Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Transforms / InstCombine / InstCombineCalls.cpp
blob7e585e9166247cdfce143375d38ee6ac191a4927
1 //===- InstCombineCalls.cpp -----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitCall, visitInvoke, and visitCallBr functions.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/APSInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/STLFunctionalExtras.h"
19 #include "llvm/ADT/SmallBitVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumeBundleQueries.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/InstructionSimplify.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryBuiltins.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/Analysis/VectorUtils.h"
30 #include "llvm/IR/AttributeMask.h"
31 #include "llvm/IR/Attributes.h"
32 #include "llvm/IR/BasicBlock.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DerivedTypes.h"
38 #include "llvm/IR/Function.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Intrinsics.h"
46 #include "llvm/IR/IntrinsicsAArch64.h"
47 #include "llvm/IR/IntrinsicsAMDGPU.h"
48 #include "llvm/IR/IntrinsicsARM.h"
49 #include "llvm/IR/IntrinsicsHexagon.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/PatternMatch.h"
53 #include "llvm/IR/Statepoint.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueHandle.h"
58 #include "llvm/Support/AtomicOrdering.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/Debug.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/KnownBits.h"
65 #include "llvm/Support/MathExtras.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/InstCombine/InstCombiner.h"
68 #include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
69 #include "llvm/Transforms/Utils/Local.h"
70 #include "llvm/Transforms/Utils/SimplifyLibCalls.h"
71 #include <algorithm>
72 #include <cassert>
73 #include <cstdint>
74 #include <optional>
75 #include <utility>
76 #include <vector>
78 #define DEBUG_TYPE "instcombine"
79 #include "llvm/Transforms/Utils/InstructionWorklist.h"
81 using namespace llvm;
82 using namespace PatternMatch;
84 STATISTIC(NumSimplified, "Number of library calls simplified");
86 static cl::opt<unsigned> GuardWideningWindow(
87 "instcombine-guard-widening-window",
88 cl::init(3),
89 cl::desc("How wide an instruction window to bypass looking for "
90 "another guard"));
92 namespace llvm {
93 /// enable preservation of attributes in assume like:
94 /// call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
95 extern cl::opt<bool> EnableKnowledgeRetention;
96 } // namespace llvm
98 /// Return the specified type promoted as it would be to pass though a va_arg
99 /// area.
100 static Type *getPromotedType(Type *Ty) {
101 if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
102 if (ITy->getBitWidth() < 32)
103 return Type::getInt32Ty(Ty->getContext());
105 return Ty;
108 /// Recognize a memcpy/memmove from a trivially otherwise unused alloca.
109 /// TODO: This should probably be integrated with visitAllocSites, but that
110 /// requires a deeper change to allow either unread or unwritten objects.
111 static bool hasUndefSource(AnyMemTransferInst *MI) {
112 auto *Src = MI->getRawSource();
113 while (isa<GetElementPtrInst>(Src) || isa<BitCastInst>(Src)) {
114 if (!Src->hasOneUse())
115 return false;
116 Src = cast<Instruction>(Src)->getOperand(0);
118 return isa<AllocaInst>(Src) && Src->hasOneUse();
121 Instruction *InstCombinerImpl::SimplifyAnyMemTransfer(AnyMemTransferInst *MI) {
122 Align DstAlign = getKnownAlignment(MI->getRawDest(), DL, MI, &AC, &DT);
123 MaybeAlign CopyDstAlign = MI->getDestAlign();
124 if (!CopyDstAlign || *CopyDstAlign < DstAlign) {
125 MI->setDestAlignment(DstAlign);
126 return MI;
129 Align SrcAlign = getKnownAlignment(MI->getRawSource(), DL, MI, &AC, &DT);
130 MaybeAlign CopySrcAlign = MI->getSourceAlign();
131 if (!CopySrcAlign || *CopySrcAlign < SrcAlign) {
132 MI->setSourceAlignment(SrcAlign);
133 return MI;
136 // If we have a store to a location which is known constant, we can conclude
137 // that the store must be storing the constant value (else the memory
138 // wouldn't be constant), and this must be a noop.
139 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
140 // Set the size of the copy to 0, it will be deleted on the next iteration.
141 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
142 return MI;
145 // If the source is provably undef, the memcpy/memmove doesn't do anything
146 // (unless the transfer is volatile).
147 if (hasUndefSource(MI) && !MI->isVolatile()) {
148 // Set the size of the copy to 0, it will be deleted on the next iteration.
149 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
150 return MI;
153 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
154 // load/store.
155 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getLength());
156 if (!MemOpLength) return nullptr;
158 // Source and destination pointer types are always "i8*" for intrinsic. See
159 // if the size is something we can handle with a single primitive load/store.
160 // A single load+store correctly handles overlapping memory in the memmove
161 // case.
162 uint64_t Size = MemOpLength->getLimitedValue();
163 assert(Size && "0-sized memory transferring should be removed already.");
165 if (Size > 8 || (Size&(Size-1)))
166 return nullptr; // If not 1/2/4/8 bytes, exit.
168 // If it is an atomic and alignment is less than the size then we will
169 // introduce the unaligned memory access which will be later transformed
170 // into libcall in CodeGen. This is not evident performance gain so disable
171 // it now.
172 if (isa<AtomicMemTransferInst>(MI))
173 if (*CopyDstAlign < Size || *CopySrcAlign < Size)
174 return nullptr;
176 // Use an integer load+store unless we can find something better.
177 IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
179 // If the memcpy has metadata describing the members, see if we can get the
180 // TBAA tag describing our copy.
181 MDNode *CopyMD = nullptr;
182 if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa)) {
183 CopyMD = M;
184 } else if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
185 if (M->getNumOperands() == 3 && M->getOperand(0) &&
186 mdconst::hasa<ConstantInt>(M->getOperand(0)) &&
187 mdconst::extract<ConstantInt>(M->getOperand(0))->isZero() &&
188 M->getOperand(1) &&
189 mdconst::hasa<ConstantInt>(M->getOperand(1)) &&
190 mdconst::extract<ConstantInt>(M->getOperand(1))->getValue() ==
191 Size &&
192 M->getOperand(2) && isa<MDNode>(M->getOperand(2)))
193 CopyMD = cast<MDNode>(M->getOperand(2));
196 Value *Src = MI->getArgOperand(1);
197 Value *Dest = MI->getArgOperand(0);
198 LoadInst *L = Builder.CreateLoad(IntType, Src);
199 // Alignment from the mem intrinsic will be better, so use it.
200 L->setAlignment(*CopySrcAlign);
201 if (CopyMD)
202 L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
203 MDNode *LoopMemParallelMD =
204 MI->getMetadata(LLVMContext::MD_mem_parallel_loop_access);
205 if (LoopMemParallelMD)
206 L->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
207 MDNode *AccessGroupMD = MI->getMetadata(LLVMContext::MD_access_group);
208 if (AccessGroupMD)
209 L->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
211 StoreInst *S = Builder.CreateStore(L, Dest);
212 // Alignment from the mem intrinsic will be better, so use it.
213 S->setAlignment(*CopyDstAlign);
214 if (CopyMD)
215 S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
216 if (LoopMemParallelMD)
217 S->setMetadata(LLVMContext::MD_mem_parallel_loop_access, LoopMemParallelMD);
218 if (AccessGroupMD)
219 S->setMetadata(LLVMContext::MD_access_group, AccessGroupMD);
220 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
222 if (auto *MT = dyn_cast<MemTransferInst>(MI)) {
223 // non-atomics can be volatile
224 L->setVolatile(MT->isVolatile());
225 S->setVolatile(MT->isVolatile());
227 if (isa<AtomicMemTransferInst>(MI)) {
228 // atomics have to be unordered
229 L->setOrdering(AtomicOrdering::Unordered);
230 S->setOrdering(AtomicOrdering::Unordered);
233 // Set the size of the copy to 0, it will be deleted on the next iteration.
234 MI->setLength(Constant::getNullValue(MemOpLength->getType()));
235 return MI;
238 Instruction *InstCombinerImpl::SimplifyAnyMemSet(AnyMemSetInst *MI) {
239 const Align KnownAlignment =
240 getKnownAlignment(MI->getDest(), DL, MI, &AC, &DT);
241 MaybeAlign MemSetAlign = MI->getDestAlign();
242 if (!MemSetAlign || *MemSetAlign < KnownAlignment) {
243 MI->setDestAlignment(KnownAlignment);
244 return MI;
247 // If we have a store to a location which is known constant, we can conclude
248 // that the store must be storing the constant value (else the memory
249 // wouldn't be constant), and this must be a noop.
250 if (!isModSet(AA->getModRefInfoMask(MI->getDest()))) {
251 // Set the size of the copy to 0, it will be deleted on the next iteration.
252 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
253 return MI;
256 // Remove memset with an undef value.
257 // FIXME: This is technically incorrect because it might overwrite a poison
258 // value. Change to PoisonValue once #52930 is resolved.
259 if (isa<UndefValue>(MI->getValue())) {
260 // Set the size of the copy to 0, it will be deleted on the next iteration.
261 MI->setLength(Constant::getNullValue(MI->getLength()->getType()));
262 return MI;
265 // Extract the length and alignment and fill if they are constant.
266 ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
267 ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
268 if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
269 return nullptr;
270 const uint64_t Len = LenC->getLimitedValue();
271 assert(Len && "0-sized memory setting should be removed already.");
272 const Align Alignment = MI->getDestAlign().valueOrOne();
274 // If it is an atomic and alignment is less than the size then we will
275 // introduce the unaligned memory access which will be later transformed
276 // into libcall in CodeGen. This is not evident performance gain so disable
277 // it now.
278 if (isa<AtomicMemSetInst>(MI))
279 if (Alignment < Len)
280 return nullptr;
282 // memset(s,c,n) -> store s, c (for n=1,2,4,8)
283 if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
284 Type *ITy = IntegerType::get(MI->getContext(), Len*8); // n=1 -> i8.
286 Value *Dest = MI->getDest();
288 // Extract the fill value and store.
289 const uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
290 Constant *FillVal = ConstantInt::get(ITy, Fill);
291 StoreInst *S = Builder.CreateStore(FillVal, Dest, MI->isVolatile());
292 S->copyMetadata(*MI, LLVMContext::MD_DIAssignID);
293 for (auto *DAI : at::getAssignmentMarkers(S)) {
294 if (llvm::is_contained(DAI->location_ops(), FillC))
295 DAI->replaceVariableLocationOp(FillC, FillVal);
298 S->setAlignment(Alignment);
299 if (isa<AtomicMemSetInst>(MI))
300 S->setOrdering(AtomicOrdering::Unordered);
302 // Set the size of the copy to 0, it will be deleted on the next iteration.
303 MI->setLength(Constant::getNullValue(LenC->getType()));
304 return MI;
307 return nullptr;
310 // TODO, Obvious Missing Transforms:
311 // * Narrow width by halfs excluding zero/undef lanes
312 Value *InstCombinerImpl::simplifyMaskedLoad(IntrinsicInst &II) {
313 Value *LoadPtr = II.getArgOperand(0);
314 const Align Alignment =
315 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
317 // If the mask is all ones or undefs, this is a plain vector load of the 1st
318 // argument.
319 if (maskIsAllOneOrUndef(II.getArgOperand(2))) {
320 LoadInst *L = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
321 "unmaskedload");
322 L->copyMetadata(II);
323 return L;
326 // If we can unconditionally load from this address, replace with a
327 // load/select idiom. TODO: use DT for context sensitive query
328 if (isDereferenceablePointer(LoadPtr, II.getType(),
329 II.getModule()->getDataLayout(), &II, &AC)) {
330 LoadInst *LI = Builder.CreateAlignedLoad(II.getType(), LoadPtr, Alignment,
331 "unmaskedload");
332 LI->copyMetadata(II);
333 return Builder.CreateSelect(II.getArgOperand(2), LI, II.getArgOperand(3));
336 return nullptr;
339 // TODO, Obvious Missing Transforms:
340 // * Single constant active lane -> store
341 // * Narrow width by halfs excluding zero/undef lanes
342 Instruction *InstCombinerImpl::simplifyMaskedStore(IntrinsicInst &II) {
343 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
344 if (!ConstMask)
345 return nullptr;
347 // If the mask is all zeros, this instruction does nothing.
348 if (ConstMask->isNullValue())
349 return eraseInstFromFunction(II);
351 // If the mask is all ones, this is a plain vector store of the 1st argument.
352 if (ConstMask->isAllOnesValue()) {
353 Value *StorePtr = II.getArgOperand(1);
354 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
355 StoreInst *S =
356 new StoreInst(II.getArgOperand(0), StorePtr, false, Alignment);
357 S->copyMetadata(II);
358 return S;
361 if (isa<ScalableVectorType>(ConstMask->getType()))
362 return nullptr;
364 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
365 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
366 APInt UndefElts(DemandedElts.getBitWidth(), 0);
367 if (Value *V =
368 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
369 return replaceOperand(II, 0, V);
371 return nullptr;
374 // TODO, Obvious Missing Transforms:
375 // * Single constant active lane load -> load
376 // * Dereferenceable address & few lanes -> scalarize speculative load/selects
377 // * Adjacent vector addresses -> masked.load
378 // * Narrow width by halfs excluding zero/undef lanes
379 // * Vector incrementing address -> vector masked load
380 Instruction *InstCombinerImpl::simplifyMaskedGather(IntrinsicInst &II) {
381 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(2));
382 if (!ConstMask)
383 return nullptr;
385 // Vector splat address w/known mask -> scalar load
386 // Fold the gather to load the source vector first lane
387 // because it is reloading the same value each time
388 if (ConstMask->isAllOnesValue())
389 if (auto *SplatPtr = getSplatValue(II.getArgOperand(0))) {
390 auto *VecTy = cast<VectorType>(II.getType());
391 const Align Alignment =
392 cast<ConstantInt>(II.getArgOperand(1))->getAlignValue();
393 LoadInst *L = Builder.CreateAlignedLoad(VecTy->getElementType(), SplatPtr,
394 Alignment, "load.scalar");
395 Value *Shuf =
396 Builder.CreateVectorSplat(VecTy->getElementCount(), L, "broadcast");
397 return replaceInstUsesWith(II, cast<Instruction>(Shuf));
400 return nullptr;
403 // TODO, Obvious Missing Transforms:
404 // * Single constant active lane -> store
405 // * Adjacent vector addresses -> masked.store
406 // * Narrow store width by halfs excluding zero/undef lanes
407 // * Vector incrementing address -> vector masked store
408 Instruction *InstCombinerImpl::simplifyMaskedScatter(IntrinsicInst &II) {
409 auto *ConstMask = dyn_cast<Constant>(II.getArgOperand(3));
410 if (!ConstMask)
411 return nullptr;
413 // If the mask is all zeros, a scatter does nothing.
414 if (ConstMask->isNullValue())
415 return eraseInstFromFunction(II);
417 // Vector splat address -> scalar store
418 if (auto *SplatPtr = getSplatValue(II.getArgOperand(1))) {
419 // scatter(splat(value), splat(ptr), non-zero-mask) -> store value, ptr
420 if (auto *SplatValue = getSplatValue(II.getArgOperand(0))) {
421 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
422 StoreInst *S =
423 new StoreInst(SplatValue, SplatPtr, /*IsVolatile=*/false, Alignment);
424 S->copyMetadata(II);
425 return S;
427 // scatter(vector, splat(ptr), splat(true)) -> store extract(vector,
428 // lastlane), ptr
429 if (ConstMask->isAllOnesValue()) {
430 Align Alignment = cast<ConstantInt>(II.getArgOperand(2))->getAlignValue();
431 VectorType *WideLoadTy = cast<VectorType>(II.getArgOperand(1)->getType());
432 ElementCount VF = WideLoadTy->getElementCount();
433 Value *RunTimeVF = Builder.CreateElementCount(Builder.getInt32Ty(), VF);
434 Value *LastLane = Builder.CreateSub(RunTimeVF, Builder.getInt32(1));
435 Value *Extract =
436 Builder.CreateExtractElement(II.getArgOperand(0), LastLane);
437 StoreInst *S =
438 new StoreInst(Extract, SplatPtr, /*IsVolatile=*/false, Alignment);
439 S->copyMetadata(II);
440 return S;
443 if (isa<ScalableVectorType>(ConstMask->getType()))
444 return nullptr;
446 // Use masked off lanes to simplify operands via SimplifyDemandedVectorElts
447 APInt DemandedElts = possiblyDemandedEltsInMask(ConstMask);
448 APInt UndefElts(DemandedElts.getBitWidth(), 0);
449 if (Value *V =
450 SimplifyDemandedVectorElts(II.getOperand(0), DemandedElts, UndefElts))
451 return replaceOperand(II, 0, V);
452 if (Value *V =
453 SimplifyDemandedVectorElts(II.getOperand(1), DemandedElts, UndefElts))
454 return replaceOperand(II, 1, V);
456 return nullptr;
459 /// This function transforms launder.invariant.group and strip.invariant.group
460 /// like:
461 /// launder(launder(%x)) -> launder(%x) (the result is not the argument)
462 /// launder(strip(%x)) -> launder(%x)
463 /// strip(strip(%x)) -> strip(%x) (the result is not the argument)
464 /// strip(launder(%x)) -> strip(%x)
465 /// This is legal because it preserves the most recent information about
466 /// the presence or absence of invariant.group.
467 static Instruction *simplifyInvariantGroupIntrinsic(IntrinsicInst &II,
468 InstCombinerImpl &IC) {
469 auto *Arg = II.getArgOperand(0);
470 auto *StrippedArg = Arg->stripPointerCasts();
471 auto *StrippedInvariantGroupsArg = StrippedArg;
472 while (auto *Intr = dyn_cast<IntrinsicInst>(StrippedInvariantGroupsArg)) {
473 if (Intr->getIntrinsicID() != Intrinsic::launder_invariant_group &&
474 Intr->getIntrinsicID() != Intrinsic::strip_invariant_group)
475 break;
476 StrippedInvariantGroupsArg = Intr->getArgOperand(0)->stripPointerCasts();
478 if (StrippedArg == StrippedInvariantGroupsArg)
479 return nullptr; // No launders/strips to remove.
481 Value *Result = nullptr;
483 if (II.getIntrinsicID() == Intrinsic::launder_invariant_group)
484 Result = IC.Builder.CreateLaunderInvariantGroup(StrippedInvariantGroupsArg);
485 else if (II.getIntrinsicID() == Intrinsic::strip_invariant_group)
486 Result = IC.Builder.CreateStripInvariantGroup(StrippedInvariantGroupsArg);
487 else
488 llvm_unreachable(
489 "simplifyInvariantGroupIntrinsic only handles launder and strip");
490 if (Result->getType()->getPointerAddressSpace() !=
491 II.getType()->getPointerAddressSpace())
492 Result = IC.Builder.CreateAddrSpaceCast(Result, II.getType());
494 return cast<Instruction>(Result);
497 static Instruction *foldCttzCtlz(IntrinsicInst &II, InstCombinerImpl &IC) {
498 assert((II.getIntrinsicID() == Intrinsic::cttz ||
499 II.getIntrinsicID() == Intrinsic::ctlz) &&
500 "Expected cttz or ctlz intrinsic");
501 bool IsTZ = II.getIntrinsicID() == Intrinsic::cttz;
502 Value *Op0 = II.getArgOperand(0);
503 Value *Op1 = II.getArgOperand(1);
504 Value *X;
505 // ctlz(bitreverse(x)) -> cttz(x)
506 // cttz(bitreverse(x)) -> ctlz(x)
507 if (match(Op0, m_BitReverse(m_Value(X)))) {
508 Intrinsic::ID ID = IsTZ ? Intrinsic::ctlz : Intrinsic::cttz;
509 Function *F = Intrinsic::getDeclaration(II.getModule(), ID, II.getType());
510 return CallInst::Create(F, {X, II.getArgOperand(1)});
513 if (II.getType()->isIntOrIntVectorTy(1)) {
514 // ctlz/cttz i1 Op0 --> not Op0
515 if (match(Op1, m_Zero()))
516 return BinaryOperator::CreateNot(Op0);
517 // If zero is poison, then the input can be assumed to be "true", so the
518 // instruction simplifies to "false".
519 assert(match(Op1, m_One()) && "Expected ctlz/cttz operand to be 0 or 1");
520 return IC.replaceInstUsesWith(II, ConstantInt::getNullValue(II.getType()));
523 if (IsTZ) {
524 // cttz(-x) -> cttz(x)
525 if (match(Op0, m_Neg(m_Value(X))))
526 return IC.replaceOperand(II, 0, X);
528 // cttz(-x & x) -> cttz(x)
529 if (match(Op0, m_c_And(m_Neg(m_Value(X)), m_Deferred(X))))
530 return IC.replaceOperand(II, 0, X);
532 // cttz(sext(x)) -> cttz(zext(x))
533 if (match(Op0, m_OneUse(m_SExt(m_Value(X))))) {
534 auto *Zext = IC.Builder.CreateZExt(X, II.getType());
535 auto *CttzZext =
536 IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, Zext, Op1);
537 return IC.replaceInstUsesWith(II, CttzZext);
540 // Zext doesn't change the number of trailing zeros, so narrow:
541 // cttz(zext(x)) -> zext(cttz(x)) if the 'ZeroIsPoison' parameter is 'true'.
