SelectionDAG
&DAG
, const SDValue
&Op
) {
638 // must be a SETCC node
639 if (Op
.getOpcode() != ISD::SETCC
)
642 SDValue LHS
= Op
.getOperand(0);
644 if (!LHS
.getValueType().isFloatingPoint())
647 SDValue RHS
= Op
.getOperand(1);
650 // Assume the 3rd operand is a CondCodeSDNode. Add code to check the type of
651 // node if necessary.
652 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
654 return DAG
.getNode(MipsISD::FPCmp
, DL
, MVT::Glue
, LHS
, RHS
,
655 DAG
.getConstant(condCodeToFCC(CC
), DL
, MVT::i32
));
658 // Creates and returns a CMovFPT/F node.
659 static SDValue
createCMovFP(SelectionDAG
&DAG
, SDValue Cond
, SDValue True
,
660 SDValue False
, const SDLoc
&DL
) {
661 ConstantSDNode
*CC
= cast
<ConstantSDNode
>(Cond
.getOperand(2));
662 bool invert
= invertFPCondCodeUser((Mips::CondCode
)CC
->getSExtValue());
663 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
665 return DAG
.getNode((invert
? MipsISD::CMovFP_F
: MipsISD::CMovFP_T
), DL
,
666 True
.getValueType(), True
, FCC0
, False
, Cond
);
669 static SDValue
performSELECTCombine(SDNode
*N
, SelectionDAG
&DAG
,
670 TargetLowering::DAGCombinerInfo
&DCI
,
671 const MipsSubtarget
&Subtarget
) {
672 if (DCI
.isBeforeLegalizeOps())
675 SDValue SetCC
= N
->getOperand(0);
677 if ((SetCC
.getOpcode() != ISD::SETCC
) ||
678 !SetCC
.getOperand(0).getValueType().isInteger())
681 SDValue False
= N
->getOperand(2);
682 EVT FalseTy
= False
.getValueType();
684 if (!FalseTy
.isInteger())
687 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(False
);
689 // If the RHS (False) is 0, we swap the order of the operands
690 // of ISD::SELECT (obviously also inverting the condition) so that we can
691 // take advantage of conditional moves using the $0 register.
693 // return (a != 0) ? x : 0;
701 if (!FalseC
->getZExtValue()) {
702 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
703 SDValue True
= N
->getOperand(1);
705 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
707 ISD::getSetCCInverse(CC
, SetCC
.getValueType()));
709 return DAG
.getNode(ISD::SELECT
, DL
, FalseTy
, SetCC
, False
, True
);
712 // If both operands are integer constants there's a possibility that we
713 // can do some interesting optimizations.
714 SDValue True
= N
->getOperand(1);
715 ConstantSDNode
*TrueC
= dyn_cast
<ConstantSDNode
>(True
);
717 if (!TrueC
|| !True
.getValueType().isInteger())
720 // We'll also ignore MVT::i64 operands as this optimizations proves
721 // to be ineffective because of the required sign extensions as the result
722 // of a SETCC operator is always MVT::i32 for non-vector types.
723 if (True
.getValueType() == MVT::i64
)
726 int64_t Diff
= TrueC
->getSExtValue() - FalseC
->getSExtValue();
728 // 1) (a < x) ? y : y-1
730 // addiu $reg2, $reg1, y-1
732 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, False
);
734 // 2) (a < x) ? y-1 : y
736 // xor $reg1, $reg1, 1
737 // addiu $reg2, $reg1, y-1
739 ISD::CondCode CC
= cast
<CondCodeSDNode
>(SetCC
.getOperand(2))->get();
740 SetCC
= DAG
.getSetCC(DL
, SetCC
.getValueType(), SetCC
.getOperand(0),
742 ISD::getSetCCInverse(CC
, SetCC
.getValueType()));
743 return DAG
.getNode(ISD::ADD
, DL
, SetCC
.getValueType(), SetCC
, True
);
746 // Could not optimize.
750 static SDValue
performCMovFPCombine(SDNode
*N
, SelectionDAG
&DAG
,
751 TargetLowering::DAGCombinerInfo
&DCI
,
752 const MipsSubtarget
&Subtarget
) {
753 if (DCI
.isBeforeLegalizeOps())
756 SDValue ValueIfTrue
= N
->getOperand(0), ValueIfFalse
= N
->getOperand(2);
758 ConstantSDNode
*FalseC
= dyn_cast
<ConstantSDNode
>(ValueIfFalse
);
759 if (!FalseC
|| FalseC
->getZExtValue())
762 // Since RHS (False) is 0, we swap the order of the True/False operands
763 // (obviously also inverting the condition) so that we can
764 // take advantage of conditional moves using the $0 register.
766 // return (a != 0) ? x : 0;
769 unsigned Opc
= (N
->getOpcode() == MipsISD::CMovFP_T
) ? MipsISD::CMovFP_F
:
772 SDValue FCC
= N
->getOperand(1), Glue
= N
->getOperand(3);
773 return DAG
.getNode(Opc
, SDLoc(N
), ValueIfFalse
.getValueType(),
774 ValueIfFalse
, FCC
, ValueIfTrue
, Glue
);
777 static SDValue
performANDCombine(SDNode
*N
, SelectionDAG
&DAG
,
778 TargetLowering::DAGCombinerInfo
&DCI
,
779 const MipsSubtarget
&Subtarget
) {
780 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
783 SDValue FirstOperand
= N
->getOperand(0);
784 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
785 SDValue Mask
= N
->getOperand(1);
786 EVT ValTy
= N
->getValueType(0);
790 unsigned SMPos
, SMSize
;
795 // Op's second operand must be a shifted mask.
796 if (!(CN
= dyn_cast
<ConstantSDNode
>(Mask
)) ||
797 !isShiftedMask_64(CN
->getZExtValue(), SMPos
, SMSize
))
800 if (FirstOperandOpc
== ISD::SRA
|| FirstOperandOpc
== ISD::SRL
) {
801 // Pattern match EXT.
802 // $dst = and ((sra or srl) $src , pos), (2**size - 1)
803 // => ext $dst, $src, pos, size
805 // The second operand of the shift must be an immediate.
806 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
809 Pos
= CN
->getZExtValue();
811 // Return if the shifted mask does not start at bit 0 or the sum of its size
812 // and Pos exceeds the word's size.
813 if (SMPos
!= 0 || Pos
+ SMSize
> ValTy
.getSizeInBits())
817 NewOperand
= FirstOperand
.getOperand(0);
818 } else if (FirstOperandOpc
== ISD::SHL
&& Subtarget
.hasCnMips()) {
819 // Pattern match CINS.
820 // $dst = and (shl $src , pos), mask
821 // => cins $dst, $src, pos, size
822 // mask is a shifted mask with consecutive 1's, pos = shift amount,
823 // size = population count.
825 // The second operand of the shift must be an immediate.
826 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))))
829 Pos
= CN
->getZExtValue();
831 if (SMPos
!= Pos
|| Pos
>= ValTy
.getSizeInBits() || SMSize
>= 32 ||
832 Pos
+ SMSize
> ValTy
.getSizeInBits())
835 NewOperand
= FirstOperand
.getOperand(0);
836 // SMSize is 'location' (position) in this case, not size.
840 // Pattern match EXT.
841 // $dst = and $src, (2**size - 1) , if size > 16
842 // => ext $dst, $src, pos, size , pos = 0
844 // If the mask is <= 0xffff, andi can be used instead.
845 if (CN
->getZExtValue() <= 0xffff)
848 // Return if the mask doesn't start at position 0.
853 NewOperand
= FirstOperand
;
855 return DAG
.getNode(Opc
, DL
, ValTy
, NewOperand
,
856 DAG
.getConstant(Pos
, DL
, MVT::i32
),
857 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
860 static SDValue
performORCombine(SDNode
*N
, SelectionDAG
&DAG
,
861 TargetLowering::DAGCombinerInfo
&DCI
,
862 const MipsSubtarget
&Subtarget
) {
863 // Pattern match INS.
864 // $dst = or (and $src1 , mask0), (and (shl $src, pos), mask1),
865 // where mask1 = (2**size - 1) << pos, mask0 = ~mask1
866 // => ins $dst, $src, size, pos, $src1
867 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasExtractInsert())
870 SDValue And0
= N
->getOperand(0), And1
= N
->getOperand(1);
871 unsigned SMPos0
, SMSize0
, SMPos1
, SMSize1
;
872 ConstantSDNode
*CN
, *CN1
;
874 // See if Op's first operand matches (and $src1 , mask0).
875 if (And0
.getOpcode() != ISD::AND
)
878 if (!(CN
= dyn_cast
<ConstantSDNode
>(And0
.getOperand(1))) ||
879 !isShiftedMask_64(~CN
->getSExtValue(), SMPos0
, SMSize0
))
882 // See if Op's second operand matches (and (shl $src, pos), mask1).
883 if (And1
.getOpcode() == ISD::AND
&&
884 And1
.getOperand(0).getOpcode() == ISD::SHL
) {
886 if (!(CN
= dyn_cast
<ConstantSDNode
>(And1
.getOperand(1))) ||
887 !isShiftedMask_64(CN
->getZExtValue(), SMPos1
, SMSize1
))
890 // The shift masks must have the same position and size.
891 if (SMPos0
!= SMPos1
|| SMSize0
!= SMSize1
)
894 SDValue Shl
= And1
.getOperand(0);
896 if (!(CN
= dyn_cast
<ConstantSDNode
>(Shl
.getOperand(1))))
899 unsigned Shamt
= CN
->getZExtValue();
901 // Return if the shift amount and the first bit position of mask are not the
903 EVT ValTy
= N
->getValueType(0);
904 if ((Shamt
!= SMPos0
) || (SMPos0
+ SMSize0
> ValTy
.getSizeInBits()))
908 return DAG
.getNode(MipsISD::Ins
, DL
, ValTy
, Shl
.getOperand(0),
909 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
910 DAG
.getConstant(SMSize0
, DL
, MVT::i32
),
913 // Pattern match DINS.
914 // $dst = or (and $src, mask0), mask1
915 // where mask0 = ((1 << SMSize0) -1) << SMPos0
916 // => dins $dst, $src, pos, size
917 if (~CN
->getSExtValue() == ((((int64_t)1 << SMSize0
) - 1) << SMPos0
) &&
918 ((SMSize0
+ SMPos0
<= 64 && Subtarget
.hasMips64r2()) ||
919 (SMSize0
+ SMPos0
<= 32))) {
920 // Check if AND instruction has constant as argument
921 bool isConstCase
= And1
.getOpcode() != ISD::AND
;
922 if (And1
.getOpcode() == ISD::AND
) {
923 if (!(CN1
= dyn_cast
<ConstantSDNode
>(And1
->getOperand(1))))
926 if (!(CN1
= dyn_cast
<ConstantSDNode
>(N
->getOperand(1))))
929 // Don't generate INS if constant OR operand doesn't fit into bits
930 // cleared by constant AND operand.
931 if (CN
->getSExtValue() & CN1
->getSExtValue())
935 EVT ValTy
= N
->getOperand(0)->getValueType(0);
939 Const1
= DAG
.getConstant(SMPos0
, DL
, MVT::i32
);
940 SrlX
= DAG
.getNode(ISD::SRL
, DL
, And1
->getValueType(0), And1
, Const1
);
943 MipsISD::Ins
, DL
, N
->getValueType(0),
945 ? DAG
.getConstant(CN1
->getSExtValue() >> SMPos0
, DL
, ValTy
)
947 DAG
.getConstant(SMPos0
, DL
, MVT::i32
),
948 DAG
.getConstant(ValTy
.getSizeInBits() / 8 < 8 ? SMSize0
& 31
951 And0
->getOperand(0));
958 static SDValue
performMADD_MSUBCombine(SDNode
*ROOTNode
, SelectionDAG
&CurDAG
,
959 const MipsSubtarget
&Subtarget
) {
960 // ROOTNode must have a multiplication as an operand for the match to be
962 if (ROOTNode
->getOperand(0).getOpcode() != ISD::MUL
&&
963 ROOTNode
->getOperand(1).getOpcode() != ISD::MUL
)
966 // In the case where we have a multiplication as the left operand of
967 // of a subtraction, we can't combine into a MipsISD::MSub node as the
968 // the instruction definition of msub(u) places the multiplication on
970 if (ROOTNode
->getOpcode() == ISD::SUB
&&
971 ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
)
974 // We don't handle vector types here.
975 if (ROOTNode
->getValueType(0).isVector())
978 // For MIPS64, madd / msub instructions are inefficent to use with 64 bit
980 // (add (mul a b) c) =>
981 // let res = (madd (mthi (drotr c 32))x(mtlo c) a b) in
982 // MIPS64: (or (dsll (mfhi res) 32) (dsrl (dsll (mflo res) 32) 32)
984 // MIPS64R2: (dins (mflo res) (mfhi res) 32 32)
986 // The overhead of setting up the Hi/Lo registers and reassembling the
987 // result makes this a dubious optimzation for MIPS64. The core of the
988 // problem is that Hi/Lo contain the upper and lower 32 bits of the
989 // operand and result.
991 // It requires a chain of 4 add/mul for MIPS64R2 to get better code
992 // density than doing it naively, 5 for MIPS64. Additionally, using
993 // madd/msub on MIPS64 requires the operands actually be 32 bit sign
994 // extended operands, not true 64 bit values.
996 // FIXME: For the moment, disable this completely for MIPS64.
997 if (Subtarget
.hasMips64())
1000 SDValue Mult
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1001 ? ROOTNode
->getOperand(0)
1002 : ROOTNode
->getOperand(1);
1004 SDValue AddOperand
= ROOTNode
->getOperand(0).getOpcode() == ISD::MUL
1005 ? ROOTNode
->getOperand(1)
1006 : ROOTNode
->getOperand(0);
1008 // Transform this to a MADD only if the user of this node is the add.
1009 // If there are other users of the mul, this function returns here.
1010 if (!Mult
.hasOneUse())
1013 // maddu and madd are unusual instructions in that on MIPS64 bits 63..31
1014 // must be in canonical form, i.e. sign extended. For MIPS32, the operands
1015 // of the multiply must have 32 or more sign bits, otherwise we cannot
1016 // perform this optimization. We have to check this here as we're performing
1017 // this optimization pre-legalization.
1018 SDValue MultLHS
= Mult
->getOperand(0);
1019 SDValue MultRHS
= Mult
->getOperand(1);
1021 bool IsSigned
= MultLHS
->getOpcode() == ISD::SIGN_EXTEND
&&
1022 MultRHS
->getOpcode() == ISD::SIGN_EXTEND
;
1023 bool IsUnsigned
= MultLHS
->getOpcode() == ISD::ZERO_EXTEND
&&
1024 MultRHS
->getOpcode() == ISD::ZERO_EXTEND
;
1026 if (!IsSigned
&& !IsUnsigned
)
1029 // Initialize accumulator.
1031 SDValue BottomHalf
, TopHalf
;
1032 std::tie(BottomHalf
, TopHalf
) =
1033 CurDAG
.SplitScalar(AddOperand
, DL
, MVT::i32
, MVT::i32
);
1035 CurDAG
.getNode(MipsISD::MTLOHI
, DL
, MVT::Untyped
, BottomHalf
, TopHalf
);
1037 // Create MipsMAdd(u) / MipsMSub(u) node.
1038 bool IsAdd
= ROOTNode
->getOpcode() == ISD::ADD
;
1039 unsigned Opcode
= IsAdd
? (IsUnsigned
? MipsISD::MAddu
: MipsISD::MAdd
)
1040 : (IsUnsigned
? MipsISD::MSubu
: MipsISD::MSub
);
1041 SDValue MAddOps
[3] = {
1042 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(0)),
1043 CurDAG
.getNode(ISD::TRUNCATE
, DL
, MVT::i32
, Mult
->getOperand(1)), ACCIn
};
1044 EVT VTs
[2] = {MVT::i32
, MVT::i32
};
1045 SDValue MAdd
= CurDAG
.getNode(Opcode
, DL
, VTs
, MAddOps
);
1047 SDValue ResLo
= CurDAG
.getNode(MipsISD::MFLO
, DL
, MVT::i32
, MAdd
);
1048 SDValue ResHi
= CurDAG
.getNode(MipsISD::MFHI
, DL
, MVT::i32
, MAdd
);
1050 CurDAG
.getNode(ISD::BUILD_PAIR
, DL
, MVT::i64
, ResLo
, ResHi
);
1054 static SDValue
performSUBCombine(SDNode
*N
, SelectionDAG
&DAG
,
1055 TargetLowering::DAGCombinerInfo
&DCI
,
1056 const MipsSubtarget
&Subtarget
) {
1057 // (sub v0 (mul v1, v2)) => (msub v1, v2, v0)
1058 if (DCI
.isBeforeLegalizeOps()) {
1059 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1060 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1061 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1069 static SDValue
performADDCombine(SDNode
*N
, SelectionDAG
&DAG
,
1070 TargetLowering::DAGCombinerInfo
&DCI
,
1071 const MipsSubtarget
&Subtarget
) {
1072 // (add v0 (mul v1, v2)) => (madd v1, v2, v0)
1073 if (DCI
.isBeforeLegalizeOps()) {
1074 if (Subtarget
.hasMips32() && !Subtarget
.hasMips32r6() &&
1075 !Subtarget
.inMips16Mode() && N
->getValueType(0) == MVT::i64
)
1076 return performMADD_MSUBCombine(N
, DAG
, Subtarget
);
1081 // (add v0, (add v1, abs_lo(tjt))) => (add (add v0, v1), abs_lo(tjt))
1082 SDValue Add
= N
->getOperand(1);
1084 if (Add
.getOpcode() != ISD::ADD
)
1087 SDValue Lo
= Add
.getOperand(1);
1089 if ((Lo
.getOpcode() != MipsISD::Lo
) ||
1090 (Lo
.getOperand(0).getOpcode() != ISD::TargetJumpTable
))
1093 EVT ValTy
= N
->getValueType(0);
1096 SDValue Add1
= DAG
.getNode(ISD::ADD
, DL
, ValTy
, N
->getOperand(0),
1098 return DAG
.getNode(ISD::ADD
, DL
, ValTy
, Add1
, Lo
);
1101 static SDValue
performSHLCombine(SDNode
*N
, SelectionDAG
&DAG
,
1102 TargetLowering::DAGCombinerInfo
&DCI
,
1103 const MipsSubtarget
&Subtarget
) {
1104 // Pattern match CINS.
1105 // $dst = shl (and $src , imm), pos
1106 // => cins $dst, $src, pos, size
1108 if (DCI
.isBeforeLegalizeOps() || !Subtarget
.hasCnMips())
1111 SDValue FirstOperand
= N
->getOperand(0);
1112 unsigned FirstOperandOpc
= FirstOperand
.getOpcode();
1113 SDValue SecondOperand
= N
->getOperand(1);
1114 EVT ValTy
= N
->getValueType(0);
1118 unsigned SMPos
, SMSize
;
1122 // The second operand of the shift must be an immediate.
1123 if (!(CN
= dyn_cast
<ConstantSDNode
>(SecondOperand
)))
1126 Pos
= CN
->getZExtValue();
1128 if (Pos
>= ValTy
.getSizeInBits())
1131 if (FirstOperandOpc
!= ISD::AND
)
1134 // AND's second operand must be a shifted mask.
1135 if (!(CN
= dyn_cast
<ConstantSDNode
>(FirstOperand
.getOperand(1))) ||
1136 !isShiftedMask_64(CN
->getZExtValue(), SMPos
, SMSize
))
1139 // Return if the shifted mask does not start at bit 0 or the sum of its size
1140 // and Pos exceeds the word's size.
1141 if (SMPos
!= 0 || SMSize
> 32 || Pos
+ SMSize
> ValTy
.getSizeInBits())
1144 NewOperand
= FirstOperand
.getOperand(0);
1145 // SMSize is 'location' (position) in this case, not size.
1148 return DAG
.getNode(MipsISD::CIns
, DL
, ValTy
, NewOperand
,
1149 DAG
.getConstant(Pos
, DL
, MVT::i32
),
1150 DAG
.getConstant(SMSize
, DL
, MVT::i32
));
1153 SDValue
MipsTargetLowering::PerformDAGCombine(SDNode
*N
, DAGCombinerInfo
&DCI
)
1155 SelectionDAG
&DAG
= DCI
.DAG
;
1156 unsigned Opc
= N
->getOpcode();
1162 return performDivRemCombine(N
, DAG
, DCI
, Subtarget
);
1164 return performSELECTCombine(N
, DAG
, DCI
, Subtarget
);
1165 case MipsISD::CMovFP_F
:
1166 case MipsISD::CMovFP_T
:
1167 return performCMovFPCombine(N
, DAG
, DCI
, Subtarget
);
1169 return performANDCombine(N
, DAG
, DCI
, Subtarget
);
1171 return performORCombine(N
, DAG
, DCI
, Subtarget
);
1173 return performADDCombine(N
, DAG
, DCI
, Subtarget
);
1175 return performSHLCombine(N
, DAG
, DCI
, Subtarget
);
1177 return performSUBCombine(N
, DAG
, DCI
, Subtarget
);
1183 bool MipsTargetLowering::isCheapToSpeculateCttz(Type
*Ty
) const {
1184 return Subtarget
.hasMips32();
1187 bool MipsTargetLowering::isCheapToSpeculateCtlz(Type
*Ty
) const {
1188 return Subtarget
.hasMips32();
1191 bool MipsTargetLowering::hasBitTest(SDValue X
, SDValue Y
) const {
1192 // We can use ANDI+SLTIU as a bit test. Y contains the bit position.
1193 // For MIPSR2 or later, we may be able to use the `ext` instruction or its'
1194 // double-word variants.
