Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Target / WebAssembly / WebAssemblyRegStackify.cpp
blob1e47d9a347a2aa7acfe880d79ffa0a41f6f8d1f3
1 //===-- WebAssemblyRegStackify.cpp - Register Stackification --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements a register stacking pass.
11 ///
12 /// This pass reorders instructions to put register uses and defs in an order
13 /// such that they form single-use expression trees. Registers fitting this form
14 /// are then marked as "stackified", meaning references to them are replaced by
15 /// "push" and "pop" from the value stack.
16 ///
17 /// This is primarily a code size optimization, since temporary values on the
18 /// value stack don't need to be named.
19 ///
20 //===----------------------------------------------------------------------===//
22 #include "MCTargetDesc/WebAssemblyMCTargetDesc.h" // for WebAssembly::ARGUMENT_*
23 #include "WebAssembly.h"
24 #include "WebAssemblyDebugValueManager.h"
25 #include "WebAssemblyMachineFunctionInfo.h"
26 #include "WebAssemblySubtarget.h"
27 #include "WebAssemblyUtilities.h"
28 #include "llvm/ADT/SmallPtrSet.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/CodeGen/LiveIntervals.h"
31 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
32 #include "llvm/CodeGen/MachineDominators.h"
33 #include "llvm/CodeGen/MachineInstrBuilder.h"
34 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/Passes.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <iterator>
40 using namespace llvm;
42 #define DEBUG_TYPE "wasm-reg-stackify"
44 namespace {
45 class WebAssemblyRegStackify final : public MachineFunctionPass {
46 StringRef getPassName() const override {
47 return "WebAssembly Register Stackify";
50 void getAnalysisUsage(AnalysisUsage &AU) const override {
51 AU.setPreservesCFG();
52 AU.addRequired<MachineDominatorTree>();
53 AU.addRequired<LiveIntervals>();
54 AU.addPreserved<MachineBlockFrequencyInfo>();
55 AU.addPreserved<SlotIndexes>();
56 AU.addPreserved<LiveIntervals>();
57 AU.addPreservedID(LiveVariablesID);
58 AU.addPreserved<MachineDominatorTree>();
59 MachineFunctionPass::getAnalysisUsage(AU);
62 bool runOnMachineFunction(MachineFunction &MF) override;
64 public:
65 static char ID; // Pass identification, replacement for typeid
66 WebAssemblyRegStackify() : MachineFunctionPass(ID) {}
68 } // end anonymous namespace
70 char WebAssemblyRegStackify::ID = 0;
71 INITIALIZE_PASS(WebAssemblyRegStackify, DEBUG_TYPE,
72 "Reorder instructions to use the WebAssembly value stack",
73 false, false)
75 FunctionPass *llvm::createWebAssemblyRegStackify() {
76 return new WebAssemblyRegStackify();
79 // Decorate the given instruction with implicit operands that enforce the
80 // expression stack ordering constraints for an instruction which is on
81 // the expression stack.
82 static void imposeStackOrdering(MachineInstr *MI) {
83 // Write the opaque VALUE_STACK register.
84 if (!MI->definesRegister(WebAssembly::VALUE_STACK))
85 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
86 /*isDef=*/true,
87 /*isImp=*/true));
89 // Also read the opaque VALUE_STACK register.
90 if (!MI->readsRegister(WebAssembly::VALUE_STACK))
91 MI->addOperand(MachineOperand::CreateReg(WebAssembly::VALUE_STACK,
92 /*isDef=*/false,
93 /*isImp=*/true));
96 // Convert an IMPLICIT_DEF instruction into an instruction which defines
97 // a constant zero value.
98 static void convertImplicitDefToConstZero(MachineInstr *MI,
99 MachineRegisterInfo &MRI,
100 const TargetInstrInfo *TII,
101 MachineFunction &MF,
102 LiveIntervals &LIS) {
103 assert(MI->getOpcode() == TargetOpcode::IMPLICIT_DEF);
105 const auto *RegClass = MRI.getRegClass(MI->getOperand(0).getReg());
106 if (RegClass == &WebAssembly::I32RegClass) {
107 MI->setDesc(TII->get(WebAssembly::CONST_I32));
108 MI->addOperand(MachineOperand::CreateImm(0));
109 } else if (RegClass == &WebAssembly::I64RegClass) {
110 MI->setDesc(TII->get(WebAssembly::CONST_I64));
111 MI->addOperand(MachineOperand::CreateImm(0));
112 } else if (RegClass == &WebAssembly::F32RegClass) {
113 MI->setDesc(TII->get(WebAssembly::CONST_F32));
114 auto *Val = cast<ConstantFP>(Constant::getNullValue(
115 Type::getFloatTy(MF.getFunction().getContext())));
116 MI->addOperand(MachineOperand::CreateFPImm(Val));
117 } else if (RegClass == &WebAssembly::F64RegClass) {
118 MI->setDesc(TII->get(WebAssembly::CONST_F64));
119 auto *Val = cast<ConstantFP>(Constant::getNullValue(
120 Type::getDoubleTy(MF.getFunction().getContext())));
121 MI->addOperand(MachineOperand::CreateFPImm(Val));
122 } else if (RegClass == &WebAssembly::V128RegClass) {
123 MI->setDesc(TII->get(WebAssembly::CONST_V128_I64x2));
124 MI->addOperand(MachineOperand::CreateImm(0));
125 MI->addOperand(MachineOperand::CreateImm(0));
126 } else {
127 llvm_unreachable("Unexpected reg class");
131 // Determine whether a call to the callee referenced by
132 // MI->getOperand(CalleeOpNo) reads memory, writes memory, and/or has side
133 // effects.