542 if (match(Op0, m_OneUse(m_ZExt(m_Value(X)))) && match(Op1, m_One())) {
543 auto *Cttz = IC.Builder.CreateBinaryIntrinsic(Intrinsic::cttz, X,
544 IC.Builder.getTrue());
545 auto *ZextCttz = IC.Builder.CreateZExt(Cttz, II.getType());
546 return IC.replaceInstUsesWith(II, ZextCttz);
549 // cttz(abs(x)) -> cttz(x)
550 // cttz(nabs(x)) -> cttz(x)
551 Value *Y;
552 SelectPatternFlavor SPF = matchSelectPattern(Op0, X, Y).Flavor;
553 if (SPF == SPF_ABS || SPF == SPF_NABS)
554 return IC.replaceOperand(II, 0, X);
556 if (match(Op0, m_Intrinsic<Intrinsic::abs>(m_Value(X))))
557 return IC.replaceOperand(II, 0, X);
560 KnownBits Known = IC.computeKnownBits(Op0, 0, &II);
562 // Create a mask for bits above (ctlz) or below (cttz) the first known one.
563 unsigned PossibleZeros = IsTZ ? Known.countMaxTrailingZeros()
564 : Known.countMaxLeadingZeros();
565 unsigned DefiniteZeros = IsTZ ? Known.countMinTrailingZeros()
566 : Known.countMinLeadingZeros();
568 // If all bits above (ctlz) or below (cttz) the first known one are known
569 // zero, this value is constant.
570 // FIXME: This should be in InstSimplify because we're replacing an
571 // instruction with a constant.
572 if (PossibleZeros == DefiniteZeros) {
573 auto *C = ConstantInt::get(Op0->getType(), DefiniteZeros);
574 return IC.replaceInstUsesWith(II, C);
577 // If the input to cttz/ctlz is known to be non-zero,
578 // then change the 'ZeroIsPoison' parameter to 'true'
579 // because we know the zero behavior can't affect the result.
580 if (!Known.One.isZero() ||
581 isKnownNonZero(Op0, IC.getDataLayout(), 0, &IC.getAssumptionCache(), &II,
582 &IC.getDominatorTree())) {
583 if (!match(II.getArgOperand(1), m_One()))
584 return IC.replaceOperand(II, 1, IC.Builder.getTrue());
587 // Add range metadata since known bits can't completely reflect what we know.
588 auto *IT = cast<IntegerType>(Op0->getType()->getScalarType());
589 if (IT && IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
590 Metadata *LowAndHigh[] = {
591 ConstantAsMetadata::get(ConstantInt::get(IT, DefiniteZeros)),
592 ConstantAsMetadata::get(ConstantInt::get(IT, PossibleZeros + 1))};
593 II.setMetadata(LLVMContext::MD_range,
594 MDNode::get(II.getContext(), LowAndHigh));
595 return &II;
598 return nullptr;
601 static Instruction *foldCtpop(IntrinsicInst &II, InstCombinerImpl &IC) {
602 assert(II.getIntrinsicID() == Intrinsic::ctpop &&
603 "Expected ctpop intrinsic");
604 Type *Ty = II.getType();
605 unsigned BitWidth = Ty->getScalarSizeInBits();
606 Value *Op0 = II.getArgOperand(0);
607 Value *X, *Y;
609 // ctpop(bitreverse(x)) -> ctpop(x)
610 // ctpop(bswap(x)) -> ctpop(x)
611 if (match(Op0, m_BitReverse(m_Value(X))) || match(Op0, m_BSwap(m_Value(X))))
612 return IC.replaceOperand(II, 0, X);
614 // ctpop(rot(x)) -> ctpop(x)
615 if ((match(Op0, m_FShl(m_Value(X), m_Value(Y), m_Value())) ||
616 match(Op0, m_FShr(m_Value(X), m_Value(Y), m_Value()))) &&
617 X == Y)
618 return IC.replaceOperand(II, 0, X);
620 // ctpop(x | -x) -> bitwidth - cttz(x, false)
621 if (Op0->hasOneUse() &&
622 match(Op0, m_c_Or(m_Value(X), m_Neg(m_Deferred(X))))) {
623 Function *F =
624 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
625 auto *Cttz = IC.Builder.CreateCall(F, {X, IC.Builder.getFalse()});
626 auto *Bw = ConstantInt::get(Ty, APInt(BitWidth, BitWidth));
627 return IC.replaceInstUsesWith(II, IC.Builder.CreateSub(Bw, Cttz));
630 // ctpop(~x & (x - 1)) -> cttz(x, false)
631 if (match(Op0,
632 m_c_And(m_Not(m_Value(X)), m_Add(m_Deferred(X), m_AllOnes())))) {
633 Function *F =
634 Intrinsic::getDeclaration(II.getModule(), Intrinsic::cttz, Ty);
635 return CallInst::Create(F, {X, IC.Builder.getFalse()});
638 // Zext doesn't change the number of set bits, so narrow:
639 // ctpop (zext X) --> zext (ctpop X)
640 if (match(Op0, m_OneUse(m_ZExt(m_Value(X))))) {
641 Value *NarrowPop = IC.Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, X);
642 return CastInst::Create(Instruction::ZExt, NarrowPop, Ty);
645 KnownBits Known(BitWidth);
646 IC.computeKnownBits(Op0, Known, 0, &II);
648 // If all bits are zero except for exactly one fixed bit, then the result
649 // must be 0 or 1, and we can get that answer by shifting to LSB:
650 // ctpop (X & 32) --> (X & 32) >> 5
651 // TODO: Investigate removing this as its likely unnecessary given the below
652 // `isKnownToBeAPowerOfTwo` check.
653 if ((~Known.Zero).isPowerOf2())
654 return BinaryOperator::CreateLShr(
655 Op0, ConstantInt::get(Ty, (~Known.Zero).exactLogBase2()));
657 // More generally we can also handle non-constant power of 2 patterns such as
658 // shl/shr(Pow2, X), (X & -X), etc... by transforming:
659 // ctpop(Pow2OrZero) --> icmp ne X, 0
660 if (IC.isKnownToBeAPowerOfTwo(Op0, /* OrZero */ true))
661 return CastInst::Create(Instruction::ZExt,
662 IC.Builder.CreateICmp(ICmpInst::ICMP_NE, Op0,
663 Constant::getNullValue(Ty)),
664 Ty);
666 // Add range metadata since known bits can't completely reflect what we know.
667 auto *IT = cast<IntegerType>(Ty->getScalarType());
668 unsigned MinCount = Known.countMinPopulation();
669 unsigned MaxCount = Known.countMaxPopulation();
670 if (IT->getBitWidth() != 1 && !II.getMetadata(LLVMContext::MD_range)) {
671 Metadata *LowAndHigh[] = {
672 ConstantAsMetadata::get(ConstantInt::get(IT, MinCount)),
673 ConstantAsMetadata::get(ConstantInt::get(IT, MaxCount + 1))};
674 II.setMetadata(LLVMContext::MD_range,
675 MDNode::get(II.getContext(), LowAndHigh));
676 return &II;
679 return nullptr;
682 /// Convert a table lookup to shufflevector if the mask is constant.
683 /// This could benefit tbl1 if the mask is { 7,6,5,4,3,2,1,0 }, in
684 /// which case we could lower the shufflevector with rev64 instructions
685 /// as it's actually a byte reverse.
686 static Value *simplifyNeonTbl1(const IntrinsicInst &II,
687 InstCombiner::BuilderTy &Builder) {
688 // Bail out if the mask is not a constant.
689 auto *C = dyn_cast<Constant>(II.getArgOperand(1));
690 if (!C)
691 return nullptr;
693 auto *VecTy = cast<FixedVectorType>(II.getType());
694 unsigned NumElts = VecTy->getNumElements();
696 // Only perform this transformation for <8 x i8> vector types.
697 if (!VecTy->getElementType()->isIntegerTy(8) || NumElts != 8)
698 return nullptr;
700 int Indexes[8];
702 for (unsigned I = 0; I < NumElts; ++I) {
703 Constant *COp = C->getAggregateElement(I);
705 if (!COp || !isa<ConstantInt>(COp))
706 return nullptr;
708 Indexes[I] = cast<ConstantInt>(COp)->getLimitedValue();
710 // Make sure the mask indices are in range.
711 if ((unsigned)Indexes[I] >= NumElts)
712 return nullptr;
715 auto *V1 = II.getArgOperand(0);
716 auto *V2 = Constant::getNullValue(V1->getType());
717 return Builder.CreateShuffleVector(V1, V2, ArrayRef(Indexes));
720 // Returns true iff the 2 intrinsics have the same operands, limiting the
721 // comparison to the first NumOperands.
722 static bool haveSameOperands(const IntrinsicInst &I, const IntrinsicInst &E,
723 unsigned NumOperands) {
724 assert(I.arg_size() >= NumOperands && "Not enough operands");
725 assert(E.arg_size() >= NumOperands && "Not enough operands");
726 for (unsigned i = 0; i < NumOperands; i++)
727 if (I.getArgOperand(i) != E.getArgOperand(i))
728 return false;
729 return true;
732 // Remove trivially empty start/end intrinsic ranges, i.e. a start
733 // immediately followed by an end (ignoring debuginfo or other
734 // start/end intrinsics in between). As this handles only the most trivial
735 // cases, tracking the nesting level is not needed:
737 // call @llvm.foo.start(i1 0)
738 // call @llvm.foo.start(i1 0) ; This one won't be skipped: it will be removed
739 // call @llvm.foo.end(i1 0)
740 // call @llvm.foo.end(i1 0) ; &I
741 static bool
742 removeTriviallyEmptyRange(IntrinsicInst &EndI, InstCombinerImpl &IC,
743 std::function<bool(const IntrinsicInst &)> IsStart) {
744 // We start from the end intrinsic and scan backwards, so that InstCombine
745 // has already processed (and potentially removed) all the instructions
746 // before the end intrinsic.
747 BasicBlock::reverse_iterator BI(EndI), BE(EndI.getParent()->rend());
748 for (; BI != BE; ++BI) {
749 if (auto *I = dyn_cast<IntrinsicInst>(&*BI)) {
750 if (I->isDebugOrPseudoInst() ||
751 I->getIntrinsicID() == EndI.getIntrinsicID())
752 continue;
753 if (IsStart(*I)) {
754 if (haveSameOperands(EndI, *I, EndI.arg_size())) {
755 IC.eraseInstFromFunction(*I);
756 IC.eraseInstFromFunction(EndI);
757 return true;
759 // Skip start intrinsics that don't pair with this end intrinsic.
760 continue;
763 break;
766 return false;
769 Instruction *InstCombinerImpl::visitVAEndInst(VAEndInst &I) {
770 removeTriviallyEmptyRange(I, *this, [](const IntrinsicInst &I) {
771 return I.getIntrinsicID() == Intrinsic::vastart ||
772 I.getIntrinsicID() == Intrinsic::vacopy;
774 return nullptr;
777 static CallInst *canonicalizeConstantArg0ToArg1(CallInst &Call) {
778 assert(Call.arg_size() > 1 && "Need at least 2 args to swap");
779 Value *Arg0 = Call.getArgOperand(0), *Arg1 = Call.getArgOperand(1);
780 if (isa<Constant>(Arg0) && !isa<Constant>(Arg1)) {
781 Call.setArgOperand(0, Arg1);
782 Call.setArgOperand(1, Arg0);
783 return &Call;
785 return nullptr;
788 /// Creates a result tuple for an overflow intrinsic \p II with a given
789 /// \p Result and a constant \p Overflow value.
790 static Instruction *createOverflowTuple(IntrinsicInst *II, Value *Result,
791 Constant *Overflow) {
792 Constant *V[] = {PoisonValue::get(Result->getType()), Overflow};
793 StructType *ST = cast<StructType>(II->getType());
794 Constant *Struct = ConstantStruct::get(ST, V);
795 return InsertValueInst::Create(Struct, Result, 0);
798 Instruction *
799 InstCombinerImpl::foldIntrinsicWithOverflowCommon(IntrinsicInst *II) {
800 WithOverflowInst *WO = cast<WithOverflowInst>(II);
801 Value *OperationResult = nullptr;
802 Constant *OverflowResult = nullptr;
803 if (OptimizeOverflowCheck(WO->getBinaryOp(), WO->isSigned(), WO->getLHS(),
804 WO->getRHS(), *WO, OperationResult, OverflowResult))
805 return createOverflowTuple(WO, OperationResult, OverflowResult);
806 return nullptr;
809 static bool inputDenormalIsIEEE(const Function &F, const Type *Ty) {
810 Ty = Ty->getScalarType();
811 return F.getDenormalMode(Ty->getFltSemantics()).Input == DenormalMode::IEEE;
814 static bool inputDenormalIsDAZ(const Function &F, const Type *Ty) {
815 Ty = Ty->getScalarType();
816 return F.getDenormalMode(Ty->getFltSemantics()).inputsAreZero();
819 /// \returns the compare predicate type if the test performed by
820 /// llvm.is.fpclass(x, \p Mask) is equivalent to fcmp o__ x, 0.0 with the
821 /// floating-point environment assumed for \p F for type \p Ty
822 static FCmpInst::Predicate fpclassTestIsFCmp0(FPClassTest Mask,
823 const Function &F, Type *Ty) {
824 switch (static_cast<unsigned>(Mask)) {
825 case fcZero:
826 if (inputDenormalIsIEEE(F, Ty))
827 return FCmpInst::FCMP_OEQ;
828 break;
829 case fcZero | fcSubnormal:
830 if (inputDenormalIsDAZ(F, Ty))
831 return FCmpInst::FCMP_OEQ;
832 break;
833 case fcPositive | fcNegZero:
834 if (inputDenormalIsIEEE(F, Ty))
835 return FCmpInst::FCMP_OGE;
836 break;
837 case fcPositive | fcNegZero | fcNegSubnormal:
838 if (inputDenormalIsDAZ(F, Ty))
839 return FCmpInst::FCMP_OGE;
840 break;
841 case fcPosSubnormal | fcPosNormal | fcPosInf:
842 if (inputDenormalIsIEEE(F, Ty))
843 return FCmpInst::FCMP_OGT;
844 break;
845 case fcNegative | fcPosZero:
846 if (inputDenormalIsIEEE(F, Ty))
847 return FCmpInst::FCMP_OLE;
848 break;
849 case fcNegative | fcPosZero | fcPosSubnormal:
850 if (inputDenormalIsDAZ(F, Ty))
851 return FCmpInst::FCMP_OLE;
852 break;
853 case fcNegSubnormal | fcNegNormal | fcNegInf:
854 if (inputDenormalIsIEEE(F, Ty))
855 return FCmpInst::FCMP_OLT;
856 break;
857 case fcPosNormal | fcPosInf:
858 if (inputDenormalIsDAZ(F, Ty))
859 return FCmpInst::FCMP_OGT;
860 break;
861 case fcNegNormal | fcNegInf:
862 if (inputDenormalIsDAZ(F, Ty))
863 return FCmpInst::FCMP_OLT;
864 break;
865 case ~fcZero & ~fcNan:
866 if (inputDenormalIsIEEE(F, Ty))
867 return FCmpInst::FCMP_ONE;
868 break;
869 case ~(fcZero | fcSubnormal) & ~fcNan:
870 if (inputDenormalIsDAZ(F, Ty))
871 return FCmpInst::FCMP_ONE;
872 break;
873 default:
874 break;
877 return FCmpInst::BAD_FCMP_PREDICATE;
880 Instruction *InstCombinerImpl::foldIntrinsicIsFPClass(IntrinsicInst &II) {
881 Value *Src0 = II.getArgOperand(0);
882 Value *Src1 = II.getArgOperand(1);
883 const ConstantInt *CMask = cast<ConstantInt>(Src1);
884 FPClassTest Mask = static_cast<FPClassTest>(CMask->getZExtValue());
885 const bool IsUnordered = (Mask & fcNan) == fcNan;
886 const bool IsOrdered = (Mask & fcNan) == fcNone;
887 const FPClassTest OrderedMask = Mask & ~fcNan;
888 const FPClassTest OrderedInvertedMask = ~OrderedMask & ~fcNan;
890 const bool IsStrict = II.isStrictFP();
892 Value *FNegSrc;
893 if (match(Src0, m_FNeg(m_Value(FNegSrc)))) {
894 // is.fpclass (fneg x), mask -> is.fpclass x, (fneg mask)
896 II.setArgOperand(1, ConstantInt::get(Src1->getType(), fneg(Mask)));
897 return replaceOperand(II, 0, FNegSrc);
900 Value *FAbsSrc;
901 if (match(Src0, m_FAbs(m_Value(FAbsSrc)))) {
902 II.setArgOperand(1, ConstantInt::get(Src1->getType(), inverse_fabs(Mask)));
903 return replaceOperand(II, 0, FAbsSrc);
906 if ((OrderedMask == fcInf || OrderedInvertedMask == fcInf) &&
907 (IsOrdered || IsUnordered) && !IsStrict) {
908 // is.fpclass(x, fcInf) -> fcmp oeq fabs(x), +inf
909 // is.fpclass(x, ~fcInf) -> fcmp one fabs(x), +inf
910 // is.fpclass(x, fcInf|fcNan) -> fcmp ueq fabs(x), +inf
911 // is.fpclass(x, ~(fcInf|fcNan)) -> fcmp une fabs(x), +inf
912 Constant *Inf = ConstantFP::getInfinity(Src0->getType());
913 FCmpInst::Predicate Pred =
914 IsUnordered ? FCmpInst::FCMP_UEQ : FCmpInst::FCMP_OEQ;
915 if (OrderedInvertedMask == fcInf)
916 Pred = IsUnordered ? FCmpInst::FCMP_UNE : FCmpInst::FCMP_ONE;
918 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Src0);
919 Value *CmpInf = Builder.CreateFCmp(Pred, Fabs, Inf);
920 CmpInf->takeName(&II);
921 return replaceInstUsesWith(II, CmpInf);
924 if ((OrderedMask == fcPosInf || OrderedMask == fcNegInf) &&
925 (IsOrdered || IsUnordered) && !IsStrict) {
926 // is.fpclass(x, fcPosInf) -> fcmp oeq x, +inf
927 // is.fpclass(x, fcNegInf) -> fcmp oeq x, -inf
928 // is.fpclass(x, fcPosInf|fcNan) -> fcmp ueq x, +inf
929 // is.fpclass(x, fcNegInf|fcNan) -> fcmp ueq x, -inf
930 Constant *Inf =
931 ConstantFP::getInfinity(Src0->getType(), OrderedMask == fcNegInf);
932 Value *EqInf = IsUnordered ? Builder.CreateFCmpUEQ(Src0, Inf)
933 : Builder.CreateFCmpOEQ(Src0, Inf);
935 EqInf->takeName(&II);
936 return replaceInstUsesWith(II, EqInf);
939 if ((OrderedInvertedMask == fcPosInf || OrderedInvertedMask == fcNegInf) &&
940 (IsOrdered || IsUnordered) && !IsStrict) {
941 // is.fpclass(x, ~fcPosInf) -> fcmp one x, +inf
942 // is.fpclass(x, ~fcNegInf) -> fcmp one x, -inf
943 // is.fpclass(x, ~fcPosInf|fcNan) -> fcmp une x, +inf
944 // is.fpclass(x, ~fcNegInf|fcNan) -> fcmp une x, -inf
945 Constant *Inf = ConstantFP::getInfinity(Src0->getType(),
946 OrderedInvertedMask == fcNegInf);
947 Value *NeInf = IsUnordered ? Builder.CreateFCmpUNE(Src0, Inf)
948 : Builder.CreateFCmpONE(Src0, Inf);
949 NeInf->takeName(&II);
950 return replaceInstUsesWith(II, NeInf);
953 if (Mask == fcNan && !IsStrict) {
954 // Equivalent of isnan. Replace with standard fcmp if we don't care about FP
955 // exceptions.
956 Value *IsNan =
957 Builder.CreateFCmpUNO(Src0, ConstantFP::getZero(Src0->getType()));
958 IsNan->takeName(&II);
959 return replaceInstUsesWith(II, IsNan);
962 if (Mask == (~fcNan & fcAllFlags) && !IsStrict) {
963 // Equivalent of !isnan. Replace with standard fcmp.
964 Value *FCmp =
965 Builder.CreateFCmpORD(Src0, ConstantFP::getZero(Src0->getType()));
966 FCmp->takeName(&II);
967 return replaceInstUsesWith(II, FCmp);
970 FCmpInst::Predicate PredType = FCmpInst::BAD_FCMP_PREDICATE;
972 // Try to replace with an fcmp with 0
974 // is.fpclass(x, fcZero) -> fcmp oeq x, 0.0
975 // is.fpclass(x, fcZero | fcNan) -> fcmp ueq x, 0.0
976 // is.fpclass(x, ~fcZero & ~fcNan) -> fcmp one x, 0.0
977 // is.fpclass(x, ~fcZero) -> fcmp une x, 0.0
979 // is.fpclass(x, fcPosSubnormal | fcPosNormal | fcPosInf) -> fcmp ogt x, 0.0
980 // is.fpclass(x, fcPositive | fcNegZero) -> fcmp oge x, 0.0
982 // is.fpclass(x, fcNegSubnormal | fcNegNormal | fcNegInf) -> fcmp olt x, 0.0
983 // is.fpclass(x, fcNegative | fcPosZero) -> fcmp ole x, 0.0
985 if (!IsStrict && (IsOrdered || IsUnordered) &&
986 (PredType = fpclassTestIsFCmp0(OrderedMask, *II.getFunction(),
987 Src0->getType())) !=
988 FCmpInst::BAD_FCMP_PREDICATE) {
989 Constant *Zero = ConstantFP::getZero(Src0->getType());
990 // Equivalent of == 0.