1195 if (auto *C
= dyn_cast
<ConstantSDNode
>(Y
))
1196 return C
->getAPIntValue().ule(15);
1201 bool MipsTargetLowering::shouldFoldConstantShiftPairToMask(
1202 const SDNode
*N
, CombineLevel Level
) const {
1203 assert(((N
->getOpcode() == ISD::SHL
&&
1204 N
->getOperand(0).getOpcode() == ISD::SRL
) ||
1205 (N
->getOpcode() == ISD::SRL
&&
1206 N
->getOperand(0).getOpcode() == ISD::SHL
)) &&
1207 "Expected shift-shift mask");
1209 if (N
->getOperand(0).getValueType().isVector())
1215 MipsTargetLowering::ReplaceNodeResults(SDNode
*N
,
1216 SmallVectorImpl
<SDValue
> &Results
,
1217 SelectionDAG
&DAG
) const {
1218 return LowerOperationWrapper(N
, Results
, DAG
);
1221 SDValue
MipsTargetLowering::
1222 LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const
1224 switch (Op
.getOpcode())
1226 case ISD::BRCOND
: return lowerBRCOND(Op
, DAG
);
1227 case ISD::ConstantPool
: return lowerConstantPool(Op
, DAG
);
1228 case ISD::GlobalAddress
: return lowerGlobalAddress(Op
, DAG
);
1229 case ISD::BlockAddress
: return lowerBlockAddress(Op
, DAG
);
1230 case ISD::GlobalTLSAddress
: return lowerGlobalTLSAddress(Op
, DAG
);
1231 case ISD::JumpTable
: return lowerJumpTable(Op
, DAG
);
1232 case ISD::SELECT
: return lowerSELECT(Op
, DAG
);
1233 case ISD::SETCC
: return lowerSETCC(Op
, DAG
);
1234 case ISD::VASTART
: return lowerVASTART(Op
, DAG
);
1235 case ISD::VAARG
: return lowerVAARG(Op
, DAG
);
1236 case ISD::FCOPYSIGN
: return lowerFCOPYSIGN(Op
, DAG
);
1237 case ISD::FABS
: return lowerFABS(Op
, DAG
);
1238 case ISD::FRAMEADDR
: return lowerFRAMEADDR(Op
, DAG
);
1239 case ISD::RETURNADDR
: return lowerRETURNADDR(Op
, DAG
);
1240 case ISD::EH_RETURN
: return lowerEH_RETURN(Op
, DAG
);
1241 case ISD::ATOMIC_FENCE
: return lowerATOMIC_FENCE(Op
, DAG
);
1242 case ISD::SHL_PARTS
: return lowerShiftLeftParts(Op
, DAG
);
1243 case ISD::SRA_PARTS
: return lowerShiftRightParts(Op
, DAG
, true);
1244 case ISD::SRL_PARTS
: return lowerShiftRightParts(Op
, DAG
, false);
1245 case ISD::LOAD
: return lowerLOAD(Op
, DAG
);
1246 case ISD::STORE
: return lowerSTORE(Op
, DAG
);
1247 case ISD::EH_DWARF_CFA
: return lowerEH_DWARF_CFA(Op
, DAG
);
1248 case ISD::FP_TO_SINT
: return lowerFP_TO_SINT(Op
, DAG
);
1253 //===----------------------------------------------------------------------===//
1254 // Lower helper functions
1255 //===----------------------------------------------------------------------===//
1257 // addLiveIn - This helper function adds the specified physical register to the
1258 // MachineFunction as a live in value. It also creates a corresponding
1259 // virtual register for it.
1261 addLiveIn(MachineFunction
&MF
, unsigned PReg
, const TargetRegisterClass
*RC
)
1263 Register VReg
= MF
.getRegInfo().createVirtualRegister(RC
);
1264 MF
.getRegInfo().addLiveIn(PReg
, VReg
);
1268 static MachineBasicBlock
*insertDivByZeroTrap(MachineInstr
&MI
,
1269 MachineBasicBlock
&MBB
,
1270 const TargetInstrInfo
&TII
,
1271 bool Is64Bit
, bool IsMicroMips
) {
1275 // Insert instruction "teq $divisor_reg, $zero, 7".
1276 MachineBasicBlock::iterator
I(MI
);
1277 MachineInstrBuilder MIB
;
1278 MachineOperand
&Divisor
= MI
.getOperand(2);
1279 MIB
= BuildMI(MBB
, std::next(I
), MI
.getDebugLoc(),
1280 TII
.get(IsMicroMips
? Mips::TEQ_MM
: Mips::TEQ
))
1281 .addReg(Divisor
.getReg(), getKillRegState(Divisor
.isKill()))
1285 // Use the 32-bit sub-register if this is a 64-bit division.
1287 MIB
->getOperand(0).setSubReg(Mips::sub_32
);
1289 // Clear Divisor's kill flag.
1290 Divisor
.setIsKill(false);
1292 // We would normally delete the original instruction here but in this case
1293 // we only needed to inject an additional instruction rather than replace it.
1299 MipsTargetLowering::EmitInstrWithCustomInserter(MachineInstr
&MI
,
1300 MachineBasicBlock
*BB
) const {
1301 switch (MI
.getOpcode()) {
1303 llvm_unreachable("Unexpected instr type to insert");
1304 case Mips::ATOMIC_LOAD_ADD_I8
:
1305 return emitAtomicBinaryPartword(MI
, BB
, 1);
1306 case Mips::ATOMIC_LOAD_ADD_I16
:
1307 return emitAtomicBinaryPartword(MI
, BB
, 2);
1308 case Mips::ATOMIC_LOAD_ADD_I32
:
1309 return emitAtomicBinary(MI
, BB
);
1310 case Mips::ATOMIC_LOAD_ADD_I64
:
1311 return emitAtomicBinary(MI
, BB
);
1313 case Mips::ATOMIC_LOAD_AND_I8
:
1314 return emitAtomicBinaryPartword(MI
, BB
, 1);
1315 case Mips::ATOMIC_LOAD_AND_I16
:
1316 return emitAtomicBinaryPartword(MI
, BB
, 2);
1317 case Mips::ATOMIC_LOAD_AND_I32
:
1318 return emitAtomicBinary(MI
, BB
);
1319 case Mips::ATOMIC_LOAD_AND_I64
:
1320 return emitAtomicBinary(MI
, BB
);
1322 case Mips::ATOMIC_LOAD_OR_I8
:
1323 return emitAtomicBinaryPartword(MI
, BB
, 1);
1324 case Mips::ATOMIC_LOAD_OR_I16
:
1325 return emitAtomicBinaryPartword(MI
, BB
, 2);
1326 case Mips::ATOMIC_LOAD_OR_I32
:
1327 return emitAtomicBinary(MI
, BB
);
1328 case Mips::ATOMIC_LOAD_OR_I64
:
1329 return emitAtomicBinary(MI
, BB
);
1331 case Mips::ATOMIC_LOAD_XOR_I8
:
1332 return emitAtomicBinaryPartword(MI
, BB
, 1);
1333 case Mips::ATOMIC_LOAD_XOR_I16
:
1334 return emitAtomicBinaryPartword(MI
, BB
, 2);
1335 case Mips::ATOMIC_LOAD_XOR_I32
:
1336 return emitAtomicBinary(MI
, BB
);
1337 case Mips::ATOMIC_LOAD_XOR_I64
:
1338 return emitAtomicBinary(MI
, BB
);
1340 case Mips::ATOMIC_LOAD_NAND_I8
:
1341 return emitAtomicBinaryPartword(MI
, BB
, 1);
1342 case Mips::ATOMIC_LOAD_NAND_I16
:
1343 return emitAtomicBinaryPartword(MI
, BB
, 2);
1344 case Mips::ATOMIC_LOAD_NAND_I32
:
1345 return emitAtomicBinary(MI
, BB
);
1346 case Mips::ATOMIC_LOAD_NAND_I64
:
1347 return emitAtomicBinary(MI
, BB
);
1349 case Mips::ATOMIC_LOAD_SUB_I8
:
1350 return emitAtomicBinaryPartword(MI
, BB
, 1);
1351 case Mips::ATOMIC_LOAD_SUB_I16
:
1352 return emitAtomicBinaryPartword(MI
, BB
, 2);
1353 case Mips::ATOMIC_LOAD_SUB_I32
:
1354 return emitAtomicBinary(MI
, BB
);
1355 case Mips::ATOMIC_LOAD_SUB_I64
:
1356 return emitAtomicBinary(MI
, BB
);
1358 case Mips::ATOMIC_SWAP_I8
:
1359 return emitAtomicBinaryPartword(MI
, BB
, 1);
1360 case Mips::ATOMIC_SWAP_I16
:
1361 return emitAtomicBinaryPartword(MI
, BB
, 2);
1362 case Mips::ATOMIC_SWAP_I32
:
1363 return emitAtomicBinary(MI
, BB
);
1364 case Mips::ATOMIC_SWAP_I64
:
1365 return emitAtomicBinary(MI
, BB
);
1367 case Mips::ATOMIC_CMP_SWAP_I8
:
1368 return emitAtomicCmpSwapPartword(MI
, BB
, 1);
1369 case Mips::ATOMIC_CMP_SWAP_I16
:
1370 return emitAtomicCmpSwapPartword(MI
, BB
, 2);
1371 case Mips::ATOMIC_CMP_SWAP_I32
:
1372 return emitAtomicCmpSwap(MI
, BB
);
1373 case Mips::ATOMIC_CMP_SWAP_I64
:
1374 return emitAtomicCmpSwap(MI
, BB
);
1376 case Mips::ATOMIC_LOAD_MIN_I8
:
1377 return emitAtomicBinaryPartword(MI
, BB
, 1);
1378 case Mips::ATOMIC_LOAD_MIN_I16
:
1379 return emitAtomicBinaryPartword(MI
, BB
, 2);
1380 case Mips::ATOMIC_LOAD_MIN_I32
:
1381 return emitAtomicBinary(MI
, BB
);
1382 case Mips::ATOMIC_LOAD_MIN_I64
:
1383 return emitAtomicBinary(MI
, BB
);
1385 case Mips::ATOMIC_LOAD_MAX_I8
:
1386 return emitAtomicBinaryPartword(MI
, BB
, 1);
1387 case Mips::ATOMIC_LOAD_MAX_I16
:
1388 return emitAtomicBinaryPartword(MI
, BB
, 2);
1389 case Mips::ATOMIC_LOAD_MAX_I32
:
1390 return emitAtomicBinary(MI
, BB
);
1391 case Mips::ATOMIC_LOAD_MAX_I64
:
1392 return emitAtomicBinary(MI
, BB
);
1394 case Mips::ATOMIC_LOAD_UMIN_I8
:
1395 return emitAtomicBinaryPartword(MI
, BB
, 1);
1396 case Mips::ATOMIC_LOAD_UMIN_I16
:
1397 return emitAtomicBinaryPartword(MI
, BB
, 2);
1398 case Mips::ATOMIC_LOAD_UMIN_I32
:
1399 return emitAtomicBinary(MI
, BB
);
1400 case Mips::ATOMIC_LOAD_UMIN_I64
:
1401 return emitAtomicBinary(MI
, BB
);
1403 case Mips::ATOMIC_LOAD_UMAX_I8
:
1404 return emitAtomicBinaryPartword(MI
, BB
, 1);
1405 case Mips::ATOMIC_LOAD_UMAX_I16
:
1406 return emitAtomicBinaryPartword(MI
, BB
, 2);
1407 case Mips::ATOMIC_LOAD_UMAX_I32
:
1408 return emitAtomicBinary(MI
, BB
);
1409 case Mips::ATOMIC_LOAD_UMAX_I64
:
1410 return emitAtomicBinary(MI
, BB
);
1412 case Mips::PseudoSDIV
:
1413 case Mips::PseudoUDIV
:
1418 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false,
1420 case Mips::SDIV_MM_Pseudo
:
1421 case Mips::UDIV_MM_Pseudo
:
1424 case Mips::DIV_MMR6
:
1425 case Mips::DIVU_MMR6
:
1426 case Mips::MOD_MMR6
:
1427 case Mips::MODU_MMR6
:
1428 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), false, true);
1429 case Mips::PseudoDSDIV
:
1430 case Mips::PseudoDUDIV
:
1435 return insertDivByZeroTrap(MI
, *BB
, *Subtarget
.getInstrInfo(), true, false);
1437 case Mips::PseudoSELECT_I
:
1438 case Mips::PseudoSELECT_I64
:
1439 case Mips::PseudoSELECT_S
:
1440 case Mips::PseudoSELECT_D32
:
1441 case Mips::PseudoSELECT_D64
:
1442 return emitPseudoSELECT(MI
, BB
, false, Mips::BNE
);
1443 case Mips::PseudoSELECTFP_F_I
:
1444 case Mips::PseudoSELECTFP_F_I64
:
1445 case Mips::PseudoSELECTFP_F_S
:
1446 case Mips::PseudoSELECTFP_F_D32
:
1447 case Mips::PseudoSELECTFP_F_D64
:
1448 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1F
);
1449 case Mips::PseudoSELECTFP_T_I
:
1450 case Mips::PseudoSELECTFP_T_I64
:
1451 case Mips::PseudoSELECTFP_T_S
:
1452 case Mips::PseudoSELECTFP_T_D32
:
1453 case Mips::PseudoSELECTFP_T_D64
:
1454 return emitPseudoSELECT(MI
, BB
, true, Mips::BC1T
);
1455 case Mips::PseudoD_SELECT_I
:
1456 case Mips::PseudoD_SELECT_I64
:
1457 return emitPseudoD_SELECT(MI
, BB
);
1459 return emitLDR_W(MI
, BB
);
1461 return emitLDR_D(MI
, BB
);
1463 return emitSTR_W(MI
, BB
);
1465 return emitSTR_D(MI
, BB
);
1469 // This function also handles Mips::ATOMIC_SWAP_I32 (when BinOpcode == 0), and
1470 // Mips::ATOMIC_LOAD_NAND_I32 (when Nand == true)
1472 MipsTargetLowering::emitAtomicBinary(MachineInstr
&MI
,
1473 MachineBasicBlock
*BB
) const {
1475 MachineFunction
*MF
= BB
->getParent();
1476 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1477 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1478 DebugLoc DL
= MI
.getDebugLoc();
1481 bool NeedsAdditionalReg
= false;
1482 switch (MI
.getOpcode()) {
1483 case Mips::ATOMIC_LOAD_ADD_I32
:
1484 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I32_POSTRA
;
1486 case Mips::ATOMIC_LOAD_SUB_I32
:
1487 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I32_POSTRA
;
1489 case Mips::ATOMIC_LOAD_AND_I32
:
1490 AtomicOp
= Mips::ATOMIC_LOAD_AND_I32_POSTRA
;
1492 case Mips::ATOMIC_LOAD_OR_I32
:
1493 AtomicOp
= Mips::ATOMIC_LOAD_OR_I32_POSTRA
;
1495 case Mips::ATOMIC_LOAD_XOR_I32
:
1496 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I32_POSTRA
;
1498 case Mips::ATOMIC_LOAD_NAND_I32
:
1499 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I32_POSTRA
;
1501 case Mips::ATOMIC_SWAP_I32
:
1502 AtomicOp
= Mips::ATOMIC_SWAP_I32_POSTRA
;
1504 case Mips::ATOMIC_LOAD_ADD_I64
:
1505 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I64_POSTRA
;
1507 case Mips::ATOMIC_LOAD_SUB_I64
:
1508 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I64_POSTRA
;
1510 case Mips::ATOMIC_LOAD_AND_I64
:
1511 AtomicOp
= Mips::ATOMIC_LOAD_AND_I64_POSTRA
;
1513 case Mips::ATOMIC_LOAD_OR_I64
:
1514 AtomicOp
= Mips::ATOMIC_LOAD_OR_I64_POSTRA
;
1516 case Mips::ATOMIC_LOAD_XOR_I64
:
1517 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I64_POSTRA
;
1519 case Mips::ATOMIC_LOAD_NAND_I64
:
1520 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I64_POSTRA
;
1522 case Mips::ATOMIC_SWAP_I64
:
1523 AtomicOp
= Mips::ATOMIC_SWAP_I64_POSTRA
;
1525 case Mips::ATOMIC_LOAD_MIN_I32
:
1526 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I32_POSTRA
;
1527 NeedsAdditionalReg
= true;
1529 case Mips::ATOMIC_LOAD_MAX_I32
:
1530 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I32_POSTRA
;
1531 NeedsAdditionalReg
= true;
1533 case Mips::ATOMIC_LOAD_UMIN_I32
:
1534 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I32_POSTRA
;
1535 NeedsAdditionalReg
= true;
1537 case Mips::ATOMIC_LOAD_UMAX_I32
:
1538 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I32_POSTRA
;
1539 NeedsAdditionalReg
= true;
1541 case Mips::ATOMIC_LOAD_MIN_I64
:
1542 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I64_POSTRA
;
1543 NeedsAdditionalReg
= true;
1545 case Mips::ATOMIC_LOAD_MAX_I64
:
1546 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I64_POSTRA
;
1547 NeedsAdditionalReg
= true;
1549 case Mips::ATOMIC_LOAD_UMIN_I64
:
1550 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I64_POSTRA
;
1551 NeedsAdditionalReg
= true;
1553 case Mips::ATOMIC_LOAD_UMAX_I64
:
1554 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I64_POSTRA
;
1555 NeedsAdditionalReg
= true;
1558 llvm_unreachable("Unknown pseudo atomic for replacement!");
1561 Register OldVal
= MI
.getOperand(0).getReg();
1562 Register Ptr
= MI
.getOperand(1).getReg();
1563 Register Incr
= MI
.getOperand(2).getReg();
1564 Register Scratch
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1566 MachineBasicBlock::iterator
II(MI
);
1568 // The scratch registers here with the EarlyClobber | Define | Implicit
1569 // flags is used to persuade the register allocator and the machine
1570 // verifier to accept the usage of this register. This has to be a real
1571 // register which has an UNDEF value but is dead after the instruction which
1572 // is unique among the registers chosen for the instruction.
1574 // The EarlyClobber flag has the semantic properties that the operand it is
1575 // attached to is clobbered before the rest of the inputs are read. Hence it
1576 // must be unique among the operands to the instruction.
1577 // The Define flag is needed to coerce the machine verifier that an Undef
1578 // value isn't a problem.
1579 // The Dead flag is needed as the value in scratch isn't used by any other
1580 // instruction. Kill isn't used as Dead is more precise.
1581 // The implicit flag is here due to the interaction between the other flags
1582 // and the machine verifier.
1584 // For correctness purpose, a new pseudo is introduced here. We need this
1585 // new pseudo, so that FastRegisterAllocator does not see an ll/sc sequence
1586 // that is spread over >1 basic blocks. A register allocator which
1587 // introduces (or any codegen infact) a store, can violate the expectations
1590 // An atomic read-modify-write sequence starts with a linked load
1591 // instruction and ends with a store conditional instruction. The atomic
1592 // read-modify-write sequence fails if any of the following conditions
1593 // occur between the execution of ll and sc:
1594 // * A coherent store is completed by another process or coherent I/O
1595 // module into the block of synchronizable physical memory containing
1596 // the word. The size and alignment of the block is
1597 // implementation-dependent.
1598 // * A coherent store is executed between an LL and SC sequence on the
1599 // same processor to the block of synchornizable physical memory
1600 // containing the word.
1603 Register PtrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Ptr
));
1604 Register IncrCopy
= RegInfo
.createVirtualRegister(RegInfo
.getRegClass(Incr
));
1606 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), IncrCopy
).addReg(Incr
);
1607 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1609 MachineInstrBuilder MIB
=
1610 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1611 .addReg(OldVal
, RegState::Define
| RegState::EarlyClobber
)
1614 .addReg(Scratch
, RegState::Define
| RegState::EarlyClobber
|
1615 RegState::Implicit
| RegState::Dead
);
1616 if (NeedsAdditionalReg
) {
1618 RegInfo
.createVirtualRegister(RegInfo
.getRegClass(OldVal
));
1619 MIB
.addReg(Scratch2
, RegState::Define
| RegState::EarlyClobber
|
1620 RegState::Implicit
| RegState::Dead
);
1623 MI
.eraseFromParent();
1628 MachineBasicBlock
*MipsTargetLowering::emitSignExtendToI32InReg(
1629 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
, unsigned DstReg
,
1630 unsigned SrcReg
) const {
1631 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1632 const DebugLoc
&DL
= MI
.getDebugLoc();
1634 if (Subtarget
.hasMips32r2() && Size
== 1) {
1635 BuildMI(BB
, DL
, TII
->get(Mips::SEB
), DstReg
).addReg(SrcReg
);
1639 if (Subtarget
.hasMips32r2() && Size
== 2) {
1640 BuildMI(BB
, DL
, TII
->get(Mips::SEH
), DstReg
).addReg(SrcReg
);
1644 MachineFunction
*MF
= BB
->getParent();
1645 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1646 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1647 Register ScrReg
= RegInfo
.createVirtualRegister(RC
);
1650 int64_t ShiftImm
= 32 - (Size
* 8);
1652 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ScrReg
).addReg(SrcReg
).addImm(ShiftImm
);
1653 BuildMI(BB
, DL
, TII
->get(Mips::SRA
), DstReg
).addReg(ScrReg
).addImm(ShiftImm
);
1658 MachineBasicBlock
*MipsTargetLowering::emitAtomicBinaryPartword(
1659 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1660 assert((Size
== 1 || Size
== 2) &&
1661 "Unsupported size for EmitAtomicBinaryPartial.");
1663 MachineFunction
*MF
= BB
->getParent();
1664 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1665 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1666 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1667 const TargetRegisterClass
*RCp
=
1668 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1669 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1670 DebugLoc DL
= MI
.getDebugLoc();
1672 Register Dest
= MI
.getOperand(0).getReg();
1673 Register Ptr
= MI
.getOperand(1).getReg();
1674 Register Incr
= MI
.getOperand(2).getReg();
1676 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1677 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1678 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1679 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1680 Register Incr2
= RegInfo
.createVirtualRegister(RC
);
1681 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1682 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1683 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1684 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1685 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1686 Register Scratch3
= RegInfo
.createVirtualRegister(RC
);
1688 unsigned AtomicOp
= 0;
1689 bool NeedsAdditionalReg
= false;
1690 switch (MI
.getOpcode()) {
1691 case Mips::ATOMIC_LOAD_NAND_I8
:
1692 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I8_POSTRA
;
1694 case Mips::ATOMIC_LOAD_NAND_I16
:
1695 AtomicOp
= Mips::ATOMIC_LOAD_NAND_I16_POSTRA
;
1697 case Mips::ATOMIC_SWAP_I8
:
1698 AtomicOp
= Mips::ATOMIC_SWAP_I8_POSTRA
;
1700 case Mips::ATOMIC_SWAP_I16
:
1701 AtomicOp
= Mips::ATOMIC_SWAP_I16_POSTRA
;
1703 case Mips::ATOMIC_LOAD_ADD_I8
:
1704 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I8_POSTRA
;
1706 case Mips::ATOMIC_LOAD_ADD_I16
:
1707 AtomicOp
= Mips::ATOMIC_LOAD_ADD_I16_POSTRA
;
1709 case Mips::ATOMIC_LOAD_SUB_I8
:
1710 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I8_POSTRA
;
1712 case Mips::ATOMIC_LOAD_SUB_I16
:
1713 AtomicOp
= Mips::ATOMIC_LOAD_SUB_I16_POSTRA
;
1715 case Mips::ATOMIC_LOAD_AND_I8
:
1716 AtomicOp
= Mips::ATOMIC_LOAD_AND_I8_POSTRA
;
1718 case Mips::ATOMIC_LOAD_AND_I16
:
1719 AtomicOp
= Mips::ATOMIC_LOAD_AND_I16_POSTRA
;
1721 case Mips::ATOMIC_LOAD_OR_I8
:
1722 AtomicOp
= Mips::ATOMIC_LOAD_OR_I8_POSTRA
;
1724 case Mips::ATOMIC_LOAD_OR_I16
:
1725 AtomicOp
= Mips::ATOMIC_LOAD_OR_I16_POSTRA
;
1727 case Mips::ATOMIC_LOAD_XOR_I8
:
1728 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I8_POSTRA
;
1730 case Mips::ATOMIC_LOAD_XOR_I16
:
1731 AtomicOp
= Mips::ATOMIC_LOAD_XOR_I16_POSTRA
;
1733 case Mips::ATOMIC_LOAD_MIN_I8
:
1734 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I8_POSTRA
;
1735 NeedsAdditionalReg
= true;
1737 case Mips::ATOMIC_LOAD_MIN_I16
:
1738 AtomicOp
= Mips::ATOMIC_LOAD_MIN_I16_POSTRA
;
1739 NeedsAdditionalReg
= true;
1741 case Mips::ATOMIC_LOAD_MAX_I8
:
1742 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I8_POSTRA
;
1743 NeedsAdditionalReg
= true;
1745 case Mips::ATOMIC_LOAD_MAX_I16
:
1746 AtomicOp
= Mips::ATOMIC_LOAD_MAX_I16_POSTRA
;
1747 NeedsAdditionalReg
= true;
1749 case Mips::ATOMIC_LOAD_UMIN_I8
:
1750 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I8_POSTRA
;
1751 NeedsAdditionalReg
= true;
1753 case Mips::ATOMIC_LOAD_UMIN_I16
:
1754 AtomicOp
= Mips::ATOMIC_LOAD_UMIN_I16_POSTRA
;
1755 NeedsAdditionalReg
= true;
1757 case Mips::ATOMIC_LOAD_UMAX_I8
:
1758 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I8_POSTRA
;
1759 NeedsAdditionalReg
= true;
1761 case Mips::ATOMIC_LOAD_UMAX_I16
:
1762 AtomicOp
= Mips::ATOMIC_LOAD_UMAX_I16_POSTRA
;
1763 NeedsAdditionalReg
= true;
1766 llvm_unreachable("Unknown subword atomic pseudo for expansion!");
1769 // insert new blocks after the current block
1770 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1771 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1772 MachineFunction::iterator It
= ++BB
->getIterator();
1773 MF
->insert(It
, exitMBB
);
1775 // Transfer the remainder of BB and its successor edges to exitMBB.