134 static void queryCallee(const MachineInstr &MI, bool &Read, bool &Write,
135 bool &Effects, bool &StackPointer) {
136 // All calls can use the stack pointer.
137 StackPointer = true;
139 const MachineOperand &MO = WebAssembly::getCalleeOp(MI);
140 if (MO.isGlobal()) {
141 const Constant *GV = MO.getGlobal();
142 if (const auto *GA = dyn_cast<GlobalAlias>(GV))
143 if (!GA->isInterposable())
144 GV = GA->getAliasee();
146 if (const auto *F = dyn_cast<Function>(GV)) {
147 if (!F->doesNotThrow())
148 Effects = true;
149 if (F->doesNotAccessMemory())
150 return;
151 if (F->onlyReadsMemory()) {
152 Read = true;
153 return;
158 // Assume the worst.
159 Write = true;
160 Read = true;
161 Effects = true;
164 // Determine whether MI reads memory, writes memory, has side effects,
165 // and/or uses the stack pointer value.
166 static void query(const MachineInstr &MI, bool &Read, bool &Write,
167 bool &Effects, bool &StackPointer) {
168 assert(!MI.isTerminator());
170 if (MI.isDebugInstr() || MI.isPosition())
171 return;
173 // Check for loads.
174 if (MI.mayLoad() && !MI.isDereferenceableInvariantLoad())
175 Read = true;
177 // Check for stores.
178 if (MI.mayStore()) {
179 Write = true;
180 } else if (MI.hasOrderedMemoryRef()) {
181 switch (MI.getOpcode()) {
182 case WebAssembly::DIV_S_I32:
183 case WebAssembly::DIV_S_I64:
184 case WebAssembly::REM_S_I32:
185 case WebAssembly::REM_S_I64:
186 case WebAssembly::DIV_U_I32:
187 case WebAssembly::DIV_U_I64:
188 case WebAssembly::REM_U_I32:
189 case WebAssembly::REM_U_I64:
190 case WebAssembly::I32_TRUNC_S_F32:
191 case WebAssembly::I64_TRUNC_S_F32:
192 case WebAssembly::I32_TRUNC_S_F64:
193 case WebAssembly::I64_TRUNC_S_F64:
194 case WebAssembly::I32_TRUNC_U_F32:
195 case WebAssembly::I64_TRUNC_U_F32:
196 case WebAssembly::I32_TRUNC_U_F64:
197 case WebAssembly::I64_TRUNC_U_F64:
198 // These instruction have hasUnmodeledSideEffects() returning true
199 // because they trap on overflow and invalid so they can't be arbitrarily
200 // moved, however hasOrderedMemoryRef() interprets this plus their lack
201 // of memoperands as having a potential unknown memory reference.
202 break;
203 default:
204 // Record volatile accesses, unless it's a call, as calls are handled
205 // specially below.
206 if (!MI.isCall()) {
207 Write = true;
208 Effects = true;
210 break;
214 // Check for side effects.
215 if (MI.hasUnmodeledSideEffects()) {
216 switch (MI.getOpcode()) {
217 case WebAssembly::DIV_S_I32:
218 case WebAssembly::DIV_S_I64:
219 case WebAssembly::REM_S_I32:
220 case WebAssembly::REM_S_I64:
221 case WebAssembly::DIV_U_I32:
222 case WebAssembly::DIV_U_I64:
223 case WebAssembly::REM_U_I32:
224 case WebAssembly::REM_U_I64:
225 case WebAssembly::I32_TRUNC_S_F32:
226 case WebAssembly::I64_TRUNC_S_F32:
227 case WebAssembly::I32_TRUNC_S_F64:
228 case WebAssembly::I64_TRUNC_S_F64:
229 case WebAssembly::I32_TRUNC_U_F32:
230 case WebAssembly::I64_TRUNC_U_F32:
231 case WebAssembly::I32_TRUNC_U_F64:
232 case WebAssembly::I64_TRUNC_U_F64:
233 // These instructions have hasUnmodeledSideEffects() returning true
234 // because they trap on overflow and invalid so they can't be arbitrarily
235 // moved, however in the specific case of register stackifying, it is safe
236 // to move them because overflow and invalid are Undefined Behavior.
237 break;
238 default:
239 Effects = true;
240 break;
244 // Check for writes to __stack_pointer global.
245 if ((MI.getOpcode() == WebAssembly::GLOBAL_SET_I32 ||
246 MI.getOpcode() == WebAssembly::GLOBAL_SET_I64) &&
247 strcmp(MI.getOperand(0).getSymbolName(), "__stack_pointer") == 0)
248 StackPointer = true;
250 // Analyze calls.
251 if (MI.isCall()) {
252 queryCallee(MI, Read, Write, Effects, StackPointer);
256 // Test whether Def is safe and profitable to rematerialize.