991 Value *FCmp = Builder.CreateFCmp(
992 IsUnordered ? FCmpInst::getUnorderedPredicate(PredType) : PredType,
993 Src0, Zero);
995 FCmp->takeName(&II);
996 return replaceInstUsesWith(II, FCmp);
999 KnownFPClass Known = computeKnownFPClass(Src0, Mask, &II);
1001 // Clear test bits we know must be false from the source value.
1002 // fp_class (nnan x), qnan|snan|other -> fp_class (nnan x), other
1003 // fp_class (ninf x), ninf|pinf|other -> fp_class (ninf x), other
1004 if ((Mask & Known.KnownFPClasses) != Mask) {
1005 II.setArgOperand(
1006 1, ConstantInt::get(Src1->getType(), Mask & Known.KnownFPClasses));
1007 return &II;
1010 // If none of the tests which can return false are possible, fold to true.
1011 // fp_class (nnan x), ~(qnan|snan) -> true
1012 // fp_class (ninf x), ~(ninf|pinf) -> true
1013 if (Mask == Known.KnownFPClasses)
1014 return replaceInstUsesWith(II, ConstantInt::get(II.getType(), true));
1016 return nullptr;
1019 static std::optional<bool> getKnownSign(Value *Op, Instruction *CxtI,
1020 const DataLayout &DL, AssumptionCache *AC,
1021 DominatorTree *DT) {
1022 KnownBits Known = computeKnownBits(Op, DL, 0, AC, CxtI, DT);
1023 if (Known.isNonNegative())
1024 return false;
1025 if (Known.isNegative())
1026 return true;
1028 Value *X, *Y;
1029 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1030 return isImpliedByDomCondition(ICmpInst::ICMP_SLT, X, Y, CxtI, DL);
1032 return isImpliedByDomCondition(
1033 ICmpInst::ICMP_SLT, Op, Constant::getNullValue(Op->getType()), CxtI, DL);
1036 static std::optional<bool> getKnownSignOrZero(Value *Op, Instruction *CxtI,
1037 const DataLayout &DL,
1038 AssumptionCache *AC,
1039 DominatorTree *DT) {
1040 if (std::optional<bool> Sign = getKnownSign(Op, CxtI, DL, AC, DT))
1041 return Sign;
1043 Value *X, *Y;
1044 if (match(Op, m_NSWSub(m_Value(X), m_Value(Y))))
1045 return isImpliedByDomCondition(ICmpInst::ICMP_SLE, X, Y, CxtI, DL);
1047 return std::nullopt;
1050 /// Return true if two values \p Op0 and \p Op1 are known to have the same sign.
1051 static bool signBitMustBeTheSame(Value *Op0, Value *Op1, Instruction *CxtI,
1052 const DataLayout &DL, AssumptionCache *AC,
1053 DominatorTree *DT) {
1054 std::optional<bool> Known1 = getKnownSign(Op1, CxtI, DL, AC, DT);
1055 if (!Known1)
1056 return false;
1057 std::optional<bool> Known0 = getKnownSign(Op0, CxtI, DL, AC, DT);
1058 if (!Known0)
1059 return false;
1060 return *Known0 == *Known1;
1063 /// Try to canonicalize min/max(X + C0, C1) as min/max(X, C1 - C0) + C0. This
1064 /// can trigger other combines.
1065 static Instruction *moveAddAfterMinMax(IntrinsicInst *II,
1066 InstCombiner::BuilderTy &Builder) {
1067 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1068 assert((MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin ||
1069 MinMaxID == Intrinsic::umax || MinMaxID == Intrinsic::umin) &&
1070 "Expected a min or max intrinsic");
1072 // TODO: Match vectors with undef elements, but undef may not propagate.
1073 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1074 Value *X;
1075 const APInt *C0, *C1;
1076 if (!match(Op0, m_OneUse(m_Add(m_Value(X), m_APInt(C0)))) ||
1077 !match(Op1, m_APInt(C1)))
1078 return nullptr;
1080 // Check for necessary no-wrap and overflow constraints.
1081 bool IsSigned = MinMaxID == Intrinsic::smax || MinMaxID == Intrinsic::smin;
1082 auto *Add = cast<BinaryOperator>(Op0);
1083 if ((IsSigned && !Add->hasNoSignedWrap()) ||
1084 (!IsSigned && !Add->hasNoUnsignedWrap()))
1085 return nullptr;
1087 // If the constant difference overflows, then instsimplify should reduce the
1088 // min/max to the add or C1.
1089 bool Overflow;
1090 APInt CDiff =
1091 IsSigned ? C1->ssub_ov(*C0, Overflow) : C1->usub_ov(*C0, Overflow);
1092 assert(!Overflow && "Expected simplify of min/max");
1094 // min/max (add X, C0), C1 --> add (min/max X, C1 - C0), C0
1095 // Note: the "mismatched" no-overflow setting does not propagate.
1096 Constant *NewMinMaxC = ConstantInt::get(II->getType(), CDiff);
1097 Value *NewMinMax = Builder.CreateBinaryIntrinsic(MinMaxID, X, NewMinMaxC);
1098 return IsSigned ? BinaryOperator::CreateNSWAdd(NewMinMax, Add->getOperand(1))
1099 : BinaryOperator::CreateNUWAdd(NewMinMax, Add->getOperand(1));
1101 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
1102 Instruction *InstCombinerImpl::matchSAddSubSat(IntrinsicInst &MinMax1) {
1103 Type *Ty = MinMax1.getType();
1105 // We are looking for a tree of:
1106 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
1107 // Where the min and max could be reversed
1108 Instruction *MinMax2;
1109 BinaryOperator *AddSub;
1110 const APInt *MinValue, *MaxValue;
1111 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
1112 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
1113 return nullptr;
1114 } else if (match(&MinMax1,
1115 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
1116 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
1117 return nullptr;
1118 } else
1119 return nullptr;
1121 // Check that the constants clamp a saturate, and that the new type would be
1122 // sensible to convert to.
1123 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
1124 return nullptr;
1125 // In what bitwidth can this be treated as saturating arithmetics?
1126 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
1127 // FIXME: This isn't quite right for vectors, but using the scalar type is a
1128 // good first approximation for what should be done there.
1129 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
1130 return nullptr;
1132 // Also make sure that the inner min/max and the add/sub have one use.
1133 if (!MinMax2->hasOneUse() || !AddSub->hasOneUse())
1134 return nullptr;
1136 // Create the new type (which can be a vector type)
1137 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
1139 Intrinsic::ID IntrinsicID;
1140 if (AddSub->getOpcode() == Instruction::Add)
1141 IntrinsicID = Intrinsic::sadd_sat;
1142 else if (AddSub->getOpcode() == Instruction::Sub)
1143 IntrinsicID = Intrinsic::ssub_sat;
1144 else
1145 return nullptr;
1147 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
1148 // is usually achieved via a sext from a smaller type.
1149 if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
1150 NewBitWidth ||
1151 ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
1152 return nullptr;
1154 // Finally create and return the sat intrinsic, truncated to the new type
1155 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
1156 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
1157 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
1158 Value *Sat = Builder.CreateCall(F, {AT, BT});
1159 return CastInst::Create(Instruction::SExt, Sat, Ty);
1163 /// If we have a clamp pattern like max (min X, 42), 41 -- where the output
1164 /// can only be one of two possible constant values -- turn that into a select
1165 /// of constants.
1166 static Instruction *foldClampRangeOfTwo(IntrinsicInst *II,
1167 InstCombiner::BuilderTy &Builder) {
1168 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1169 Value *X;
1170 const APInt *C0, *C1;
1171 if (!match(I1, m_APInt(C1)) || !I0->hasOneUse())
1172 return nullptr;
1174 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
1175 switch (II->getIntrinsicID()) {
1176 case Intrinsic::smax:
1177 if (match(I0, m_SMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1178 Pred = ICmpInst::ICMP_SGT;
1179 break;
1180 case Intrinsic::smin:
1181 if (match(I0, m_SMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1182 Pred = ICmpInst::ICMP_SLT;
1183 break;
1184 case Intrinsic::umax:
1185 if (match(I0, m_UMin(m_Value(X), m_APInt(C0))) && *C0 == *C1 + 1)
1186 Pred = ICmpInst::ICMP_UGT;
1187 break;
1188 case Intrinsic::umin:
1189 if (match(I0, m_UMax(m_Value(X), m_APInt(C0))) && *C1 == *C0 + 1)
1190 Pred = ICmpInst::ICMP_ULT;
1191 break;
1192 default:
1193 llvm_unreachable("Expected min/max intrinsic");
1195 if (Pred == CmpInst::BAD_ICMP_PREDICATE)
1196 return nullptr;
1198 // max (min X, 42), 41 --> X > 41 ? 42 : 41
1199 // min (max X, 42), 43 --> X < 43 ? 42 : 43
1200 Value *Cmp = Builder.CreateICmp(Pred, X, I1);
1201 return SelectInst::Create(Cmp, ConstantInt::get(II->getType(), *C0), I1);
1204 /// If this min/max has a constant operand and an operand that is a matching
1205 /// min/max with a constant operand, constant-fold the 2 constant operands.
1206 static Value *reassociateMinMaxWithConstants(IntrinsicInst *II,
1207 IRBuilderBase &Builder) {
1208 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1209 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1210 if (!LHS || LHS->getIntrinsicID() != MinMaxID)
1211 return nullptr;
1213 Constant *C0, *C1;
1214 if (!match(LHS->getArgOperand(1), m_ImmConstant(C0)) ||
1215 !match(II->getArgOperand(1), m_ImmConstant(C1)))
1216 return nullptr;
1218 // max (max X, C0), C1 --> max X, (max C0, C1) --> max X, NewC
1219 ICmpInst::Predicate Pred = MinMaxIntrinsic::getPredicate(MinMaxID);
1220 Value *CondC = Builder.CreateICmp(Pred, C0, C1);
1221 Value *NewC = Builder.CreateSelect(CondC, C0, C1);
1222 return Builder.CreateIntrinsic(MinMaxID, II->getType(),
1223 {LHS->getArgOperand(0), NewC});
1226 /// If this min/max has a matching min/max operand with a constant, try to push
1227 /// the constant operand into this instruction. This can enable more folds.
1228 static Instruction *
1229 reassociateMinMaxWithConstantInOperand(IntrinsicInst *II,
1230 InstCombiner::BuilderTy &Builder) {
1231 // Match and capture a min/max operand candidate.
1232 Value *X, *Y;
1233 Constant *C;
1234 Instruction *Inner;
1235 if (!match(II, m_c_MaxOrMin(m_OneUse(m_CombineAnd(
1236 m_Instruction(Inner),
1237 m_MaxOrMin(m_Value(X), m_ImmConstant(C)))),
1238 m_Value(Y))))
1239 return nullptr;
1241 // The inner op must match. Check for constants to avoid infinite loops.
1242 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1243 auto *InnerMM = dyn_cast<IntrinsicInst>(Inner);
1244 if (!InnerMM || InnerMM->getIntrinsicID() != MinMaxID ||
1245 match(X, m_ImmConstant()) || match(Y, m_ImmConstant()))
1246 return nullptr;
1248 // max (max X, C), Y --> max (max X, Y), C
1249 Function *MinMax =
1250 Intrinsic::getDeclaration(II->getModule(), MinMaxID, II->getType());
1251 Value *NewInner = Builder.CreateBinaryIntrinsic(MinMaxID, X, Y);
1252 NewInner->takeName(Inner);
1253 return CallInst::Create(MinMax, {NewInner, C});
1256 /// Reduce a sequence of min/max intrinsics with a common operand.
1257 static Instruction *factorizeMinMaxTree(IntrinsicInst *II) {
1258 // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1259 auto *LHS = dyn_cast<IntrinsicInst>(II->getArgOperand(0));
1260 auto *RHS = dyn_cast<IntrinsicInst>(II->getArgOperand(1));
1261 Intrinsic::ID MinMaxID = II->getIntrinsicID();
1262 if (!LHS || !RHS || LHS->getIntrinsicID() != MinMaxID ||
1263 RHS->getIntrinsicID() != MinMaxID ||
1264 (!LHS->hasOneUse() && !RHS->hasOneUse()))
1265 return nullptr;
1267 Value *A = LHS->getArgOperand(0);
1268 Value *B = LHS->getArgOperand(1);
1269 Value *C = RHS->getArgOperand(0);
1270 Value *D = RHS->getArgOperand(1);
1272 // Look for a common operand.
1273 Value *MinMaxOp = nullptr;
1274 Value *ThirdOp = nullptr;
1275 if (LHS->hasOneUse()) {
1276 // If the LHS is only used in this chain and the RHS is used outside of it,
1277 // reuse the RHS min/max because that will eliminate the LHS.
1278 if (D == A || C == A) {
1279 // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1280 // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1281 MinMaxOp = RHS;
1282 ThirdOp = B;
1283 } else if (D == B || C == B) {
1284 // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1285 // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1286 MinMaxOp = RHS;
1287 ThirdOp = A;
1289 } else {
1290 assert(RHS->hasOneUse() && "Expected one-use operand");
1291 // Reuse the LHS. This will eliminate the RHS.
1292 if (D == A || D == B) {
1293 // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1294 // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1295 MinMaxOp = LHS;
1296 ThirdOp = C;
1297 } else if (C == A || C == B) {
1298 // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1299 // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1300 MinMaxOp = LHS;
1301 ThirdOp = D;
1305 if (!MinMaxOp || !ThirdOp)
1306 return nullptr;
1308 Module *Mod = II->getModule();
1309 Function *MinMax = Intrinsic::getDeclaration(Mod, MinMaxID, II->getType());
1310 return CallInst::Create(MinMax, { MinMaxOp, ThirdOp });
1313 /// If all arguments of the intrinsic are unary shuffles with the same mask,
1314 /// try to shuffle after the intrinsic.
1315 static Instruction *
1316 foldShuffledIntrinsicOperands(IntrinsicInst *II,
1317 InstCombiner::BuilderTy &Builder) {
1318 // TODO: This should be extended to handle other intrinsics like fshl, ctpop,
1319 // etc. Use llvm::isTriviallyVectorizable() and related to determine
1320 // which intrinsics are safe to shuffle?
1321 switch (II->getIntrinsicID()) {
1322 case Intrinsic::smax:
1323 case Intrinsic::smin:
1324 case Intrinsic::umax:
1325 case Intrinsic::umin:
1326 case Intrinsic::fma:
1327 case Intrinsic::fshl:
1328 case Intrinsic::fshr:
1329 break;
1330 default:
1331 return nullptr;
1334 Value *X;
1335 ArrayRef<int> Mask;
1336 if (!match(II->getArgOperand(0),
1337 m_Shuffle(m_Value(X), m_Undef(), m_Mask(Mask))))
1338 return nullptr;
1340 // At least 1 operand must have 1 use because we are creating 2 instructions.
1341 if (none_of(II->args(), [](Value *V) { return V->hasOneUse(); }))
1342 return nullptr;
1344 // See if all arguments are shuffled with the same mask.
1345 SmallVector<Value *, 4> NewArgs(II->arg_size());
1346 NewArgs[0] = X;
1347 Type *SrcTy = X->getType();
1348 for (unsigned i = 1, e = II->arg_size(); i != e; ++i) {
1349 if (!match(II->getArgOperand(i),
1350 m_Shuffle(m_Value(X), m_Undef(), m_SpecificMask(Mask))) ||
1351 X->getType() != SrcTy)
1352 return nullptr;
1353 NewArgs[i] = X;
1356 // intrinsic (shuf X, M), (shuf Y, M), ... --> shuf (intrinsic X, Y, ...), M
1357 Instruction *FPI = isa<FPMathOperator>(II) ? II : nullptr;
1358 Value *NewIntrinsic =
1359 Builder.CreateIntrinsic(II->getIntrinsicID(), SrcTy, NewArgs, FPI);
1360 return new ShuffleVectorInst(NewIntrinsic, Mask);
1363 /// Fold the following cases and accepts bswap and bitreverse intrinsics:
1364 /// bswap(logic_op(bswap(x), y)) --> logic_op(x, bswap(y))
1365 /// bswap(logic_op(bswap(x), bswap(y))) --> logic_op(x, y) (ignores multiuse)
1366 template <Intrinsic::ID IntrID>
1367 static Instruction *foldBitOrderCrossLogicOp(Value *V,
1368 InstCombiner::BuilderTy &Builder) {
1369 static_assert(IntrID == Intrinsic::bswap || IntrID == Intrinsic::bitreverse,
1370 "This helper only supports BSWAP and BITREVERSE intrinsics");
1372 Value *X, *Y;
1373 // Find bitwise logic op. Check that it is a BinaryOperator explicitly so we
1374 // don't match ConstantExpr that aren't meaningful for this transform.
1375 if (match(V, m_OneUse(m_BitwiseLogic(m_Value(X), m_Value(Y)))) &&
1376 isa<BinaryOperator>(V)) {
1377 Value *OldReorderX, *OldReorderY;
1378 BinaryOperator::BinaryOps Op = cast<BinaryOperator>(V)->getOpcode();
1380 // If both X and Y are bswap/bitreverse, the transform reduces the number
1381 // of instructions even if there's multiuse.
1382 // If only one operand is bswap/bitreverse, we need to ensure the operand
1383 // have only one use.
1384 if (match(X, m_Intrinsic<IntrID>(m_Value(OldReorderX))) &&
1385 match(Y, m_Intrinsic<IntrID>(m_Value(OldReorderY)))) {
1386 return BinaryOperator::Create(Op, OldReorderX, OldReorderY);
1389 if (match(X, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderX))))) {
1390 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, Y);
1391 return BinaryOperator::Create(Op, OldReorderX, NewReorder);
1394 if (match(Y, m_OneUse(m_Intrinsic<IntrID>(m_Value(OldReorderY))))) {
1395 Value *NewReorder = Builder.CreateUnaryIntrinsic(IntrID, X);
1396 return BinaryOperator::Create(Op, NewReorder, OldReorderY);
1399 return nullptr;
1402 /// CallInst simplification. This mostly only handles folding of intrinsic
1403 /// instructions. For normal calls, it allows visitCallBase to do the heavy
1404 /// lifting.
1405 Instruction *InstCombinerImpl::visitCallInst(CallInst &CI) {
1406 // Don't try to simplify calls without uses. It will not do anything useful,
1407 // but will result in the following folds being skipped.
1408 if (!CI.use_empty()) {
1409 SmallVector<Value *, 4> Args;
1410 Args.reserve(CI.arg_size());
1411 for (Value *Op : CI.args())
1412 Args.push_back(Op);
1413 if (Value *V = simplifyCall(&CI, CI.getCalledOperand(), Args,
1414 SQ.getWithInstruction(&CI)))
1415 return replaceInstUsesWith(CI, V);
1418 if (Value *FreedOp = getFreedOperand(&CI, &TLI))
1419 return visitFree(CI, FreedOp);
1421 // If the caller function (i.e. us, the function that contains this CallInst)
1422 // is nounwind, mark the call as nounwind, even if the callee isn't.
1423 if (CI.getFunction()->doesNotThrow() && !CI.doesNotThrow()) {
1424 CI.setDoesNotThrow();
1425 return &CI;
1428 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
1429 if (!II) return visitCallBase(CI);
1431 // For atomic unordered mem intrinsics if len is not a positive or
1432 // not a multiple of element size then behavior is undefined.
1433 if (auto *AMI = dyn_cast<AtomicMemIntrinsic>(II))
1434 if (ConstantInt *NumBytes = dyn_cast<ConstantInt>(AMI->getLength()))
1435 if (NumBytes->isNegative() ||
1436 (NumBytes->getZExtValue() % AMI->getElementSizeInBytes() != 0)) {
1437 CreateNonTerminatorUnreachable(AMI);
1438 assert(AMI->getType()->isVoidTy() &&
1439 "non void atomic unordered mem intrinsic");
1440 return eraseInstFromFunction(*AMI);
1443 // Intrinsics cannot occur in an invoke or a callbr, so handle them here
1444 // instead of in visitCallBase.
1445 if (auto *MI = dyn_cast<AnyMemIntrinsic>(II)) {
1446 bool Changed = false;
1448 // memmove/cpy/set of zero bytes is a noop.
1449 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
1450 if (NumBytes->isNullValue())
1451 return eraseInstFromFunction(CI);
1454 // No other transformations apply to volatile transfers.
1455 if (auto *M = dyn_cast<MemIntrinsic>(MI))
1456 if (M->isVolatile())
1457 return nullptr;
1459 // If we have a memmove and the source operation is a constant global,
1460 // then the source and dest pointers can't alias, so we can change this
1461 // into a call to memcpy.