1776 exitMBB
->splice(exitMBB
->begin(), BB
,
1777 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1778 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1780 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1783 // addiu masklsb2,$0,-4 # 0xfffffffc
1784 // and alignedaddr,ptr,masklsb2
1785 // andi ptrlsb2,ptr,3
1786 // sll shiftamt,ptrlsb2,3
1787 // ori maskupper,$0,255 # 0xff
1788 // sll mask,maskupper,shiftamt
1789 // nor mask2,$0,mask
1790 // sll incr2,incr,shiftamt
1792 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1793 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAddiuOp()), MaskLSB2
)
1794 .addReg(ABI
.GetNullPtr()).addImm(-4);
1795 BuildMI(BB
, DL
, TII
->get(ABI
.GetPtrAndOp()), AlignedAddr
)
1796 .addReg(Ptr
).addReg(MaskLSB2
);
1797 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1798 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1799 if (Subtarget
.isLittle()) {
1800 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1802 Register Off
= RegInfo
.createVirtualRegister(RC
);
1803 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1804 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1805 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1807 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1808 .addReg(Mips::ZERO
).addImm(MaskImm
);
1809 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1810 .addReg(MaskUpper
).addReg(ShiftAmt
);
1811 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1812 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Incr2
).addReg(Incr
).addReg(ShiftAmt
);
1815 // The purposes of the flags on the scratch registers is explained in
1816 // emitAtomicBinary. In summary, we need a scratch register which is going to
1817 // be undef, that is unique among registers chosen for the instruction.
1819 MachineInstrBuilder MIB
=
1820 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
1821 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1822 .addReg(AlignedAddr
)
1827 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1828 RegState::Dead
| RegState::Implicit
)
1829 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
1830 RegState::Dead
| RegState::Implicit
)
1831 .addReg(Scratch3
, RegState::EarlyClobber
| RegState::Define
|
1832 RegState::Dead
| RegState::Implicit
);
1833 if (NeedsAdditionalReg
) {
1834 Register Scratch4
= RegInfo
.createVirtualRegister(RC
);
1835 MIB
.addReg(Scratch4
, RegState::EarlyClobber
| RegState::Define
|
1836 RegState::Dead
| RegState::Implicit
);
1839 MI
.eraseFromParent(); // The instruction is gone now.
1844 // Lower atomic compare and swap to a pseudo instruction, taking care to
1845 // define a scratch register for the pseudo instruction's expansion. The
1846 // instruction is expanded after the register allocator as to prevent
1847 // the insertion of stores between the linked load and the store conditional.
1850 MipsTargetLowering::emitAtomicCmpSwap(MachineInstr
&MI
,
1851 MachineBasicBlock
*BB
) const {
1853 assert((MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
||
1854 MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I64
) &&
1855 "Unsupported atomic pseudo for EmitAtomicCmpSwap.");
1857 const unsigned Size
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
? 4 : 8;
1859 MachineFunction
*MF
= BB
->getParent();
1860 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
1861 const TargetRegisterClass
*RC
= getRegClassFor(MVT::getIntegerVT(Size
* 8));
1862 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1863 DebugLoc DL
= MI
.getDebugLoc();
1865 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I32
1866 ? Mips::ATOMIC_CMP_SWAP_I32_POSTRA
1867 : Mips::ATOMIC_CMP_SWAP_I64_POSTRA
;
1868 Register Dest
= MI
.getOperand(0).getReg();
1869 Register Ptr
= MI
.getOperand(1).getReg();
1870 Register OldVal
= MI
.getOperand(2).getReg();
1871 Register NewVal
= MI
.getOperand(3).getReg();
1873 Register Scratch
= MRI
.createVirtualRegister(RC
);
1874 MachineBasicBlock::iterator
II(MI
);
1876 // We need to create copies of the various registers and kill them at the
1877 // atomic pseudo. If the copies are not made, when the atomic is expanded
1878 // after fast register allocation, the spills will end up outside of the
1879 // blocks that their values are defined in, causing livein errors.
1881 Register PtrCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(Ptr
));
1882 Register OldValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(OldVal
));
1883 Register NewValCopy
= MRI
.createVirtualRegister(MRI
.getRegClass(NewVal
));
1885 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), PtrCopy
).addReg(Ptr
);
1886 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), OldValCopy
).addReg(OldVal
);
1887 BuildMI(*BB
, II
, DL
, TII
->get(Mips::COPY
), NewValCopy
).addReg(NewVal
);
1889 // The purposes of the flags on the scratch registers is explained in
1890 // emitAtomicBinary. In summary, we need a scratch register which is going to
1891 // be undef, that is unique among registers chosen for the instruction.
1893 BuildMI(*BB
, II
, DL
, TII
->get(AtomicOp
))
1894 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
1895 .addReg(PtrCopy
, RegState::Kill
)
1896 .addReg(OldValCopy
, RegState::Kill
)
1897 .addReg(NewValCopy
, RegState::Kill
)
1898 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
1899 RegState::Dead
| RegState::Implicit
);
1901 MI
.eraseFromParent(); // The instruction is gone now.
1906 MachineBasicBlock
*MipsTargetLowering::emitAtomicCmpSwapPartword(
1907 MachineInstr
&MI
, MachineBasicBlock
*BB
, unsigned Size
) const {
1908 assert((Size
== 1 || Size
== 2) &&
1909 "Unsupported size for EmitAtomicCmpSwapPartial.");
1911 MachineFunction
*MF
= BB
->getParent();
1912 MachineRegisterInfo
&RegInfo
= MF
->getRegInfo();
1913 const TargetRegisterClass
*RC
= getRegClassFor(MVT::i32
);
1914 const bool ArePtrs64bit
= ABI
.ArePtrs64bit();
1915 const TargetRegisterClass
*RCp
=
1916 getRegClassFor(ArePtrs64bit
? MVT::i64
: MVT::i32
);
1917 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
1918 DebugLoc DL
= MI
.getDebugLoc();
1920 Register Dest
= MI
.getOperand(0).getReg();
1921 Register Ptr
= MI
.getOperand(1).getReg();
1922 Register CmpVal
= MI
.getOperand(2).getReg();
1923 Register NewVal
= MI
.getOperand(3).getReg();
1925 Register AlignedAddr
= RegInfo
.createVirtualRegister(RCp
);
1926 Register ShiftAmt
= RegInfo
.createVirtualRegister(RC
);
1927 Register Mask
= RegInfo
.createVirtualRegister(RC
);
1928 Register Mask2
= RegInfo
.createVirtualRegister(RC
);
1929 Register ShiftedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1930 Register ShiftedNewVal
= RegInfo
.createVirtualRegister(RC
);
1931 Register MaskLSB2
= RegInfo
.createVirtualRegister(RCp
);
1932 Register PtrLSB2
= RegInfo
.createVirtualRegister(RC
);
1933 Register MaskUpper
= RegInfo
.createVirtualRegister(RC
);
1934 Register MaskedCmpVal
= RegInfo
.createVirtualRegister(RC
);
1935 Register MaskedNewVal
= RegInfo
.createVirtualRegister(RC
);
1936 unsigned AtomicOp
= MI
.getOpcode() == Mips::ATOMIC_CMP_SWAP_I8
1937 ? Mips::ATOMIC_CMP_SWAP_I8_POSTRA
1938 : Mips::ATOMIC_CMP_SWAP_I16_POSTRA
;
1940 // The scratch registers here with the EarlyClobber | Define | Dead | Implicit
1941 // flags are used to coerce the register allocator and the machine verifier to
1942 // accept the usage of these registers.
1943 // The EarlyClobber flag has the semantic properties that the operand it is
1944 // attached to is clobbered before the rest of the inputs are read. Hence it
1945 // must be unique among the operands to the instruction.
1946 // The Define flag is needed to coerce the machine verifier that an Undef
1947 // value isn't a problem.
1948 // The Dead flag is needed as the value in scratch isn't used by any other
1949 // instruction. Kill isn't used as Dead is more precise.
1950 Register Scratch
= RegInfo
.createVirtualRegister(RC
);
1951 Register Scratch2
= RegInfo
.createVirtualRegister(RC
);
1953 // insert new blocks after the current block
1954 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
1955 MachineBasicBlock
*exitMBB
= MF
->CreateMachineBasicBlock(LLVM_BB
);
1956 MachineFunction::iterator It
= ++BB
->getIterator();
1957 MF
->insert(It
, exitMBB
);
1959 // Transfer the remainder of BB and its successor edges to exitMBB.
1960 exitMBB
->splice(exitMBB
->begin(), BB
,
1961 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
1962 exitMBB
->transferSuccessorsAndUpdatePHIs(BB
);
1964 BB
->addSuccessor(exitMBB
, BranchProbability::getOne());
1967 // addiu masklsb2,$0,-4 # 0xfffffffc
1968 // and alignedaddr,ptr,masklsb2
1969 // andi ptrlsb2,ptr,3
1970 // xori ptrlsb2,ptrlsb2,3 # Only for BE
1971 // sll shiftamt,ptrlsb2,3
1972 // ori maskupper,$0,255 # 0xff
1973 // sll mask,maskupper,shiftamt
1974 // nor mask2,$0,mask
1975 // andi maskedcmpval,cmpval,255
1976 // sll shiftedcmpval,maskedcmpval,shiftamt
1977 // andi maskednewval,newval,255
1978 // sll shiftednewval,maskednewval,shiftamt
1979 int64_t MaskImm
= (Size
== 1) ? 255 : 65535;
1980 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::DADDiu
: Mips::ADDiu
), MaskLSB2
)
1981 .addReg(ABI
.GetNullPtr()).addImm(-4);
1982 BuildMI(BB
, DL
, TII
->get(ArePtrs64bit
? Mips::AND64
: Mips::AND
), AlignedAddr
)
1983 .addReg(Ptr
).addReg(MaskLSB2
);
1984 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), PtrLSB2
)
1985 .addReg(Ptr
, 0, ArePtrs64bit
? Mips::sub_32
: 0).addImm(3);
1986 if (Subtarget
.isLittle()) {
1987 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(PtrLSB2
).addImm(3);
1989 Register Off
= RegInfo
.createVirtualRegister(RC
);
1990 BuildMI(BB
, DL
, TII
->get(Mips::XORi
), Off
)
1991 .addReg(PtrLSB2
).addImm((Size
== 1) ? 3 : 2);
1992 BuildMI(BB
, DL
, TII
->get(Mips::SLL
), ShiftAmt
).addReg(Off
).addImm(3);
1994 BuildMI(BB
, DL
, TII
->get(Mips::ORi
), MaskUpper
)
1995 .addReg(Mips::ZERO
).addImm(MaskImm
);
1996 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), Mask
)
1997 .addReg(MaskUpper
).addReg(ShiftAmt
);
1998 BuildMI(BB
, DL
, TII
->get(Mips::NOR
), Mask2
).addReg(Mips::ZERO
).addReg(Mask
);
1999 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedCmpVal
)
2000 .addReg(CmpVal
).addImm(MaskImm
);
2001 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedCmpVal
)
2002 .addReg(MaskedCmpVal
).addReg(ShiftAmt
);
2003 BuildMI(BB
, DL
, TII
->get(Mips::ANDi
), MaskedNewVal
)
2004 .addReg(NewVal
).addImm(MaskImm
);
2005 BuildMI(BB
, DL
, TII
->get(Mips::SLLV
), ShiftedNewVal
)
2006 .addReg(MaskedNewVal
).addReg(ShiftAmt
);
2008 // The purposes of the flags on the scratch registers are explained in
2009 // emitAtomicBinary. In summary, we need a scratch register which is going to
2010 // be undef, that is unique among the register chosen for the instruction.
2012 BuildMI(BB
, DL
, TII
->get(AtomicOp
))
2013 .addReg(Dest
, RegState::Define
| RegState::EarlyClobber
)
2014 .addReg(AlignedAddr
)
2016 .addReg(ShiftedCmpVal
)
2018 .addReg(ShiftedNewVal
)
2020 .addReg(Scratch
, RegState::EarlyClobber
| RegState::Define
|
2021 RegState::Dead
| RegState::Implicit
)
2022 .addReg(Scratch2
, RegState::EarlyClobber
| RegState::Define
|
2023 RegState::Dead
| RegState::Implicit
);
2025 MI
.eraseFromParent(); // The instruction is gone now.
2030 SDValue
MipsTargetLowering::lowerBRCOND(SDValue Op
, SelectionDAG
&DAG
) const {
2031 // The first operand is the chain, the second is the condition, the third is
2032 // the block to branch to if the condition is true.
2033 SDValue Chain
= Op
.getOperand(0);
2034 SDValue Dest
= Op
.getOperand(2);
2037 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
2038 SDValue CondRes
= createFPCmp(DAG
, Op
.getOperand(1));
2040 // Return if flag is not set by a floating point comparison.
2041 if (CondRes
.getOpcode() != MipsISD::FPCmp
)
2044 SDValue CCNode
= CondRes
.getOperand(2);
2046 (Mips::CondCode
)cast
<ConstantSDNode
>(CCNode
)->getZExtValue();
2047 unsigned Opc
= invertFPCondCodeUser(CC
) ? Mips::BRANCH_F
: Mips::BRANCH_T
;
2048 SDValue BrCode
= DAG
.getConstant(Opc
, DL
, MVT::i32
);
2049 SDValue FCC0
= DAG
.getRegister(Mips::FCC0
, MVT::i32
);
2050 return DAG
.getNode(MipsISD::FPBrcond
, DL
, Op
.getValueType(), Chain
, BrCode
,
2051 FCC0
, Dest
, CondRes
);
2054 SDValue
MipsTargetLowering::
2055 lowerSELECT(SDValue Op
, SelectionDAG
&DAG
) const
2057 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
2058 SDValue Cond
= createFPCmp(DAG
, Op
.getOperand(0));
2060 // Return if flag is not set by a floating point comparison.
2061 if (Cond
.getOpcode() != MipsISD::FPCmp
)
2064 return createCMovFP(DAG
, Cond
, Op
.getOperand(1), Op
.getOperand(2),
2068 SDValue
MipsTargetLowering::lowerSETCC(SDValue Op
, SelectionDAG
&DAG
) const {
2069 assert(!Subtarget
.hasMips32r6() && !Subtarget
.hasMips64r6());
2070 SDValue Cond
= createFPCmp(DAG
, Op
);
2072 assert(Cond
.getOpcode() == MipsISD::FPCmp
&&
2073 "Floating point operand expected.");
2076 SDValue True
= DAG
.getConstant(1, DL
, MVT::i32
);
2077 SDValue False
= DAG
.getConstant(0, DL
, MVT::i32
);
2079 return createCMovFP(DAG
, Cond
, True
, False
, DL
);
2082 SDValue
MipsTargetLowering::lowerGlobalAddress(SDValue Op
,
2083 SelectionDAG
&DAG
) const {
2084 EVT Ty
= Op
.getValueType();
2085 GlobalAddressSDNode
*N
= cast
<GlobalAddressSDNode
>(Op
);
2086 const GlobalValue
*GV
= N
->getGlobal();
2088 if (!isPositionIndependent()) {
2089 const MipsTargetObjectFile
*TLOF
=
2090 static_cast<const MipsTargetObjectFile
*>(
2091 getTargetMachine().getObjFileLowering());
2092 const GlobalObject
*GO
= GV
->getAliaseeObject();
2093 if (GO
&& TLOF
->IsGlobalInSmallSection(GO
, getTargetMachine()))
2094 // %gp_rel relocation
2095 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2097 // %hi/%lo relocation
2098 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2099 // %highest/%higher/%hi/%lo relocation
2100 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2103 // Every other architecture would use shouldAssumeDSOLocal in here, but
2105 // * In PIC code mips requires got loads even for local statics!
2106 // * To save on got entries, for local statics the got entry contains the
2107 // page and an additional add instruction takes care of the low bits.
2108 // * It is legal to access a hidden symbol with a non hidden undefined,
2109 // so one cannot guarantee that all access to a hidden symbol will know
2111 // * Mips linkers don't support creating a page and a full got entry for
2113 // * Given all that, we have to use a full got entry for hidden symbols :-(
2114 if (GV
->hasLocalLinkage())
2115 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2117 if (Subtarget
.useXGOT())
2118 return getAddrGlobalLargeGOT(
2119 N
, SDLoc(N
), Ty
, DAG
, MipsII::MO_GOT_HI16
, MipsII::MO_GOT_LO16
,
2121 MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2123 return getAddrGlobal(
2124 N
, SDLoc(N
), Ty
, DAG
,
2125 (ABI
.IsN32() || ABI
.IsN64()) ? MipsII::MO_GOT_DISP
: MipsII::MO_GOT
,
2126 DAG
.getEntryNode(), MachinePointerInfo::getGOT(DAG
.getMachineFunction()));
2129 SDValue
MipsTargetLowering::lowerBlockAddress(SDValue Op
,
2130 SelectionDAG
&DAG
) const {
2131 BlockAddressSDNode
*N
= cast
<BlockAddressSDNode
>(Op
);
2132 EVT Ty
= Op
.getValueType();
2134 if (!isPositionIndependent())
2135 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2136 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2138 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2141 SDValue
MipsTargetLowering::
2142 lowerGlobalTLSAddress(SDValue Op
, SelectionDAG
&DAG
) const
2144 // If the relocation model is PIC, use the General Dynamic TLS Model or
2145 // Local Dynamic TLS model, otherwise use the Initial Exec or
2146 // Local Exec TLS Model.
2148 GlobalAddressSDNode
*GA
= cast
<GlobalAddressSDNode
>(Op
);
2149 if (DAG
.getTarget().useEmulatedTLS())
2150 return LowerToTLSEmulatedModel(GA
, DAG
);
2153 const GlobalValue
*GV
= GA
->getGlobal();
2154 EVT PtrVT
= getPointerTy(DAG
.getDataLayout());
2156 TLSModel::Model model
= getTargetMachine().getTLSModel(GV
);
2158 if (model
== TLSModel::GeneralDynamic
|| model
== TLSModel::LocalDynamic
) {
2159 // General Dynamic and Local Dynamic TLS Model.
2160 unsigned Flag
= (model
== TLSModel::LocalDynamic
) ? MipsII::MO_TLSLDM
2163 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0, Flag
);
2164 SDValue Argument
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
,
2165 getGlobalReg(DAG
, PtrVT
), TGA
);
2166 unsigned PtrSize
= PtrVT
.getSizeInBits();
2167 IntegerType
*PtrTy
= Type::getIntNTy(*DAG
.getContext(), PtrSize
);
2169 SDValue TlsGetAddr
= DAG
.getExternalSymbol("__tls_get_addr", PtrVT
);
2173 Entry
.Node
= Argument
;
2175 Args
.push_back(Entry
);
2177 TargetLowering::CallLoweringInfo
CLI(DAG
);
2179 .setChain(DAG
.getEntryNode())
2180 .setLibCallee(CallingConv::C
, PtrTy
, TlsGetAddr
, std::move(Args
));
2181 std::pair
<SDValue
, SDValue
> CallResult
= LowerCallTo(CLI
);
2183 SDValue Ret
= CallResult
.first
;
2185 if (model
!= TLSModel::LocalDynamic
)
2188 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2189 MipsII::MO_DTPREL_HI
);
2190 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2191 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2192 MipsII::MO_DTPREL_LO
);
2193 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2194 SDValue Add
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Ret
);
2195 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Add
, Lo
);
2199 if (model
== TLSModel::InitialExec
) {
2200 // Initial Exec TLS Model
2201 SDValue TGA
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2202 MipsII::MO_GOTTPREL
);
2203 TGA
= DAG
.getNode(MipsISD::Wrapper
, DL
, PtrVT
, getGlobalReg(DAG
, PtrVT
),
2206 DAG
.getLoad(PtrVT
, DL
, DAG
.getEntryNode(), TGA
, MachinePointerInfo());
2208 // Local Exec TLS Model
2209 assert(model
== TLSModel::LocalExec
);
2210 SDValue TGAHi
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2211 MipsII::MO_TPREL_HI
);
2212 SDValue TGALo
= DAG
.getTargetGlobalAddress(GV
, DL
, PtrVT
, 0,
2213 MipsII::MO_TPREL_LO
);
2214 SDValue Hi
= DAG
.getNode(MipsISD::TlsHi
, DL
, PtrVT
, TGAHi
);
2215 SDValue Lo
= DAG
.getNode(MipsISD::Lo
, DL
, PtrVT
, TGALo
);
2216 Offset
= DAG
.getNode(ISD::ADD
, DL
, PtrVT
, Hi
, Lo
);
2219 SDValue ThreadPointer
= DAG
.getNode(MipsISD::ThreadPointer
, DL
, PtrVT
);
2220 return DAG
.getNode(ISD::ADD
, DL
, PtrVT
, ThreadPointer
, Offset
);
2223 SDValue
MipsTargetLowering::
2224 lowerJumpTable(SDValue Op
, SelectionDAG
&DAG
) const
2226 JumpTableSDNode
*N
= cast
<JumpTableSDNode
>(Op
);
2227 EVT Ty
= Op
.getValueType();
2229 if (!isPositionIndependent())
2230 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2231 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2233 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2236 SDValue
MipsTargetLowering::
2237 lowerConstantPool(SDValue Op
, SelectionDAG
&DAG
) const
2239 ConstantPoolSDNode
*N
= cast
<ConstantPoolSDNode
>(Op
);
2240 EVT Ty
= Op
.getValueType();
2242 if (!isPositionIndependent()) {
2243 const MipsTargetObjectFile
*TLOF
=
2244 static_cast<const MipsTargetObjectFile
*>(
2245 getTargetMachine().getObjFileLowering());
2247 if (TLOF
->IsConstantInSmallSection(DAG
.getDataLayout(), N
->getConstVal(),
2248 getTargetMachine()))
2249 // %gp_rel relocation
2250 return getAddrGPRel(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN64());
2252 return Subtarget
.hasSym32() ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
2253 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
2256 return getAddrLocal(N
, SDLoc(N
), Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
2259 SDValue
MipsTargetLowering::lowerVASTART(SDValue Op
, SelectionDAG
&DAG
) const {
2260 MachineFunction
&MF
= DAG
.getMachineFunction();
2261 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
2264 SDValue FI
= DAG
.getFrameIndex(FuncInfo
->getVarArgsFrameIndex(),
2265 getPointerTy(MF
.getDataLayout()));
2267 // vastart just stores the address of the VarArgsFrameIndex slot into the
2268 // memory location argument.