257 static bool shouldRematerialize(const MachineInstr &Def,
258 const WebAssemblyInstrInfo *TII) {
259 return Def.isAsCheapAsAMove() && TII->isTriviallyReMaterializable(Def);
262 // Identify the definition for this register at this point. This is a
263 // generalization of MachineRegisterInfo::getUniqueVRegDef that uses
264 // LiveIntervals to handle complex cases.
265 static MachineInstr *getVRegDef(unsigned Reg, const MachineInstr *Insert,
266 const MachineRegisterInfo &MRI,
267 const LiveIntervals &LIS) {
268 // Most registers are in SSA form here so we try a quick MRI query first.
269 if (MachineInstr *Def = MRI.getUniqueVRegDef(Reg))
270 return Def;
272 // MRI doesn't know what the Def is. Try asking LIS.
273 if (const VNInfo *ValNo = LIS.getInterval(Reg).getVNInfoBefore(
274 LIS.getInstructionIndex(*Insert)))
275 return LIS.getInstructionFromIndex(ValNo->def);
277 return nullptr;
280 // Test whether Reg, as defined at Def, has exactly one use. This is a
281 // generalization of MachineRegisterInfo::hasOneNonDBGUse that uses
282 // LiveIntervals to handle complex cases.
283 static bool hasOneNonDBGUse(unsigned Reg, MachineInstr *Def,
284 MachineRegisterInfo &MRI, MachineDominatorTree &MDT,
285 LiveIntervals &LIS) {
286 // Most registers are in SSA form here so we try a quick MRI query first.
287 if (MRI.hasOneNonDBGUse(Reg))
288 return true;
290 bool HasOne = false;
291 const LiveInterval &LI = LIS.getInterval(Reg);
292 const VNInfo *DefVNI =
293 LI.getVNInfoAt(LIS.getInstructionIndex(*Def).getRegSlot());
294 assert(DefVNI);
295 for (auto &I : MRI.use_nodbg_operands(Reg)) {
296 const auto &Result = LI.Query(LIS.getInstructionIndex(*I.getParent()));
297 if (Result.valueIn() == DefVNI) {
298 if (!Result.isKill())
299 return false;
300 if (HasOne)
301 return false;
302 HasOne = true;
305 return HasOne;
308 // Test whether it's safe to move Def to just before Insert.
309 // TODO: Compute memory dependencies in a way that doesn't require always
310 // walking the block.
311 // TODO: Compute memory dependencies in a way that uses AliasAnalysis to be
312 // more precise.
313 static bool isSafeToMove(const MachineOperand *Def, const MachineOperand *Use,
314 const MachineInstr *Insert,
315 const WebAssemblyFunctionInfo &MFI,
316 const MachineRegisterInfo &MRI) {
317 const MachineInstr *DefI = Def->getParent();
318 const MachineInstr *UseI = Use->getParent();
319 assert(DefI->getParent() == Insert->getParent());
320 assert(UseI->getParent() == Insert->getParent());
322 // The first def of a multivalue instruction can be stackified by moving,
323 // since the later defs can always be placed into locals if necessary. Later
324 // defs can only be stackified if all previous defs are already stackified
325 // since ExplicitLocals will not know how to place a def in a local if a
326 // subsequent def is stackified. But only one def can be stackified by moving
327 // the instruction, so it must be the first one.
329 // TODO: This could be loosened to be the first *live* def, but care would
330 // have to be taken to ensure the drops of the initial dead defs can be
331 // placed. This would require checking that no previous defs are used in the
332 // same instruction as subsequent defs.
333 if (Def != DefI->defs().begin())
334 return false;
336 // If any subsequent def is used prior to the current value by the same
337 // instruction in which the current value is used, we cannot
338 // stackify. Stackifying in this case would require that def moving below the
339 // current def in the stack, which cannot be achieved, even with locals.
340 // Also ensure we don't sink the def past any other prior uses.
341 for (const auto &SubsequentDef : drop_begin(DefI->defs())) {
342 auto I = std::next(MachineBasicBlock::const_iterator(DefI));
343 auto E = std::next(MachineBasicBlock::const_iterator(UseI));
344 for (; I != E; ++I) {
345 for (const auto &PriorUse : I->uses()) {
346 if (&PriorUse == Use)
347 break;
348 if (PriorUse.isReg() && SubsequentDef.getReg() == PriorUse.getReg())
349 return false;
354 // If moving is a semantic nop, it is always allowed
355 const MachineBasicBlock *MBB = DefI->getParent();
356 auto NextI = std::next(MachineBasicBlock::const_iterator(DefI));
357 for (auto E = MBB->end(); NextI != E && NextI->isDebugInstr(); ++NextI)
359 if (NextI == Insert)
360 return true;
362 // 'catch' and 'catch_all' should be the first instruction of a BB and cannot
363 // move.
364 if (WebAssembly::isCatch(DefI->getOpcode()))
365 return false;
367 // Check for register dependencies.
368 SmallVector<unsigned, 4> MutableRegisters;
369 for (const MachineOperand &MO : DefI->operands()) {
370 if (!MO.isReg() || MO.isUndef())
371 continue;
372 Register Reg = MO.getReg();
374 // If the register is dead here and at Insert, ignore it.
