Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Target / Sparc / SparcCallingConv.td
blob8afd0a7fc09ad2067300b22c35ea4a1959fa8ccb
1 //===-- SparcCallingConv.td - Calling Conventions Sparc ----*- tablegen -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This describes the calling conventions for the Sparc architectures.
11 //===----------------------------------------------------------------------===//
13 //===----------------------------------------------------------------------===//
14 // SPARC v8 32-bit.
15 //===----------------------------------------------------------------------===//
17 def CC_Sparc32 : CallingConv<[
18   // Custom assign SRet to [sp+64].
19   CCIfSRet<CCCustom<"CC_Sparc_Assign_SRet">>,
20   // i32 f32 arguments get passed in integer registers if there is space.
21   CCIfType<[i32, f32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
22   // f64 arguments are split and passed through registers or through stack.
23   CCIfType<[f64], CCCustom<"CC_Sparc_Assign_Split_64">>,
24   // As are v2i32 arguments (this would be the default behavior for
25   // v2i32 if it wasn't allocated to the IntPair register-class)
26   CCIfType<[v2i32], CCCustom<"CC_Sparc_Assign_Split_64">>,
29   // Alternatively, they are assigned to the stack in 4-byte aligned units.
30   CCAssignToStack<4, 4>
31 ]>;
33 def RetCC_Sparc32 : CallingConv<[
34   CCIfType<[i32], CCAssignToReg<[I0, I1, I2, I3, I4, I5]>>,
35   CCIfType<[f32], CCAssignToReg<[F0, F1, F2, F3]>>,
36   CCIfType<[f64], CCAssignToReg<[D0, D1]>>,
37   CCIfType<[v2i32], CCCustom<"CC_Sparc_Assign_Ret_Split_64">>
38 ]>;
41 //===----------------------------------------------------------------------===//
42 // SPARC v9 64-bit.
43 //===----------------------------------------------------------------------===//
45 // The 64-bit ABI conceptually assigns all function arguments to a parameter
46 // array starting at [%fp+BIAS+128] in the callee's stack frame. All arguments
47 // occupy a multiple of 8 bytes in the array. Integer arguments are extended to
48 // 64 bits by the caller. Floats are right-aligned in their 8-byte slot, the
49 // first 4 bytes in the slot are undefined.
51 // The integer registers %i0 to %i5 shadow the first 48 bytes of the parameter
52 // array at fixed offsets. Integer arguments are promoted to registers when
53 // possible.
55 // The floating point registers %f0 to %f31 shadow the first 128 bytes of the
56 // parameter array at fixed offsets. Float and double parameters are promoted
57 // to these registers when possible.
59 // Structs up to 16 bytes in size are passed by value. They are right-aligned
60 // in one or two 8-byte slots in the parameter array. Struct members are
61 // promoted to both floating point and integer registers when possible. A
62 // struct containing two floats would thus be passed in %f0 and %f1, while two
63 // float function arguments would occupy 8 bytes each, and be passed in %f1 and
64 // %f3.
66 // When a struct { int, float } is passed by value, the int goes in the high
67 // bits of an integer register while the float goes in a floating point
68 // register.
70 // The difference is encoded in LLVM IR using the inreg attribute on function
71 // arguments:
73 //   C:   void f(float, float);
74 //   IR:  declare void f(float %f1, float %f3)
76 //   C:   void f(struct { float f0, f1; });
77 //   IR:  declare void f(float inreg %f0, float inreg %f1)
79 //   C:   void f(int, float);
80 //   IR:  declare void f(int signext %i0, float %f3)
82 //   C:   void f(struct { int i0high; float f1; });
83 //   IR:  declare void f(i32 inreg %i0high, float inreg %f1)
85 // Two ints in a struct are simply coerced to i64:
87 //   C:   void f(struct { int i0high, i0low; });
88 //   IR:  declare void f(i64 %i0.coerced)
90 // The frontend and backend divide the task of producing ABI compliant code for
91 // C functions. The C frontend will:
93 //  - Annotate integer arguments with zeroext or signext attributes.
95 //  - Split structs into one or two 64-bit sized chunks, or 32-bit chunks with
96 //    inreg attributes.
98 //  - Pass structs larger than 16 bytes indirectly with an explicit pointer
99 //    argument. The byval attribute is not used.
101 // The backend will:
103 //  - Assign all arguments to 64-bit aligned stack slots, 32-bits for inreg.
105 //  - Promote to integer or floating point registers depending on type.
107 // Function return values are passed exactly like function arguments, except a
108 // struct up to 32 bytes in size can be returned in registers.
110 // Function arguments AND most return values.
111 def CC_Sparc64 : CallingConv<[
112   // The frontend uses the inreg flag to indicate i32 and float arguments from
113   // structs. These arguments are not promoted to 64 bits, but they can still
114   // be assigned to integer and float registers.
115   CCIfInReg<CCIfType<[i32, f32], CCCustom<"CC_Sparc64_Half">>>,
117   // All integers are promoted to i64 by the caller.
118   CCIfType<[i32], CCPromoteToType<i64>>,
120   // Custom assignment is required because stack space is reserved for all
121   // arguments whether they are passed in registers or not.
122   CCCustom<"CC_Sparc64_Full">
125 def RetCC_Sparc64 : CallingConv<[
126   // A single f32 return value always goes in %f0. The ABI doesn't specify what
127   // happens to multiple f32 return values outside a struct.
128   CCIfType<[f32], CCCustom<"RetCC_Sparc64_Half">>,
130   // Otherwise, return values are passed exactly like arguments, except that
131   // returns that are too big to fit into the registers is passed as an sret
132   // instead.
133   CCIfInReg<CCIfType<[i32, f32], CCCustom<"RetCC_Sparc64_Half">>>,
134   CCIfType<[i32], CCPromoteToType<i64>>,
135   CCCustom<"RetCC_Sparc64_Full">
138 // Callee-saved registers are handled by the register window mechanism.
139 def CSR : CalleeSavedRegs<(add)> {
140   let OtherPreserved = (add (sequence "I%u", 0, 7),
141                             (sequence "L%u", 0, 7), O6);
144 // Callee-saved registers for calls with ReturnsTwice attribute.
145 def RTCSR : CalleeSavedRegs<(add)> {
146   let OtherPreserved = (add I6, I7);