1462 if (auto *MMI = dyn_cast<AnyMemMoveInst>(MI)) {
1463 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
1464 if (GVSrc->isConstant()) {
1465 Module *M = CI.getModule();
1466 Intrinsic::ID MemCpyID =
1467 isa<AtomicMemMoveInst>(MMI)
1468 ? Intrinsic::memcpy_element_unordered_atomic
1469 : Intrinsic::memcpy;
1470 Type *Tys[3] = { CI.getArgOperand(0)->getType(),
1471 CI.getArgOperand(1)->getType(),
1472 CI.getArgOperand(2)->getType() };
1473 CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
1474 Changed = true;
1478 if (AnyMemTransferInst *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1479 // memmove(x,x,size) -> noop.
1480 if (MTI->getSource() == MTI->getDest())
1481 return eraseInstFromFunction(CI);
1484 // If we can determine a pointer alignment that is bigger than currently
1485 // set, update the alignment.
1486 if (auto *MTI = dyn_cast<AnyMemTransferInst>(MI)) {
1487 if (Instruction *I = SimplifyAnyMemTransfer(MTI))
1488 return I;
1489 } else if (auto *MSI = dyn_cast<AnyMemSetInst>(MI)) {
1490 if (Instruction *I = SimplifyAnyMemSet(MSI))
1491 return I;
1494 if (Changed) return II;
1497 // For fixed width vector result intrinsics, use the generic demanded vector
1498 // support.
1499 if (auto *IIFVTy = dyn_cast<FixedVectorType>(II->getType())) {
1500 auto VWidth = IIFVTy->getNumElements();
1501 APInt UndefElts(VWidth, 0);
1502 APInt AllOnesEltMask(APInt::getAllOnes(VWidth));
1503 if (Value *V = SimplifyDemandedVectorElts(II, AllOnesEltMask, UndefElts)) {
1504 if (V != II)
1505 return replaceInstUsesWith(*II, V);
1506 return II;
1510 if (II->isCommutative()) {
1511 if (CallInst *NewCall = canonicalizeConstantArg0ToArg1(CI))
1512 return NewCall;
1515 // Unused constrained FP intrinsic calls may have declared side effect, which
1516 // prevents it from being removed. In some cases however the side effect is
1517 // actually absent. To detect this case, call SimplifyConstrainedFPCall. If it
1518 // returns a replacement, the call may be removed.
1519 if (CI.use_empty() && isa<ConstrainedFPIntrinsic>(CI)) {
1520 if (simplifyConstrainedFPCall(&CI, SQ.getWithInstruction(&CI)))
1521 return eraseInstFromFunction(CI);
1524 Intrinsic::ID IID = II->getIntrinsicID();
1525 switch (IID) {
1526 case Intrinsic::objectsize: {
1527 SmallVector<Instruction *> InsertedInstructions;
1528 if (Value *V = lowerObjectSizeCall(II, DL, &TLI, AA, /*MustSucceed=*/false,
1529 &InsertedInstructions)) {
1530 for (Instruction *Inserted : InsertedInstructions)
1531 Worklist.add(Inserted);
1532 return replaceInstUsesWith(CI, V);
1534 return nullptr;
1536 case Intrinsic::abs: {
1537 Value *IIOperand = II->getArgOperand(0);
1538 bool IntMinIsPoison = cast<Constant>(II->getArgOperand(1))->isOneValue();
1540 // abs(-x) -> abs(x)
1541 // TODO: Copy nsw if it was present on the neg?
1542 Value *X;
1543 if (match(IIOperand, m_Neg(m_Value(X))))
1544 return replaceOperand(*II, 0, X);
1545 if (match(IIOperand, m_Select(m_Value(), m_Value(X), m_Neg(m_Deferred(X)))))
1546 return replaceOperand(*II, 0, X);
1547 if (match(IIOperand, m_Select(m_Value(), m_Neg(m_Value(X)), m_Deferred(X))))
1548 return replaceOperand(*II, 0, X);
1550 if (std::optional<bool> Known =
1551 getKnownSignOrZero(IIOperand, II, DL, &AC, &DT)) {
1552 // abs(x) -> x if x >= 0 (include abs(x-y) --> x - y where x >= y)
1553 // abs(x) -> x if x > 0 (include abs(x-y) --> x - y where x > y)
1554 if (!*Known)
1555 return replaceInstUsesWith(*II, IIOperand);
1557 // abs(x) -> -x if x < 0
1558 // abs(x) -> -x if x < = 0 (include abs(x-y) --> y - x where x <= y)
1559 if (IntMinIsPoison)
1560 return BinaryOperator::CreateNSWNeg(IIOperand);
1561 return BinaryOperator::CreateNeg(IIOperand);
1564 // abs (sext X) --> zext (abs X*)
1565 // Clear the IsIntMin (nsw) bit on the abs to allow narrowing.
1566 if (match(IIOperand, m_OneUse(m_SExt(m_Value(X))))) {
1567 Value *NarrowAbs =
1568 Builder.CreateBinaryIntrinsic(Intrinsic::abs, X, Builder.getFalse());
1569 return CastInst::Create(Instruction::ZExt, NarrowAbs, II->getType());
1572 // Match a complicated way to check if a number is odd/even:
1573 // abs (srem X, 2) --> and X, 1
1574 const APInt *C;
1575 if (match(IIOperand, m_SRem(m_Value(X), m_APInt(C))) && *C == 2)
1576 return BinaryOperator::CreateAnd(X, ConstantInt::get(II->getType(), 1));
1578 break;
1580 case Intrinsic::umin: {
1581 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1582 // umin(x, 1) == zext(x != 0)
1583 if (match(I1, m_One())) {
1584 assert(II->getType()->getScalarSizeInBits() != 1 &&
1585 "Expected simplify of umin with max constant");
1586 Value *Zero = Constant::getNullValue(I0->getType());
1587 Value *Cmp = Builder.CreateICmpNE(I0, Zero);
1588 return CastInst::Create(Instruction::ZExt, Cmp, II->getType());
1590 [[fallthrough]];
1592 case Intrinsic::umax: {
1593 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1594 Value *X, *Y;
1595 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_ZExt(m_Value(Y))) &&
1596 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1597 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1598 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1600 Constant *C;
1601 if (match(I0, m_ZExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1602 I0->hasOneUse()) {
1603 if (Constant *NarrowC = getLosslessUnsignedTrunc(C, X->getType())) {
1604 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1605 return CastInst::Create(Instruction::ZExt, NarrowMaxMin, II->getType());
1608 // If both operands of unsigned min/max are sign-extended, it is still ok
1609 // to narrow the operation.
1610 [[fallthrough]];
1612 case Intrinsic::smax:
1613 case Intrinsic::smin: {
1614 Value *I0 = II->getArgOperand(0), *I1 = II->getArgOperand(1);
1615 Value *X, *Y;
1616 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_SExt(m_Value(Y))) &&
1617 (I0->hasOneUse() || I1->hasOneUse()) && X->getType() == Y->getType()) {
1618 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, Y);
1619 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1622 Constant *C;
1623 if (match(I0, m_SExt(m_Value(X))) && match(I1, m_Constant(C)) &&
1624 I0->hasOneUse()) {
1625 if (Constant *NarrowC = getLosslessSignedTrunc(C, X->getType())) {
1626 Value *NarrowMaxMin = Builder.CreateBinaryIntrinsic(IID, X, NarrowC);
1627 return CastInst::Create(Instruction::SExt, NarrowMaxMin, II->getType());
1631 // umin(i1 X, i1 Y) -> and i1 X, Y
1632 // smax(i1 X, i1 Y) -> and i1 X, Y
1633 if ((IID == Intrinsic::umin || IID == Intrinsic::smax) &&
1634 II->getType()->isIntOrIntVectorTy(1)) {
1635 return BinaryOperator::CreateAnd(I0, I1);
1638 // umax(i1 X, i1 Y) -> or i1 X, Y
1639 // smin(i1 X, i1 Y) -> or i1 X, Y
1640 if ((IID == Intrinsic::umax || IID == Intrinsic::smin) &&
1641 II->getType()->isIntOrIntVectorTy(1)) {
1642 return BinaryOperator::CreateOr(I0, I1);
1645 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1646 // smax (neg nsw X), (neg nsw Y) --> neg nsw (smin X, Y)
1647 // smin (neg nsw X), (neg nsw Y) --> neg nsw (smax X, Y)
1648 // TODO: Canonicalize neg after min/max if I1 is constant.
1649 if (match(I0, m_NSWNeg(m_Value(X))) && match(I1, m_NSWNeg(m_Value(Y))) &&
1650 (I0->hasOneUse() || I1->hasOneUse())) {
1651 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1652 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, X, Y);
1653 return BinaryOperator::CreateNSWNeg(InvMaxMin);
1657 // (umax X, (xor X, Pow2))
1658 // -> (or X, Pow2)
1659 // (umin X, (xor X, Pow2))
1660 // -> (and X, ~Pow2)
1661 // (smax X, (xor X, Pos_Pow2))
1662 // -> (or X, Pos_Pow2)
1663 // (smin X, (xor X, Pos_Pow2))
1664 // -> (and X, ~Pos_Pow2)
1665 // (smax X, (xor X, Neg_Pow2))
1666 // -> (and X, ~Neg_Pow2)
1667 // (smin X, (xor X, Neg_Pow2))
1668 // -> (or X, Neg_Pow2)
1669 if ((match(I0, m_c_Xor(m_Specific(I1), m_Value(X))) ||
1670 match(I1, m_c_Xor(m_Specific(I0), m_Value(X)))) &&
1671 isKnownToBeAPowerOfTwo(X, /* OrZero */ true)) {
1672 bool UseOr = IID == Intrinsic::smax || IID == Intrinsic::umax;
1673 bool UseAndN = IID == Intrinsic::smin || IID == Intrinsic::umin;
1675 if (IID == Intrinsic::smax || IID == Intrinsic::smin) {
1676 auto KnownSign = getKnownSign(X, II, DL, &AC, &DT);
1677 if (KnownSign == std::nullopt) {
1678 UseOr = false;
1679 UseAndN = false;
1680 } else if (*KnownSign /* true is Signed. */) {
1681 UseOr ^= true;
1682 UseAndN ^= true;
1683 Type *Ty = I0->getType();
1684 // Negative power of 2 must be IntMin. It's possible to be able to
1685 // prove negative / power of 2 without actually having known bits, so
1686 // just get the value by hand.
1687 X = Constant::getIntegerValue(
1688 Ty, APInt::getSignedMinValue(Ty->getScalarSizeInBits()));
1691 if (UseOr)
1692 return BinaryOperator::CreateOr(I0, X);
1693 else if (UseAndN)
1694 return BinaryOperator::CreateAnd(I0, Builder.CreateNot(X));
1697 // If we can eliminate ~A and Y is free to invert:
1698 // max ~A, Y --> ~(min A, ~Y)
1700 // Examples:
1701 // max ~A, ~Y --> ~(min A, Y)
1702 // max ~A, C --> ~(min A, ~C)
1703 // max ~A, (max ~Y, ~Z) --> ~min( A, (min Y, Z))
1704 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
1705 Value *A;
1706 if (match(X, m_OneUse(m_Not(m_Value(A)))) &&
1707 !isFreeToInvert(A, A->hasOneUse()) &&
1708 isFreeToInvert(Y, Y->hasOneUse())) {
1709 Value *NotY = Builder.CreateNot(Y);
1710 Intrinsic::ID InvID = getInverseMinMaxIntrinsic(IID);
1711 Value *InvMaxMin = Builder.CreateBinaryIntrinsic(InvID, A, NotY);
1712 return BinaryOperator::CreateNot(InvMaxMin);
1714 return nullptr;
1717 if (Instruction *I = moveNotAfterMinMax(I0, I1))
1718 return I;
1719 if (Instruction *I = moveNotAfterMinMax(I1, I0))
1720 return I;
1722 if (Instruction *I = moveAddAfterMinMax(II, Builder))
1723 return I;
1725 // smax(X, -X) --> abs(X)
1726 // smin(X, -X) --> -abs(X)
1727 // umax(X, -X) --> -abs(X)
1728 // umin(X, -X) --> abs(X)
1729 if (isKnownNegation(I0, I1)) {
1730 // We can choose either operand as the input to abs(), but if we can
1731 // eliminate the only use of a value, that's better for subsequent
1732 // transforms/analysis.
1733 if (I0->hasOneUse() && !I1->hasOneUse())
1734 std::swap(I0, I1);
1736 // This is some variant of abs(). See if we can propagate 'nsw' to the abs
1737 // operation and potentially its negation.
1738 bool IntMinIsPoison = isKnownNegation(I0, I1, /* NeedNSW */ true);
1739 Value *Abs = Builder.CreateBinaryIntrinsic(
1740 Intrinsic::abs, I0,
1741 ConstantInt::getBool(II->getContext(), IntMinIsPoison));
1743 // We don't have a "nabs" intrinsic, so negate if needed based on the
1744 // max/min operation.
1745 if (IID == Intrinsic::smin || IID == Intrinsic::umax)
1746 Abs = Builder.CreateNeg(Abs, "nabs", /* NUW */ false, IntMinIsPoison);
1747 return replaceInstUsesWith(CI, Abs);
1750 if (Instruction *Sel = foldClampRangeOfTwo(II, Builder))
1751 return Sel;
1753 if (Instruction *SAdd = matchSAddSubSat(*II))
1754 return SAdd;
1756 if (Value *NewMinMax = reassociateMinMaxWithConstants(II, Builder))
1757 return replaceInstUsesWith(*II, NewMinMax);
1759 if (Instruction *R = reassociateMinMaxWithConstantInOperand(II, Builder))
1760 return R;
1762 if (Instruction *NewMinMax = factorizeMinMaxTree(II))
1763 return NewMinMax;
1765 break;
1767 case Intrinsic::bitreverse: {
1768 Value *IIOperand = II->getArgOperand(0);
1769 // bitrev (zext i1 X to ?) --> X ? SignBitC : 0
1770 Value *X;
1771 if (match(IIOperand, m_ZExt(m_Value(X))) &&
1772 X->getType()->isIntOrIntVectorTy(1)) {
1773 Type *Ty = II->getType();
1774 APInt SignBit = APInt::getSignMask(Ty->getScalarSizeInBits());
1775 return SelectInst::Create(X, ConstantInt::get(Ty, SignBit),
1776 ConstantInt::getNullValue(Ty));
1779 if (Instruction *crossLogicOpFold =
1780 foldBitOrderCrossLogicOp<Intrinsic::bitreverse>(IIOperand, Builder))
1781 return crossLogicOpFold;
1783 break;
1785 case Intrinsic::bswap: {
1786 Value *IIOperand = II->getArgOperand(0);
1788 // Try to canonicalize bswap-of-logical-shift-by-8-bit-multiple as
1789 // inverse-shift-of-bswap:
1790 // bswap (shl X, Y) --> lshr (bswap X), Y
1791 // bswap (lshr X, Y) --> shl (bswap X), Y
1792 Value *X, *Y;
1793 if (match(IIOperand, m_OneUse(m_LogicalShift(m_Value(X), m_Value(Y))))) {
1794 // The transform allows undef vector elements, so try a constant match
1795 // first. If knownbits can handle that case, that clause could be removed.
1796 unsigned BitWidth = IIOperand->getType()->getScalarSizeInBits();
1797 const APInt *C;
1798 if ((match(Y, m_APIntAllowUndef(C)) && (*C & 7) == 0) ||
1799 MaskedValueIsZero(Y, APInt::getLowBitsSet(BitWidth, 3))) {
1800 Value *NewSwap = Builder.CreateUnaryIntrinsic(Intrinsic::bswap, X);
1801 BinaryOperator::BinaryOps InverseShift =
1802 cast<BinaryOperator>(IIOperand)->getOpcode() == Instruction::Shl
1803 ? Instruction::LShr
1804 : Instruction::Shl;
1805 return BinaryOperator::Create(InverseShift, NewSwap, Y);
1809 KnownBits Known = computeKnownBits(IIOperand, 0, II);
1810 uint64_t LZ = alignDown(Known.countMinLeadingZeros(), 8);
1811 uint64_t TZ = alignDown(Known.countMinTrailingZeros(), 8);
1812 unsigned BW = Known.getBitWidth();
1814 // bswap(x) -> shift(x) if x has exactly one "active byte"
1815 if (BW - LZ - TZ == 8) {
1816 assert(LZ != TZ && "active byte cannot be in the middle");
1817 if (LZ > TZ) // -> shl(x) if the "active byte" is in the low part of x
1818 return BinaryOperator::CreateNUWShl(
1819 IIOperand, ConstantInt::get(IIOperand->getType(), LZ - TZ));
1820 // -> lshr(x) if the "active byte" is in the high part of x
1821 return BinaryOperator::CreateExactLShr(
1822 IIOperand, ConstantInt::get(IIOperand->getType(), TZ - LZ));
1825 // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
1826 if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
1827 unsigned C = X->getType()->getScalarSizeInBits() - BW;
1828 Value *CV = ConstantInt::get(X->getType(), C);
1829 Value *V = Builder.CreateLShr(X, CV);
1830 return new TruncInst(V, IIOperand->getType());
1833 if (Instruction *crossLogicOpFold =
1834 foldBitOrderCrossLogicOp<Intrinsic::bswap>(IIOperand, Builder)) {
1835 return crossLogicOpFold;
1838 break;
1840 case Intrinsic::masked_load:
1841 if (Value *SimplifiedMaskedOp = simplifyMaskedLoad(*II))
1842 return replaceInstUsesWith(CI, SimplifiedMaskedOp);
1843 break;
1844 case Intrinsic::masked_store:
1845 return simplifyMaskedStore(*II);
1846 case Intrinsic::masked_gather:
1847 return simplifyMaskedGather(*II);
1848 case Intrinsic::masked_scatter:
1849 return simplifyMaskedScatter(*II);
1850 case Intrinsic::launder_invariant_group:
1851 case Intrinsic::strip_invariant_group:
1852 if (auto *SkippedBarrier = simplifyInvariantGroupIntrinsic(*II, *this))
1853 return replaceInstUsesWith(*II, SkippedBarrier);
1854 break;
1855 case Intrinsic::powi:
1856 if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
1857 // 0 and 1 are handled in instsimplify
1858 // powi(x, -1) -> 1/x
1859 if (Power->isMinusOne())
1860 return BinaryOperator::CreateFDivFMF(ConstantFP::get(CI.getType(), 1.0),
1861 II->getArgOperand(0), II);
1862 // powi(x, 2) -> x*x
1863 if (Power->equalsInt(2))
1864 return BinaryOperator::CreateFMulFMF(II->getArgOperand(0),
1865 II->getArgOperand(0), II);
1867 if (!Power->getValue()[0]) {
1868 Value *X;
1869 // If power is even:
1870 // powi(-x, p) -> powi(x, p)
1871 // powi(fabs(x), p) -> powi(x, p)
1872 // powi(copysign(x, y), p) -> powi(x, p)
1873 if (match(II->getArgOperand(0), m_FNeg(m_Value(X))) ||
1874 match(II->getArgOperand(0), m_FAbs(m_Value(X))) ||
1875 match(II->getArgOperand(0),
1876 m_Intrinsic<Intrinsic::copysign>(m_Value(X), m_Value())))
1877 return replaceOperand(*II, 0, X);
1880 break;
1882 case Intrinsic::cttz:
1883 case Intrinsic::ctlz:
1884 if (auto *I = foldCttzCtlz(*II, *this))
1885 return I;
1886 break;
1888 case Intrinsic::ctpop:
1889 if (auto *I = foldCtpop(*II, *this))
1890 return I;
1891 break;
1893 case Intrinsic::fshl:
1894 case Intrinsic::fshr: {
1895 Value *Op0 = II->getArgOperand(0), *Op1 = II->getArgOperand(1);
1896 Type *Ty = II->getType();
1897 unsigned BitWidth = Ty->getScalarSizeInBits();
1898 Constant *ShAmtC;
1899 if (match(II->getArgOperand(2), m_ImmConstant(ShAmtC))) {
1900 // Canonicalize a shift amount constant operand to modulo the bit-width.
1901 Constant *WidthC = ConstantInt::get(Ty, BitWidth);
1902 Constant *ModuloC =
1903 ConstantFoldBinaryOpOperands(Instruction::URem, ShAmtC, WidthC, DL);
1904 if (!ModuloC)
1905 return nullptr;
1906 if (ModuloC != ShAmtC)
1907 return replaceOperand(*II, 2, ModuloC);
1909 assert(ConstantExpr::getICmp(ICmpInst::ICMP_UGT, WidthC, ShAmtC) ==
1910 ConstantInt::getTrue(CmpInst::makeCmpResultType(Ty)) &&
1911 "Shift amount expected to be modulo bitwidth");
1913 // Canonicalize funnel shift right by constant to funnel shift left. This
1914 // is not entirely arbitrary. For historical reasons, the backend may
1915 // recognize rotate left patterns but miss rotate right patterns.