2269 const Value
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2))->getValue();
2270 return DAG
.getStore(Op
.getOperand(0), DL
, FI
, Op
.getOperand(1),
2271 MachinePointerInfo(SV
));
2274 SDValue
MipsTargetLowering::lowerVAARG(SDValue Op
, SelectionDAG
&DAG
) const {
2275 SDNode
*Node
= Op
.getNode();
2276 EVT VT
= Node
->getValueType(0);
2277 SDValue Chain
= Node
->getOperand(0);
2278 SDValue VAListPtr
= Node
->getOperand(1);
2280 llvm::MaybeAlign(Node
->getConstantOperandVal(3)).valueOrOne();
2281 const Value
*SV
= cast
<SrcValueSDNode
>(Node
->getOperand(2))->getValue();
2283 unsigned ArgSlotSizeInBytes
= (ABI
.IsN32() || ABI
.IsN64()) ? 8 : 4;
2285 SDValue VAListLoad
= DAG
.getLoad(getPointerTy(DAG
.getDataLayout()), DL
, Chain
,
2286 VAListPtr
, MachinePointerInfo(SV
));
2287 SDValue VAList
= VAListLoad
;
2289 // Re-align the pointer if necessary.
2290 // It should only ever be necessary for 64-bit types on O32 since the minimum
2291 // argument alignment is the same as the maximum type alignment for N32/N64.
2293 // FIXME: We currently align too often. The code generator doesn't notice
2294 // when the pointer is still aligned from the last va_arg (or pair of
2295 // va_args for the i64 on O32 case).
2296 if (Align
> getMinStackArgumentAlignment()) {
2297 VAList
= DAG
.getNode(
2298 ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2299 DAG
.getConstant(Align
.value() - 1, DL
, VAList
.getValueType()));
2301 VAList
= DAG
.getNode(
2302 ISD::AND
, DL
, VAList
.getValueType(), VAList
,
2303 DAG
.getConstant(-(int64_t)Align
.value(), DL
, VAList
.getValueType()));
2306 // Increment the pointer, VAList, to the next vaarg.
2307 auto &TD
= DAG
.getDataLayout();
2308 unsigned ArgSizeInBytes
=
2309 TD
.getTypeAllocSize(VT
.getTypeForEVT(*DAG
.getContext()));
2311 DAG
.getNode(ISD::ADD
, DL
, VAList
.getValueType(), VAList
,
2312 DAG
.getConstant(alignTo(ArgSizeInBytes
, ArgSlotSizeInBytes
),
2313 DL
, VAList
.getValueType()));
2314 // Store the incremented VAList to the legalized pointer
2315 Chain
= DAG
.getStore(VAListLoad
.getValue(1), DL
, Tmp3
, VAListPtr
,
2316 MachinePointerInfo(SV
));
2318 // In big-endian mode we must adjust the pointer when the load size is smaller
2319 // than the argument slot size. We must also reduce the known alignment to
2320 // match. For example in the N64 ABI, we must add 4 bytes to the offset to get
2321 // the correct half of the slot, and reduce the alignment from 8 (slot
2322 // alignment) down to 4 (type alignment).
2323 if (!Subtarget
.isLittle() && ArgSizeInBytes
< ArgSlotSizeInBytes
) {
2324 unsigned Adjustment
= ArgSlotSizeInBytes
- ArgSizeInBytes
;
2325 VAList
= DAG
.getNode(ISD::ADD
, DL
, VAListPtr
.getValueType(), VAList
,
2326 DAG
.getIntPtrConstant(Adjustment
, DL
));
2328 // Load the actual argument out of the pointer VAList
2329 return DAG
.getLoad(VT
, DL
, Chain
, VAList
, MachinePointerInfo());
2332 static SDValue
lowerFCOPYSIGN32(SDValue Op
, SelectionDAG
&DAG
,
2333 bool HasExtractInsert
) {
2334 EVT TyX
= Op
.getOperand(0).getValueType();
2335 EVT TyY
= Op
.getOperand(1).getValueType();
2337 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2338 SDValue Const31
= DAG
.getConstant(31, DL
, MVT::i32
);
2341 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2343 SDValue X
= (TyX
== MVT::f32
) ?
2344 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0)) :
2345 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2347 SDValue Y
= (TyY
== MVT::f32
) ?
2348 DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(1)) :
2349 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(1),
2352 if (HasExtractInsert
) {
2353 // ext E, Y, 31, 1 ; extract bit31 of Y
2354 // ins X, E, 31, 1 ; insert extracted bit at bit31 of X
2355 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, MVT::i32
, Y
, Const31
, Const1
);
2356 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
, E
, Const31
, Const1
, X
);
2359 // srl SrlX, SllX, 1
2361 // sll SllY, SrlX, 31
2362 // or Or, SrlX, SllY
2363 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2364 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2365 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, Y
, Const31
);
2366 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, SrlY
, Const31
);
2367 Res
= DAG
.getNode(ISD::OR
, DL
, MVT::i32
, SrlX
, SllY
);
2370 if (TyX
== MVT::f32
)
2371 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Res
);
2373 SDValue LowX
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2375 DAG
.getConstant(0, DL
, MVT::i32
));
2376 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2379 static SDValue
lowerFCOPYSIGN64(SDValue Op
, SelectionDAG
&DAG
,
2380 bool HasExtractInsert
) {
2381 unsigned WidthX
= Op
.getOperand(0).getValueSizeInBits();
2382 unsigned WidthY
= Op
.getOperand(1).getValueSizeInBits();
2383 EVT TyX
= MVT::getIntegerVT(WidthX
), TyY
= MVT::getIntegerVT(WidthY
);
2385 SDValue Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2387 // Bitcast to integer nodes.
2388 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, TyX
, Op
.getOperand(0));
2389 SDValue Y
= DAG
.getNode(ISD::BITCAST
, DL
, TyY
, Op
.getOperand(1));
2391 if (HasExtractInsert
) {
2392 // ext E, Y, width(Y) - 1, 1 ; extract bit width(Y)-1 of Y
2393 // ins X, E, width(X) - 1, 1 ; insert extracted bit at bit width(X)-1 of X
2394 SDValue E
= DAG
.getNode(MipsISD::Ext
, DL
, TyY
, Y
,
2395 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
), Const1
);
2397 if (WidthX
> WidthY
)
2398 E
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, E
);
2399 else if (WidthY
> WidthX
)
2400 E
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, E
);
2402 SDValue I
= DAG
.getNode(MipsISD::Ins
, DL
, TyX
, E
,
2403 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
), Const1
,
2405 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), I
);
2408 // (d)sll SllX, X, 1
2409 // (d)srl SrlX, SllX, 1
2410 // (d)srl SrlY, Y, width(Y)-1
2411 // (d)sll SllY, SrlX, width(Y)-1
2412 // or Or, SrlX, SllY
2413 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, TyX
, X
, Const1
);
2414 SDValue SrlX
= DAG
.getNode(ISD::SRL
, DL
, TyX
, SllX
, Const1
);
2415 SDValue SrlY
= DAG
.getNode(ISD::SRL
, DL
, TyY
, Y
,
2416 DAG
.getConstant(WidthY
- 1, DL
, MVT::i32
));
2418 if (WidthX
> WidthY
)
2419 SrlY
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TyX
, SrlY
);
2420 else if (WidthY
> WidthX
)
2421 SrlY
= DAG
.getNode(ISD::TRUNCATE
, DL
, TyX
, SrlY
);
2423 SDValue SllY
= DAG
.getNode(ISD::SHL
, DL
, TyX
, SrlY
,
2424 DAG
.getConstant(WidthX
- 1, DL
, MVT::i32
));
2425 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, TyX
, SrlX
, SllY
);
2426 return DAG
.getNode(ISD::BITCAST
, DL
, Op
.getOperand(0).getValueType(), Or
);
2430 MipsTargetLowering::lowerFCOPYSIGN(SDValue Op
, SelectionDAG
&DAG
) const {
2431 if (Subtarget
.isGP64bit())
2432 return lowerFCOPYSIGN64(Op
, DAG
, Subtarget
.hasExtractInsert());
2434 return lowerFCOPYSIGN32(Op
, DAG
, Subtarget
.hasExtractInsert());
2437 SDValue
MipsTargetLowering::lowerFABS32(SDValue Op
, SelectionDAG
&DAG
,
2438 bool HasExtractInsert
) const {
2440 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2442 if (DAG
.getTarget().Options
.NoNaNsFPMath
|| Subtarget
.inAbs2008Mode())
2443 return DAG
.getNode(MipsISD::FAbs
, DL
, Op
.getValueType(), Op
.getOperand(0));
2445 // If operand is of type f64, extract the upper 32-bit. Otherwise, bitcast it
2447 SDValue X
= (Op
.getValueType() == MVT::f32
)
2448 ? DAG
.getNode(ISD::BITCAST
, DL
, MVT::i32
, Op
.getOperand(0))
2449 : DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
2450 Op
.getOperand(0), Const1
);
2453 if (HasExtractInsert
)
2454 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i32
,
2455 DAG
.getRegister(Mips::ZERO
, MVT::i32
),
2456 DAG
.getConstant(31, DL
, MVT::i32
), Const1
, X
);
2458 // TODO: Provide DAG patterns which transform (and x, cst)
2459 // back to a (shl (srl x (clz cst)) (clz cst)) sequence.
2460 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i32
, X
, Const1
);
2461 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i32
, SllX
, Const1
);
2464 if (Op
.getValueType() == MVT::f32
)
2465 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f32
, Res
);
2467 // FIXME: For mips32r2, the sequence of (BuildPairF64 (ins (ExtractElementF64
2468 // Op 1), $zero, 31 1) (ExtractElementF64 Op 0)) and the Op has one use, we
2469 // should be able to drop the usage of mfc1/mtc1 and rewrite the register in
2472 DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
, Op
.getOperand(0),
2473 DAG
.getConstant(0, DL
, MVT::i32
));
2474 return DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
, LowX
, Res
);
2477 SDValue
MipsTargetLowering::lowerFABS64(SDValue Op
, SelectionDAG
&DAG
,
2478 bool HasExtractInsert
) const {
2480 SDValue Res
, Const1
= DAG
.getConstant(1, DL
, MVT::i32
);
2482 if (DAG
.getTarget().Options
.NoNaNsFPMath
|| Subtarget
.inAbs2008Mode())
2483 return DAG
.getNode(MipsISD::FAbs
, DL
, Op
.getValueType(), Op
.getOperand(0));
2485 // Bitcast to integer node.
2486 SDValue X
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Op
.getOperand(0));
2489 if (HasExtractInsert
)
2490 Res
= DAG
.getNode(MipsISD::Ins
, DL
, MVT::i64
,
2491 DAG
.getRegister(Mips::ZERO_64
, MVT::i64
),
2492 DAG
.getConstant(63, DL
, MVT::i32
), Const1
, X
);
2494 SDValue SllX
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, X
, Const1
);
2495 Res
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SllX
, Const1
);
2498 return DAG
.getNode(ISD::BITCAST
, DL
, MVT::f64
, Res
);
2501 SDValue
MipsTargetLowering::lowerFABS(SDValue Op
, SelectionDAG
&DAG
) const {
2502 if ((ABI
.IsN32() || ABI
.IsN64()) && (Op
.getValueType() == MVT::f64
))
2503 return lowerFABS64(Op
, DAG
, Subtarget
.hasExtractInsert());
2505 return lowerFABS32(Op
, DAG
, Subtarget
.hasExtractInsert());
2508 SDValue
MipsTargetLowering::
2509 lowerFRAMEADDR(SDValue Op
, SelectionDAG
&DAG
) const {
2511 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2512 DAG
.getContext()->emitError(
2513 "return address can be determined only for current frame");
2517 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2518 MFI
.setFrameAddressIsTaken(true);
2519 EVT VT
= Op
.getValueType();
2521 SDValue FrameAddr
= DAG
.getCopyFromReg(
2522 DAG
.getEntryNode(), DL
, ABI
.IsN64() ? Mips::FP_64
: Mips::FP
, VT
);
2526 SDValue
MipsTargetLowering::lowerRETURNADDR(SDValue Op
,
2527 SelectionDAG
&DAG
) const {
2528 if (verifyReturnAddressArgumentIsConstant(Op
, DAG
))
2532 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getZExtValue() != 0) {
2533 DAG
.getContext()->emitError(
2534 "return address can be determined only for current frame");
2538 MachineFunction
&MF
= DAG
.getMachineFunction();
2539 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
2540 MVT VT
= Op
.getSimpleValueType();
2541 unsigned RA
= ABI
.IsN64() ? Mips::RA_64
: Mips::RA
;
2542 MFI
.setReturnAddressIsTaken(true);
2544 // Return RA, which contains the return address. Mark it an implicit live-in.
2545 Register Reg
= MF
.addLiveIn(RA
, getRegClassFor(VT
));
2546 return DAG
.getCopyFromReg(DAG
.getEntryNode(), SDLoc(Op
), Reg
, VT
);
2549 // An EH_RETURN is the result of lowering llvm.eh.return which in turn is
2550 // generated from __builtin_eh_return (offset, handler)
2551 // The effect of this is to adjust the stack pointer by "offset"
2552 // and then branch to "handler".
2553 SDValue
MipsTargetLowering::lowerEH_RETURN(SDValue Op
, SelectionDAG
&DAG
)
2555 MachineFunction
&MF
= DAG
.getMachineFunction();
2556 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
2558 MipsFI
->setCallsEhReturn();
2559 SDValue Chain
= Op
.getOperand(0);
2560 SDValue Offset
= Op
.getOperand(1);
2561 SDValue Handler
= Op
.getOperand(2);
2563 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
2565 // Store stack offset in V1, store jump target in V0. Glue CopyToReg and
2566 // EH_RETURN nodes, so that instructions are emitted back-to-back.
2567 unsigned OffsetReg
= ABI
.IsN64() ? Mips::V1_64
: Mips::V1
;
2568 unsigned AddrReg
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
2569 Chain
= DAG
.getCopyToReg(Chain
, DL
, OffsetReg
, Offset
, SDValue());
2570 Chain
= DAG
.getCopyToReg(Chain
, DL
, AddrReg
, Handler
, Chain
.getValue(1));
2571 return DAG
.getNode(MipsISD::EH_RETURN
, DL
, MVT::Other
, Chain
,
2572 DAG
.getRegister(OffsetReg
, Ty
),
2573 DAG
.getRegister(AddrReg
, getPointerTy(MF
.getDataLayout())),
2577 SDValue
MipsTargetLowering::lowerATOMIC_FENCE(SDValue Op
,
2578 SelectionDAG
&DAG
) const {
2579 // FIXME: Need pseudo-fence for 'singlethread' fences
2580 // FIXME: Set SType for weaker fences where supported/appropriate.
2583 return DAG
.getNode(MipsISD::Sync
, DL
, MVT::Other
, Op
.getOperand(0),
2584 DAG
.getConstant(SType
, DL
, MVT::i32
));
2587 SDValue
MipsTargetLowering::lowerShiftLeftParts(SDValue Op
,
2588 SelectionDAG
&DAG
) const {
2590 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2592 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2593 SDValue Shamt
= Op
.getOperand(2);
2594 // if shamt < (VT.bits):
2595 // lo = (shl lo, shamt)
2596 // hi = (or (shl hi, shamt) (srl (srl lo, 1), ~shamt))
2599 // hi = (shl lo, shamt[4:0])
2600 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2601 DAG
.getConstant(-1, DL
, MVT::i32
));
2602 SDValue ShiftRight1Lo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
,
2603 DAG
.getConstant(1, DL
, VT
));
2604 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, ShiftRight1Lo
, Not
);
2605 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
, Shamt
);
2606 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2607 SDValue ShiftLeftLo
= DAG
.getNode(ISD::SHL
, DL
, VT
, Lo
, Shamt
);
2608 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2609 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2610 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2611 DAG
.getConstant(0, DL
, VT
), ShiftLeftLo
);
2612 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftLeftLo
, Or
);
2614 SDValue Ops
[2] = {Lo
, Hi
};
2615 return DAG
.getMergeValues(Ops
, DL
);
2618 SDValue
MipsTargetLowering::lowerShiftRightParts(SDValue Op
, SelectionDAG
&DAG
,
2621 SDValue Lo
= Op
.getOperand(0), Hi
= Op
.getOperand(1);
2622 SDValue Shamt
= Op
.getOperand(2);
2623 MVT VT
= Subtarget
.isGP64bit() ? MVT::i64
: MVT::i32
;
2625 // if shamt < (VT.bits):
2626 // lo = (or (shl (shl hi, 1), ~shamt) (srl lo, shamt))
2628 // hi = (sra hi, shamt)
2630 // hi = (srl hi, shamt)
2633 // lo = (sra hi, shamt[4:0])
2634 // hi = (sra hi, 31)
2636 // lo = (srl hi, shamt[4:0])
2638 SDValue Not
= DAG
.getNode(ISD::XOR
, DL
, MVT::i32
, Shamt
,
2639 DAG
.getConstant(-1, DL
, MVT::i32
));
2640 SDValue ShiftLeft1Hi
= DAG
.getNode(ISD::SHL
, DL
, VT
, Hi
,
2641 DAG
.getConstant(1, DL
, VT
));
2642 SDValue ShiftLeftHi
= DAG
.getNode(ISD::SHL
, DL
, VT
, ShiftLeft1Hi
, Not
);
2643 SDValue ShiftRightLo
= DAG
.getNode(ISD::SRL
, DL
, VT
, Lo
, Shamt
);
2644 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, ShiftLeftHi
, ShiftRightLo
);
2645 SDValue ShiftRightHi
= DAG
.getNode(IsSRA
? ISD::SRA
: ISD::SRL
,
2647 SDValue Cond
= DAG
.getNode(ISD::AND
, DL
, MVT::i32
, Shamt
,
2648 DAG
.getConstant(VT
.getSizeInBits(), DL
, MVT::i32
));
2649 SDValue Ext
= DAG
.getNode(ISD::SRA
, DL
, VT
, Hi
,
2650 DAG
.getConstant(VT
.getSizeInBits() - 1, DL
, VT
));
2652 if (!(Subtarget
.hasMips4() || Subtarget
.hasMips32())) {
2653 SDVTList VTList
= DAG
.getVTList(VT
, VT
);
2654 return DAG
.getNode(Subtarget
.isGP64bit() ? Mips::PseudoD_SELECT_I64
2655 : Mips::PseudoD_SELECT_I
,
2656 DL
, VTList
, Cond
, ShiftRightHi
,
2657 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), Or
,
2661 Lo
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
, ShiftRightHi
, Or
);
2662 Hi
= DAG
.getNode(ISD::SELECT
, DL
, VT
, Cond
,
2663 IsSRA
? Ext
: DAG
.getConstant(0, DL
, VT
), ShiftRightHi
);
2665 SDValue Ops
[2] = {Lo
, Hi
};
2666 return DAG
.getMergeValues(Ops
, DL
);
2669 static SDValue
createLoadLR(unsigned Opc
, SelectionDAG
&DAG
, LoadSDNode
*LD
,
2670 SDValue Chain
, SDValue Src
, unsigned Offset
) {
2671 SDValue Ptr
= LD
->getBasePtr();
2672 EVT VT
= LD
->getValueType(0), MemVT
= LD
->getMemoryVT();
2673 EVT BasePtrVT
= Ptr
.getValueType();
2675 SDVTList VTList
= DAG
.getVTList(VT
, MVT::Other
);
2678 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2679 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2681 SDValue Ops
[] = { Chain
, Ptr
, Src
};
2682 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2683 LD
->getMemOperand());
2686 // Expand an unaligned 32 or 64-bit integer load node.
2687 SDValue
MipsTargetLowering::lowerLOAD(SDValue Op
, SelectionDAG
&DAG
) const {
2688 LoadSDNode
*LD
= cast
<LoadSDNode
>(Op
);
2689 EVT MemVT
= LD
->getMemoryVT();
2691 if (Subtarget
.systemSupportsUnalignedAccess())
2694 // Return if load is aligned or if MemVT is neither i32 nor i64.