375 if (MO.isDead() && Insert->definesRegister(Reg) &&
376 !Insert->readsRegister(Reg))
377 continue;
379 if (Reg.isPhysical()) {
380 // Ignore ARGUMENTS; it's just used to keep the ARGUMENT_* instructions
381 // from moving down, and we've already checked for that.
382 if (Reg == WebAssembly::ARGUMENTS)
383 continue;
384 // If the physical register is never modified, ignore it.
385 if (!MRI.isPhysRegModified(Reg))
386 continue;
387 // Otherwise, it's a physical register with unknown liveness.
388 return false;
391 // If one of the operands isn't in SSA form, it has different values at
392 // different times, and we need to make sure we don't move our use across
393 // a different def.
394 if (!MO.isDef() && !MRI.hasOneDef(Reg))
395 MutableRegisters.push_back(Reg);
398 bool Read = false, Write = false, Effects = false, StackPointer = false;
399 query(*DefI, Read, Write, Effects, StackPointer);
401 // If the instruction does not access memory and has no side effects, it has
402 // no additional dependencies.
403 bool HasMutableRegisters = !MutableRegisters.empty();
404 if (!Read && !Write && !Effects && !StackPointer && !HasMutableRegisters)
405 return true;
407 // Scan through the intervening instructions between DefI and Insert.
408 MachineBasicBlock::const_iterator D(DefI), I(Insert);
409 for (--I; I != D; --I) {
410 bool InterveningRead = false;
411 bool InterveningWrite = false;
412 bool InterveningEffects = false;
413 bool InterveningStackPointer = false;
414 query(*I, InterveningRead, InterveningWrite, InterveningEffects,
415 InterveningStackPointer);
416 if (Effects && InterveningEffects)
417 return false;
418 if (Read && InterveningWrite)
419 return false;
420 if (Write && (InterveningRead || InterveningWrite))
421 return false;
422 if (StackPointer && InterveningStackPointer)
423 return false;
425 for (unsigned Reg : MutableRegisters)
426 for (const MachineOperand &MO : I->operands())
427 if (MO.isReg() && MO.isDef() && MO.getReg() == Reg)
428 return false;
431 return true;
434 /// Test whether OneUse, a use of Reg, dominates all of Reg's other uses.
435 static bool oneUseDominatesOtherUses(unsigned Reg, const MachineOperand &OneUse,
436 const MachineBasicBlock &MBB,
437 const MachineRegisterInfo &MRI,
438 const MachineDominatorTree &MDT,
439 LiveIntervals &LIS,
440 WebAssemblyFunctionInfo &MFI) {
441 const LiveInterval &LI = LIS.getInterval(Reg);
443 const MachineInstr *OneUseInst = OneUse.getParent();
444 VNInfo *OneUseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*OneUseInst));
446 for (const MachineOperand &Use : MRI.use_nodbg_operands(Reg)) {
447 if (&Use == &OneUse)
448 continue;
450 const MachineInstr *UseInst = Use.getParent();
451 VNInfo *UseVNI = LI.getVNInfoBefore(LIS.getInstructionIndex(*UseInst));
453 if (UseVNI != OneUseVNI)
454 continue;
456 if (UseInst == OneUseInst) {
457 // Another use in the same instruction. We need to ensure that the one
458 // selected use happens "before" it.
459 if (&OneUse > &Use)
460 return false;
461 } else {
462 // Test that the use is dominated by the one selected use.
463 while (!MDT.dominates(OneUseInst, UseInst)) {
464 // Actually, dominating is over-conservative. Test that the use would
465 // happen after the one selected use in the stack evaluation order.
467 // This is needed as a consequence of using implicit local.gets for
468 // uses and implicit local.sets for defs.
469 if (UseInst->getDesc().getNumDefs() == 0)
470 return false;
471 const MachineOperand &MO = UseInst->getOperand(0);
472 if (!MO.isReg())
473 return false;
474 Register DefReg = MO.getReg();
475 if (!DefReg.isVirtual() || !MFI.isVRegStackified(DefReg))
476 return false;
477 assert(MRI.hasOneNonDBGUse(DefReg));
478 const MachineOperand &NewUse = *MRI.use_nodbg_begin(DefReg);
479 const MachineInstr *NewUseInst = NewUse.getParent();
480 if (NewUseInst == OneUseInst) {
481 if (&OneUse > &NewUse)
482 return false;
483 break;
485 UseInst = NewUseInst;
489 return true;
492 /// Get the appropriate tee opcode for the given register class.
493 static unsigned getTeeOpcode(const TargetRegisterClass *RC) {
494 if (RC == &WebAssembly::I32RegClass)
495 return WebAssembly::TEE_I32;
496 if (RC == &WebAssembly::I64RegClass)
497 return WebAssembly::TEE_I64;
498 if (RC == &WebAssembly::F32RegClass)
499 return WebAssembly::TEE_F32;
500 if (RC == &WebAssembly::F64RegClass)
501 return WebAssembly::TEE_F64;
502 if (RC == &WebAssembly::V128RegClass)
503 return WebAssembly::TEE_V128;
504 if (RC == &WebAssembly::EXTERNREFRegClass)
505 return WebAssembly::TEE_EXTERNREF;
506 if (RC == &WebAssembly::FUNCREFRegClass)
507 return WebAssembly::TEE_FUNCREF;
508 llvm_unreachable("Unexpected register class");
511 // Shrink LI to its uses, cleaning up LI.