1916 if (IID == Intrinsic::fshr) {
1917 // fshr X, Y, C --> fshl X, Y, (BitWidth - C)
1918 Constant *LeftShiftC = ConstantExpr::getSub(WidthC, ShAmtC);
1919 Module *Mod = II->getModule();
1920 Function *Fshl = Intrinsic::getDeclaration(Mod, Intrinsic::fshl, Ty);
1921 return CallInst::Create(Fshl, { Op0, Op1, LeftShiftC });
1923 assert(IID == Intrinsic::fshl &&
1924 "All funnel shifts by simple constants should go left");
1926 // fshl(X, 0, C) --> shl X, C
1927 // fshl(X, undef, C) --> shl X, C
1928 if (match(Op1, m_ZeroInt()) || match(Op1, m_Undef()))
1929 return BinaryOperator::CreateShl(Op0, ShAmtC);
1931 // fshl(0, X, C) --> lshr X, (BW-C)
1932 // fshl(undef, X, C) --> lshr X, (BW-C)
1933 if (match(Op0, m_ZeroInt()) || match(Op0, m_Undef()))
1934 return BinaryOperator::CreateLShr(Op1,
1935 ConstantExpr::getSub(WidthC, ShAmtC));
1937 // fshl i16 X, X, 8 --> bswap i16 X (reduce to more-specific form)
1938 if (Op0 == Op1 && BitWidth == 16 && match(ShAmtC, m_SpecificInt(8))) {
1939 Module *Mod = II->getModule();
1940 Function *Bswap = Intrinsic::getDeclaration(Mod, Intrinsic::bswap, Ty);
1941 return CallInst::Create(Bswap, { Op0 });
1943 if (Instruction *BitOp =
1944 matchBSwapOrBitReverse(*II, /*MatchBSwaps*/ true,
1945 /*MatchBitReversals*/ true))
1946 return BitOp;
1949 // Left or right might be masked.
1950 if (SimplifyDemandedInstructionBits(*II))
1951 return &CI;
1953 // The shift amount (operand 2) of a funnel shift is modulo the bitwidth,
1954 // so only the low bits of the shift amount are demanded if the bitwidth is
1955 // a power-of-2.
1956 if (!isPowerOf2_32(BitWidth))
1957 break;
1958 APInt Op2Demanded = APInt::getLowBitsSet(BitWidth, Log2_32_Ceil(BitWidth));
1959 KnownBits Op2Known(BitWidth);
1960 if (SimplifyDemandedBits(II, 2, Op2Demanded, Op2Known))
1961 return &CI;
1962 break;
1964 case Intrinsic::ptrmask: {
1965 Value *InnerPtr, *InnerMask;
1966 if (match(II->getArgOperand(0),
1967 m_OneUse(m_Intrinsic<Intrinsic::ptrmask>(m_Value(InnerPtr),
1968 m_Value(InnerMask))))) {
1969 assert(II->getArgOperand(1)->getType() == InnerMask->getType() &&
1970 "Mask types must match");
1971 Value *NewMask = Builder.CreateAnd(II->getArgOperand(1), InnerMask);
1972 return replaceInstUsesWith(
1973 *II, Builder.CreateIntrinsic(InnerPtr->getType(), Intrinsic::ptrmask,
1974 {InnerPtr, NewMask}));
1976 break;
1978 case Intrinsic::uadd_with_overflow:
1979 case Intrinsic::sadd_with_overflow: {
1980 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
1981 return I;
1983 // Given 2 constant operands whose sum does not overflow:
1984 // uaddo (X +nuw C0), C1 -> uaddo X, C0 + C1
1985 // saddo (X +nsw C0), C1 -> saddo X, C0 + C1
1986 Value *X;
1987 const APInt *C0, *C1;
1988 Value *Arg0 = II->getArgOperand(0);
1989 Value *Arg1 = II->getArgOperand(1);
1990 bool IsSigned = IID == Intrinsic::sadd_with_overflow;
1991 bool HasNWAdd = IsSigned ? match(Arg0, m_NSWAdd(m_Value(X), m_APInt(C0)))
1992 : match(Arg0, m_NUWAdd(m_Value(X), m_APInt(C0)));
1993 if (HasNWAdd && match(Arg1, m_APInt(C1))) {
1994 bool Overflow;
1995 APInt NewC =
1996 IsSigned ? C1->sadd_ov(*C0, Overflow) : C1->uadd_ov(*C0, Overflow);
1997 if (!Overflow)
1998 return replaceInstUsesWith(
1999 *II, Builder.CreateBinaryIntrinsic(
2000 IID, X, ConstantInt::get(Arg1->getType(), NewC)));
2002 break;
2005 case Intrinsic::umul_with_overflow:
2006 case Intrinsic::smul_with_overflow:
2007 case Intrinsic::usub_with_overflow:
2008 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2009 return I;
2010 break;
2012 case Intrinsic::ssub_with_overflow: {
2013 if (Instruction *I = foldIntrinsicWithOverflowCommon(II))
2014 return I;
2016 Constant *C;
2017 Value *Arg0 = II->getArgOperand(0);
2018 Value *Arg1 = II->getArgOperand(1);
2019 // Given a constant C that is not the minimum signed value
2020 // for an integer of a given bit width:
2022 // ssubo X, C -> saddo X, -C
2023 if (match(Arg1, m_Constant(C)) && C->isNotMinSignedValue()) {
2024 Value *NegVal = ConstantExpr::getNeg(C);
2025 // Build a saddo call that is equivalent to the discovered
2026 // ssubo call.
2027 return replaceInstUsesWith(
2028 *II, Builder.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow,
2029 Arg0, NegVal));
2032 break;
2035 case Intrinsic::uadd_sat:
2036 case Intrinsic::sadd_sat:
2037 case Intrinsic::usub_sat:
2038 case Intrinsic::ssub_sat: {
2039 SaturatingInst *SI = cast<SaturatingInst>(II);
2040 Type *Ty = SI->getType();
2041 Value *Arg0 = SI->getLHS();
2042 Value *Arg1 = SI->getRHS();
2044 // Make use of known overflow information.
2045 OverflowResult OR = computeOverflow(SI->getBinaryOp(), SI->isSigned(),
2046 Arg0, Arg1, SI);
2047 switch (OR) {
2048 case OverflowResult::MayOverflow:
2049 break;
2050 case OverflowResult::NeverOverflows:
2051 if (SI->isSigned())
2052 return BinaryOperator::CreateNSW(SI->getBinaryOp(), Arg0, Arg1);
2053 else
2054 return BinaryOperator::CreateNUW(SI->getBinaryOp(), Arg0, Arg1);
2055 case OverflowResult::AlwaysOverflowsLow: {
2056 unsigned BitWidth = Ty->getScalarSizeInBits();
2057 APInt Min = APSInt::getMinValue(BitWidth, !SI->isSigned());
2058 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Min));
2060 case OverflowResult::AlwaysOverflowsHigh: {
2061 unsigned BitWidth = Ty->getScalarSizeInBits();
2062 APInt Max = APSInt::getMaxValue(BitWidth, !SI->isSigned());
2063 return replaceInstUsesWith(*SI, ConstantInt::get(Ty, Max));
2067 // ssub.sat(X, C) -> sadd.sat(X, -C) if C != MIN
2068 Constant *C;
2069 if (IID == Intrinsic::ssub_sat && match(Arg1, m_Constant(C)) &&
2070 C->isNotMinSignedValue()) {
2071 Value *NegVal = ConstantExpr::getNeg(C);
2072 return replaceInstUsesWith(
2073 *II, Builder.CreateBinaryIntrinsic(
2074 Intrinsic::sadd_sat, Arg0, NegVal));
2077 // sat(sat(X + Val2) + Val) -> sat(X + (Val+Val2))
2078 // sat(sat(X - Val2) - Val) -> sat(X - (Val+Val2))
2079 // if Val and Val2 have the same sign
2080 if (auto *Other = dyn_cast<IntrinsicInst>(Arg0)) {
2081 Value *X;
2082 const APInt *Val, *Val2;
2083 APInt NewVal;
2084 bool IsUnsigned =
2085 IID == Intrinsic::uadd_sat || IID == Intrinsic::usub_sat;
2086 if (Other->getIntrinsicID() == IID &&
2087 match(Arg1, m_APInt(Val)) &&
2088 match(Other->getArgOperand(0), m_Value(X)) &&
2089 match(Other->getArgOperand(1), m_APInt(Val2))) {
2090 if (IsUnsigned)
2091 NewVal = Val->uadd_sat(*Val2);
2092 else if (Val->isNonNegative() == Val2->isNonNegative()) {
2093 bool Overflow;
2094 NewVal = Val->sadd_ov(*Val2, Overflow);
2095 if (Overflow) {
2096 // Both adds together may add more than SignedMaxValue
2097 // without saturating the final result.
2098 break;
2100 } else {
2101 // Cannot fold saturated addition with different signs.
2102 break;
2105 return replaceInstUsesWith(
2106 *II, Builder.CreateBinaryIntrinsic(
2107 IID, X, ConstantInt::get(II->getType(), NewVal)));
2110 break;
2113 case Intrinsic::minnum:
2114 case Intrinsic::maxnum:
2115 case Intrinsic::minimum:
2116 case Intrinsic::maximum: {
2117 Value *Arg0 = II->getArgOperand(0);
2118 Value *Arg1 = II->getArgOperand(1);
2119 Value *X, *Y;
2120 if (match(Arg0, m_FNeg(m_Value(X))) && match(Arg1, m_FNeg(m_Value(Y))) &&
2121 (Arg0->hasOneUse() || Arg1->hasOneUse())) {
2122 // If both operands are negated, invert the call and negate the result:
2123 // min(-X, -Y) --> -(max(X, Y))
2124 // max(-X, -Y) --> -(min(X, Y))
2125 Intrinsic::ID NewIID;
2126 switch (IID) {
2127 case Intrinsic::maxnum:
2128 NewIID = Intrinsic::minnum;
2129 break;
2130 case Intrinsic::minnum:
2131 NewIID = Intrinsic::maxnum;
2132 break;
2133 case Intrinsic::maximum:
2134 NewIID = Intrinsic::minimum;
2135 break;
2136 case Intrinsic::minimum:
2137 NewIID = Intrinsic::maximum;
2138 break;
2139 default:
2140 llvm_unreachable("unexpected intrinsic ID");
2142 Value *NewCall = Builder.CreateBinaryIntrinsic(NewIID, X, Y, II);
2143 Instruction *FNeg = UnaryOperator::CreateFNeg(NewCall);
2144 FNeg->copyIRFlags(II);
2145 return FNeg;
2148 // m(m(X, C2), C1) -> m(X, C)
2149 const APFloat *C1, *C2;
2150 if (auto *M = dyn_cast<IntrinsicInst>(Arg0)) {
2151 if (M->getIntrinsicID() == IID && match(Arg1, m_APFloat(C1)) &&
2152 ((match(M->getArgOperand(0), m_Value(X)) &&
2153 match(M->getArgOperand(1), m_APFloat(C2))) ||
2154 (match(M->getArgOperand(1), m_Value(X)) &&
2155 match(M->getArgOperand(0), m_APFloat(C2))))) {
2156 APFloat Res(0.0);
2157 switch (IID) {
2158 case Intrinsic::maxnum:
2159 Res = maxnum(*C1, *C2);
2160 break;
2161 case Intrinsic::minnum:
2162 Res = minnum(*C1, *C2);
2163 break;
2164 case Intrinsic::maximum:
2165 Res = maximum(*C1, *C2);
2166 break;
2167 case Intrinsic::minimum:
2168 Res = minimum(*C1, *C2);
2169 break;
2170 default:
2171 llvm_unreachable("unexpected intrinsic ID");
2173 Instruction *NewCall = Builder.CreateBinaryIntrinsic(
2174 IID, X, ConstantFP::get(Arg0->getType(), Res), II);
2175 // TODO: Conservatively intersecting FMF. If Res == C2, the transform
2176 // was a simplification (so Arg0 and its original flags could
2177 // propagate?)
2178 NewCall->andIRFlags(M);
2179 return replaceInstUsesWith(*II, NewCall);
2183 // m((fpext X), (fpext Y)) -> fpext (m(X, Y))
2184 if (match(Arg0, m_OneUse(m_FPExt(m_Value(X)))) &&
2185 match(Arg1, m_OneUse(m_FPExt(m_Value(Y)))) &&
2186 X->getType() == Y->getType()) {
2187 Value *NewCall =
2188 Builder.CreateBinaryIntrinsic(IID, X, Y, II, II->getName());
2189 return new FPExtInst(NewCall, II->getType());
2192 // max X, -X --> fabs X
2193 // min X, -X --> -(fabs X)
2194 // TODO: Remove one-use limitation? That is obviously better for max.
2195 // It would be an extra instruction for min (fnabs), but that is
2196 // still likely better for analysis and codegen.
2197 if ((match(Arg0, m_OneUse(m_FNeg(m_Value(X)))) && Arg1 == X) ||
2198 (match(Arg1, m_OneUse(m_FNeg(m_Value(X)))) && Arg0 == X)) {
2199 Value *R = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, II);
2200 if (IID == Intrinsic::minimum || IID == Intrinsic::minnum)
2201 R = Builder.CreateFNegFMF(R, II);
2202 return replaceInstUsesWith(*II, R);
2205 break;
2207 case Intrinsic::matrix_multiply: {
2208 // Optimize negation in matrix multiplication.
2210 // -A * -B -> A * B
2211 Value *A, *B;
2212 if (match(II->getArgOperand(0), m_FNeg(m_Value(A))) &&
2213 match(II->getArgOperand(1), m_FNeg(m_Value(B)))) {
2214 replaceOperand(*II, 0, A);
2215 replaceOperand(*II, 1, B);
2216 return II;
2219 Value *Op0 = II->getOperand(0);
2220 Value *Op1 = II->getOperand(1);
2221 Value *OpNotNeg, *NegatedOp;
2222 unsigned NegatedOpArg, OtherOpArg;
2223 if (match(Op0, m_FNeg(m_Value(OpNotNeg)))) {
2224 NegatedOp = Op0;
2225 NegatedOpArg = 0;
2226 OtherOpArg = 1;
2227 } else if (match(Op1, m_FNeg(m_Value(OpNotNeg)))) {
2228 NegatedOp = Op1;
2229 NegatedOpArg = 1;
2230 OtherOpArg = 0;
2231 } else
2232 // Multiplication doesn't have a negated operand.
2233 break;
2235 // Only optimize if the negated operand has only one use.
2236 if (!NegatedOp->hasOneUse())
2237 break;
2239 Value *OtherOp = II->getOperand(OtherOpArg);
2240 VectorType *RetTy = cast<VectorType>(II->getType());
2241 VectorType *NegatedOpTy = cast<VectorType>(NegatedOp->getType());
2242 VectorType *OtherOpTy = cast<VectorType>(OtherOp->getType());
2243 ElementCount NegatedCount = NegatedOpTy->getElementCount();
2244 ElementCount OtherCount = OtherOpTy->getElementCount();
2245 ElementCount RetCount = RetTy->getElementCount();
2246 // (-A) * B -> A * (-B), if it is cheaper to negate B and vice versa.
2247 if (ElementCount::isKnownGT(NegatedCount, OtherCount) &&
2248 ElementCount::isKnownLT(OtherCount, RetCount)) {
2249 Value *InverseOtherOp = Builder.CreateFNeg(OtherOp);
2250 replaceOperand(*II, NegatedOpArg, OpNotNeg);
2251 replaceOperand(*II, OtherOpArg, InverseOtherOp);
2252 return II;
2254 // (-A) * B -> -(A * B), if it is cheaper to negate the result
2255 if (ElementCount::isKnownGT(NegatedCount, RetCount)) {
2256 SmallVector<Value *, 5> NewArgs(II->args());
2257 NewArgs[NegatedOpArg] = OpNotNeg;
2258 Instruction *NewMul =
2259 Builder.CreateIntrinsic(II->getType(), IID, NewArgs, II);
2260 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(NewMul, II));
2262 break;
2264 case Intrinsic::fmuladd: {
2265 // Canonicalize fast fmuladd to the separate fmul + fadd.
2266 if (II->isFast()) {
2267 BuilderTy::FastMathFlagGuard Guard(Builder);
2268 Builder.setFastMathFlags(II->getFastMathFlags());
2269 Value *Mul = Builder.CreateFMul(II->getArgOperand(0),
2270 II->getArgOperand(1));
2271 Value *Add = Builder.CreateFAdd(Mul, II->getArgOperand(2));
2272 Add->takeName(II);
2273 return replaceInstUsesWith(*II, Add);
2276 // Try to simplify the underlying FMul.
2277 if (Value *V = simplifyFMulInst(II->getArgOperand(0), II->getArgOperand(1),
2278 II->getFastMathFlags(),
2279 SQ.getWithInstruction(II))) {
2280 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2281 FAdd->copyFastMathFlags(II);
2282 return FAdd;
2285 [[fallthrough]];
2287 case Intrinsic::fma: {
2288 // fma fneg(x), fneg(y), z -> fma x, y, z
2289 Value *Src0 = II->getArgOperand(0);
2290 Value *Src1 = II->getArgOperand(1);
2291 Value *X, *Y;
2292 if (match(Src0, m_FNeg(m_Value(X))) && match(Src1, m_FNeg(m_Value(Y)))) {
2293 replaceOperand(*II, 0, X);
2294 replaceOperand(*II, 1, Y);
2295 return II;
2298 // fma fabs(x), fabs(x), z -> fma x, x, z
2299 if (match(Src0, m_FAbs(m_Value(X))) &&
2300 match(Src1, m_FAbs(m_Specific(X)))) {
2301 replaceOperand(*II, 0, X);
2302 replaceOperand(*II, 1, X);
2303 return II;
2306 // Try to simplify the underlying FMul. We can only apply simplifications
2307 // that do not require rounding.
2308 if (Value *V = simplifyFMAFMul(II->getArgOperand(0), II->getArgOperand(1),
2309 II->getFastMathFlags(),
2310 SQ.getWithInstruction(II))) {
2311 auto *FAdd = BinaryOperator::CreateFAdd(V, II->getArgOperand(2));
2312 FAdd->copyFastMathFlags(II);
2313 return FAdd;
2316 // fma x, y, 0 -> fmul x, y
2317 // This is always valid for -0.0, but requires nsz for +0.0 as
2318 // -0.0 + 0.0 = 0.0, which would not be the same as the fmul on its own.
2319 if (match(II->getArgOperand(2), m_NegZeroFP()) ||
2320 (match(II->getArgOperand(2), m_PosZeroFP()) &&
2321 II->getFastMathFlags().noSignedZeros()))
2322 return BinaryOperator::CreateFMulFMF(Src0, Src1, II);
2324 break;
2326 case Intrinsic::copysign: {
2327 Value *Mag = II->getArgOperand(0), *Sign = II->getArgOperand(1);
2328 if (SignBitMustBeZero(Sign, DL, &TLI)) {
2329 // If we know that the sign argument is positive, reduce to FABS:
2330 // copysign Mag, +Sign --> fabs Mag
2331 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2332 return replaceInstUsesWith(*II, Fabs);
2334 // TODO: There should be a ValueTracking sibling like SignBitMustBeOne.
2335 const APFloat *C;
2336 if (match(Sign, m_APFloat(C)) && C->isNegative()) {
2337 // If we know that the sign argument is negative, reduce to FNABS:
2338 // copysign Mag, -Sign --> fneg (fabs Mag)
2339 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, Mag, II);
2340 return replaceInstUsesWith(*II, Builder.CreateFNegFMF(Fabs, II));
2343 // Propagate sign argument through nested calls:
2344 // copysign Mag, (copysign ?, X) --> copysign Mag, X
2345 Value *X;
2346 if (match(Sign, m_Intrinsic<Intrinsic::copysign>(m_Value(), m_Value(X))))
2347 return replaceOperand(*II, 1, X);
2349 // Peek through changes of magnitude's sign-bit. This call rewrites those:
2350 // copysign (fabs X), Sign --> copysign X, Sign
2351 // copysign (fneg X), Sign --> copysign X, Sign
2352 if (match(Mag, m_FAbs(m_Value(X))) || match(Mag, m_FNeg(m_Value(X))))
2353 return replaceOperand(*II, 0, X);
2355 break;
2357 case Intrinsic::fabs: {
2358 Value *Cond, *TVal, *FVal;
2359 if (match(II->getArgOperand(0),
2360 m_Select(m_Value(Cond), m_Value(TVal), m_Value(FVal)))) {
2361 // fabs (select Cond, TrueC, FalseC) --> select Cond, AbsT, AbsF
2362 if (isa<Constant>(TVal) && isa<Constant>(FVal)) {
2363 CallInst *AbsT = Builder.CreateCall(II->getCalledFunction(), {TVal});
2364 CallInst *AbsF = Builder.CreateCall(II->getCalledFunction(), {FVal});
2365 return SelectInst::Create(Cond, AbsT, AbsF);
2367 // fabs (select Cond, -FVal, FVal) --> fabs FVal
2368 if (match(TVal, m_FNeg(m_Specific(FVal))))
2369 return replaceOperand(*II, 0, FVal);
2370 // fabs (select Cond, TVal, -TVal) --> fabs TVal
2371 if (match(FVal, m_FNeg(m_Specific(TVal))))
2372 return replaceOperand(*II, 0, TVal);
2375 Value *Magnitude, *Sign;
2376 if (match(II->getArgOperand(0),
2377 m_CopySign(m_Value(Magnitude), m_Value(Sign)))) {
2378 // fabs (copysign x, y) -> (fabs x)
2379 CallInst *AbsSign =
2380 Builder.CreateCall(II->getCalledFunction(), {Magnitude});
2381 AbsSign->copyFastMathFlags(II);
2382 return replaceInstUsesWith(*II, AbsSign);
2385 [[fallthrough]];
2387 case Intrinsic::ceil:
2388 case Intrinsic::floor:
2389 case Intrinsic::round:
2390 case Intrinsic::roundeven:
2391 case Intrinsic::nearbyint:
2392 case Intrinsic::rint:
2393 case Intrinsic::trunc: {
2394 Value *ExtSrc;
2395 if (match(II->getArgOperand(0), m_OneUse(m_FPExt(m_Value(ExtSrc))))) {
2396 // Narrow the call: intrinsic (fpext x) -> fpext (intrinsic x)
2397 Value *NarrowII = Builder.CreateUnaryIntrinsic(IID, ExtSrc, II);
2398 return new FPExtInst(NarrowII, II->getType());
2400 break;
2402 case Intrinsic::cos:
2403 case Intrinsic::amdgcn_cos: {
2404 Value *X;
2405 Value *Src = II->getArgOperand(0);
2406 if (match(Src, m_FNeg(m_Value(X))) || match(Src, m_FAbs(m_Value(X)))) {
2407 // cos(-x) -> cos(x)
2408 // cos(fabs(x)) -> cos(x)
2409 return replaceOperand(*II, 0, X);
2411 break;
2413 case Intrinsic::sin: {
2414 Value *X;
2415 if (match(II->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) {
2416 // sin(-x) --> -sin(x)
2417 Value *NewSin = Builder.CreateUnaryIntrinsic(Intrinsic::sin, X, II);
2418 Instruction *FNeg = UnaryOperator::CreateFNeg(NewSin);
2419 FNeg->copyFastMathFlags(II);
2420 return FNeg;
2422 break;
2424 case Intrinsic::ldexp: {
2425 // ldexp(ldexp(x, a), b) -> ldexp(x, a + b)
2427 // The danger is if the first ldexp would overflow to infinity or underflow
2428 // to zero, but the combined exponent avoids it. We ignore this with
2429 // reassoc.