2695 if ((LD
->getAlign().value() >= (MemVT
.getSizeInBits() / 8)) ||
2696 ((MemVT
!= MVT::i32
) && (MemVT
!= MVT::i64
)))
2699 bool IsLittle
= Subtarget
.isLittle();
2700 EVT VT
= Op
.getValueType();
2701 ISD::LoadExtType ExtType
= LD
->getExtensionType();
2702 SDValue Chain
= LD
->getChain(), Undef
= DAG
.getUNDEF(VT
);
2704 assert((VT
== MVT::i32
) || (VT
== MVT::i64
));
2707 // (set dst, (i64 (load baseptr)))
2709 // (set tmp, (ldl (add baseptr, 7), undef))
2710 // (set dst, (ldr baseptr, tmp))
2711 if ((VT
== MVT::i64
) && (ExtType
== ISD::NON_EXTLOAD
)) {
2712 SDValue LDL
= createLoadLR(MipsISD::LDL
, DAG
, LD
, Chain
, Undef
,
2714 return createLoadLR(MipsISD::LDR
, DAG
, LD
, LDL
.getValue(1), LDL
,
2718 SDValue LWL
= createLoadLR(MipsISD::LWL
, DAG
, LD
, Chain
, Undef
,
2720 SDValue LWR
= createLoadLR(MipsISD::LWR
, DAG
, LD
, LWL
.getValue(1), LWL
,
2724 // (set dst, (i32 (load baseptr))) or
2725 // (set dst, (i64 (sextload baseptr))) or
2726 // (set dst, (i64 (extload baseptr)))
2728 // (set tmp, (lwl (add baseptr, 3), undef))
2729 // (set dst, (lwr baseptr, tmp))
2730 if ((VT
== MVT::i32
) || (ExtType
== ISD::SEXTLOAD
) ||
2731 (ExtType
== ISD::EXTLOAD
))
2734 assert((VT
== MVT::i64
) && (ExtType
== ISD::ZEXTLOAD
));
2737 // (set dst, (i64 (zextload baseptr)))
2739 // (set tmp0, (lwl (add baseptr, 3), undef))
2740 // (set tmp1, (lwr baseptr, tmp0))
2741 // (set tmp2, (shl tmp1, 32))
2742 // (set dst, (srl tmp2, 32))
2744 SDValue Const32
= DAG
.getConstant(32, DL
, MVT::i32
);
2745 SDValue SLL
= DAG
.getNode(ISD::SHL
, DL
, MVT::i64
, LWR
, Const32
);
2746 SDValue SRL
= DAG
.getNode(ISD::SRL
, DL
, MVT::i64
, SLL
, Const32
);
2747 SDValue Ops
[] = { SRL
, LWR
.getValue(1) };
2748 return DAG
.getMergeValues(Ops
, DL
);
2751 static SDValue
createStoreLR(unsigned Opc
, SelectionDAG
&DAG
, StoreSDNode
*SD
,
2752 SDValue Chain
, unsigned Offset
) {
2753 SDValue Ptr
= SD
->getBasePtr(), Value
= SD
->getValue();
2754 EVT MemVT
= SD
->getMemoryVT(), BasePtrVT
= Ptr
.getValueType();
2756 SDVTList VTList
= DAG
.getVTList(MVT::Other
);
2759 Ptr
= DAG
.getNode(ISD::ADD
, DL
, BasePtrVT
, Ptr
,
2760 DAG
.getConstant(Offset
, DL
, BasePtrVT
));
2762 SDValue Ops
[] = { Chain
, Value
, Ptr
};
2763 return DAG
.getMemIntrinsicNode(Opc
, DL
, VTList
, Ops
, MemVT
,
2764 SD
->getMemOperand());
2767 // Expand an unaligned 32 or 64-bit integer store node.
2768 static SDValue
lowerUnalignedIntStore(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2770 SDValue Value
= SD
->getValue(), Chain
= SD
->getChain();
2771 EVT VT
= Value
.getValueType();
2774 // (store val, baseptr) or
2775 // (truncstore val, baseptr)
2777 // (swl val, (add baseptr, 3))
2778 // (swr val, baseptr)
2779 if ((VT
== MVT::i32
) || SD
->isTruncatingStore()) {
2780 SDValue SWL
= createStoreLR(MipsISD::SWL
, DAG
, SD
, Chain
,
2782 return createStoreLR(MipsISD::SWR
, DAG
, SD
, SWL
, IsLittle
? 0 : 3);
2785 assert(VT
== MVT::i64
);
2788 // (store val, baseptr)
2790 // (sdl val, (add baseptr, 7))
2791 // (sdr val, baseptr)
2792 SDValue SDL
= createStoreLR(MipsISD::SDL
, DAG
, SD
, Chain
, IsLittle
? 7 : 0);
2793 return createStoreLR(MipsISD::SDR
, DAG
, SD
, SDL
, IsLittle
? 0 : 7);
2796 // Lower (store (fp_to_sint $fp) $ptr) to (store (TruncIntFP $fp), $ptr).
2797 static SDValue
lowerFP_TO_SINT_STORE(StoreSDNode
*SD
, SelectionDAG
&DAG
,
2799 SDValue Val
= SD
->getValue();
2801 if (Val
.getOpcode() != ISD::FP_TO_SINT
||
2802 (Val
.getValueSizeInBits() > 32 && SingleFloat
))
2805 EVT FPTy
= EVT::getFloatingPointVT(Val
.getValueSizeInBits());
2806 SDValue Tr
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Val
), FPTy
,
2808 return DAG
.getStore(SD
->getChain(), SDLoc(SD
), Tr
, SD
->getBasePtr(),
2809 SD
->getPointerInfo(), SD
->getAlign(),
2810 SD
->getMemOperand()->getFlags());
2813 SDValue
MipsTargetLowering::lowerSTORE(SDValue Op
, SelectionDAG
&DAG
) const {
2814 StoreSDNode
*SD
= cast
<StoreSDNode
>(Op
);
2815 EVT MemVT
= SD
->getMemoryVT();
2817 // Lower unaligned integer stores.
2818 if (!Subtarget
.systemSupportsUnalignedAccess() &&
2819 (SD
->getAlign().value() < (MemVT
.getSizeInBits() / 8)) &&
2820 ((MemVT
== MVT::i32
) || (MemVT
== MVT::i64
)))
2821 return lowerUnalignedIntStore(SD
, DAG
, Subtarget
.isLittle());
2823 return lowerFP_TO_SINT_STORE(SD
, DAG
, Subtarget
.isSingleFloat());
2826 SDValue
MipsTargetLowering::lowerEH_DWARF_CFA(SDValue Op
,
2827 SelectionDAG
&DAG
) const {
2829 // Return a fixed StackObject with offset 0 which points to the old stack
2831 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
2832 EVT ValTy
= Op
->getValueType(0);
2833 int FI
= MFI
.CreateFixedObject(Op
.getValueSizeInBits() / 8, 0, false);
2834 return DAG
.getFrameIndex(FI
, ValTy
);
2837 SDValue
MipsTargetLowering::lowerFP_TO_SINT(SDValue Op
,
2838 SelectionDAG
&DAG
) const {
2839 if (Op
.getValueSizeInBits() > 32 && Subtarget
.isSingleFloat())
2842 EVT FPTy
= EVT::getFloatingPointVT(Op
.getValueSizeInBits());
2843 SDValue Trunc
= DAG
.getNode(MipsISD::TruncIntFP
, SDLoc(Op
), FPTy
,
2845 return DAG
.getNode(ISD::BITCAST
, SDLoc(Op
), Op
.getValueType(), Trunc
);
2848 //===----------------------------------------------------------------------===//
2849 // Calling Convention Implementation
2850 //===----------------------------------------------------------------------===//
2852 //===----------------------------------------------------------------------===//
2853 // TODO: Implement a generic logic using tblgen that can support this.
2854 // Mips O32 ABI rules:
2856 // i32 - Passed in A0, A1, A2, A3 and stack
2857 // f32 - Only passed in f32 registers if no int reg has been used yet to hold
2858 // an argument. Otherwise, passed in A1, A2, A3 and stack.
2859 // f64 - Only passed in two aliased f32 registers if no int reg has been used
2860 // yet to hold an argument. Otherwise, use A2, A3 and stack. If A1 is
2861 // not used, it must be shadowed. If only A3 is available, shadow it and
2863 // vXiX - Received as scalarized i32s, passed in A0 - A3 and the stack.
2864 // vXf32 - Passed in either a pair of registers {A0, A1}, {A2, A3} or {A0 - A3}
2865 // with the remainder spilled to the stack.
2866 // vXf64 - Passed in either {A0, A1, A2, A3} or {A2, A3} and in both cases
2867 // spilling the remainder to the stack.
2869 // For vararg functions, all arguments are passed in A0, A1, A2, A3 and stack.
2870 //===----------------------------------------------------------------------===//
2872 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
2873 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
2874 CCState
&State
, ArrayRef
<MCPhysReg
> F64Regs
) {
2875 const MipsSubtarget
&Subtarget
= static_cast<const MipsSubtarget
&>(
2876 State
.getMachineFunction().getSubtarget());
2878 static const MCPhysReg IntRegs
[] = { Mips::A0
, Mips::A1
, Mips::A2
, Mips::A3
};
2880 const MipsCCState
* MipsState
= static_cast<MipsCCState
*>(&State
);
2882 static const MCPhysReg F32Regs
[] = { Mips::F12
, Mips::F14
};
2884 static const MCPhysReg FloatVectorIntRegs
[] = { Mips::A0
, Mips::A2
};
2886 // Do not process byval args here.
2887 if (ArgFlags
.isByVal())
2890 // Promote i8 and i16
2891 if (ArgFlags
.isInReg() && !Subtarget
.isLittle()) {
2892 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
|| LocVT
== MVT::i32
) {
2894 if (ArgFlags
.isSExt())
2895 LocInfo
= CCValAssign::SExtUpper
;
2896 else if (ArgFlags
.isZExt())
2897 LocInfo
= CCValAssign::ZExtUpper
;
2899 LocInfo
= CCValAssign::AExtUpper
;
2903 // Promote i8 and i16
2904 if (LocVT
== MVT::i8
|| LocVT
== MVT::i16
) {
2906 if (ArgFlags
.isSExt())
2907 LocInfo
= CCValAssign::SExt
;
2908 else if (ArgFlags
.isZExt())
2909 LocInfo
= CCValAssign::ZExt
;
2911 LocInfo
= CCValAssign::AExt
;
2916 // f32 and f64 are allocated in A0, A1, A2, A3 when either of the following
2917 // is true: function is vararg, argument is 3rd or higher, there is previous
2918 // argument which is not f32 or f64.
2919 bool AllocateFloatsInIntReg
= State
.isVarArg() || ValNo
> 1 ||
2920 State
.getFirstUnallocated(F32Regs
) != ValNo
;
2921 Align OrigAlign
= ArgFlags
.getNonZeroOrigAlign();
2922 bool isI64
= (ValVT
== MVT::i32
&& OrigAlign
== Align(8));
2923 bool isVectorFloat
= MipsState
->WasOriginalArgVectorFloat(ValNo
);
2925 // The MIPS vector ABI for floats passes them in a pair of registers
2926 if (ValVT
== MVT::i32
&& isVectorFloat
) {
2927 // This is the start of an vector that was scalarized into an unknown number
2928 // of components. It doesn't matter how many there are. Allocate one of the
2929 // notional 8 byte aligned registers which map onto the argument stack, and
2930 // shadow the register lost to alignment requirements.
2931 if (ArgFlags
.isSplit()) {
2932 Reg
= State
.AllocateReg(FloatVectorIntRegs
);
2933 if (Reg
== Mips::A2
)
2934 State
.AllocateReg(Mips::A1
);
2936 State
.AllocateReg(Mips::A3
);
2938 // If we're an intermediate component of the split, we can just attempt to
2939 // allocate a register directly.
2940 Reg
= State
.AllocateReg(IntRegs
);
2942 } else if (ValVT
== MVT::i32
||
2943 (ValVT
== MVT::f32
&& AllocateFloatsInIntReg
)) {
2944 Reg
= State
.AllocateReg(IntRegs
);
2945 // If this is the first part of an i64 arg,
2946 // the allocated register must be either A0 or A2.
2947 if (isI64
&& (Reg
== Mips::A1
|| Reg
== Mips::A3
))
2948 Reg
= State
.AllocateReg(IntRegs
);
2950 } else if (ValVT
== MVT::f64
&& AllocateFloatsInIntReg
) {
2951 // Allocate int register and shadow next int register. If first
2952 // available register is Mips::A1 or Mips::A3, shadow it too.
2953 Reg
= State
.AllocateReg(IntRegs
);
2954 if (Reg
== Mips::A1
|| Reg
== Mips::A3
)
2955 Reg
= State
.AllocateReg(IntRegs
);
2961 CCValAssign::getCustomReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
2962 MCRegister HiReg
= State
.AllocateReg(IntRegs
);
2965 CCValAssign::getCustomReg(ValNo
, ValVT
, HiReg
, LocVT
, LocInfo
));
2968 } else if (ValVT
.isFloatingPoint() && !AllocateFloatsInIntReg
) {
2969 // we are guaranteed to find an available float register
2970 if (ValVT
== MVT::f32
) {
2971 Reg
= State
.AllocateReg(F32Regs
);
2972 // Shadow int register
2973 State
.AllocateReg(IntRegs
);
2975 Reg
= State
.AllocateReg(F64Regs
);
2976 // Shadow int registers
2977 unsigned Reg2
= State
.AllocateReg(IntRegs
);
2978 if (Reg2
== Mips::A1
|| Reg2
== Mips::A3
)
2979 State
.AllocateReg(IntRegs
);
2980 State
.AllocateReg(IntRegs
);
2983 llvm_unreachable("Cannot handle this ValVT.");
2986 unsigned Offset
= State
.AllocateStack(ValVT
.getStoreSize(), OrigAlign
);
2987 State
.addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
2989 State
.addLoc(CCValAssign::getReg(ValNo
, ValVT
, Reg
, LocVT
, LocInfo
));
2994 static bool CC_MipsO32_FP32(unsigned ValNo
, MVT ValVT
,
2995 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
2996 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
2997 static const MCPhysReg F64Regs
[] = { Mips::D6
, Mips::D7
};
2999 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
3002 static bool CC_MipsO32_FP64(unsigned ValNo
, MVT ValVT
,
3003 MVT LocVT
, CCValAssign::LocInfo LocInfo
,
3004 ISD::ArgFlagsTy ArgFlags
, CCState
&State
) {
3005 static const MCPhysReg F64Regs
[] = { Mips::D12_64
, Mips::D14_64
};
3007 return CC_MipsO32(ValNo
, ValVT
, LocVT
, LocInfo
, ArgFlags
, State
, F64Regs
);
3010 static bool CC_MipsO32(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
3011 CCValAssign::LocInfo LocInfo
, ISD::ArgFlagsTy ArgFlags
,
3012 CCState
&State
) LLVM_ATTRIBUTE_UNUSED
;
3014 #include "MipsGenCallingConv.inc"
3016 CCAssignFn
*MipsTargetLowering::CCAssignFnForCall() const{
3017 return CC_Mips_FixedArg
;
3020 CCAssignFn
*MipsTargetLowering::CCAssignFnForReturn() const{
3023 //===----------------------------------------------------------------------===//
3024 // Call Calling Convention Implementation
3025 //===----------------------------------------------------------------------===//
3027 SDValue
MipsTargetLowering::passArgOnStack(SDValue StackPtr
, unsigned Offset
,
3028 SDValue Chain
, SDValue Arg
,
3029 const SDLoc
&DL
, bool IsTailCall
,
3030 SelectionDAG
&DAG
) const {
3033 DAG
.getNode(ISD::ADD
, DL
, getPointerTy(DAG
.getDataLayout()), StackPtr
,
3034 DAG
.getIntPtrConstant(Offset
, DL
));
3035 return DAG
.getStore(Chain
, DL
, Arg
, PtrOff
, MachinePointerInfo());
3038 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
3039 int FI
= MFI
.CreateFixedObject(Arg
.getValueSizeInBits() / 8, Offset
, false);
3040 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3041 return DAG
.getStore(Chain
, DL
, Arg
, FIN
, MachinePointerInfo(), MaybeAlign(),
3042 MachineMemOperand::MOVolatile
);
3045 void MipsTargetLowering::
3046 getOpndList(SmallVectorImpl
<SDValue
> &Ops
,
3047 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
3048 bool IsPICCall
, bool GlobalOrExternal
, bool InternalLinkage
,
3049 bool IsCallReloc
, CallLoweringInfo
&CLI
, SDValue Callee
,
3050 SDValue Chain
) const {
3051 // Insert node "GP copy globalreg" before call to function.
3053 // R_MIPS_CALL* operators (emitted when non-internal functions are called
3054 // in PIC mode) allow symbols to be resolved via lazy binding.
3055 // The lazy binding stub requires GP to point to the GOT.
3056 // Note that we don't need GP to point to the GOT for indirect calls
3057 // (when R_MIPS_CALL* is not used for the call) because Mips linker generates
3058 // lazy binding stub for a function only when R_MIPS_CALL* are the only relocs
3059 // used for the function (that is, Mips linker doesn't generate lazy binding
3060 // stub for a function whose address is taken in the program).
3061 if (IsPICCall
&& !InternalLinkage
&& IsCallReloc
) {
3062 unsigned GPReg
= ABI
.IsN64() ? Mips::GP_64
: Mips::GP
;
3063 EVT Ty
= ABI
.IsN64() ? MVT::i64
: MVT::i32
;
3064 RegsToPass
.push_back(std::make_pair(GPReg
, getGlobalReg(CLI
.DAG
, Ty
)));
3067 // Build a sequence of copy-to-reg nodes chained together with token
3068 // chain and flag operands which copy the outgoing args into registers.
3069 // The InGlue in necessary since all emitted instructions must be
3073 for (auto &R
: RegsToPass
) {
3074 Chain
= CLI
.DAG
.getCopyToReg(Chain
, CLI
.DL
, R
.first
, R
.second
, InGlue
);
3075 InGlue
= Chain
.getValue(1);
3078 // Add argument registers to the end of the list so that they are
3079 // known live into the call.
3080 for (auto &R
: RegsToPass
)
3081 Ops
.push_back(CLI
.DAG
.getRegister(R
.first
, R
.second
.getValueType()));
3083 // Add a register mask operand representing the call-preserved registers.
3084 const TargetRegisterInfo
*TRI
= Subtarget
.getRegisterInfo();
3085 const uint32_t *Mask
=
3086 TRI
->getCallPreservedMask(CLI
.DAG
.getMachineFunction(), CLI
.CallConv
);
3087 assert(Mask
&& "Missing call preserved mask for calling convention");
3088 if (Subtarget
.inMips16HardFloat()) {
3089 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(CLI
.Callee
)) {
3090 StringRef Sym
= G
->getGlobal()->getName();
3091 Function
*F
= G
->getGlobal()->getParent()->getFunction(Sym
);
3092 if (F
&& F
->hasFnAttribute("__Mips16RetHelper")) {
3093 Mask
= MipsRegisterInfo::getMips16RetHelperMask();
3097 Ops
.push_back(CLI
.DAG
.getRegisterMask(Mask
));
3099 if (InGlue
.getNode())
3100 Ops
.push_back(InGlue
);
3103 void MipsTargetLowering::AdjustInstrPostInstrSelection(MachineInstr
&MI
,
3104 SDNode
*Node
) const {
3105 switch (MI
.getOpcode()) {
3109 case Mips::JALRPseudo
:
3111 case Mips::JALR64Pseudo
:
3112 case Mips::JALR16_MM
:
3113 case Mips::JALRC16_MMR6
:
3114 case Mips::TAILCALLREG
:
3115 case Mips::TAILCALLREG64
:
3116 case Mips::TAILCALLR6REG
:
3117 case Mips::TAILCALL64R6REG
:
3118 case Mips::TAILCALLREG_MM
:
3119 case Mips::TAILCALLREG_MMR6
: {
3120 if (!EmitJalrReloc
||
3121 Subtarget
.inMips16Mode() ||
3122 !isPositionIndependent() ||
3123 Node
->getNumOperands() < 1 ||
3124 Node
->getOperand(0).getNumOperands() < 2) {
3127 // We are after the callee address, set by LowerCall().
3128 // If added to MI, asm printer will emit .reloc R_MIPS_JALR for the
3130 const SDValue TargetAddr
= Node
->getOperand(0).getOperand(1);
3132 if (const GlobalAddressSDNode
*G
=
3133 dyn_cast_or_null
<const GlobalAddressSDNode
>(TargetAddr
)) {
3134 // We must not emit the R_MIPS_JALR relocation against data symbols
3135 // since this will cause run-time crashes if the linker replaces the
3136 // call instruction with a relative branch to the data symbol.
3137 if (!isa
<Function
>(G
->getGlobal())) {
3138 LLVM_DEBUG(dbgs() << "Not adding R_MIPS_JALR against data symbol "
3139 << G
->getGlobal()->getName() << "\n");
3142 Sym
= G
->getGlobal()->getName();
3144 else if (const ExternalSymbolSDNode
*ES
=
3145 dyn_cast_or_null
<const ExternalSymbolSDNode
>(TargetAddr
)) {
3146 Sym
= ES
->getSymbol();
3152 MachineFunction
*MF
= MI
.getParent()->getParent();
3153 MCSymbol
*S
= MF
->getContext().getOrCreateSymbol(Sym
);
3154 LLVM_DEBUG(dbgs() << "Adding R_MIPS_JALR against " << Sym
<< "\n");
3155 MI
.addOperand(MachineOperand::CreateMCSymbol(S
, MipsII::MO_JALR
));
3160 /// LowerCall - functions arguments are copied from virtual regs to
3161 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
3163 MipsTargetLowering::LowerCall(TargetLowering::CallLoweringInfo
&CLI
,
3164 SmallVectorImpl
<SDValue
> &InVals
) const {
3165 SelectionDAG
&DAG
= CLI
.DAG
;
3167 SmallVectorImpl
<ISD::OutputArg
> &Outs
= CLI
.Outs
;
3168 SmallVectorImpl
<SDValue
> &OutVals
= CLI
.OutVals
;
3169 SmallVectorImpl
<ISD::InputArg
> &Ins
= CLI
.Ins
;
3170 SDValue Chain
= CLI
.Chain
;
3171 SDValue Callee
= CLI
.Callee
;
3172 bool &IsTailCall
= CLI
.IsTailCall
;
3173 CallingConv::ID CallConv
= CLI
.CallConv
;
3174 bool IsVarArg
= CLI
.IsVarArg
;
3176 MachineFunction
&MF
= DAG
.getMachineFunction();
3177 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3178 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
3179 MipsFunctionInfo
*FuncInfo
= MF
.getInfo
<MipsFunctionInfo
>();
3180 bool IsPIC
= isPositionIndependent();
3182 // Analyze operands of the call, assigning locations to each operand.
3183 SmallVector
<CCValAssign
, 16> ArgLocs
;
3185 CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
, *DAG
.getContext(),
3186 MipsCCState::getSpecialCallingConvForCallee(Callee
.getNode(), Subtarget
));
3188 const ExternalSymbolSDNode
*ES
=
3189 dyn_cast_or_null
<const ExternalSymbolSDNode
>(Callee
.getNode());
3191 // There is one case where CALLSEQ_START..CALLSEQ_END can be nested, which
3192 // is during the lowering of a call with a byval argument which produces
3193 // a call to memcpy. For the O32 case, this causes the caller to allocate
3194 // stack space for the reserved argument area for the callee, then recursively
3195 // again for the memcpy call. In the NEWABI case, this doesn't occur as those
3196 // ABIs mandate that the callee allocates the reserved argument area. We do
3197 // still produce nested CALLSEQ_START..CALLSEQ_END with zero space though.
3199 // If the callee has a byval argument and memcpy is used, we are mandated
3200 // to already have produced a reserved argument area for the callee for O32.
3201 // Therefore, the reserved argument area can be reused for both calls.
3203 // Other cases of calling memcpy cannot have a chain with a CALLSEQ_START
3204 // present, as we have yet to hook that node onto the chain.
3206 // Hence, the CALLSEQ_START and CALLSEQ_END nodes can be eliminated in this
3207 // case. GCC does a similar trick, in that wherever possible, it calculates
3208 // the maximum out going argument area (including the reserved area), and
3209 // preallocates the stack space on entrance to the caller.
3211 // FIXME: We should do the same for efficiency and space.
3213 // Note: The check on the calling convention below must match
3214 // MipsABIInfo::GetCalleeAllocdArgSizeInBytes().
3215 bool MemcpyInByVal
= ES
&&
3216 StringRef(ES
->getSymbol()) == StringRef("memcpy") &&
3217 CallConv
!= CallingConv::Fast
&&
3218 Chain
.getOpcode() == ISD::CALLSEQ_START
;
3220 // Allocate the reserved argument area. It seems strange to do this from the
3221 // caller side but removing it breaks the frame size calculation.