512 static void shrinkToUses(LiveInterval &LI, LiveIntervals &LIS) {
513 if (LIS.shrinkToUses(&LI)) {
514 SmallVector<LiveInterval *, 4> SplitLIs;
515 LIS.splitSeparateComponents(LI, SplitLIs);
519 /// A single-use def in the same block with no intervening memory or register
520 /// dependencies; move the def down and nest it with the current instruction.
521 static MachineInstr *moveForSingleUse(unsigned Reg, MachineOperand &Op,
522 MachineInstr *Def, MachineBasicBlock &MBB,
523 MachineInstr *Insert, LiveIntervals &LIS,
524 WebAssemblyFunctionInfo &MFI,
525 MachineRegisterInfo &MRI) {
526 LLVM_DEBUG(dbgs() << "Move for single use: "; Def->dump());
528 WebAssemblyDebugValueManager DefDIs(Def);
529 DefDIs.sink(Insert);
530 LIS.handleMove(*Def);
532 if (MRI.hasOneDef(Reg) && MRI.hasOneNonDBGUse(Reg)) {
533 // No one else is using this register for anything so we can just stackify
534 // it in place.
535 MFI.stackifyVReg(MRI, Reg);
536 } else {
537 // The register may have unrelated uses or defs; create a new register for
538 // just our one def and use so that we can stackify it.
539 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
540 Op.setReg(NewReg);
541 DefDIs.updateReg(NewReg);
543 // Tell LiveIntervals about the new register.
544 LIS.createAndComputeVirtRegInterval(NewReg);
546 // Tell LiveIntervals about the changes to the old register.
547 LiveInterval &LI = LIS.getInterval(Reg);
548 LI.removeSegment(LIS.getInstructionIndex(*Def).getRegSlot(),
549 LIS.getInstructionIndex(*Op.getParent()).getRegSlot(),
550 /*RemoveDeadValNo=*/true);
552 MFI.stackifyVReg(MRI, NewReg);
554 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
557 imposeStackOrdering(Def);
558 return Def;
561 static MachineInstr *getPrevNonDebugInst(MachineInstr *MI) {
562 for (auto *I = MI->getPrevNode(); I; I = I->getPrevNode())
563 if (!I->isDebugInstr())
564 return I;
565 return nullptr;
568 /// A trivially cloneable instruction; clone it and nest the new copy with the
569 /// current instruction.
570 static MachineInstr *rematerializeCheapDef(
571 unsigned Reg, MachineOperand &Op, MachineInstr &Def, MachineBasicBlock &MBB,
572 MachineBasicBlock::instr_iterator Insert, LiveIntervals &LIS,
573 WebAssemblyFunctionInfo &MFI, MachineRegisterInfo &MRI,
574 const WebAssemblyInstrInfo *TII, const WebAssemblyRegisterInfo *TRI) {
575 LLVM_DEBUG(dbgs() << "Rematerializing cheap def: "; Def.dump());
576 LLVM_DEBUG(dbgs() << " - for use in "; Op.getParent()->dump());
578 WebAssemblyDebugValueManager DefDIs(&Def);
580 Register NewReg = MRI.createVirtualRegister(MRI.getRegClass(Reg));
581 DefDIs.cloneSink(&*Insert, NewReg);
582 Op.setReg(NewReg);
583 MachineInstr *Clone = getPrevNonDebugInst(&*Insert);
584 assert(Clone);
585 LIS.InsertMachineInstrInMaps(*Clone);
586 LIS.createAndComputeVirtRegInterval(NewReg);
587 MFI.stackifyVReg(MRI, NewReg);
588 imposeStackOrdering(Clone);
590 LLVM_DEBUG(dbgs() << " - Cloned to "; Clone->dump());
592 // Shrink the interval.
593 bool IsDead = MRI.use_empty(Reg);
594 if (!IsDead) {
595 LiveInterval &LI = LIS.getInterval(Reg);
596 shrinkToUses(LI, LIS);
597 IsDead = !LI.liveAt(LIS.getInstructionIndex(Def).getDeadSlot());
600 // If that was the last use of the original, delete the original.
601 if (IsDead) {
602 LLVM_DEBUG(dbgs() << " - Deleting original\n");
603 SlotIndex Idx = LIS.getInstructionIndex(Def).getRegSlot();
604 LIS.removePhysRegDefAt(MCRegister::from(WebAssembly::ARGUMENTS), Idx);
605 LIS.removeInterval(Reg);
606 LIS.RemoveMachineInstrFromMaps(Def);
607 DefDIs.removeDef();
610 return Clone;
613 /// A multiple-use def in the same block with no intervening memory or register
614 /// dependencies; move the def down, nest it with the current instruction, and
615 /// insert a tee to satisfy the rest of the uses. As an illustration, rewrite
616 /// this:
618 /// Reg = INST ... // Def
619 /// INST ..., Reg, ... // Insert
620 /// INST ..., Reg, ...
621 /// INST ..., Reg, ...