2431 // It's also safe to fold if we know both exponents are >= 0 or <= 0 since
2432 // it would just double down on the overflow/underflow which would occur
2433 // anyway.
2435 // TODO: Could do better if we had range tracking for the input value
2436 // exponent. Also could broaden sign check to cover == 0 case.
2437 Value *Src = II->getArgOperand(0);
2438 Value *Exp = II->getArgOperand(1);
2439 Value *InnerSrc;
2440 Value *InnerExp;
2441 if (match(Src, m_OneUse(m_Intrinsic<Intrinsic::ldexp>(
2442 m_Value(InnerSrc), m_Value(InnerExp)))) &&
2443 Exp->getType() == InnerExp->getType()) {
2444 FastMathFlags FMF = II->getFastMathFlags();
2445 FastMathFlags InnerFlags = cast<FPMathOperator>(Src)->getFastMathFlags();
2447 if ((FMF.allowReassoc() && InnerFlags.allowReassoc()) ||
2448 signBitMustBeTheSame(Exp, InnerExp, II, DL, &AC, &DT)) {
2449 // TODO: Add nsw/nuw probably safe if integer type exceeds exponent
2450 // width.
2451 Value *NewExp = Builder.CreateAdd(InnerExp, Exp);
2452 II->setArgOperand(1, NewExp);
2453 II->setFastMathFlags(InnerFlags); // Or the inner flags.
2454 return replaceOperand(*II, 0, InnerSrc);
2458 break;
2460 case Intrinsic::ptrauth_auth:
2461 case Intrinsic::ptrauth_resign: {
2462 // (sign|resign) + (auth|resign) can be folded by omitting the middle
2463 // sign+auth component if the key and discriminator match.
2464 bool NeedSign = II->getIntrinsicID() == Intrinsic::ptrauth_resign;
2465 Value *Key = II->getArgOperand(1);
2466 Value *Disc = II->getArgOperand(2);
2468 // AuthKey will be the key we need to end up authenticating against in
2469 // whatever we replace this sequence with.
2470 Value *AuthKey = nullptr, *AuthDisc = nullptr, *BasePtr;
2471 if (auto CI = dyn_cast<CallBase>(II->getArgOperand(0))) {
2472 BasePtr = CI->getArgOperand(0);
2473 if (CI->getIntrinsicID() == Intrinsic::ptrauth_sign) {
2474 if (CI->getArgOperand(1) != Key || CI->getArgOperand(2) != Disc)
2475 break;
2476 } else if (CI->getIntrinsicID() == Intrinsic::ptrauth_resign) {
2477 if (CI->getArgOperand(3) != Key || CI->getArgOperand(4) != Disc)
2478 break;
2479 AuthKey = CI->getArgOperand(1);
2480 AuthDisc = CI->getArgOperand(2);
2481 } else
2482 break;
2483 } else
2484 break;
2486 unsigned NewIntrin;
2487 if (AuthKey && NeedSign) {
2488 // resign(0,1) + resign(1,2) = resign(0, 2)
2489 NewIntrin = Intrinsic::ptrauth_resign;
2490 } else if (AuthKey) {
2491 // resign(0,1) + auth(1) = auth(0)
2492 NewIntrin = Intrinsic::ptrauth_auth;
2493 } else if (NeedSign) {
2494 // sign(0) + resign(0, 1) = sign(1)
2495 NewIntrin = Intrinsic::ptrauth_sign;
2496 } else {
2497 // sign(0) + auth(0) = nop
2498 replaceInstUsesWith(*II, BasePtr);
2499 eraseInstFromFunction(*II);
2500 return nullptr;
2503 SmallVector<Value *, 4> CallArgs;
2504 CallArgs.push_back(BasePtr);
2505 if (AuthKey) {
2506 CallArgs.push_back(AuthKey);
2507 CallArgs.push_back(AuthDisc);
2510 if (NeedSign) {
2511 CallArgs.push_back(II->getArgOperand(3));
2512 CallArgs.push_back(II->getArgOperand(4));
2515 Function *NewFn = Intrinsic::getDeclaration(II->getModule(), NewIntrin);
2516 return CallInst::Create(NewFn, CallArgs);
2518 case Intrinsic::arm_neon_vtbl1:
2519 case Intrinsic::aarch64_neon_tbl1:
2520 if (Value *V = simplifyNeonTbl1(*II, Builder))
2521 return replaceInstUsesWith(*II, V);
2522 break;
2524 case Intrinsic::arm_neon_vmulls:
2525 case Intrinsic::arm_neon_vmullu:
2526 case Intrinsic::aarch64_neon_smull:
2527 case Intrinsic::aarch64_neon_umull: {
2528 Value *Arg0 = II->getArgOperand(0);
2529 Value *Arg1 = II->getArgOperand(1);
2531 // Handle mul by zero first:
2532 if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
2533 return replaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
2536 // Check for constant LHS & RHS - in this case we just simplify.
2537 bool Zext = (IID == Intrinsic::arm_neon_vmullu ||
2538 IID == Intrinsic::aarch64_neon_umull);
2539 VectorType *NewVT = cast<VectorType>(II->getType());
2540 if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
2541 if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
2542 Value *V0 = Builder.CreateIntCast(CV0, NewVT, /*isSigned=*/!Zext);
2543 Value *V1 = Builder.CreateIntCast(CV1, NewVT, /*isSigned=*/!Zext);
2544 return replaceInstUsesWith(CI, Builder.CreateMul(V0, V1));
2547 // Couldn't simplify - canonicalize constant to the RHS.
2548 std::swap(Arg0, Arg1);
2551 // Handle mul by one:
2552 if (Constant *CV1 = dyn_cast<Constant>(Arg1))
2553 if (ConstantInt *Splat =
2554 dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
2555 if (Splat->isOne())
2556 return CastInst::CreateIntegerCast(Arg0, II->getType(),
2557 /*isSigned=*/!Zext);
2559 break;
2561 case Intrinsic::arm_neon_aesd:
2562 case Intrinsic::arm_neon_aese:
2563 case Intrinsic::aarch64_crypto_aesd:
2564 case Intrinsic::aarch64_crypto_aese: {
2565 Value *DataArg = II->getArgOperand(0);
2566 Value *KeyArg = II->getArgOperand(1);
2568 // Try to use the builtin XOR in AESE and AESD to eliminate a prior XOR
2569 Value *Data, *Key;
2570 if (match(KeyArg, m_ZeroInt()) &&
2571 match(DataArg, m_Xor(m_Value(Data), m_Value(Key)))) {
2572 replaceOperand(*II, 0, Data);
2573 replaceOperand(*II, 1, Key);
2574 return II;
2576 break;
2578 case Intrinsic::hexagon_V6_vandvrt:
2579 case Intrinsic::hexagon_V6_vandvrt_128B: {
2580 // Simplify Q -> V -> Q conversion.
2581 if (auto Op0 = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2582 Intrinsic::ID ID0 = Op0->getIntrinsicID();
2583 if (ID0 != Intrinsic::hexagon_V6_vandqrt &&
2584 ID0 != Intrinsic::hexagon_V6_vandqrt_128B)
2585 break;
2586 Value *Bytes = Op0->getArgOperand(1), *Mask = II->getArgOperand(1);
2587 uint64_t Bytes1 = computeKnownBits(Bytes, 0, Op0).One.getZExtValue();
2588 uint64_t Mask1 = computeKnownBits(Mask, 0, II).One.getZExtValue();
2589 // Check if every byte has common bits in Bytes and Mask.
2590 uint64_t C = Bytes1 & Mask1;
2591 if ((C & 0xFF) && (C & 0xFF00) && (C & 0xFF0000) && (C & 0xFF000000))
2592 return replaceInstUsesWith(*II, Op0->getArgOperand(0));
2594 break;
2596 case Intrinsic::stackrestore: {
2597 enum class ClassifyResult {
2598 None,
2599 Alloca,
2600 StackRestore,
2601 CallWithSideEffects,
2603 auto Classify = [](const Instruction *I) {
2604 if (isa<AllocaInst>(I))
2605 return ClassifyResult::Alloca;
2607 if (auto *CI = dyn_cast<CallInst>(I)) {
2608 if (auto *II = dyn_cast<IntrinsicInst>(CI)) {
2609 if (II->getIntrinsicID() == Intrinsic::stackrestore)
2610 return ClassifyResult::StackRestore;
2612 if (II->mayHaveSideEffects())
2613 return ClassifyResult::CallWithSideEffects;
2614 } else {
2615 // Consider all non-intrinsic calls to be side effects
2616 return ClassifyResult::CallWithSideEffects;
2620 return ClassifyResult::None;
2623 // If the stacksave and the stackrestore are in the same BB, and there is
2624 // no intervening call, alloca, or stackrestore of a different stacksave,
2625 // remove the restore. This can happen when variable allocas are DCE'd.
2626 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
2627 if (SS->getIntrinsicID() == Intrinsic::stacksave &&
2628 SS->getParent() == II->getParent()) {
2629 BasicBlock::iterator BI(SS);
2630 bool CannotRemove = false;
2631 for (++BI; &*BI != II; ++BI) {
2632 switch (Classify(&*BI)) {
2633 case ClassifyResult::None:
2634 // So far so good, look at next instructions.
2635 break;
2637 case ClassifyResult::StackRestore:
2638 // If we found an intervening stackrestore for a different
2639 // stacksave, we can't remove the stackrestore. Otherwise, continue.
2640 if (cast<IntrinsicInst>(*BI).getArgOperand(0) != SS)
2641 CannotRemove = true;
2642 break;
2644 case ClassifyResult::Alloca:
2645 case ClassifyResult::CallWithSideEffects:
2646 // If we found an alloca, a non-intrinsic call, or an intrinsic
2647 // call with side effects, we can't remove the stackrestore.
2648 CannotRemove = true;
2649 break;
2651 if (CannotRemove)
2652 break;
2655 if (!CannotRemove)
2656 return eraseInstFromFunction(CI);
2660 // Scan down this block to see if there is another stack restore in the
2661 // same block without an intervening call/alloca.
2662 BasicBlock::iterator BI(II);
2663 Instruction *TI = II->getParent()->getTerminator();
2664 bool CannotRemove = false;
2665 for (++BI; &*BI != TI; ++BI) {
2666 switch (Classify(&*BI)) {
2667 case ClassifyResult::None:
2668 // So far so good, look at next instructions.
2669 break;
2671 case ClassifyResult::StackRestore:
2672 // If there is a stackrestore below this one, remove this one.
2673 return eraseInstFromFunction(CI);
2675 case ClassifyResult::Alloca:
2676 case ClassifyResult::CallWithSideEffects:
2677 // If we found an alloca, a non-intrinsic call, or an intrinsic call
2678 // with side effects (such as llvm.stacksave and llvm.read_register),
2679 // we can't remove the stack restore.
2680 CannotRemove = true;
2681 break;
2683 if (CannotRemove)
2684 break;
2687 // If the stack restore is in a return, resume, or unwind block and if there
2688 // are no allocas or calls between the restore and the return, nuke the
2689 // restore.
2690 if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
2691 return eraseInstFromFunction(CI);
2692 break;
2694 case Intrinsic::lifetime_end:
2695 // Asan needs to poison memory to detect invalid access which is possible
2696 // even for empty lifetime range.
2697 if (II->getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
2698 II->getFunction()->hasFnAttribute(Attribute::SanitizeMemory) ||
2699 II->getFunction()->hasFnAttribute(Attribute::SanitizeHWAddress))
2700 break;
2702 if (removeTriviallyEmptyRange(*II, *this, [](const IntrinsicInst &I) {
2703 return I.getIntrinsicID() == Intrinsic::lifetime_start;
2705 return nullptr;
2706 break;
2707 case Intrinsic::assume: {
2708 Value *IIOperand = II->getArgOperand(0);
2709 SmallVector<OperandBundleDef, 4> OpBundles;
2710 II->getOperandBundlesAsDefs(OpBundles);
2712 /// This will remove the boolean Condition from the assume given as
2713 /// argument and remove the assume if it becomes useless.
2714 /// always returns nullptr for use as a return values.
2715 auto RemoveConditionFromAssume = [&](Instruction *Assume) -> Instruction * {
2716 assert(isa<AssumeInst>(Assume));
2717 if (isAssumeWithEmptyBundle(*cast<AssumeInst>(II)))
2718 return eraseInstFromFunction(CI);
2719 replaceUse(II->getOperandUse(0), ConstantInt::getTrue(II->getContext()));
2720 return nullptr;
2722 // Remove an assume if it is followed by an identical assume.
2723 // TODO: Do we need this? Unless there are conflicting assumptions, the
2724 // computeKnownBits(IIOperand) below here eliminates redundant assumes.
2725 Instruction *Next = II->getNextNonDebugInstruction();
2726 if (match(Next, m_Intrinsic<Intrinsic::assume>(m_Specific(IIOperand))))
2727 return RemoveConditionFromAssume(Next);
2729 // Canonicalize assume(a && b) -> assume(a); assume(b);
2730 // Note: New assumption intrinsics created here are registered by
2731 // the InstCombineIRInserter object.
2732 FunctionType *AssumeIntrinsicTy = II->getFunctionType();
2733 Value *AssumeIntrinsic = II->getCalledOperand();
2734 Value *A, *B;
2735 if (match(IIOperand, m_LogicalAnd(m_Value(A), m_Value(B)))) {
2736 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, A, OpBundles,
2737 II->getName());
2738 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic, B, II->getName());
2739 return eraseInstFromFunction(*II);
2741 // assume(!(a || b)) -> assume(!a); assume(!b);
2742 if (match(IIOperand, m_Not(m_LogicalOr(m_Value(A), m_Value(B))))) {
2743 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2744 Builder.CreateNot(A), OpBundles, II->getName());
2745 Builder.CreateCall(AssumeIntrinsicTy, AssumeIntrinsic,
2746 Builder.CreateNot(B), II->getName());
2747 return eraseInstFromFunction(*II);
2750 // assume( (load addr) != null ) -> add 'nonnull' metadata to load
2751 // (if assume is valid at the load)
2752 CmpInst::Predicate Pred;
2753 Instruction *LHS;
2754 if (match(IIOperand, m_ICmp(Pred, m_Instruction(LHS), m_Zero())) &&
2755 Pred == ICmpInst::ICMP_NE && LHS->getOpcode() == Instruction::Load &&
2756 LHS->getType()->isPointerTy() &&
2757 isValidAssumeForContext(II, LHS, &DT)) {
2758 MDNode *MD = MDNode::get(II->getContext(), std::nullopt);
2759 LHS->setMetadata(LLVMContext::MD_nonnull, MD);
2760 LHS->setMetadata(LLVMContext::MD_noundef, MD);
2761 return RemoveConditionFromAssume(II);
2763 // TODO: apply nonnull return attributes to calls and invokes
2764 // TODO: apply range metadata for range check patterns?
2767 // Separate storage assumptions apply to the underlying allocations, not any
2768 // particular pointer within them. When evaluating the hints for AA purposes
2769 // we getUnderlyingObject them; by precomputing the answers here we can
2770 // avoid having to do so repeatedly there.
2771 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2772 OperandBundleUse OBU = II->getOperandBundleAt(Idx);
2773 if (OBU.getTagName() == "separate_storage") {
2774 assert(OBU.Inputs.size() == 2);
2775 auto MaybeSimplifyHint = [&](const Use &U) {
2776 Value *Hint = U.get();
2777 // Not having a limit is safe because InstCombine removes unreachable
2778 // code.
2779 Value *UnderlyingObject = getUnderlyingObject(Hint, /*MaxLookup*/ 0);
2780 if (Hint != UnderlyingObject)
2781 replaceUse(const_cast<Use &>(U), UnderlyingObject);
2783 MaybeSimplifyHint(OBU.Inputs[0]);
2784 MaybeSimplifyHint(OBU.Inputs[1]);
2788 // Convert nonnull assume like:
2789 // %A = icmp ne i32* %PTR, null
2790 // call void @llvm.assume(i1 %A)
2791 // into
2792 // call void @llvm.assume(i1 true) [ "nonnull"(i32* %PTR) ]
2793 if (EnableKnowledgeRetention &&
2794 match(IIOperand, m_Cmp(Pred, m_Value(A), m_Zero())) &&
2795 Pred == CmpInst::ICMP_NE && A->getType()->isPointerTy()) {
2796 if (auto *Replacement = buildAssumeFromKnowledge(
2797 {RetainedKnowledge{Attribute::NonNull, 0, A}}, Next, &AC, &DT)) {
2799 Replacement->insertBefore(Next);
2800 AC.registerAssumption(Replacement);
2801 return RemoveConditionFromAssume(II);
2805 // Convert alignment assume like:
2806 // %B = ptrtoint i32* %A to i64
2807 // %C = and i64 %B, Constant
2808 // %D = icmp eq i64 %C, 0
2809 // call void @llvm.assume(i1 %D)
2810 // into
2811 // call void @llvm.assume(i1 true) [ "align"(i32* [[A]], i64 Constant + 1)]
2812 uint64_t AlignMask;
2813 if (EnableKnowledgeRetention &&
2814 match(IIOperand,
2815 m_Cmp(Pred, m_And(m_Value(A), m_ConstantInt(AlignMask)),
2816 m_Zero())) &&
2817 Pred == CmpInst::ICMP_EQ) {
2818 if (isPowerOf2_64(AlignMask + 1)) {
2819 uint64_t Offset = 0;
2820 match(A, m_Add(m_Value(A), m_ConstantInt(Offset)));
2821 if (match(A, m_PtrToInt(m_Value(A)))) {
2822 /// Note: this doesn't preserve the offset information but merges
2823 /// offset and alignment.
2824 /// TODO: we can generate a GEP instead of merging the alignment with
2825 /// the offset.
2826 RetainedKnowledge RK{Attribute::Alignment,
2827 (unsigned)MinAlign(Offset, AlignMask + 1), A};
2828 if (auto *Replacement =
2829 buildAssumeFromKnowledge(RK, Next, &AC, &DT)) {
2831 Replacement->insertAfter(II);
2832 AC.registerAssumption(Replacement);
2834 return RemoveConditionFromAssume(II);
2839 /// Canonicalize Knowledge in operand bundles.
2840 if (EnableKnowledgeRetention && II->hasOperandBundles()) {
2841 for (unsigned Idx = 0; Idx < II->getNumOperandBundles(); Idx++) {
2842 auto &BOI = II->bundle_op_info_begin()[Idx];
2843 RetainedKnowledge RK =
2844 llvm::getKnowledgeFromBundle(cast<AssumeInst>(*II), BOI);
2845 if (BOI.End - BOI.Begin > 2)
2846 continue; // Prevent reducing knowledge in an align with offset since
2847 // extracting a RetainedKnowledge from them looses offset
2848 // information
2849 RetainedKnowledge CanonRK =
2850 llvm::simplifyRetainedKnowledge(cast<AssumeInst>(II), RK,
2851 &getAssumptionCache(),
2852 &getDominatorTree());
2853 if (CanonRK == RK)
2854 continue;
2855 if (!CanonRK) {
2856 if (BOI.End - BOI.Begin > 0) {
2857 Worklist.pushValue(II->op_begin()[BOI.Begin]);
2858 Value::dropDroppableUse(II->op_begin()[BOI.Begin]);
2860 continue;
2862 assert(RK.AttrKind == CanonRK.AttrKind);
2863 if (BOI.End - BOI.Begin > 0)
2864 II->op_begin()[BOI.Begin].set(CanonRK.WasOn);
2865 if (BOI.End - BOI.Begin > 1)
2866 II->op_begin()[BOI.Begin + 1].set(ConstantInt::get(
2867 Type::getInt64Ty(II->getContext()), CanonRK.ArgValue));
2868 if (RK.WasOn)
2869 Worklist.pushValue(RK.WasOn);
2870 return II;
2874 // If there is a dominating assume with the same condition as this one,
2875 // then this one is redundant, and should be removed.