3222 unsigned ReservedArgArea
=
3223 MemcpyInByVal
? 0 : ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
);
3224 CCInfo
.AllocateStack(ReservedArgArea
, Align(1));
3226 CCInfo
.AnalyzeCallOperands(Outs
, CC_Mips
, CLI
.getArgs(),
3227 ES
? ES
->getSymbol() : nullptr);
3229 // Get a count of how many bytes are to be pushed on the stack.
3230 unsigned StackSize
= CCInfo
.getStackSize();
3232 // Call site info for function parameters tracking.
3233 MachineFunction::CallSiteInfo CSInfo
;
3235 // Check if it's really possible to do a tail call. Restrict it to functions
3236 // that are part of this compilation unit.
3237 bool InternalLinkage
= false;
3239 IsTailCall
= isEligibleForTailCallOptimization(
3240 CCInfo
, StackSize
, *MF
.getInfo
<MipsFunctionInfo
>());
3241 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3242 InternalLinkage
= G
->getGlobal()->hasInternalLinkage();
3243 IsTailCall
&= (InternalLinkage
|| G
->getGlobal()->hasLocalLinkage() ||
3244 G
->getGlobal()->hasPrivateLinkage() ||
3245 G
->getGlobal()->hasHiddenVisibility() ||
3246 G
->getGlobal()->hasProtectedVisibility());
3249 if (!IsTailCall
&& CLI
.CB
&& CLI
.CB
->isMustTailCall())
3250 report_fatal_error("failed to perform tail call elimination on a call "
3251 "site marked musttail");
3256 // Chain is the output chain of the last Load/Store or CopyToReg node.
3257 // ByValChain is the output chain of the last Memcpy node created for copying
3258 // byval arguments to the stack.
3259 unsigned StackAlignment
= TFL
->getStackAlignment();
3260 StackSize
= alignTo(StackSize
, StackAlignment
);
3262 if (!(IsTailCall
|| MemcpyInByVal
))
3263 Chain
= DAG
.getCALLSEQ_START(Chain
, StackSize
, 0, DL
);
3266 DAG
.getCopyFromReg(Chain
, DL
, ABI
.IsN64() ? Mips::SP_64
: Mips::SP
,
3267 getPointerTy(DAG
.getDataLayout()));
3269 std::deque
<std::pair
<unsigned, SDValue
>> RegsToPass
;
3270 SmallVector
<SDValue
, 8> MemOpChains
;
3272 CCInfo
.rewindByValRegsInfo();
3274 // Walk the register/memloc assignments, inserting copies/loads.
3275 for (unsigned i
= 0, e
= ArgLocs
.size(), OutIdx
= 0; i
!= e
; ++i
, ++OutIdx
) {
3276 SDValue Arg
= OutVals
[OutIdx
];
3277 CCValAssign
&VA
= ArgLocs
[i
];
3278 MVT ValVT
= VA
.getValVT(), LocVT
= VA
.getLocVT();
3279 ISD::ArgFlagsTy Flags
= Outs
[OutIdx
].Flags
;
3280 bool UseUpperBits
= false;
3283 if (Flags
.isByVal()) {
3284 unsigned FirstByValReg
, LastByValReg
;
3285 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3286 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3288 assert(Flags
.getByValSize() &&
3289 "ByVal args of size 0 should have been ignored by front-end.");
3290 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3291 assert(!IsTailCall
&&
3292 "Do not tail-call optimize if there is a byval argument.");
3293 passByValArg(Chain
, DL
, RegsToPass
, MemOpChains
, StackPtr
, MFI
, DAG
, Arg
,
3294 FirstByValReg
, LastByValReg
, Flags
, Subtarget
.isLittle(),
3296 CCInfo
.nextInRegsParam();
3300 // Promote the value if needed.
3301 switch (VA
.getLocInfo()) {
3303 llvm_unreachable("Unknown loc info!");
3304 case CCValAssign::Full
:
3305 if (VA
.isRegLoc()) {
3306 if ((ValVT
== MVT::f32
&& LocVT
== MVT::i32
) ||
3307 (ValVT
== MVT::f64
&& LocVT
== MVT::i64
) ||
3308 (ValVT
== MVT::i64
&& LocVT
== MVT::f64
))
3309 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3310 else if (ValVT
== MVT::f64
&& LocVT
== MVT::i32
) {
3311 SDValue Lo
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3312 Arg
, DAG
.getConstant(0, DL
, MVT::i32
));
3313 SDValue Hi
= DAG
.getNode(MipsISD::ExtractElementF64
, DL
, MVT::i32
,
3314 Arg
, DAG
.getConstant(1, DL
, MVT::i32
));
3315 if (!Subtarget
.isLittle())
3318 assert(VA
.needsCustom());
3320 Register LocRegLo
= VA
.getLocReg();
3321 Register LocRegHigh
= ArgLocs
[++i
].getLocReg();
3322 RegsToPass
.push_back(std::make_pair(LocRegLo
, Lo
));
3323 RegsToPass
.push_back(std::make_pair(LocRegHigh
, Hi
));
3328 case CCValAssign::BCvt
:
3329 Arg
= DAG
.getNode(ISD::BITCAST
, DL
, LocVT
, Arg
);
3331 case CCValAssign::SExtUpper
:
3332 UseUpperBits
= true;
3334 case CCValAssign::SExt
:
3335 Arg
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, LocVT
, Arg
);
3337 case CCValAssign::ZExtUpper
:
3338 UseUpperBits
= true;
3340 case CCValAssign::ZExt
:
3341 Arg
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, LocVT
, Arg
);
3343 case CCValAssign::AExtUpper
:
3344 UseUpperBits
= true;
3346 case CCValAssign::AExt
:
3347 Arg
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, LocVT
, Arg
);
3352 unsigned ValSizeInBits
= Outs
[OutIdx
].ArgVT
.getSizeInBits();
3353 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3355 ISD::SHL
, DL
, VA
.getLocVT(), Arg
,
3356 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3359 // Arguments that can be passed on register must be kept at
3360 // RegsToPass vector
3361 if (VA
.isRegLoc()) {
3362 RegsToPass
.push_back(std::make_pair(VA
.getLocReg(), Arg
));
3364 // If the parameter is passed through reg $D, which splits into
3365 // two physical registers, avoid creating call site info.
3366 if (Mips::AFGR64RegClass
.contains(VA
.getLocReg()))
3369 // Collect CSInfo about which register passes which parameter.
3370 const TargetOptions
&Options
= DAG
.getTarget().Options
;
3371 if (Options
.SupportsDebugEntryValues
)
3372 CSInfo
.emplace_back(VA
.getLocReg(), i
);
3377 // Register can't get to this point...
3378 assert(VA
.isMemLoc());
3380 // emit ISD::STORE whichs stores the
3381 // parameter value to a stack Location
3382 MemOpChains
.push_back(passArgOnStack(StackPtr
, VA
.getLocMemOffset(),
3383 Chain
, Arg
, DL
, IsTailCall
, DAG
));
3386 // Transform all store nodes into one single node because all store
3387 // nodes are independent of each other.
3388 if (!MemOpChains
.empty())
3389 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, MemOpChains
);
3391 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
3392 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
3393 // node so that legalize doesn't hack it.
3395 EVT Ty
= Callee
.getValueType();
3396 bool GlobalOrExternal
= false, IsCallReloc
= false;
3398 // The long-calls feature is ignored in case of PIC.
3399 // While we do not support -mshared / -mno-shared properly,
3400 // ignore long-calls in case of -mabicalls too.
3401 if (!Subtarget
.isABICalls() && !IsPIC
) {
3402 // If the function should be called using "long call",
3403 // get its address into a register to prevent using
3404 // of the `jal` instruction for the direct call.
3405 if (auto *N
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3406 if (Subtarget
.useLongCalls())
3407 Callee
= Subtarget
.hasSym32()
3408 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3409 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3410 } else if (auto *N
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3411 bool UseLongCalls
= Subtarget
.useLongCalls();
3412 // If the function has long-call/far/near attribute
3413 // it overrides command line switch pased to the backend.
3414 if (auto *F
= dyn_cast
<Function
>(N
->getGlobal())) {
3415 if (F
->hasFnAttribute("long-call"))
3416 UseLongCalls
= true;
3417 else if (F
->hasFnAttribute("short-call"))
3418 UseLongCalls
= false;
3421 Callee
= Subtarget
.hasSym32()
3422 ? getAddrNonPIC(N
, SDLoc(N
), Ty
, DAG
)
3423 : getAddrNonPICSym64(N
, SDLoc(N
), Ty
, DAG
);
3427 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
)) {
3429 const GlobalValue
*Val
= G
->getGlobal();
3430 InternalLinkage
= Val
->hasInternalLinkage();
3432 if (InternalLinkage
)
3433 Callee
= getAddrLocal(G
, DL
, Ty
, DAG
, ABI
.IsN32() || ABI
.IsN64());
3434 else if (Subtarget
.useXGOT()) {
3435 Callee
= getAddrGlobalLargeGOT(G
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3436 MipsII::MO_CALL_LO16
, Chain
,
3437 FuncInfo
->callPtrInfo(MF
, Val
));
3440 Callee
= getAddrGlobal(G
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3441 FuncInfo
->callPtrInfo(MF
, Val
));
3445 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), DL
,
3446 getPointerTy(DAG
.getDataLayout()), 0,
3447 MipsII::MO_NO_FLAG
);
3448 GlobalOrExternal
= true;
3450 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
)) {
3451 const char *Sym
= S
->getSymbol();
3453 if (!IsPIC
) // static
3454 Callee
= DAG
.getTargetExternalSymbol(
3455 Sym
, getPointerTy(DAG
.getDataLayout()), MipsII::MO_NO_FLAG
);
3456 else if (Subtarget
.useXGOT()) {
3457 Callee
= getAddrGlobalLargeGOT(S
, DL
, Ty
, DAG
, MipsII::MO_CALL_HI16
,
3458 MipsII::MO_CALL_LO16
, Chain
,
3459 FuncInfo
->callPtrInfo(MF
, Sym
));
3462 Callee
= getAddrGlobal(S
, DL
, Ty
, DAG
, MipsII::MO_GOT_CALL
, Chain
,
3463 FuncInfo
->callPtrInfo(MF
, Sym
));
3467 GlobalOrExternal
= true;
3470 SmallVector
<SDValue
, 8> Ops(1, Chain
);
3471 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
3473 getOpndList(Ops
, RegsToPass
, IsPIC
, GlobalOrExternal
, InternalLinkage
,
3474 IsCallReloc
, CLI
, Callee
, Chain
);
3477 MF
.getFrameInfo().setHasTailCall();
3478 SDValue Ret
= DAG
.getNode(MipsISD::TailCall
, DL
, MVT::Other
, Ops
);
3479 DAG
.addCallSiteInfo(Ret
.getNode(), std::move(CSInfo
));
3483 Chain
= DAG
.getNode(MipsISD::JmpLink
, DL
, NodeTys
, Ops
);
3484 SDValue InGlue
= Chain
.getValue(1);
3486 DAG
.addCallSiteInfo(Chain
.getNode(), std::move(CSInfo
));
3488 // Create the CALLSEQ_END node in the case of where it is not a call to
3490 if (!(MemcpyInByVal
)) {
3491 Chain
= DAG
.getCALLSEQ_END(Chain
, StackSize
, 0, InGlue
, DL
);
3492 InGlue
= Chain
.getValue(1);
3495 // Handle result values, copying them out of physregs into vregs that we
3497 return LowerCallResult(Chain
, InGlue
, CallConv
, IsVarArg
, Ins
, DL
, DAG
,
3501 /// LowerCallResult - Lower the result values of a call into the
3502 /// appropriate copies out of appropriate physical registers.
3503 SDValue
MipsTargetLowering::LowerCallResult(
3504 SDValue Chain
, SDValue InGlue
, CallingConv::ID CallConv
, bool IsVarArg
,
3505 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3506 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
,
3507 TargetLowering::CallLoweringInfo
&CLI
) const {
3508 // Assign locations to each value returned by this call.
3509 SmallVector
<CCValAssign
, 16> RVLocs
;
3510 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), RVLocs
,
3513 const ExternalSymbolSDNode
*ES
=
3514 dyn_cast_or_null
<const ExternalSymbolSDNode
>(CLI
.Callee
.getNode());
3515 CCInfo
.AnalyzeCallResult(Ins
, RetCC_Mips
, CLI
.RetTy
,
3516 ES
? ES
->getSymbol() : nullptr);
3518 // Copy all of the result registers out of their specified physreg.
3519 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3520 CCValAssign
&VA
= RVLocs
[i
];
3521 assert(VA
.isRegLoc() && "Can only return in registers!");
3523 SDValue Val
= DAG
.getCopyFromReg(Chain
, DL
, RVLocs
[i
].getLocReg(),
3524 RVLocs
[i
].getLocVT(), InGlue
);
3525 Chain
= Val
.getValue(1);
3526 InGlue
= Val
.getValue(2);
3528 if (VA
.isUpperBitsInLoc()) {
3529 unsigned ValSizeInBits
= Ins
[i
].ArgVT
.getSizeInBits();
3530 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3532 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3534 Shift
, DL
, VA
.getLocVT(), Val
,
3535 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3538 switch (VA
.getLocInfo()) {
3540 llvm_unreachable("Unknown loc info!");
3541 case CCValAssign::Full
:
3543 case CCValAssign::BCvt
:
3544 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getValVT(), Val
);
3546 case CCValAssign::AExt
:
3547 case CCValAssign::AExtUpper
:
3548 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3550 case CCValAssign::ZExt
:
3551 case CCValAssign::ZExtUpper
:
3552 Val
= DAG
.getNode(ISD::AssertZext
, DL
, VA
.getLocVT(), Val
,
3553 DAG
.getValueType(VA
.getValVT()));
3554 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3556 case CCValAssign::SExt
:
3557 case CCValAssign::SExtUpper
:
3558 Val
= DAG
.getNode(ISD::AssertSext
, DL
, VA
.getLocVT(), Val
,
3559 DAG
.getValueType(VA
.getValVT()));
3560 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, VA
.getValVT(), Val
);
3564 InVals
.push_back(Val
);
3570 static SDValue
UnpackFromArgumentSlot(SDValue Val
, const CCValAssign
&VA
,
3571 EVT ArgVT
, const SDLoc
&DL
,
3572 SelectionDAG
&DAG
) {
3573 MVT LocVT
= VA
.getLocVT();
3574 EVT ValVT
= VA
.getValVT();
3576 // Shift into the upper bits if necessary.
3577 switch (VA
.getLocInfo()) {
3580 case CCValAssign::AExtUpper
:
3581 case CCValAssign::SExtUpper
:
3582 case CCValAssign::ZExtUpper
: {
3583 unsigned ValSizeInBits
= ArgVT
.getSizeInBits();
3584 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3586 VA
.getLocInfo() == CCValAssign::ZExtUpper
? ISD::SRL
: ISD::SRA
;
3588 Opcode
, DL
, VA
.getLocVT(), Val
,
3589 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3594 // If this is an value smaller than the argument slot size (32-bit for O32,
3595 // 64-bit for N32/N64), it has been promoted in some way to the argument slot
3596 // size. Extract the value and insert any appropriate assertions regarding
3597 // sign/zero extension.
3598 switch (VA
.getLocInfo()) {
3600 llvm_unreachable("Unknown loc info!");
3601 case CCValAssign::Full
:
3603 case CCValAssign::AExtUpper
:
3604 case CCValAssign::AExt
:
3605 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3607 case CCValAssign::SExtUpper
:
3608 case CCValAssign::SExt
:
3609 Val
= DAG
.getNode(ISD::AssertSext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3610 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3612 case CCValAssign::ZExtUpper
:
3613 case CCValAssign::ZExt
:
3614 Val
= DAG
.getNode(ISD::AssertZext
, DL
, LocVT
, Val
, DAG
.getValueType(ValVT
));
3615 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValVT
, Val
);
3617 case CCValAssign::BCvt
:
3618 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, Val
);
3625 //===----------------------------------------------------------------------===//
3626 // Formal Arguments Calling Convention Implementation
3627 //===----------------------------------------------------------------------===//
3628 /// LowerFormalArguments - transform physical registers into virtual registers
3629 /// and generate load operations for arguments places on the stack.
3630 SDValue
MipsTargetLowering::LowerFormalArguments(
3631 SDValue Chain
, CallingConv::ID CallConv
, bool IsVarArg
,
3632 const SmallVectorImpl
<ISD::InputArg
> &Ins
, const SDLoc
&DL
,
3633 SelectionDAG
&DAG
, SmallVectorImpl
<SDValue
> &InVals
) const {
3634 MachineFunction
&MF
= DAG
.getMachineFunction();
3635 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
3636 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3638 MipsFI
->setVarArgsFrameIndex(0);
3640 // Used with vargs to acumulate store chains.
3641 std::vector
<SDValue
> OutChains
;
3643 // Assign locations to all of the incoming arguments.
3644 SmallVector
<CCValAssign
, 16> ArgLocs
;
3645 MipsCCState
CCInfo(CallConv
, IsVarArg
, DAG
.getMachineFunction(), ArgLocs
,
3647 CCInfo
.AllocateStack(ABI
.GetCalleeAllocdArgSizeInBytes(CallConv
), Align(1));
3648 const Function
&Func
= DAG
.getMachineFunction().getFunction();
3649 Function::const_arg_iterator FuncArg
= Func
.arg_begin();
3651 if (Func
.hasFnAttribute("interrupt") && !Func
.arg_empty())
3653 "Functions with the interrupt attribute cannot have arguments!");
3655 CCInfo
.AnalyzeFormalArguments(Ins
, CC_Mips_FixedArg
);
3656 MipsFI
->setFormalArgInfo(CCInfo
.getStackSize(),
3657 CCInfo
.getInRegsParamsCount() > 0);
3659 unsigned CurArgIdx
= 0;
3660 CCInfo
.rewindByValRegsInfo();
3662 for (unsigned i
= 0, e
= ArgLocs
.size(), InsIdx
= 0; i
!= e
; ++i
, ++InsIdx
) {
3663 CCValAssign
&VA
= ArgLocs
[i
];
3664 if (Ins
[InsIdx
].isOrigArg()) {
3665 std::advance(FuncArg
, Ins
[InsIdx
].getOrigArgIndex() - CurArgIdx
);
3666 CurArgIdx
= Ins
[InsIdx
].getOrigArgIndex();
3668 EVT ValVT
= VA
.getValVT();
3669 ISD::ArgFlagsTy Flags
= Ins
[InsIdx
].Flags
;
3670 bool IsRegLoc
= VA
.isRegLoc();
3672 if (Flags
.isByVal()) {
3673 assert(Ins
[InsIdx
].isOrigArg() && "Byval arguments cannot be implicit");
3674 unsigned FirstByValReg
, LastByValReg
;
3675 unsigned ByValIdx
= CCInfo
.getInRegsParamsProcessed();
3676 CCInfo
.getInRegsParamInfo(ByValIdx
, FirstByValReg
, LastByValReg
);
3678 assert(Flags
.getByValSize() &&
3679 "ByVal args of size 0 should have been ignored by front-end.");
3680 assert(ByValIdx
< CCInfo
.getInRegsParamsCount());
3681 copyByValRegs(Chain
, DL
, OutChains
, DAG
, Flags
, InVals
, &*FuncArg
,
3682 FirstByValReg
, LastByValReg
, VA
, CCInfo
);
3683 CCInfo
.nextInRegsParam();
3687 // Arguments stored on registers
3689 MVT RegVT
= VA
.getLocVT();
3690 Register ArgReg
= VA
.getLocReg();
3691 const TargetRegisterClass
*RC
= getRegClassFor(RegVT
);
3693 // Transform the arguments stored on
3694 // physical registers into virtual ones
3695 unsigned Reg
= addLiveIn(DAG
.getMachineFunction(), ArgReg
, RC
);
3696 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegVT
);
3699 UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[InsIdx
].ArgVT
, DL
, DAG
);
3701 // Handle floating point arguments passed in integer registers and
3702 // long double arguments passed in floating point registers.
3703 if ((RegVT
== MVT::i32
&& ValVT
== MVT::f32
) ||
3704 (RegVT
== MVT::i64
&& ValVT
== MVT::f64
) ||
3705 (RegVT
== MVT::f64
&& ValVT
== MVT::i64
))
3706 ArgValue
= DAG
.getNode(ISD::BITCAST
, DL
, ValVT
, ArgValue
);
3707 else if (ABI
.IsO32() && RegVT
== MVT::i32
&&
3708 ValVT
== MVT::f64
) {
3709 assert(VA
.needsCustom() && "Expected custom argument for f64 split");
3710 CCValAssign
&NextVA
= ArgLocs
[++i
];
3712 addLiveIn(DAG
.getMachineFunction(), NextVA
.getLocReg(), RC
);
3713 SDValue ArgValue2
= DAG
.getCopyFromReg(Chain
, DL
, Reg2
, RegVT
);
3714 if (!Subtarget
.isLittle())
3715 std::swap(ArgValue
, ArgValue2
);
3716 ArgValue
= DAG
.getNode(MipsISD::BuildPairF64
, DL
, MVT::f64
,
3717 ArgValue
, ArgValue2
);
3720 InVals
.push_back(ArgValue
);
3721 } else { // VA.isRegLoc()
3722 MVT LocVT
= VA
.getLocVT();
3724 assert(!VA
.needsCustom() && "unexpected custom memory argument");
3726 // Only arguments pased on the stack should make it here.
3727 assert(VA
.isMemLoc());
3729 // The stack pointer offset is relative to the caller stack frame.
3730 int FI
= MFI
.CreateFixedObject(LocVT
.getSizeInBits() / 8,
3731 VA
.getLocMemOffset(), true);
3733 // Create load nodes to retrieve arguments from the stack
3734 SDValue FIN
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
3735 SDValue ArgValue
= DAG
.getLoad(
3736 LocVT
, DL
, Chain
, FIN
,
3737 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
));
3738 OutChains
.push_back(ArgValue
.getValue(1));
3741 UnpackFromArgumentSlot(ArgValue
, VA
, Ins
[InsIdx
].ArgVT
, DL
, DAG
);
3743 InVals
.push_back(ArgValue
);
3747 for (unsigned i
= 0, e
= ArgLocs
.size(), InsIdx
= 0; i
!= e
; ++i
, ++InsIdx
) {
3749 if (ArgLocs
[i
].needsCustom()) {
3754 // The mips ABIs for returning structs by value requires that we copy
3755 // the sret argument into $v0 for the return. Save the argument into
3756 // a virtual register so that we can access it from the return points.