623 /// to this:
625 /// DefReg = INST ... // Def (to become the new Insert)
626 /// TeeReg, Reg = TEE_... DefReg
627 /// INST ..., TeeReg, ... // Insert
628 /// INST ..., Reg, ...
629 /// INST ..., Reg, ...
631 /// with DefReg and TeeReg stackified. This eliminates a local.get from the
632 /// resulting code.
633 static MachineInstr *moveAndTeeForMultiUse(
634 unsigned Reg, MachineOperand &Op, MachineInstr *Def, MachineBasicBlock &MBB,
635 MachineInstr *Insert, LiveIntervals &LIS, WebAssemblyFunctionInfo &MFI,
636 MachineRegisterInfo &MRI, const WebAssemblyInstrInfo *TII) {
637 LLVM_DEBUG(dbgs() << "Move and tee for multi-use:"; Def->dump());
639 const auto *RegClass = MRI.getRegClass(Reg);
640 Register TeeReg = MRI.createVirtualRegister(RegClass);
641 Register DefReg = MRI.createVirtualRegister(RegClass);
643 // Move Def into place.
644 WebAssemblyDebugValueManager DefDIs(Def);
645 DefDIs.sink(Insert);
646 LIS.handleMove(*Def);
648 // Create the Tee and attach the registers.
649 MachineOperand &DefMO = Def->getOperand(0);
650 MachineInstr *Tee = BuildMI(MBB, Insert, Insert->getDebugLoc(),
651 TII->get(getTeeOpcode(RegClass)), TeeReg)
652 .addReg(Reg, RegState::Define)
653 .addReg(DefReg, getUndefRegState(DefMO.isDead()));
654 Op.setReg(TeeReg);
655 DefDIs.updateReg(DefReg);
656 SlotIndex TeeIdx = LIS.InsertMachineInstrInMaps(*Tee).getRegSlot();
657 SlotIndex DefIdx = LIS.getInstructionIndex(*Def).getRegSlot();
659 // Tell LiveIntervals we moved the original vreg def from Def to Tee.
660 LiveInterval &LI = LIS.getInterval(Reg);
661 LiveInterval::iterator I = LI.FindSegmentContaining(DefIdx);
662 VNInfo *ValNo = LI.getVNInfoAt(DefIdx);
663 I->start = TeeIdx;
664 ValNo->def = TeeIdx;
665 shrinkToUses(LI, LIS);
667 // Finish stackifying the new regs.
668 LIS.createAndComputeVirtRegInterval(TeeReg);
669 LIS.createAndComputeVirtRegInterval(DefReg);
670 MFI.stackifyVReg(MRI, DefReg);
671 MFI.stackifyVReg(MRI, TeeReg);
672 imposeStackOrdering(Def);
673 imposeStackOrdering(Tee);
675 // Even though 'TeeReg, Reg = TEE ...', has two defs, we don't need to clone
676 // DBG_VALUEs for both of them, given that the latter will cancel the former
677 // anyway. Here we only clone DBG_VALUEs for TeeReg, which will be converted
678 // to a local index in ExplicitLocals pass.
679 DefDIs.cloneSink(Insert, TeeReg, /* CloneDef */ false);
681 LLVM_DEBUG(dbgs() << " - Replaced register: "; Def->dump());
682 LLVM_DEBUG(dbgs() << " - Tee instruction: "; Tee->dump());
683 return Def;
686 namespace {
687 /// A stack for walking the tree of instructions being built, visiting the
688 /// MachineOperands in DFS order.
689 class TreeWalkerState {
690 using mop_iterator = MachineInstr::mop_iterator;
691 using mop_reverse_iterator = std::reverse_iterator<mop_iterator>;
692 using RangeTy = iterator_range<mop_reverse_iterator>;
693 SmallVector<RangeTy, 4> Worklist;
695 public:
696 explicit TreeWalkerState(MachineInstr *Insert) {
697 const iterator_range<mop_iterator> &Range = Insert->explicit_uses();
698 if (!Range.empty())
699 Worklist.push_back(reverse(Range));
702 bool done() const { return Worklist.empty(); }
704 MachineOperand &pop() {
705 RangeTy &Range = Worklist.back();
706 MachineOperand &Op = *Range.begin();
707 Range = drop_begin(Range);
708 if (Range.empty())
709 Worklist.pop_back();
710 assert((Worklist.empty() || !Worklist.back().empty()) &&
711 "Empty ranges shouldn't remain in the worklist");
712 return Op;
715 /// Push Instr's operands onto the stack to be visited.
716 void pushOperands(MachineInstr *Instr) {
717 const iterator_range<mop_iterator> &Range(Instr->explicit_uses());
718 if (!Range.empty())
719 Worklist.push_back(reverse(Range));
722 /// Some of Instr's operands are on the top of the stack; remove them and
723 /// re-insert them starting from the beginning (because we've commuted them).
724 void resetTopOperands(MachineInstr *Instr) {
725 assert(hasRemainingOperands(Instr) &&
726 "Reseting operands should only be done when the instruction has "
727 "an operand still on the stack");
728 Worklist.back() = reverse(Instr->explicit_uses());
731 /// Test whether Instr has operands remaining to be visited at the top of
732 /// the stack.