2876 KnownBits Known(1);
2877 computeKnownBits(IIOperand, Known, 0, II);
2878 if (Known.isAllOnes() && isAssumeWithEmptyBundle(cast<AssumeInst>(*II)))
2879 return eraseInstFromFunction(*II);
2881 // assume(false) is unreachable.
2882 if (match(IIOperand, m_CombineOr(m_Zero(), m_Undef()))) {
2883 CreateNonTerminatorUnreachable(II);
2884 return eraseInstFromFunction(*II);
2887 // Update the cache of affected values for this assumption (we might be
2888 // here because we just simplified the condition).
2889 AC.updateAffectedValues(cast<AssumeInst>(II));
2890 break;
2892 case Intrinsic::experimental_guard: {
2893 // Is this guard followed by another guard? We scan forward over a small
2894 // fixed window of instructions to handle common cases with conditions
2895 // computed between guards.
2896 Instruction *NextInst = II->getNextNonDebugInstruction();
2897 for (unsigned i = 0; i < GuardWideningWindow; i++) {
2898 // Note: Using context-free form to avoid compile time blow up
2899 if (!isSafeToSpeculativelyExecute(NextInst))
2900 break;
2901 NextInst = NextInst->getNextNonDebugInstruction();
2903 Value *NextCond = nullptr;
2904 if (match(NextInst,
2905 m_Intrinsic<Intrinsic::experimental_guard>(m_Value(NextCond)))) {
2906 Value *CurrCond = II->getArgOperand(0);
2908 // Remove a guard that it is immediately preceded by an identical guard.
2909 // Otherwise canonicalize guard(a); guard(b) -> guard(a & b).
2910 if (CurrCond != NextCond) {
2911 Instruction *MoveI = II->getNextNonDebugInstruction();
2912 while (MoveI != NextInst) {
2913 auto *Temp = MoveI;
2914 MoveI = MoveI->getNextNonDebugInstruction();
2915 Temp->moveBefore(II);
2917 replaceOperand(*II, 0, Builder.CreateAnd(CurrCond, NextCond));
2919 eraseInstFromFunction(*NextInst);
2920 return II;
2922 break;
2924 case Intrinsic::vector_insert: {
2925 Value *Vec = II->getArgOperand(0);
2926 Value *SubVec = II->getArgOperand(1);
2927 Value *Idx = II->getArgOperand(2);
2928 auto *DstTy = dyn_cast<FixedVectorType>(II->getType());
2929 auto *VecTy = dyn_cast<FixedVectorType>(Vec->getType());
2930 auto *SubVecTy = dyn_cast<FixedVectorType>(SubVec->getType());
2932 // Only canonicalize if the destination vector, Vec, and SubVec are all
2933 // fixed vectors.
2934 if (DstTy && VecTy && SubVecTy) {
2935 unsigned DstNumElts = DstTy->getNumElements();
2936 unsigned VecNumElts = VecTy->getNumElements();
2937 unsigned SubVecNumElts = SubVecTy->getNumElements();
2938 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
2940 // An insert that entirely overwrites Vec with SubVec is a nop.
2941 if (VecNumElts == SubVecNumElts)
2942 return replaceInstUsesWith(CI, SubVec);
2944 // Widen SubVec into a vector of the same width as Vec, since
2945 // shufflevector requires the two input vectors to be the same width.
2946 // Elements beyond the bounds of SubVec within the widened vector are
2947 // undefined.
2948 SmallVector<int, 8> WidenMask;
2949 unsigned i;
2950 for (i = 0; i != SubVecNumElts; ++i)
2951 WidenMask.push_back(i);
2952 for (; i != VecNumElts; ++i)
2953 WidenMask.push_back(PoisonMaskElem);
2955 Value *WidenShuffle = Builder.CreateShuffleVector(SubVec, WidenMask);
2957 SmallVector<int, 8> Mask;
2958 for (unsigned i = 0; i != IdxN; ++i)
2959 Mask.push_back(i);
2960 for (unsigned i = DstNumElts; i != DstNumElts + SubVecNumElts; ++i)
2961 Mask.push_back(i);
2962 for (unsigned i = IdxN + SubVecNumElts; i != DstNumElts; ++i)
2963 Mask.push_back(i);
2965 Value *Shuffle = Builder.CreateShuffleVector(Vec, WidenShuffle, Mask);
2966 return replaceInstUsesWith(CI, Shuffle);
2968 break;
2970 case Intrinsic::vector_extract: {
2971 Value *Vec = II->getArgOperand(0);
2972 Value *Idx = II->getArgOperand(1);
2974 Type *ReturnType = II->getType();
2975 // (extract_vector (insert_vector InsertTuple, InsertValue, InsertIdx),
2976 // ExtractIdx)
2977 unsigned ExtractIdx = cast<ConstantInt>(Idx)->getZExtValue();
2978 Value *InsertTuple, *InsertIdx, *InsertValue;
2979 if (match(Vec, m_Intrinsic<Intrinsic::vector_insert>(m_Value(InsertTuple),
2980 m_Value(InsertValue),
2981 m_Value(InsertIdx))) &&
2982 InsertValue->getType() == ReturnType) {
2983 unsigned Index = cast<ConstantInt>(InsertIdx)->getZExtValue();
2984 // Case where we get the same index right after setting it.
2985 // extract.vector(insert.vector(InsertTuple, InsertValue, Idx), Idx) -->
2986 // InsertValue
2987 if (ExtractIdx == Index)
2988 return replaceInstUsesWith(CI, InsertValue);
2989 // If we are getting a different index than what was set in the
2990 // insert.vector intrinsic. We can just set the input tuple to the one up
2991 // in the chain. extract.vector(insert.vector(InsertTuple, InsertValue,
2992 // InsertIndex), ExtractIndex)
2993 // --> extract.vector(InsertTuple, ExtractIndex)
2994 else
2995 return replaceOperand(CI, 0, InsertTuple);
2998 auto *DstTy = dyn_cast<VectorType>(ReturnType);
2999 auto *VecTy = dyn_cast<VectorType>(Vec->getType());
3001 if (DstTy && VecTy) {
3002 auto DstEltCnt = DstTy->getElementCount();
3003 auto VecEltCnt = VecTy->getElementCount();
3004 unsigned IdxN = cast<ConstantInt>(Idx)->getZExtValue();
3006 // Extracting the entirety of Vec is a nop.
3007 if (DstEltCnt == VecTy->getElementCount()) {
3008 replaceInstUsesWith(CI, Vec);
3009 return eraseInstFromFunction(CI);
3012 // Only canonicalize to shufflevector if the destination vector and
3013 // Vec are fixed vectors.
3014 if (VecEltCnt.isScalable() || DstEltCnt.isScalable())
3015 break;
3017 SmallVector<int, 8> Mask;
3018 for (unsigned i = 0; i != DstEltCnt.getKnownMinValue(); ++i)
3019 Mask.push_back(IdxN + i);
3021 Value *Shuffle = Builder.CreateShuffleVector(Vec, Mask);
3022 return replaceInstUsesWith(CI, Shuffle);
3024 break;
3026 case Intrinsic::experimental_vector_reverse: {
3027 Value *BO0, *BO1, *X, *Y;
3028 Value *Vec = II->getArgOperand(0);
3029 if (match(Vec, m_OneUse(m_BinOp(m_Value(BO0), m_Value(BO1))))) {
3030 auto *OldBinOp = cast<BinaryOperator>(Vec);
3031 if (match(BO0, m_VecReverse(m_Value(X)))) {
3032 // rev(binop rev(X), rev(Y)) --> binop X, Y
3033 if (match(BO1, m_VecReverse(m_Value(Y))))
3034 return replaceInstUsesWith(CI,
3035 BinaryOperator::CreateWithCopiedFlags(
3036 OldBinOp->getOpcode(), X, Y, OldBinOp,
3037 OldBinOp->getName(), II));
3038 // rev(binop rev(X), BO1Splat) --> binop X, BO1Splat
3039 if (isSplatValue(BO1))
3040 return replaceInstUsesWith(CI,
3041 BinaryOperator::CreateWithCopiedFlags(
3042 OldBinOp->getOpcode(), X, BO1,
3043 OldBinOp, OldBinOp->getName(), II));
3045 // rev(binop BO0Splat, rev(Y)) --> binop BO0Splat, Y
3046 if (match(BO1, m_VecReverse(m_Value(Y))) && isSplatValue(BO0))
3047 return replaceInstUsesWith(CI, BinaryOperator::CreateWithCopiedFlags(
3048 OldBinOp->getOpcode(), BO0, Y,
3049 OldBinOp, OldBinOp->getName(), II));
3051 // rev(unop rev(X)) --> unop X
3052 if (match(Vec, m_OneUse(m_UnOp(m_VecReverse(m_Value(X)))))) {
3053 auto *OldUnOp = cast<UnaryOperator>(Vec);
3054 auto *NewUnOp = UnaryOperator::CreateWithCopiedFlags(
3055 OldUnOp->getOpcode(), X, OldUnOp, OldUnOp->getName(), II);
3056 return replaceInstUsesWith(CI, NewUnOp);
3058 break;
3060 case Intrinsic::vector_reduce_or:
3061 case Intrinsic::vector_reduce_and: {
3062 // Canonicalize logical or/and reductions:
3063 // Or reduction for i1 is represented as:
3064 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3065 // %res = cmp ne iReduxWidth %val, 0
3066 // And reduction for i1 is represented as:
3067 // %val = bitcast <ReduxWidth x i1> to iReduxWidth
3068 // %res = cmp eq iReduxWidth %val, 11111
3069 Value *Arg = II->getArgOperand(0);
3070 Value *Vect;
3071 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3072 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3073 if (FTy->getElementType() == Builder.getInt1Ty()) {
3074 Value *Res = Builder.CreateBitCast(
3075 Vect, Builder.getIntNTy(FTy->getNumElements()));
3076 if (IID == Intrinsic::vector_reduce_and) {
3077 Res = Builder.CreateICmpEQ(
3078 Res, ConstantInt::getAllOnesValue(Res->getType()));
3079 } else {
3080 assert(IID == Intrinsic::vector_reduce_or &&
3081 "Expected or reduction.");
3082 Res = Builder.CreateIsNotNull(Res);
3084 if (Arg != Vect)
3085 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3086 II->getType());
3087 return replaceInstUsesWith(CI, Res);
3090 [[fallthrough]];
3092 case Intrinsic::vector_reduce_add: {
3093 if (IID == Intrinsic::vector_reduce_add) {
3094 // Convert vector_reduce_add(ZExt(<n x i1>)) to
3095 // ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3096 // Convert vector_reduce_add(SExt(<n x i1>)) to
3097 // -ZExtOrTrunc(ctpop(bitcast <n x i1> to in)).
3098 // Convert vector_reduce_add(<n x i1>) to
3099 // Trunc(ctpop(bitcast <n x i1> to in)).
3100 Value *Arg = II->getArgOperand(0);
3101 Value *Vect;
3102 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3103 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3104 if (FTy->getElementType() == Builder.getInt1Ty()) {
3105 Value *V = Builder.CreateBitCast(
3106 Vect, Builder.getIntNTy(FTy->getNumElements()));
3107 Value *Res = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, V);
3108 if (Res->getType() != II->getType())
3109 Res = Builder.CreateZExtOrTrunc(Res, II->getType());
3110 if (Arg != Vect &&
3111 cast<Instruction>(Arg)->getOpcode() == Instruction::SExt)
3112 Res = Builder.CreateNeg(Res);
3113 return replaceInstUsesWith(CI, Res);
3117 [[fallthrough]];
3119 case Intrinsic::vector_reduce_xor: {
3120 if (IID == Intrinsic::vector_reduce_xor) {
3121 // Exclusive disjunction reduction over the vector with
3122 // (potentially-extended) i1 element type is actually a
3123 // (potentially-extended) arithmetic `add` reduction over the original
3124 // non-extended value:
3125 // vector_reduce_xor(?ext(<n x i1>))
3126 // -->
3127 // ?ext(vector_reduce_add(<n x i1>))
3128 Value *Arg = II->getArgOperand(0);
3129 Value *Vect;
3130 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3131 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3132 if (FTy->getElementType() == Builder.getInt1Ty()) {
3133 Value *Res = Builder.CreateAddReduce(Vect);
3134 if (Arg != Vect)
3135 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3136 II->getType());
3137 return replaceInstUsesWith(CI, Res);
3141 [[fallthrough]];
3143 case Intrinsic::vector_reduce_mul: {
3144 if (IID == Intrinsic::vector_reduce_mul) {
3145 // Multiplicative reduction over the vector with (potentially-extended)
3146 // i1 element type is actually a (potentially zero-extended)
3147 // logical `and` reduction over the original non-extended value:
3148 // vector_reduce_mul(?ext(<n x i1>))
3149 // -->
3150 // zext(vector_reduce_and(<n x i1>))
3151 Value *Arg = II->getArgOperand(0);
3152 Value *Vect;
3153 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3154 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3155 if (FTy->getElementType() == Builder.getInt1Ty()) {
3156 Value *Res = Builder.CreateAndReduce(Vect);
3157 if (Res->getType() != II->getType())
3158 Res = Builder.CreateZExt(Res, II->getType());
3159 return replaceInstUsesWith(CI, Res);
3163 [[fallthrough]];
3165 case Intrinsic::vector_reduce_umin:
3166 case Intrinsic::vector_reduce_umax: {
3167 if (IID == Intrinsic::vector_reduce_umin ||
3168 IID == Intrinsic::vector_reduce_umax) {
3169 // UMin/UMax reduction over the vector with (potentially-extended)
3170 // i1 element type is actually a (potentially-extended)
3171 // logical `and`/`or` reduction over the original non-extended value:
3172 // vector_reduce_u{min,max}(?ext(<n x i1>))
3173 // -->
3174 // ?ext(vector_reduce_{and,or}(<n x i1>))
3175 Value *Arg = II->getArgOperand(0);
3176 Value *Vect;
3177 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3178 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3179 if (FTy->getElementType() == Builder.getInt1Ty()) {
3180 Value *Res = IID == Intrinsic::vector_reduce_umin
3181 ? Builder.CreateAndReduce(Vect)
3182 : Builder.CreateOrReduce(Vect);
3183 if (Arg != Vect)
3184 Res = Builder.CreateCast(cast<CastInst>(Arg)->getOpcode(), Res,
3185 II->getType());
3186 return replaceInstUsesWith(CI, Res);
3190 [[fallthrough]];
3192 case Intrinsic::vector_reduce_smin:
3193 case Intrinsic::vector_reduce_smax: {
3194 if (IID == Intrinsic::vector_reduce_smin ||
3195 IID == Intrinsic::vector_reduce_smax) {
3196 // SMin/SMax reduction over the vector with (potentially-extended)
3197 // i1 element type is actually a (potentially-extended)
3198 // logical `and`/`or` reduction over the original non-extended value:
3199 // vector_reduce_s{min,max}(<n x i1>)
3200 // -->
3201 // vector_reduce_{or,and}(<n x i1>)
3202 // and
3203 // vector_reduce_s{min,max}(sext(<n x i1>))
3204 // -->
3205 // sext(vector_reduce_{or,and}(<n x i1>))
3206 // and
3207 // vector_reduce_s{min,max}(zext(<n x i1>))
3208 // -->
3209 // zext(vector_reduce_{and,or}(<n x i1>))
3210 Value *Arg = II->getArgOperand(0);
3211 Value *Vect;
3212 if (match(Arg, m_ZExtOrSExtOrSelf(m_Value(Vect)))) {
3213 if (auto *FTy = dyn_cast<FixedVectorType>(Vect->getType()))
3214 if (FTy->getElementType() == Builder.getInt1Ty()) {
3215 Instruction::CastOps ExtOpc = Instruction::CastOps::CastOpsEnd;
3216 if (Arg != Vect)
3217 ExtOpc = cast<CastInst>(Arg)->getOpcode();
3218 Value *Res = ((IID == Intrinsic::vector_reduce_smin) ==
3219 (ExtOpc == Instruction::CastOps::ZExt))
3220 ? Builder.CreateAndReduce(Vect)
3221 : Builder.CreateOrReduce(Vect);
3222 if (Arg != Vect)
3223 Res = Builder.CreateCast(ExtOpc, Res, II->getType());
3224 return replaceInstUsesWith(CI, Res);
3228 [[fallthrough]];
3230 case Intrinsic::vector_reduce_fmax:
3231 case Intrinsic::vector_reduce_fmin:
3232 case Intrinsic::vector_reduce_fadd:
3233 case Intrinsic::vector_reduce_fmul: {
3234 bool CanBeReassociated = (IID != Intrinsic::vector_reduce_fadd &&
3235 IID != Intrinsic::vector_reduce_fmul) ||
3236 II->hasAllowReassoc();
3237 const unsigned ArgIdx = (IID == Intrinsic::vector_reduce_fadd ||
3238 IID == Intrinsic::vector_reduce_fmul)
3240 : 0;
3241 Value *Arg = II->getArgOperand(ArgIdx);
3242 Value *V;
3243 ArrayRef<int> Mask;
3244 if (!isa<FixedVectorType>(Arg->getType()) || !CanBeReassociated ||
3245 !match(Arg, m_Shuffle(m_Value(V), m_Undef(), m_Mask(Mask))) ||
3246 !cast<ShuffleVectorInst>(Arg)->isSingleSource())
3247 break;
3248 int Sz = Mask.size();
3249 SmallBitVector UsedIndices(Sz);
3250 for (int Idx : Mask) {
3251 if (Idx == PoisonMaskElem || UsedIndices.test(Idx))
3252 break;
3253 UsedIndices.set(Idx);
3255 // Can remove shuffle iff just shuffled elements, no repeats, undefs, or
3256 // other changes.
3257 if (UsedIndices.all()) {
3258 replaceUse(II->getOperandUse(ArgIdx), V);
3259 return nullptr;
3261 break;
3263 case Intrinsic::is_fpclass: {
3264 if (Instruction *I = foldIntrinsicIsFPClass(*II))
3265 return I;
3266 break;
3268 default: {
3269 // Handle target specific intrinsics
3270 std::optional<Instruction *> V = targetInstCombineIntrinsic(*II);
3271 if (V)
3272 return *V;
3273 break;
3277 // Try to fold intrinsic into select operands. This is legal if:
3278 // * The intrinsic is speculatable.
3279 // * The select condition is not a vector, or the intrinsic does not
3280 // perform cross-lane operations.
3281 switch (IID) {
3282 case Intrinsic::ctlz:
3283 case Intrinsic::cttz:
3284 case Intrinsic::ctpop:
3285 case Intrinsic::umin:
3286 case Intrinsic::umax:
3287 case Intrinsic::smin:
3288 case Intrinsic::smax:
3289 case Intrinsic::usub_sat:
3290 case Intrinsic::uadd_sat:
3291 case Intrinsic::ssub_sat:
3292 case Intrinsic::sadd_sat:
3293 for (Value *Op : II->args())
3294 if (auto *Sel = dyn_cast<SelectInst>(Op))
3295 if (Instruction *R = FoldOpIntoSelect(*II, Sel))
3296 return R;
3297 [[fallthrough]];
3298 default:
3299 break;
3302 if (Instruction *Shuf = foldShuffledIntrinsicOperands(II, Builder))
3303 return Shuf;
3305 // Some intrinsics (like experimental_gc_statepoint) can be used in invoke
3306 // context, so it is handled in visitCallBase and we should trigger it.
3307 return visitCallBase(*II);
3310 // Fence instruction simplification
3311 Instruction *InstCombinerImpl::visitFenceInst(FenceInst &FI) {
3312 auto *NFI = dyn_cast<FenceInst>(FI.getNextNonDebugInstruction());
3313 // This check is solely here to handle arbitrary target-dependent syncscopes.
3314 // TODO: Can remove if does not matter in practice.
3315 if (NFI && FI.isIdenticalTo(NFI))
3316 return eraseInstFromFunction(FI);
3318 // Returns true if FI1 is identical or stronger fence than FI2.
3319 auto isIdenticalOrStrongerFence = [](FenceInst *FI1, FenceInst *FI2) {
3320 auto FI1SyncScope = FI1->getSyncScopeID();
3321 // Consider same scope, where scope is global or single-thread.