3757 if (Ins
[InsIdx
].Flags
.isSRet()) {
3758 unsigned Reg
= MipsFI
->getSRetReturnReg();
3760 Reg
= MF
.getRegInfo().createVirtualRegister(
3761 getRegClassFor(ABI
.IsN64() ? MVT::i64
: MVT::i32
));
3762 MipsFI
->setSRetReturnReg(Reg
);
3764 SDValue Copy
= DAG
.getCopyToReg(DAG
.getEntryNode(), DL
, Reg
, InVals
[i
]);
3765 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, Copy
, Chain
);
3771 writeVarArgRegs(OutChains
, Chain
, DL
, DAG
, CCInfo
);
3773 // All stores are grouped in one node to allow the matching between
3774 // the size of Ins and InVals. This only happens when on varg functions
3775 if (!OutChains
.empty()) {
3776 OutChains
.push_back(Chain
);
3777 Chain
= DAG
.getNode(ISD::TokenFactor
, DL
, MVT::Other
, OutChains
);
3783 //===----------------------------------------------------------------------===//
3784 // Return Value Calling Convention Implementation
3785 //===----------------------------------------------------------------------===//
3788 MipsTargetLowering::CanLowerReturn(CallingConv::ID CallConv
,
3789 MachineFunction
&MF
, bool IsVarArg
,
3790 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3791 LLVMContext
&Context
) const {
3792 SmallVector
<CCValAssign
, 16> RVLocs
;
3793 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, Context
);
3794 return CCInfo
.CheckReturn(Outs
, RetCC_Mips
);
3797 bool MipsTargetLowering::shouldSignExtendTypeInLibCall(EVT Type
,
3798 bool IsSigned
) const {
3799 if ((ABI
.IsN32() || ABI
.IsN64()) && Type
== MVT::i32
)
3806 MipsTargetLowering::LowerInterruptReturn(SmallVectorImpl
<SDValue
> &RetOps
,
3808 SelectionDAG
&DAG
) const {
3809 MachineFunction
&MF
= DAG
.getMachineFunction();
3810 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3814 return DAG
.getNode(MipsISD::ERet
, DL
, MVT::Other
, RetOps
);
3818 MipsTargetLowering::LowerReturn(SDValue Chain
, CallingConv::ID CallConv
,
3820 const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
3821 const SmallVectorImpl
<SDValue
> &OutVals
,
3822 const SDLoc
&DL
, SelectionDAG
&DAG
) const {
3823 // CCValAssign - represent the assignment of
3824 // the return value to a location
3825 SmallVector
<CCValAssign
, 16> RVLocs
;
3826 MachineFunction
&MF
= DAG
.getMachineFunction();
3828 // CCState - Info about the registers and stack slot.
3829 MipsCCState
CCInfo(CallConv
, IsVarArg
, MF
, RVLocs
, *DAG
.getContext());
3831 // Analyze return values.
3832 CCInfo
.AnalyzeReturn(Outs
, RetCC_Mips
);
3835 SmallVector
<SDValue
, 4> RetOps(1, Chain
);
3837 // Copy the result values into the output registers.
3838 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
3839 SDValue Val
= OutVals
[i
];
3840 CCValAssign
&VA
= RVLocs
[i
];
3841 assert(VA
.isRegLoc() && "Can only return in registers!");
3842 bool UseUpperBits
= false;
3844 switch (VA
.getLocInfo()) {
3846 llvm_unreachable("Unknown loc info!");
3847 case CCValAssign::Full
:
3849 case CCValAssign::BCvt
:
3850 Val
= DAG
.getNode(ISD::BITCAST
, DL
, VA
.getLocVT(), Val
);
3852 case CCValAssign::AExtUpper
:
3853 UseUpperBits
= true;
3855 case CCValAssign::AExt
:
3856 Val
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, VA
.getLocVT(), Val
);
3858 case CCValAssign::ZExtUpper
:
3859 UseUpperBits
= true;
3861 case CCValAssign::ZExt
:
3862 Val
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, VA
.getLocVT(), Val
);
3864 case CCValAssign::SExtUpper
:
3865 UseUpperBits
= true;
3867 case CCValAssign::SExt
:
3868 Val
= DAG
.getNode(ISD::SIGN_EXTEND
, DL
, VA
.getLocVT(), Val
);
3873 unsigned ValSizeInBits
= Outs
[i
].ArgVT
.getSizeInBits();
3874 unsigned LocSizeInBits
= VA
.getLocVT().getSizeInBits();
3876 ISD::SHL
, DL
, VA
.getLocVT(), Val
,
3877 DAG
.getConstant(LocSizeInBits
- ValSizeInBits
, DL
, VA
.getLocVT()));
3880 Chain
= DAG
.getCopyToReg(Chain
, DL
, VA
.getLocReg(), Val
, Glue
);
3882 // Guarantee that all emitted copies are stuck together with flags.
3883 Glue
= Chain
.getValue(1);
3884 RetOps
.push_back(DAG
.getRegister(VA
.getLocReg(), VA
.getLocVT()));
3887 // The mips ABIs for returning structs by value requires that we copy
3888 // the sret argument into $v0 for the return. We saved the argument into
3889 // a virtual register in the entry block, so now we copy the value out
3891 if (MF
.getFunction().hasStructRetAttr()) {
3892 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
3893 unsigned Reg
= MipsFI
->getSRetReturnReg();
3896 llvm_unreachable("sret virtual register not created in the entry block");
3898 DAG
.getCopyFromReg(Chain
, DL
, Reg
, getPointerTy(DAG
.getDataLayout()));
3899 unsigned V0
= ABI
.IsN64() ? Mips::V0_64
: Mips::V0
;
3901 Chain
= DAG
.getCopyToReg(Chain
, DL
, V0
, Val
, Glue
);
3902 Glue
= Chain
.getValue(1);
3903 RetOps
.push_back(DAG
.getRegister(V0
, getPointerTy(DAG
.getDataLayout())));
3906 RetOps
[0] = Chain
; // Update chain.
3908 // Add the glue if we have it.
3910 RetOps
.push_back(Glue
);
3912 // ISRs must use "eret".
3913 if (DAG
.getMachineFunction().getFunction().hasFnAttribute("interrupt"))
3914 return LowerInterruptReturn(RetOps
, DL
, DAG
);
3916 // Standard return on Mips is a "jr $ra"
3917 return DAG
.getNode(MipsISD::Ret
, DL
, MVT::Other
, RetOps
);
3920 //===----------------------------------------------------------------------===//
3921 // Mips Inline Assembly Support
3922 //===----------------------------------------------------------------------===//
3924 /// getConstraintType - Given a constraint letter, return the type of
3925 /// constraint it is for this target.
3926 MipsTargetLowering::ConstraintType
3927 MipsTargetLowering::getConstraintType(StringRef Constraint
) const {
3928 // Mips specific constraints
3929 // GCC config/mips/constraints.md
3931 // 'd' : An address register. Equivalent to r
3932 // unless generating MIPS16 code.
3933 // 'y' : Equivalent to r; retained for
3934 // backwards compatibility.
3935 // 'c' : A register suitable for use in an indirect
3936 // jump. This will always be $25 for -mabicalls.
3937 // 'l' : The lo register. 1 word storage.
3938 // 'x' : The hilo register pair. Double word storage.
3939 if (Constraint
.size() == 1) {
3940 switch (Constraint
[0]) {
3948 return C_RegisterClass
;
3954 if (Constraint
== "ZC")
3957 return TargetLowering::getConstraintType(Constraint
);
3960 /// Examine constraint type and operand type and determine a weight value.
3961 /// This object must already have been set up with the operand type
3962 /// and the current alternative constraint selected.
3963 TargetLowering::ConstraintWeight
3964 MipsTargetLowering::getSingleConstraintMatchWeight(
3965 AsmOperandInfo
&info
, const char *constraint
) const {
3966 ConstraintWeight weight
= CW_Invalid
;
3967 Value
*CallOperandVal
= info
.CallOperandVal
;
3968 // If we don't have a value, we can't do a match,
3969 // but allow it at the lowest weight.
3970 if (!CallOperandVal
)
3972 Type
*type
= CallOperandVal
->getType();
3973 // Look at the constraint type.
3974 switch (*constraint
) {
3976 weight
= TargetLowering::getSingleConstraintMatchWeight(info
, constraint
);
3980 if (type
->isIntegerTy())
3981 weight
= CW_Register
;
3983 case 'f': // FPU or MSA register
3984 if (Subtarget
.hasMSA() && type
->isVectorTy() &&
3985 type
->getPrimitiveSizeInBits().getFixedValue() == 128)
3986 weight
= CW_Register
;
3987 else if (type
->isFloatTy())
3988 weight
= CW_Register
;
3990 case 'c': // $25 for indirect jumps
3991 case 'l': // lo register
3992 case 'x': // hilo register pair
3993 if (type
->isIntegerTy())
3994 weight
= CW_SpecificReg
;
3996 case 'I': // signed 16 bit immediate
3997 case 'J': // integer zero
3998 case 'K': // unsigned 16 bit immediate
3999 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4000 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4001 case 'O': // signed 15 bit immediate (+- 16383)
4002 case 'P': // immediate in the range of 65535 to 1 (inclusive)
4003 if (isa
<ConstantInt
>(CallOperandVal
))
4004 weight
= CW_Constant
;
4013 /// This is a helper function to parse a physical register string and split it
4014 /// into non-numeric and numeric parts (Prefix and Reg). The first boolean flag
4015 /// that is returned indicates whether parsing was successful. The second flag
4016 /// is true if the numeric part exists.
4017 static std::pair
<bool, bool> parsePhysicalReg(StringRef C
, StringRef
&Prefix
,
4018 unsigned long long &Reg
) {
4019 if (C
.front() != '{' || C
.back() != '}')
4020 return std::make_pair(false, false);
4022 // Search for the first numeric character.
4023 StringRef::const_iterator I
, B
= C
.begin() + 1, E
= C
.end() - 1;
4024 I
= std::find_if(B
, E
, isdigit
);
4026 Prefix
= StringRef(B
, I
- B
);
4028 // The second flag is set to false if no numeric characters were found.
4030 return std::make_pair(true, false);
4032 // Parse the numeric characters.
4033 return std::make_pair(!getAsUnsignedInteger(StringRef(I
, E
- I
), 10, Reg
),
4037 EVT
MipsTargetLowering::getTypeForExtReturn(LLVMContext
&Context
, EVT VT
,
4038 ISD::NodeType
) const {
4039 bool Cond
= !Subtarget
.isABI_O32() && VT
.getSizeInBits() == 32;
4040 EVT MinVT
= getRegisterType(Cond
? MVT::i64
: MVT::i32
);
4041 return VT
.bitsLT(MinVT
) ? MinVT
: VT
;
4044 std::pair
<unsigned, const TargetRegisterClass
*> MipsTargetLowering::
4045 parseRegForInlineAsmConstraint(StringRef C
, MVT VT
) const {
4046 const TargetRegisterInfo
*TRI
=
4047 Subtarget
.getRegisterInfo();
4048 const TargetRegisterClass
*RC
;
4050 unsigned long long Reg
;
4052 std::pair
<bool, bool> R
= parsePhysicalReg(C
, Prefix
, Reg
);
4055 return std::make_pair(0U, nullptr);
4057 if ((Prefix
== "hi" || Prefix
== "lo")) { // Parse hi/lo.
4058 // No numeric characters follow "hi" or "lo".
4060 return std::make_pair(0U, nullptr);
4062 RC
= TRI
->getRegClass(Prefix
== "hi" ?
4063 Mips::HI32RegClassID
: Mips::LO32RegClassID
);
4064 return std::make_pair(*(RC
->begin()), RC
);
4065 } else if (Prefix
.startswith("$msa")) {
4066 // Parse $msa(ir|csr|access|save|modify|request|map|unmap)
4068 // No numeric characters follow the name.
4070 return std::make_pair(0U, nullptr);
4072 Reg
= StringSwitch
<unsigned long long>(Prefix
)
4073 .Case("$msair", Mips::MSAIR
)
4074 .Case("$msacsr", Mips::MSACSR
)
4075 .Case("$msaaccess", Mips::MSAAccess
)
4076 .Case("$msasave", Mips::MSASave
)
4077 .Case("$msamodify", Mips::MSAModify
)
4078 .Case("$msarequest", Mips::MSARequest
)
4079 .Case("$msamap", Mips::MSAMap
)
4080 .Case("$msaunmap", Mips::MSAUnmap
)
4084 return std::make_pair(0U, nullptr);
4086 RC
= TRI
->getRegClass(Mips::MSACtrlRegClassID
);
4087 return std::make_pair(Reg
, RC
);
4091 return std::make_pair(0U, nullptr);
4093 if (Prefix
== "$f") { // Parse $f0-$f31.
4094 // If the size of FP registers is 64-bit or Reg is an even number, select
4095 // the 64-bit register class. Otherwise, select the 32-bit register class.
4096 if (VT
== MVT::Other
)
4097 VT
= (Subtarget
.isFP64bit() || !(Reg
% 2)) ? MVT::f64
: MVT::f32
;
4099 RC
= getRegClassFor(VT
);
4101 if (RC
== &Mips::AFGR64RegClass
) {
4102 assert(Reg
% 2 == 0);
4105 } else if (Prefix
== "$fcc") // Parse $fcc0-$fcc7.
4106 RC
= TRI
->getRegClass(Mips::FCCRegClassID
);
4107 else if (Prefix
== "$w") { // Parse $w0-$w31.
4108 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::v16i8
: VT
);
4109 } else { // Parse $0-$31.
4110 assert(Prefix
== "$");
4111 RC
= getRegClassFor((VT
== MVT::Other
) ? MVT::i32
: VT
);
4114 assert(Reg
< RC
->getNumRegs());
4115 return std::make_pair(*(RC
->begin() + Reg
), RC
);
4118 /// Given a register class constraint, like 'r', if this corresponds directly
4119 /// to an LLVM register class, return a register of 0 and the register class
4121 std::pair
<unsigned, const TargetRegisterClass
*>
4122 MipsTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo
*TRI
,
4123 StringRef Constraint
,
4125 if (Constraint
.size() == 1) {
4126 switch (Constraint
[0]) {
4127 case 'd': // Address register. Same as 'r' unless generating MIPS16 code.
4128 case 'y': // Same as 'r'. Exists for compatibility.
4130 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
|| VT
== MVT::i1
) {
4131 if (Subtarget
.inMips16Mode())
4132 return std::make_pair(0U, &Mips::CPU16RegsRegClass
);
4133 return std::make_pair(0U, &Mips::GPR32RegClass
);
4135 if (VT
== MVT::i64
&& !Subtarget
.isGP64bit())
4136 return std::make_pair(0U, &Mips::GPR32RegClass
);
4137 if (VT
== MVT::i64
&& Subtarget
.isGP64bit())
4138 return std::make_pair(0U, &Mips::GPR64RegClass
);
4139 // This will generate an error message
4140 return std::make_pair(0U, nullptr);
4141 case 'f': // FPU or MSA register
4142 if (VT
== MVT::v16i8
)
4143 return std::make_pair(0U, &Mips::MSA128BRegClass
);
4144 else if (VT
== MVT::v8i16
|| VT
== MVT::v8f16
)
4145 return std::make_pair(0U, &Mips::MSA128HRegClass
);
4146 else if (VT
== MVT::v4i32
|| VT
== MVT::v4f32
)
4147 return std::make_pair(0U, &Mips::MSA128WRegClass
);
4148 else if (VT
== MVT::v2i64
|| VT
== MVT::v2f64
)
4149 return std::make_pair(0U, &Mips::MSA128DRegClass
);
4150 else if (VT
== MVT::f32
)
4151 return std::make_pair(0U, &Mips::FGR32RegClass
);
4152 else if ((VT
== MVT::f64
) && (!Subtarget
.isSingleFloat())) {
4153 if (Subtarget
.isFP64bit())
4154 return std::make_pair(0U, &Mips::FGR64RegClass
);
4155 return std::make_pair(0U, &Mips::AFGR64RegClass
);
4158 case 'c': // register suitable for indirect jump
4160 return std::make_pair((unsigned)Mips::T9
, &Mips::GPR32RegClass
);
4162 return std::make_pair((unsigned)Mips::T9_64
, &Mips::GPR64RegClass
);
4163 // This will generate an error message
4164 return std::make_pair(0U, nullptr);
4165 case 'l': // use the `lo` register to store values
4166 // that are no bigger than a word
4167 if (VT
== MVT::i32
|| VT
== MVT::i16
|| VT
== MVT::i8
)
4168 return std::make_pair((unsigned)Mips::LO0
, &Mips::LO32RegClass
);
4169 return std::make_pair((unsigned)Mips::LO0_64
, &Mips::LO64RegClass
);
4170 case 'x': // use the concatenated `hi` and `lo` registers
4171 // to store doubleword values
4172 // Fixme: Not triggering the use of both hi and low
4173 // This will generate an error message
4174 return std::make_pair(0U, nullptr);
4178 if (!Constraint
.empty()) {
4179 std::pair
<unsigned, const TargetRegisterClass
*> R
;
4180 R
= parseRegForInlineAsmConstraint(Constraint
, VT
);
4186 return TargetLowering::getRegForInlineAsmConstraint(TRI
, Constraint
, VT
);
4189 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
4190 /// vector. If it is invalid, don't add anything to Ops.
4191 void MipsTargetLowering::LowerAsmOperandForConstraint(SDValue Op
,
4192 StringRef Constraint
,
4193 std::vector
<SDValue
> &Ops
,
4194 SelectionDAG
&DAG
) const {
4198 // Only support length 1 constraints for now.
4199 if (Constraint
.size() > 1)
4202 char ConstraintLetter
= Constraint
[0];
4203 switch (ConstraintLetter
) {
4204 default: break; // This will fall through to the generic implementation
4205 case 'I': // Signed 16 bit constant
4206 // If this fails, the parent routine will give an error
4207 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4208 EVT Type
= Op
.getValueType();
4209 int64_t Val
= C
->getSExtValue();
4210 if (isInt
<16>(Val
)) {
4211 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4216 case 'J': // integer zero
4217 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4218 EVT Type
= Op
.getValueType();
4219 int64_t Val
= C
->getZExtValue();
4221 Result
= DAG
.getTargetConstant(0, DL
, Type
);
4226 case 'K': // unsigned 16 bit immediate
4227 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4228 EVT Type
= Op
.getValueType();
4229 uint64_t Val
= (uint64_t)C
->getZExtValue();
4230 if (isUInt
<16>(Val
)) {
4231 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4236 case 'L': // signed 32 bit immediate where lower 16 bits are 0
4237 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4238 EVT Type
= Op
.getValueType();
4239 int64_t Val
= C
->getSExtValue();
4240 if ((isInt
<32>(Val
)) && ((Val
& 0xffff) == 0)){
4241 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4246 case 'N': // immediate in the range of -65535 to -1 (inclusive)
4247 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4248 EVT Type
= Op
.getValueType();
4249 int64_t Val
= C
->getSExtValue();
4250 if ((Val
>= -65535) && (Val
<= -1)) {
4251 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4256 case 'O': // signed 15 bit immediate
4257 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4258 EVT Type
= Op
.getValueType();
4259 int64_t Val
= C
->getSExtValue();
4260 if ((isInt
<15>(Val
))) {
4261 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4266 case 'P': // immediate in the range of 1 to 65535 (inclusive)
4267 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
4268 EVT Type
= Op
.getValueType();
4269 int64_t Val
= C
->getSExtValue();
4270 if ((Val
<= 65535) && (Val
>= 1)) {
4271 Result
= DAG
.getTargetConstant(Val
, DL
, Type
);
4278 if (Result
.getNode()) {
4279 Ops
.push_back(Result
);
4283 TargetLowering::LowerAsmOperandForConstraint(Op
, Constraint
, Ops
, DAG
);
4286 bool MipsTargetLowering::isLegalAddressingMode(const DataLayout
&DL
,
4287 const AddrMode
&AM
, Type
*Ty
,
4289 Instruction
*I
) const {
4290 // No global is ever allowed as a base.
4295 case 0: // "r+i" or just "i", depending on HasBaseReg.
4298 if (!AM
.HasBaseReg
) // allow "r+i".
4300 return false; // disallow "r+r" or "r+r+i".
4309 MipsTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode
*GA
) const {
4310 // The Mips target isn't yet aware of offsets.
4314 EVT
MipsTargetLowering::getOptimalMemOpType(
4315 const MemOp
&Op
, const AttributeList
&FuncAttributes
) const {
4316 if (Subtarget
.hasMips64())
4322 bool MipsTargetLowering::isFPImmLegal(const APFloat
&Imm
, EVT VT
,
4323 bool ForCodeSize
) const {
4324 if (VT
!= MVT::f32
&& VT
!= MVT::f64
)
4326 if (Imm
.isNegZero())
4328 return Imm
.isZero();
4331 unsigned MipsTargetLowering::getJumpTableEncoding() const {
4333 // FIXME: For space reasons this should be: EK_GPRel32BlockAddress.
4334 if (ABI
.IsN64() && isPositionIndependent())
4335 return MachineJumpTableInfo::EK_GPRel64BlockAddress
;
4337 return TargetLowering::getJumpTableEncoding();
4340 bool MipsTargetLowering::useSoftFloat() const {
4341 return Subtarget
.useSoftFloat();
4344 void MipsTargetLowering::copyByValRegs(
4345 SDValue Chain
, const SDLoc
&DL
, std::vector
<SDValue
> &OutChains
,
4346 SelectionDAG
&DAG
, const ISD::ArgFlagsTy
&Flags
,
4347 SmallVectorImpl
<SDValue
> &InVals
, const Argument
*FuncArg
,
4348 unsigned FirstReg
, unsigned LastReg
, const CCValAssign
&VA
,
4349 MipsCCState
&State
) const {
4350 MachineFunction
&MF
= DAG
.getMachineFunction();
4351 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4352 unsigned GPRSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4353 unsigned NumRegs
= LastReg
- FirstReg
;
4354 unsigned RegAreaSize
= NumRegs
* GPRSizeInBytes
;
4355 unsigned FrameObjSize
= std::max(Flags
.getByValSize(), RegAreaSize
);
4357 ArrayRef
<MCPhysReg
> ByValArgRegs
= ABI
.GetByValArgRegs();
4361 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4362 (int)((ByValArgRegs
.size() - FirstReg
) * GPRSizeInBytes
);
4364 FrameObjOffset
= VA
.getLocMemOffset();
4366 // Create frame object.
4367 EVT PtrTy
= getPointerTy(DAG
.getDataLayout());
4368 // Make the fixed object stored to mutable so that the load instructions
4369 // referencing it have their memory dependencies added.
4370 // Set the frame object as isAliased which clears the underlying objects
4371 // vector in ScheduleDAGInstrs::buildSchedGraph() resulting in addition of all
4372 // stores as dependencies for loads referencing this fixed object.
4373 int FI
= MFI
.CreateFixedObject(FrameObjSize
, FrameObjOffset
, false, true);
4374 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
4375 InVals
.push_back(FIN
);
4380 // Copy arg registers.