733 bool hasRemainingOperands(const MachineInstr *Instr) const {
734 if (Worklist.empty())
735 return false;
736 const RangeTy &Range = Worklist.back();
737 return !Range.empty() && Range.begin()->getParent() == Instr;
740 /// Test whether the given register is present on the stack, indicating an
741 /// operand in the tree that we haven't visited yet. Moving a definition of
742 /// Reg to a point in the tree after that would change its value.
744 /// This is needed as a consequence of using implicit local.gets for
745 /// uses and implicit local.sets for defs.
746 bool isOnStack(unsigned Reg) const {
747 for (const RangeTy &Range : Worklist)
748 for (const MachineOperand &MO : Range)
749 if (MO.isReg() && MO.getReg() == Reg)
750 return true;
751 return false;
755 /// State to keep track of whether commuting is in flight or whether it's been
756 /// tried for the current instruction and didn't work.
757 class CommutingState {
758 /// There are effectively three states: the initial state where we haven't
759 /// started commuting anything and we don't know anything yet, the tentative
760 /// state where we've commuted the operands of the current instruction and are
761 /// revisiting it, and the declined state where we've reverted the operands
762 /// back to their original order and will no longer commute it further.
763 bool TentativelyCommuting = false;
764 bool Declined = false;
766 /// During the tentative state, these hold the operand indices of the commuted
767 /// operands.
768 unsigned Operand0, Operand1;
770 public:
771 /// Stackification for an operand was not successful due to ordering
772 /// constraints. If possible, and if we haven't already tried it and declined
773 /// it, commute Insert's operands and prepare to revisit it.
774 void maybeCommute(MachineInstr *Insert, TreeWalkerState &TreeWalker,
775 const WebAssemblyInstrInfo *TII) {
776 if (TentativelyCommuting) {
777 assert(!Declined &&
778 "Don't decline commuting until you've finished trying it");
779 // Commuting didn't help. Revert it.
780 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
781 TentativelyCommuting = false;
782 Declined = true;
783 } else if (!Declined && TreeWalker.hasRemainingOperands(Insert)) {
784 Operand0 = TargetInstrInfo::CommuteAnyOperandIndex;
785 Operand1 = TargetInstrInfo::CommuteAnyOperandIndex;
786 if (TII->findCommutedOpIndices(*Insert, Operand0, Operand1)) {
787 // Tentatively commute the operands and try again.
788 TII->commuteInstruction(*Insert, /*NewMI=*/false, Operand0, Operand1);
789 TreeWalker.resetTopOperands(Insert);
790 TentativelyCommuting = true;
791 Declined = false;
796 /// Stackification for some operand was successful. Reset to the default
797 /// state.
798 void reset() {
799 TentativelyCommuting = false;
800 Declined = false;
803 } // end anonymous namespace
805 bool WebAssemblyRegStackify::runOnMachineFunction(MachineFunction &MF) {
806 LLVM_DEBUG(dbgs() << "********** Register Stackifying **********\n"
807 "********** Function: "
808 << MF.getName() << '\n');
810 bool Changed = false;
811 MachineRegisterInfo &MRI = MF.getRegInfo();
812 WebAssemblyFunctionInfo &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
813 const auto *TII = MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
814 const auto *TRI = MF.getSubtarget<WebAssemblySubtarget>().getRegisterInfo();
815 auto &MDT = getAnalysis<MachineDominatorTree>();
816 auto &LIS = getAnalysis<LiveIntervals>();
818 // Walk the instructions from the bottom up. Currently we don't look past
819 // block boundaries, and the blocks aren't ordered so the block visitation
820 // order isn't significant, but we may want to change this in the future.
821 for (MachineBasicBlock &MBB : MF) {
822 // Don't use a range-based for loop, because we modify the list as we're
823 // iterating over it and the end iterator may change.
824 for (auto MII = MBB.rbegin(); MII != MBB.rend(); ++MII) {
825 MachineInstr *Insert = &*MII;
826 // Don't nest anything inside an inline asm, because we don't have
827 // constraints for $push inputs.
828 if (Insert->isInlineAsm())
829 continue;
831 // Ignore debugging intrinsics.
832 if (Insert->isDebugValue())
833 continue;
835 // Iterate through the inputs in reverse order, since we'll be pulling
836 // operands off the stack in LIFO order.
837 CommutingState Commuting;
838 TreeWalkerState TreeWalker(Insert);
839 while (!TreeWalker.done()) {
840 MachineOperand &Use = TreeWalker.pop();
842 // We're only interested in explicit virtual register operands.
843 if (!Use.isReg())
844 continue;
846 Register Reg = Use.getReg();
847 assert(Use.isUse() && "explicit_uses() should only iterate over uses");
848 assert(!Use.isImplicit() &&
849 "explicit_uses() should only iterate over explicit operands");
850 if (Reg.isPhysical())
851 continue;
853 // Identify the definition for this register at this point.
854 MachineInstr *DefI = getVRegDef(Reg, Insert, MRI, LIS);
855 if (!DefI)
856 continue;
858 // Don't nest an INLINE_ASM def into anything, because we don't have
859 // constraints for $pop outputs.
860 if (DefI->isInlineAsm())
861 continue;
863 // Argument instructions represent live-in registers and not real
864 // instructions.