4381 MVT RegTy
= MVT::getIntegerVT(GPRSizeInBytes
* 8);
4382 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4384 for (unsigned I
= 0; I
< NumRegs
; ++I
) {
4385 unsigned ArgReg
= ByValArgRegs
[FirstReg
+ I
];
4386 unsigned VReg
= addLiveIn(MF
, ArgReg
, RC
);
4387 unsigned Offset
= I
* GPRSizeInBytes
;
4388 SDValue StorePtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, FIN
,
4389 DAG
.getConstant(Offset
, DL
, PtrTy
));
4390 SDValue Store
= DAG
.getStore(Chain
, DL
, DAG
.getRegister(VReg
, RegTy
),
4391 StorePtr
, MachinePointerInfo(FuncArg
, Offset
));
4392 OutChains
.push_back(Store
);
4396 // Copy byVal arg to registers and stack.
4397 void MipsTargetLowering::passByValArg(
4398 SDValue Chain
, const SDLoc
&DL
,
4399 std::deque
<std::pair
<unsigned, SDValue
>> &RegsToPass
,
4400 SmallVectorImpl
<SDValue
> &MemOpChains
, SDValue StackPtr
,
4401 MachineFrameInfo
&MFI
, SelectionDAG
&DAG
, SDValue Arg
, unsigned FirstReg
,
4402 unsigned LastReg
, const ISD::ArgFlagsTy
&Flags
, bool isLittle
,
4403 const CCValAssign
&VA
) const {
4404 unsigned ByValSizeInBytes
= Flags
.getByValSize();
4405 unsigned OffsetInBytes
= 0; // From beginning of struct
4406 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4408 std::min(Flags
.getNonZeroByValAlign(), Align(RegSizeInBytes
));
4409 EVT PtrTy
= getPointerTy(DAG
.getDataLayout()),
4410 RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4411 unsigned NumRegs
= LastReg
- FirstReg
;
4414 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetByValArgRegs();
4415 bool LeftoverBytes
= (NumRegs
* RegSizeInBytes
> ByValSizeInBytes
);
4418 // Copy words to registers.
4419 for (; I
< NumRegs
- LeftoverBytes
; ++I
, OffsetInBytes
+= RegSizeInBytes
) {
4420 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4421 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4422 SDValue LoadVal
= DAG
.getLoad(RegTy
, DL
, Chain
, LoadPtr
,
4423 MachinePointerInfo(), Alignment
);
4424 MemOpChains
.push_back(LoadVal
.getValue(1));
4425 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4426 RegsToPass
.push_back(std::make_pair(ArgReg
, LoadVal
));
4429 // Return if the struct has been fully copied.
4430 if (ByValSizeInBytes
== OffsetInBytes
)
4433 // Copy the remainder of the byval argument with sub-word loads and shifts.
4434 if (LeftoverBytes
) {
4437 for (unsigned LoadSizeInBytes
= RegSizeInBytes
/ 2, TotalBytesLoaded
= 0;
4438 OffsetInBytes
< ByValSizeInBytes
; LoadSizeInBytes
/= 2) {
4439 unsigned RemainingSizeInBytes
= ByValSizeInBytes
- OffsetInBytes
;
4441 if (RemainingSizeInBytes
< LoadSizeInBytes
)
4445 SDValue LoadPtr
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4446 DAG
.getConstant(OffsetInBytes
, DL
,
4448 SDValue LoadVal
= DAG
.getExtLoad(
4449 ISD::ZEXTLOAD
, DL
, RegTy
, Chain
, LoadPtr
, MachinePointerInfo(),
4450 MVT::getIntegerVT(LoadSizeInBytes
* 8), Alignment
);
4451 MemOpChains
.push_back(LoadVal
.getValue(1));
4453 // Shift the loaded value.
4457 Shamt
= TotalBytesLoaded
* 8;
4459 Shamt
= (RegSizeInBytes
- (TotalBytesLoaded
+ LoadSizeInBytes
)) * 8;
4461 SDValue Shift
= DAG
.getNode(ISD::SHL
, DL
, RegTy
, LoadVal
,
4462 DAG
.getConstant(Shamt
, DL
, MVT::i32
));
4465 Val
= DAG
.getNode(ISD::OR
, DL
, RegTy
, Val
, Shift
);
4469 OffsetInBytes
+= LoadSizeInBytes
;
4470 TotalBytesLoaded
+= LoadSizeInBytes
;
4471 Alignment
= std::min(Alignment
, Align(LoadSizeInBytes
));
4474 unsigned ArgReg
= ArgRegs
[FirstReg
+ I
];
4475 RegsToPass
.push_back(std::make_pair(ArgReg
, Val
));
4480 // Copy remainder of byval arg to it with memcpy.
4481 unsigned MemCpySize
= ByValSizeInBytes
- OffsetInBytes
;
4482 SDValue Src
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, Arg
,
4483 DAG
.getConstant(OffsetInBytes
, DL
, PtrTy
));
4484 SDValue Dst
= DAG
.getNode(ISD::ADD
, DL
, PtrTy
, StackPtr
,
4485 DAG
.getIntPtrConstant(VA
.getLocMemOffset(), DL
));
4486 Chain
= DAG
.getMemcpy(
4487 Chain
, DL
, Dst
, Src
, DAG
.getConstant(MemCpySize
, DL
, PtrTy
),
4488 Align(Alignment
), /*isVolatile=*/false, /*AlwaysInline=*/false,
4489 /*isTailCall=*/false, MachinePointerInfo(), MachinePointerInfo());
4490 MemOpChains
.push_back(Chain
);
4493 void MipsTargetLowering::writeVarArgRegs(std::vector
<SDValue
> &OutChains
,
4494 SDValue Chain
, const SDLoc
&DL
,
4496 CCState
&State
) const {
4497 ArrayRef
<MCPhysReg
> ArgRegs
= ABI
.GetVarArgRegs();
4498 unsigned Idx
= State
.getFirstUnallocated(ArgRegs
);
4499 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4500 MVT RegTy
= MVT::getIntegerVT(RegSizeInBytes
* 8);
4501 const TargetRegisterClass
*RC
= getRegClassFor(RegTy
);
4502 MachineFunction
&MF
= DAG
.getMachineFunction();
4503 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
4504 MipsFunctionInfo
*MipsFI
= MF
.getInfo
<MipsFunctionInfo
>();
4506 // Offset of the first variable argument from stack pointer.
4509 if (ArgRegs
.size() == Idx
)
4510 VaArgOffset
= alignTo(State
.getStackSize(), RegSizeInBytes
);
4513 (int)ABI
.GetCalleeAllocdArgSizeInBytes(State
.getCallingConv()) -
4514 (int)(RegSizeInBytes
* (ArgRegs
.size() - Idx
));
4517 // Record the frame index of the first variable argument
4518 // which is a value necessary to VASTART.
4519 int FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4520 MipsFI
->setVarArgsFrameIndex(FI
);
4522 // Copy the integer registers that have not been used for argument passing
4523 // to the argument register save area. For O32, the save area is allocated
4524 // in the caller's stack frame, while for N32/64, it is allocated in the
4525 // callee's stack frame.
4526 for (unsigned I
= Idx
; I
< ArgRegs
.size();
4527 ++I
, VaArgOffset
+= RegSizeInBytes
) {
4528 unsigned Reg
= addLiveIn(MF
, ArgRegs
[I
], RC
);
4529 SDValue ArgValue
= DAG
.getCopyFromReg(Chain
, DL
, Reg
, RegTy
);
4530 FI
= MFI
.CreateFixedObject(RegSizeInBytes
, VaArgOffset
, true);
4531 SDValue PtrOff
= DAG
.getFrameIndex(FI
, getPointerTy(DAG
.getDataLayout()));
4533 DAG
.getStore(Chain
, DL
, ArgValue
, PtrOff
, MachinePointerInfo());
4534 cast
<StoreSDNode
>(Store
.getNode())->getMemOperand()->setValue(
4536 OutChains
.push_back(Store
);
4540 void MipsTargetLowering::HandleByVal(CCState
*State
, unsigned &Size
,
4541 Align Alignment
) const {
4542 const TargetFrameLowering
*TFL
= Subtarget
.getFrameLowering();
4544 assert(Size
&& "Byval argument's size shouldn't be 0.");
4546 Alignment
= std::min(Alignment
, TFL
->getStackAlign());
4548 unsigned FirstReg
= 0;
4549 unsigned NumRegs
= 0;
4551 if (State
->getCallingConv() != CallingConv::Fast
) {
4552 unsigned RegSizeInBytes
= Subtarget
.getGPRSizeInBytes();
4553 ArrayRef
<MCPhysReg
> IntArgRegs
= ABI
.GetByValArgRegs();
4554 // FIXME: The O32 case actually describes no shadow registers.
4555 const MCPhysReg
*ShadowRegs
=
4556 ABI
.IsO32() ? IntArgRegs
.data() : Mips64DPRegs
;
4558 // We used to check the size as well but we can't do that anymore since
4559 // CCState::HandleByVal() rounds up the size after calling this function.
4561 Alignment
>= Align(RegSizeInBytes
) &&
4562 "Byval argument's alignment should be a multiple of RegSizeInBytes.");
4564 FirstReg
= State
->getFirstUnallocated(IntArgRegs
);
4566 // If Alignment > RegSizeInBytes, the first arg register must be even.
4567 // FIXME: This condition happens to do the right thing but it's not the
4568 // right way to test it. We want to check that the stack frame offset
4569 // of the register is aligned.
4570 if ((Alignment
> RegSizeInBytes
) && (FirstReg
% 2)) {
4571 State
->AllocateReg(IntArgRegs
[FirstReg
], ShadowRegs
[FirstReg
]);
4575 // Mark the registers allocated.
4576 Size
= alignTo(Size
, RegSizeInBytes
);
4577 for (unsigned I
= FirstReg
; Size
> 0 && (I
< IntArgRegs
.size());
4578 Size
-= RegSizeInBytes
, ++I
, ++NumRegs
)
4579 State
->AllocateReg(IntArgRegs
[I
], ShadowRegs
[I
]);
4582 State
->addInRegsParamInfo(FirstReg
, FirstReg
+ NumRegs
);
4585 MachineBasicBlock
*MipsTargetLowering::emitPseudoSELECT(MachineInstr
&MI
,
4586 MachineBasicBlock
*BB
,
4588 unsigned Opc
) const {
4589 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4590 "Subtarget already supports SELECT nodes with the use of"
4591 "conditional-move instructions.");
4593 const TargetInstrInfo
*TII
=
4594 Subtarget
.getInstrInfo();
4595 DebugLoc DL
= MI
.getDebugLoc();
4597 // To "insert" a SELECT instruction, we actually have to insert the
4598 // diamond control-flow pattern. The incoming instruction knows the
4599 // destination vreg to set, the condition code register to branch on, the
4600 // true/false values to select between, and a branch opcode to use.
4601 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4602 MachineFunction::iterator It
= ++BB
->getIterator();
4608 // bNE r1, r0, copy1MBB
4609 // fallthrough --> copy0MBB
4610 MachineBasicBlock
*thisMBB
= BB
;
4611 MachineFunction
*F
= BB
->getParent();
4612 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4613 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4614 F
->insert(It
, copy0MBB
);
4615 F
->insert(It
, sinkMBB
);
4617 // Transfer the remainder of BB and its successor edges to sinkMBB.
4618 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4619 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4620 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4622 // Next, add the true and fallthrough blocks as its successors.
4623 BB
->addSuccessor(copy0MBB
);
4624 BB
->addSuccessor(sinkMBB
);
4627 // bc1[tf] cc, sinkMBB
4628 BuildMI(BB
, DL
, TII
->get(Opc
))
4629 .addReg(MI
.getOperand(1).getReg())
4632 // bne rs, $0, sinkMBB
4633 BuildMI(BB
, DL
, TII
->get(Opc
))
4634 .addReg(MI
.getOperand(1).getReg())
4640 // %FalseValue = ...
4641 // # fallthrough to sinkMBB
4644 // Update machine-CFG edges
4645 BB
->addSuccessor(sinkMBB
);
4648 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4652 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4653 .addReg(MI
.getOperand(2).getReg())
4655 .addReg(MI
.getOperand(3).getReg())
4658 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4664 MipsTargetLowering::emitPseudoD_SELECT(MachineInstr
&MI
,
4665 MachineBasicBlock
*BB
) const {
4666 assert(!(Subtarget
.hasMips4() || Subtarget
.hasMips32()) &&
4667 "Subtarget already supports SELECT nodes with the use of"
4668 "conditional-move instructions.");
4670 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4671 DebugLoc DL
= MI
.getDebugLoc();
4673 // D_SELECT substitutes two SELECT nodes that goes one after another and
4674 // have the same condition operand. On machines which don't have
4675 // conditional-move instruction, it reduces unnecessary branch instructions
4676 // which are result of using two diamond patterns that are result of two
4677 // SELECT pseudo instructions.
4678 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
4679 MachineFunction::iterator It
= ++BB
->getIterator();
4685 // bNE r1, r0, copy1MBB
4686 // fallthrough --> copy0MBB
4687 MachineBasicBlock
*thisMBB
= BB
;
4688 MachineFunction
*F
= BB
->getParent();
4689 MachineBasicBlock
*copy0MBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4690 MachineBasicBlock
*sinkMBB
= F
->CreateMachineBasicBlock(LLVM_BB
);
4691 F
->insert(It
, copy0MBB
);
4692 F
->insert(It
, sinkMBB
);
4694 // Transfer the remainder of BB and its successor edges to sinkMBB.
4695 sinkMBB
->splice(sinkMBB
->begin(), BB
,
4696 std::next(MachineBasicBlock::iterator(MI
)), BB
->end());
4697 sinkMBB
->transferSuccessorsAndUpdatePHIs(BB
);
4699 // Next, add the true and fallthrough blocks as its successors.
4700 BB
->addSuccessor(copy0MBB
);
4701 BB
->addSuccessor(sinkMBB
);
4703 // bne rs, $0, sinkMBB
4704 BuildMI(BB
, DL
, TII
->get(Mips::BNE
))
4705 .addReg(MI
.getOperand(2).getReg())
4710 // %FalseValue = ...
4711 // # fallthrough to sinkMBB
4714 // Update machine-CFG edges
4715 BB
->addSuccessor(sinkMBB
);
4718 // %Result = phi [ %TrueValue, thisMBB ], [ %FalseValue, copy0MBB ]
4722 // Use two PHI nodes to select two reults
4723 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(0).getReg())
4724 .addReg(MI
.getOperand(3).getReg())
4726 .addReg(MI
.getOperand(5).getReg())
4728 BuildMI(*BB
, BB
->begin(), DL
, TII
->get(Mips::PHI
), MI
.getOperand(1).getReg())
4729 .addReg(MI
.getOperand(4).getReg())
4731 .addReg(MI
.getOperand(6).getReg())
4734 MI
.eraseFromParent(); // The pseudo instruction is gone now.
4739 // FIXME? Maybe this could be a TableGen attribute on some registers and
4740 // this table could be generated automatically from RegInfo.
4742 MipsTargetLowering::getRegisterByName(const char *RegName
, LLT VT
,
4743 const MachineFunction
&MF
) const {
4744 // The Linux kernel uses $28 and sp.
4745 if (Subtarget
.isGP64bit()) {
4746 Register Reg
= StringSwitch
<Register
>(RegName
)
4747 .Case("$28", Mips::GP_64
)
4748 .Case("sp", Mips::SP_64
)
4749 .Default(Register());
4753 Register Reg
= StringSwitch
<Register
>(RegName
)
4754 .Case("$28", Mips::GP
)
4755 .Case("sp", Mips::SP
)
4756 .Default(Register());
4760 report_fatal_error("Invalid register name global variable");
4763 MachineBasicBlock
*MipsTargetLowering::emitLDR_W(MachineInstr
&MI
,
4764 MachineBasicBlock
*BB
) const {
4765 MachineFunction
*MF
= BB
->getParent();
4766 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4767 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4768 const bool IsLittle
= Subtarget
.isLittle();
4769 DebugLoc DL
= MI
.getDebugLoc();
4771 Register Dest
= MI
.getOperand(0).getReg();
4772 Register Address
= MI
.getOperand(1).getReg();
4773 unsigned Imm
= MI
.getOperand(2).getImm();
4775 MachineBasicBlock::iterator
I(MI
);
4777 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4778 // Mips release 6 can load from adress that is not naturally-aligned.
4779 Register Temp
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4780 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LW
))
4784 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Dest
).addUse(Temp
);
4786 // Mips release 5 needs to use instructions that can load from an unaligned
4788 Register LoadHalf
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4789 Register LoadFull
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4790 Register Undef
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4791 BuildMI(*BB
, I
, DL
, TII
->get(Mips::IMPLICIT_DEF
)).addDef(Undef
);
4792 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWR
))
4795 .addImm(Imm
+ (IsLittle
? 0 : 3))
4797 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWL
))
4800 .addImm(Imm
+ (IsLittle
? 3 : 0))
4802 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Dest
).addUse(LoadFull
);
4805 MI
.eraseFromParent();
4809 MachineBasicBlock
*MipsTargetLowering::emitLDR_D(MachineInstr
&MI
,
4810 MachineBasicBlock
*BB
) const {
4811 MachineFunction
*MF
= BB
->getParent();
4812 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4813 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4814 const bool IsLittle
= Subtarget
.isLittle();
4815 DebugLoc DL
= MI
.getDebugLoc();
4817 Register Dest
= MI
.getOperand(0).getReg();
4818 Register Address
= MI
.getOperand(1).getReg();
4819 unsigned Imm
= MI
.getOperand(2).getImm();
4821 MachineBasicBlock::iterator
I(MI
);
4823 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4824 // Mips release 6 can load from adress that is not naturally-aligned.
4825 if (Subtarget
.isGP64bit()) {
4826 Register Temp
= MRI
.createVirtualRegister(&Mips::GPR64RegClass
);
4827 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LD
))
4831 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_D
)).addDef(Dest
).addUse(Temp
);
4833 Register Wtemp
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4834 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4835 Register Hi
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4836 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LW
))
4839 .addImm(Imm
+ (IsLittle
? 0 : 4));
4840 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LW
))
4843 .addImm(Imm
+ (IsLittle
? 4 : 0));
4844 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Wtemp
).addUse(Lo
);
4845 BuildMI(*BB
, I
, DL
, TII
->get(Mips::INSERT_W
), Dest
)
4851 // Mips release 5 needs to use instructions that can load from an unaligned
4853 Register LoHalf
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4854 Register LoFull
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4855 Register LoUndef
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4856 Register HiHalf
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4857 Register HiFull
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4858 Register HiUndef
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4859 Register Wtemp
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4860 BuildMI(*BB
, I
, DL
, TII
->get(Mips::IMPLICIT_DEF
)).addDef(LoUndef
);
4861 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWR
))
4864 .addImm(Imm
+ (IsLittle
? 0 : 7))
4866 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWL
))
4869 .addImm(Imm
+ (IsLittle
? 3 : 4))
4871 BuildMI(*BB
, I
, DL
, TII
->get(Mips::IMPLICIT_DEF
)).addDef(HiUndef
);
4872 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWR
))
4875 .addImm(Imm
+ (IsLittle
? 4 : 3))
4877 BuildMI(*BB
, I
, DL
, TII
->get(Mips::LWL
))
4880 .addImm(Imm
+ (IsLittle
? 7 : 0))
4882 BuildMI(*BB
, I
, DL
, TII
->get(Mips::FILL_W
)).addDef(Wtemp
).addUse(LoFull
);
4883 BuildMI(*BB
, I
, DL
, TII
->get(Mips::INSERT_W
), Dest
)
4889 MI
.eraseFromParent();
4893 MachineBasicBlock
*MipsTargetLowering::emitSTR_W(MachineInstr
&MI
,
4894 MachineBasicBlock
*BB
) const {
4895 MachineFunction
*MF
= BB
->getParent();
4896 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4897 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4898 const bool IsLittle
= Subtarget
.isLittle();
4899 DebugLoc DL
= MI
.getDebugLoc();
4901 Register StoreVal
= MI
.getOperand(0).getReg();
4902 Register Address
= MI
.getOperand(1).getReg();
4903 unsigned Imm
= MI
.getOperand(2).getImm();
4905 MachineBasicBlock::iterator
I(MI
);
4907 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4908 // Mips release 6 can store to adress that is not naturally-aligned.
4909 Register BitcastW
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4910 Register Tmp
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4911 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
)).addDef(BitcastW
).addUse(StoreVal
);
4912 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4916 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SW
))
4921 // Mips release 5 needs to use instructions that can store to an unaligned
4923 Register Tmp
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4924 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4928 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWR
))
4931 .addImm(Imm
+ (IsLittle
? 0 : 3));
4932 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWL
))
4935 .addImm(Imm
+ (IsLittle
? 3 : 0));
4938 MI
.eraseFromParent();
4943 MachineBasicBlock
*MipsTargetLowering::emitSTR_D(MachineInstr
&MI
,
4944 MachineBasicBlock
*BB
) const {
4945 MachineFunction
*MF
= BB
->getParent();
4946 MachineRegisterInfo
&MRI
= MF
->getRegInfo();
4947 const TargetInstrInfo
*TII
= Subtarget
.getInstrInfo();
4948 const bool IsLittle
= Subtarget
.isLittle();
4949 DebugLoc DL
= MI
.getDebugLoc();
4951 Register StoreVal
= MI
.getOperand(0).getReg();
4952 Register Address
= MI
.getOperand(1).getReg();
4953 unsigned Imm
= MI
.getOperand(2).getImm();
4955 MachineBasicBlock::iterator
I(MI
);
4957 if (Subtarget
.hasMips32r6() || Subtarget
.hasMips64r6()) {
4958 // Mips release 6 can store to adress that is not naturally-aligned.
4959 if (Subtarget
.isGP64bit()) {
4960 Register BitcastD
= MRI
.createVirtualRegister(&Mips::MSA128DRegClass
);
4961 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR64RegClass
);
4962 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
))
4965 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_D
))
4969 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SD
))
4974 Register BitcastW
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
4975 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4976 Register Hi
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
4977 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
))
4980 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4984 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
4988 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SW
))
4991 .addImm(Imm
+ (IsLittle
? 0 : 4));
4992 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SW
))
4995 .addImm(Imm
+ (IsLittle
? 4 : 0));
4998 // Mips release 5 needs to use instructions that can store to an unaligned
5000 Register Bitcast
= MRI
.createVirtualRegister(&Mips::MSA128WRegClass
);
5001 Register Lo
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
5002 Register Hi
= MRI
.createVirtualRegister(&Mips::GPR32RegClass
);
5003 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY
)).addDef(Bitcast
).addUse(StoreVal
);
5004 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
5008 BuildMI(*BB
, I
, DL
, TII
->get(Mips::COPY_S_W
))
5012 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWR
))
5015 .addImm(Imm
+ (IsLittle
? 0 : 3));
5016 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWL
))
5019 .addImm(Imm
+ (IsLittle
? 3 : 0));
5020 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWR
))
5023 .addImm(Imm
+ (IsLittle
? 4 : 7));
5024 BuildMI(*BB
, I
, DL
, TII
->get(Mips::SWL
))
5027 .addImm(Imm
+ (IsLittle
? 7 : 4));
5030 MI
.eraseFromParent();