865 if (WebAssembly::isArgument(DefI->getOpcode()))
866 continue;
868 MachineOperand *Def = DefI->findRegisterDefOperand(Reg);
869 assert(Def != nullptr);
871 // Decide which strategy to take. Prefer to move a single-use value
872 // over cloning it, and prefer cloning over introducing a tee.
873 // For moving, we require the def to be in the same block as the use;
874 // this makes things simpler (LiveIntervals' handleMove function only
875 // supports intra-block moves) and it's MachineSink's job to catch all
876 // the sinking opportunities anyway.
877 bool SameBlock = DefI->getParent() == &MBB;
878 bool CanMove = SameBlock && isSafeToMove(Def, &Use, Insert, MFI, MRI) &&
879 !TreeWalker.isOnStack(Reg);
880 if (CanMove && hasOneNonDBGUse(Reg, DefI, MRI, MDT, LIS)) {
881 Insert = moveForSingleUse(Reg, Use, DefI, MBB, Insert, LIS, MFI, MRI);
883 // If we are removing the frame base reg completely, remove the debug
884 // info as well.
885 // TODO: Encode this properly as a stackified value.
886 if (MFI.isFrameBaseVirtual() && MFI.getFrameBaseVreg() == Reg)
887 MFI.clearFrameBaseVreg();
888 } else if (shouldRematerialize(*DefI, TII)) {
889 Insert =
890 rematerializeCheapDef(Reg, Use, *DefI, MBB, Insert->getIterator(),
891 LIS, MFI, MRI, TII, TRI);
892 } else if (CanMove && oneUseDominatesOtherUses(Reg, Use, MBB, MRI, MDT,
893 LIS, MFI)) {
894 Insert = moveAndTeeForMultiUse(Reg, Use, DefI, MBB, Insert, LIS, MFI,
895 MRI, TII);
896 } else {
897 // We failed to stackify the operand. If the problem was ordering
898 // constraints, Commuting may be able to help.
899 if (!CanMove && SameBlock)
900 Commuting.maybeCommute(Insert, TreeWalker, TII);
901 // Proceed to the next operand.
902 continue;
905 // Stackifying a multivalue def may unlock in-place stackification of
906 // subsequent defs. TODO: Handle the case where the consecutive uses are
907 // not all in the same instruction.
908 auto *SubsequentDef = Insert->defs().begin();
909 auto *SubsequentUse = &Use;
910 while (SubsequentDef != Insert->defs().end() &&
911 SubsequentUse != Use.getParent()->uses().end()) {
912 if (!SubsequentDef->isReg() || !SubsequentUse->isReg())
913 break;
914 Register DefReg = SubsequentDef->getReg();
915 Register UseReg = SubsequentUse->getReg();
916 // TODO: This single-use restriction could be relaxed by using tees
917 if (DefReg != UseReg || !MRI.hasOneNonDBGUse(DefReg))
918 break;
919 MFI.stackifyVReg(MRI, DefReg);
920 ++SubsequentDef;
921 ++SubsequentUse;
924 // If the instruction we just stackified is an IMPLICIT_DEF, convert it
925 // to a constant 0 so that the def is explicit, and the push/pop
926 // correspondence is maintained.
927 if (Insert->getOpcode() == TargetOpcode::IMPLICIT_DEF)
928 convertImplicitDefToConstZero(Insert, MRI, TII, MF, LIS);
930 // We stackified an operand. Add the defining instruction's operands to
931 // the worklist stack now to continue to build an ever deeper tree.
932 Commuting.reset();
933 TreeWalker.pushOperands(Insert);
936 // If we stackified any operands, skip over the tree to start looking for
937 // the next instruction we can build a tree on.
938 if (Insert != &*MII) {
939 imposeStackOrdering(&*MII);
940 MII = MachineBasicBlock::iterator(Insert).getReverse();
941 Changed = true;
946 // If we used VALUE_STACK anywhere, add it to the live-in sets everywhere so
947 // that it never looks like a use-before-def.
948 if (Changed) {
949 MF.getRegInfo().addLiveIn(WebAssembly::VALUE_STACK);
950 for (MachineBasicBlock &MBB : MF)
951 MBB.addLiveIn(WebAssembly::VALUE_STACK);
954 #ifndef NDEBUG
955 // Verify that pushes and pops are performed in LIFO order.
956 SmallVector<unsigned, 0> Stack;
957 for (MachineBasicBlock &MBB : MF) {
958 for (MachineInstr &MI : MBB) {
959 if (MI.isDebugInstr())
960 continue;
961 for (MachineOperand &MO : reverse(MI.explicit_uses())) {
962 if (!MO.isReg())
963 continue;
964 Register Reg = MO.getReg();
965 if (MFI.isVRegStackified(Reg))
966 assert(Stack.pop_back_val() == Reg &&
967 "Register stack pop should be paired with a push");
969 for (MachineOperand &MO : MI.defs()) {
970 if (!MO.isReg())
971 continue;
972 Register Reg = MO.getReg();
973 if (MFI.isVRegStackified(Reg))
974 Stack.push_back(MO.getReg());
977 // TODO: Generalize this code to support keeping values on the stack across
978 // basic block boundaries.
979 assert(Stack.empty() &&
980 "Register stack pushes and pops should be balanced");
982 #endif
984 return Changed;