3322 if (FI1SyncScope != FI2->getSyncScopeID() ||
3323 (FI1SyncScope != SyncScope::System &&
3324 FI1SyncScope != SyncScope::SingleThread))
3325 return false;
3327 return isAtLeastOrStrongerThan(FI1->getOrdering(), FI2->getOrdering());
3329 if (NFI && isIdenticalOrStrongerFence(NFI, &FI))
3330 return eraseInstFromFunction(FI);
3332 if (auto *PFI = dyn_cast_or_null<FenceInst>(FI.getPrevNonDebugInstruction()))
3333 if (isIdenticalOrStrongerFence(PFI, &FI))
3334 return eraseInstFromFunction(FI);
3335 return nullptr;
3338 // InvokeInst simplification
3339 Instruction *InstCombinerImpl::visitInvokeInst(InvokeInst &II) {
3340 return visitCallBase(II);
3343 // CallBrInst simplification
3344 Instruction *InstCombinerImpl::visitCallBrInst(CallBrInst &CBI) {
3345 return visitCallBase(CBI);
3348 Instruction *InstCombinerImpl::tryOptimizeCall(CallInst *CI) {
3349 if (!CI->getCalledFunction()) return nullptr;
3351 // Skip optimizing notail and musttail calls so
3352 // LibCallSimplifier::optimizeCall doesn't have to preserve those invariants.
3353 // LibCallSimplifier::optimizeCall should try to preseve tail calls though.
3354 if (CI->isMustTailCall() || CI->isNoTailCall())
3355 return nullptr;
3357 auto InstCombineRAUW = [this](Instruction *From, Value *With) {
3358 replaceInstUsesWith(*From, With);
3360 auto InstCombineErase = [this](Instruction *I) {
3361 eraseInstFromFunction(*I);
3363 LibCallSimplifier Simplifier(DL, &TLI, &AC, ORE, BFI, PSI, InstCombineRAUW,
3364 InstCombineErase);
3365 if (Value *With = Simplifier.optimizeCall(CI, Builder)) {
3366 ++NumSimplified;
3367 return CI->use_empty() ? CI : replaceInstUsesWith(*CI, With);
3370 return nullptr;
3373 static IntrinsicInst *findInitTrampolineFromAlloca(Value *TrampMem) {
3374 // Strip off at most one level of pointer casts, looking for an alloca. This
3375 // is good enough in practice and simpler than handling any number of casts.
3376 Value *Underlying = TrampMem->stripPointerCasts();
3377 if (Underlying != TrampMem &&
3378 (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
3379 return nullptr;
3380 if (!isa<AllocaInst>(Underlying))
3381 return nullptr;
3383 IntrinsicInst *InitTrampoline = nullptr;
3384 for (User *U : TrampMem->users()) {
3385 IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
3386 if (!II)
3387 return nullptr;
3388 if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
3389 if (InitTrampoline)
3390 // More than one init_trampoline writes to this value. Give up.
3391 return nullptr;
3392 InitTrampoline = II;
3393 continue;
3395 if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
3396 // Allow any number of calls to adjust.trampoline.
3397 continue;
3398 return nullptr;
3401 // No call to init.trampoline found.
3402 if (!InitTrampoline)
3403 return nullptr;
3405 // Check that the alloca is being used in the expected way.
3406 if (InitTrampoline->getOperand(0) != TrampMem)
3407 return nullptr;
3409 return InitTrampoline;
3412 static IntrinsicInst *findInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
3413 Value *TrampMem) {
3414 // Visit all the previous instructions in the basic block, and try to find a
3415 // init.trampoline which has a direct path to the adjust.trampoline.
3416 for (BasicBlock::iterator I = AdjustTramp->getIterator(),
3417 E = AdjustTramp->getParent()->begin();
3418 I != E;) {
3419 Instruction *Inst = &*--I;
3420 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
3421 if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
3422 II->getOperand(0) == TrampMem)
3423 return II;
3424 if (Inst->mayWriteToMemory())
3425 return nullptr;
3427 return nullptr;
3430 // Given a call to llvm.adjust.trampoline, find and return the corresponding
3431 // call to llvm.init.trampoline if the call to the trampoline can be optimized
3432 // to a direct call to a function. Otherwise return NULL.
3433 static IntrinsicInst *findInitTrampoline(Value *Callee) {
3434 Callee = Callee->stripPointerCasts();
3435 IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
3436 if (!AdjustTramp ||
3437 AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
3438 return nullptr;
3440 Value *TrampMem = AdjustTramp->getOperand(0);
3442 if (IntrinsicInst *IT = findInitTrampolineFromAlloca(TrampMem))
3443 return IT;
3444 if (IntrinsicInst *IT = findInitTrampolineFromBB(AdjustTramp, TrampMem))
3445 return IT;
3446 return nullptr;
3449 bool InstCombinerImpl::annotateAnyAllocSite(CallBase &Call,
3450 const TargetLibraryInfo *TLI) {
3451 // Note: We only handle cases which can't be driven from generic attributes
3452 // here. So, for example, nonnull and noalias (which are common properties
3453 // of some allocation functions) are expected to be handled via annotation
3454 // of the respective allocator declaration with generic attributes.
3455 bool Changed = false;
3457 if (!Call.getType()->isPointerTy())
3458 return Changed;
3460 std::optional<APInt> Size = getAllocSize(&Call, TLI);
3461 if (Size && *Size != 0) {
3462 // TODO: We really should just emit deref_or_null here and then
3463 // let the generic inference code combine that with nonnull.
3464 if (Call.hasRetAttr(Attribute::NonNull)) {
3465 Changed = !Call.hasRetAttr(Attribute::Dereferenceable);
3466 Call.addRetAttr(Attribute::getWithDereferenceableBytes(
3467 Call.getContext(), Size->getLimitedValue()));
3468 } else {
3469 Changed = !Call.hasRetAttr(Attribute::DereferenceableOrNull);
3470 Call.addRetAttr(Attribute::getWithDereferenceableOrNullBytes(
3471 Call.getContext(), Size->getLimitedValue()));
3475 // Add alignment attribute if alignment is a power of two constant.
3476 Value *Alignment = getAllocAlignment(&Call, TLI);
3477 if (!Alignment)
3478 return Changed;
3480 ConstantInt *AlignOpC = dyn_cast<ConstantInt>(Alignment);
3481 if (AlignOpC && AlignOpC->getValue().ult(llvm::Value::MaximumAlignment)) {
3482 uint64_t AlignmentVal = AlignOpC->getZExtValue();
3483 if (llvm::isPowerOf2_64(AlignmentVal)) {
3484 Align ExistingAlign = Call.getRetAlign().valueOrOne();
3485 Align NewAlign = Align(AlignmentVal);
3486 if (NewAlign > ExistingAlign) {
3487 Call.addRetAttr(
3488 Attribute::getWithAlignment(Call.getContext(), NewAlign));
3489 Changed = true;
3493 return Changed;
3496 /// Improvements for call, callbr and invoke instructions.
3497 Instruction *InstCombinerImpl::visitCallBase(CallBase &Call) {
3498 bool Changed = annotateAnyAllocSite(Call, &TLI);
3500 // Mark any parameters that are known to be non-null with the nonnull
3501 // attribute. This is helpful for inlining calls to functions with null
3502 // checks on their arguments.
3503 SmallVector<unsigned, 4> ArgNos;
3504 unsigned ArgNo = 0;
3506 for (Value *V : Call.args()) {
3507 if (V->getType()->isPointerTy() &&
3508 !Call.paramHasAttr(ArgNo, Attribute::NonNull) &&
3509 isKnownNonZero(V, DL, 0, &AC, &Call, &DT))
3510 ArgNos.push_back(ArgNo);
3511 ArgNo++;
3514 assert(ArgNo == Call.arg_size() && "Call arguments not processed correctly.");
3516 if (!ArgNos.empty()) {
3517 AttributeList AS = Call.getAttributes();
3518 LLVMContext &Ctx = Call.getContext();
3519 AS = AS.addParamAttribute(Ctx, ArgNos,
3520 Attribute::get(Ctx, Attribute::NonNull));
3521 Call.setAttributes(AS);
3522 Changed = true;
3525 // If the callee is a pointer to a function, attempt to move any casts to the
3526 // arguments of the call/callbr/invoke.
3527 Value *Callee = Call.getCalledOperand();
3528 Function *CalleeF = dyn_cast<Function>(Callee);
3529 if ((!CalleeF || CalleeF->getFunctionType() != Call.getFunctionType()) &&
3530 transformConstExprCastCall(Call))
3531 return nullptr;
3533 if (CalleeF) {
3534 // Remove the convergent attr on calls when the callee is not convergent.
3535 if (Call.isConvergent() && !CalleeF->isConvergent() &&
3536 !CalleeF->isIntrinsic()) {
3537 LLVM_DEBUG(dbgs() << "Removing convergent attr from instr " << Call
3538 << "\n");
3539 Call.setNotConvergent();
3540 return &Call;
3543 // If the call and callee calling conventions don't match, and neither one
3544 // of the calling conventions is compatible with C calling convention
3545 // this call must be unreachable, as the call is undefined.
3546 if ((CalleeF->getCallingConv() != Call.getCallingConv() &&
3547 !(CalleeF->getCallingConv() == llvm::CallingConv::C &&
3548 TargetLibraryInfoImpl::isCallingConvCCompatible(&Call)) &&
3549 !(Call.getCallingConv() == llvm::CallingConv::C &&
3550 TargetLibraryInfoImpl::isCallingConvCCompatible(CalleeF))) &&
3551 // Only do this for calls to a function with a body. A prototype may
3552 // not actually end up matching the implementation's calling conv for a
3553 // variety of reasons (e.g. it may be written in assembly).
3554 !CalleeF->isDeclaration()) {
3555 Instruction *OldCall = &Call;
3556 CreateNonTerminatorUnreachable(OldCall);
3557 // If OldCall does not return void then replaceInstUsesWith poison.
3558 // This allows ValueHandlers and custom metadata to adjust itself.
3559 if (!OldCall->getType()->isVoidTy())
3560 replaceInstUsesWith(*OldCall, PoisonValue::get(OldCall->getType()));
3561 if (isa<CallInst>(OldCall))
3562 return eraseInstFromFunction(*OldCall);
3564 // We cannot remove an invoke or a callbr, because it would change thexi
3565 // CFG, just change the callee to a null pointer.
3566 cast<CallBase>(OldCall)->setCalledFunction(
3567 CalleeF->getFunctionType(),
3568 Constant::getNullValue(CalleeF->getType()));
3569 return nullptr;
3573 // Calling a null function pointer is undefined if a null address isn't
3574 // dereferenceable.
3575 if ((isa<ConstantPointerNull>(Callee) &&
3576 !NullPointerIsDefined(Call.getFunction())) ||
3577 isa<UndefValue>(Callee)) {
3578 // If Call does not return void then replaceInstUsesWith poison.
3579 // This allows ValueHandlers and custom metadata to adjust itself.
3580 if (!Call.getType()->isVoidTy())
3581 replaceInstUsesWith(Call, PoisonValue::get(Call.getType()));
3583 if (Call.isTerminator()) {
3584 // Can't remove an invoke or callbr because we cannot change the CFG.
3585 return nullptr;
3588 // This instruction is not reachable, just remove it.
3589 CreateNonTerminatorUnreachable(&Call);
3590 return eraseInstFromFunction(Call);
3593 if (IntrinsicInst *II = findInitTrampoline(Callee))
3594 return transformCallThroughTrampoline(Call, *II);
3596 if (isa<InlineAsm>(Callee) && !Call.doesNotThrow()) {
3597 InlineAsm *IA = cast<InlineAsm>(Callee);
3598 if (!IA->canThrow()) {
3599 // Normal inline asm calls cannot throw - mark them
3600 // 'nounwind'.
3601 Call.setDoesNotThrow();
3602 Changed = true;
3606 // Try to optimize the call if possible, we require DataLayout for most of
3607 // this. None of these calls are seen as possibly dead so go ahead and
3608 // delete the instruction now.
3609 if (CallInst *CI = dyn_cast<CallInst>(&Call)) {
3610 Instruction *I = tryOptimizeCall(CI);
3611 // If we changed something return the result, etc. Otherwise let
3612 // the fallthrough check.
3613 if (I) return eraseInstFromFunction(*I);
3616 if (!Call.use_empty() && !Call.isMustTailCall())
3617 if (Value *ReturnedArg = Call.getReturnedArgOperand()) {
3618 Type *CallTy = Call.getType();
3619 Type *RetArgTy = ReturnedArg->getType();
3620 if (RetArgTy->canLosslesslyBitCastTo(CallTy))
3621 return replaceInstUsesWith(
3622 Call, Builder.CreateBitOrPointerCast(ReturnedArg, CallTy));
3625 // Drop unnecessary kcfi operand bundles from calls that were converted
3626 // into direct calls.
3627 auto Bundle = Call.getOperandBundle(LLVMContext::OB_kcfi);
3628 if (Bundle && !Call.isIndirectCall()) {
3629 DEBUG_WITH_TYPE(DEBUG_TYPE "-kcfi", {
3630 if (CalleeF) {
3631 ConstantInt *FunctionType = nullptr;
3632 ConstantInt *ExpectedType = cast<ConstantInt>(Bundle->Inputs[0]);
3634 if (MDNode *MD = CalleeF->getMetadata(LLVMContext::MD_kcfi_type))
3635 FunctionType = mdconst::extract<ConstantInt>(MD->getOperand(0));
3637 if (FunctionType &&
3638 FunctionType->getZExtValue() != ExpectedType->getZExtValue())
3639 dbgs() << Call.getModule()->getName()
3640 << ": warning: kcfi: " << Call.getCaller()->getName()
3641 << ": call to " << CalleeF->getName()
3642 << " using a mismatching function pointer type\n";
3646 return CallBase::removeOperandBundle(&Call, LLVMContext::OB_kcfi);
3649 if (isRemovableAlloc(&Call, &TLI))
3650 return visitAllocSite(Call);
3652 // Handle intrinsics which can be used in both call and invoke context.
3653 switch (Call.getIntrinsicID()) {
3654 case Intrinsic::experimental_gc_statepoint: {
3655 GCStatepointInst &GCSP = *cast<GCStatepointInst>(&Call);
3656 SmallPtrSet<Value *, 32> LiveGcValues;
3657 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3658 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3660 // Remove the relocation if unused.
3661 if (GCR.use_empty()) {
3662 eraseInstFromFunction(GCR);
3663 continue;
3666 Value *DerivedPtr = GCR.getDerivedPtr();
3667 Value *BasePtr = GCR.getBasePtr();
3669 // Undef is undef, even after relocation.
3670 if (isa<UndefValue>(DerivedPtr) || isa<UndefValue>(BasePtr)) {
3671 replaceInstUsesWith(GCR, UndefValue::get(GCR.getType()));
3672 eraseInstFromFunction(GCR);
3673 continue;
3676 if (auto *PT = dyn_cast<PointerType>(GCR.getType())) {
3677 // The relocation of null will be null for most any collector.
3678 // TODO: provide a hook for this in GCStrategy. There might be some
3679 // weird collector this property does not hold for.
3680 if (isa<ConstantPointerNull>(DerivedPtr)) {
3681 // Use null-pointer of gc_relocate's type to replace it.
3682 replaceInstUsesWith(GCR, ConstantPointerNull::get(PT));
3683 eraseInstFromFunction(GCR);
3684 continue;
3687 // isKnownNonNull -> nonnull attribute
3688 if (!GCR.hasRetAttr(Attribute::NonNull) &&
3689 isKnownNonZero(DerivedPtr, DL, 0, &AC, &Call, &DT)) {
3690 GCR.addRetAttr(Attribute::NonNull);
3691 // We discovered new fact, re-check users.
3692 Worklist.pushUsersToWorkList(GCR);
3696 // If we have two copies of the same pointer in the statepoint argument
3697 // list, canonicalize to one. This may let us common gc.relocates.
3698 if (GCR.getBasePtr() == GCR.getDerivedPtr() &&
3699 GCR.getBasePtrIndex() != GCR.getDerivedPtrIndex()) {
3700 auto *OpIntTy = GCR.getOperand(2)->getType();
3701 GCR.setOperand(2, ConstantInt::get(OpIntTy, GCR.getBasePtrIndex()));
3704 // TODO: bitcast(relocate(p)) -> relocate(bitcast(p))
3705 // Canonicalize on the type from the uses to the defs
3707 // TODO: relocate((gep p, C, C2, ...)) -> gep(relocate(p), C, C2, ...)
3708 LiveGcValues.insert(BasePtr);
3709 LiveGcValues.insert(DerivedPtr);
3711 std::optional<OperandBundleUse> Bundle =
3712 GCSP.getOperandBundle(LLVMContext::OB_gc_live);
3713 unsigned NumOfGCLives = LiveGcValues.size();
3714 if (!Bundle || NumOfGCLives == Bundle->Inputs.size())
3715 break;
3716 // We can reduce the size of gc live bundle.
3717 DenseMap<Value *, unsigned> Val2Idx;
3718 std::vector<Value *> NewLiveGc;
3719 for (Value *V : Bundle->Inputs) {
3720 if (Val2Idx.count(V))
3721 continue;
3722 if (LiveGcValues.count(V)) {
3723 Val2Idx[V] = NewLiveGc.size();
3724 NewLiveGc.push_back(V);
3725 } else
3726 Val2Idx[V] = NumOfGCLives;
3728 // Update all gc.relocates
3729 for (const GCRelocateInst *Reloc : GCSP.getGCRelocates()) {
3730 GCRelocateInst &GCR = *const_cast<GCRelocateInst *>(Reloc);
3731 Value *BasePtr = GCR.getBasePtr();
3732 assert(Val2Idx.count(BasePtr) && Val2Idx[BasePtr] != NumOfGCLives &&
3733 "Missed live gc for base pointer");
3734 auto *OpIntTy1 = GCR.getOperand(1)->getType();
3735 GCR.setOperand(1, ConstantInt::get(OpIntTy1, Val2Idx[BasePtr]));
3736 Value *DerivedPtr = GCR.getDerivedPtr();
3737 assert(Val2Idx.count(DerivedPtr) && Val2Idx[DerivedPtr] != NumOfGCLives &&
3738 "Missed live gc for derived pointer");
3739 auto *OpIntTy2 = GCR.getOperand(2)->getType();
3740 GCR.setOperand(2, ConstantInt::get(OpIntTy2, Val2Idx[DerivedPtr]));
3742 // Create new statepoint instruction.
3743 OperandBundleDef NewBundle("gc-live", NewLiveGc);
3744 return CallBase::Create(&Call, NewBundle);
3746 default: { break; }
3749 return Changed ? &Call : nullptr;
3752 /// If the callee is a constexpr cast of a function, attempt to move the cast to
3753 /// the arguments of the call/invoke.
3754 /// CallBrInst is not supported.
3755 bool InstCombinerImpl::transformConstExprCastCall(CallBase &Call) {
3756 auto *Callee =
3757 dyn_cast<Function>(Call.getCalledOperand()->stripPointerCasts());
3758 if (!Callee)
3759 return false;
3761 assert(!isa<CallBrInst>(Call) &&
3762 "CallBr's don't have a single point after a def to insert at");
3764 // If this is a call to a thunk function, don't remove the cast. Thunks are
3765 // used to transparently forward all incoming parameters and outgoing return
3766 // values, so it's important to leave the cast in place.
3767 if (Callee->hasFnAttribute("thunk"))
3768 return false;
3770 // If this is a musttail call, the callee's prototype must match the caller's
3771 // prototype with the exception of pointee types. The code below doesn't
3772 // implement that, so we can't do this transform.
3773 // TODO: Do the transform if it only requires adding pointer casts.
3774 if (Call.isMustTailCall())
3775 return false;
3777 Instruction *Caller = &Call;
3778 const AttributeList &CallerPAL = Call.getAttributes();
3780 // Okay, this is a cast from a function to a different type. Unless doing so
3781 // would cause a type conversion of one of our arguments, change this call to
3782 // be a direct call with arguments casted to the appropriate types.
3783 FunctionType *FT = Callee->getFunctionType();
3784 Type *OldRetTy = Caller->getType();
3785 Type *NewRetTy = FT->getReturnType();
3787 // Check to see if we are changing the return type...
3788 if (OldRetTy != NewRetTy) {
3790 if (NewRetTy->isStructTy())
3791 return false; // TODO: Handle multiple return values.
3793 if (!CastInst::isBitOrNoopPointerCastable(NewRetTy, OldRetTy, DL)) {
3794 if (Callee->isDeclaration())
3795 return false; // Cannot transform this return value.
3797 if (!Caller->use_empty() &&
3798 // void -> non-void is handled specially
3799 !NewRetTy->isVoidTy())
3800 return false; // Cannot transform this return value.
3803 if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
3804 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3805 if (RAttrs.overlaps(AttributeFuncs::typeIncompatible(NewRetTy)))
3806 return false; // Attribute not compatible with transformed value.
3809 // If the callbase is an invoke instruction, and the return value is
3810 // used by a PHI node in a successor, we cannot change the return type of
3811 // the call because there is no place to put the cast instruction (without
3812 // breaking the critical edge). Bail out in this case.
3813 if (!Caller->use_empty()) {
3814 BasicBlock *PhisNotSupportedBlock = nullptr;
3815 if (auto *II = dyn_cast<InvokeInst>(Caller))
3816 PhisNotSupportedBlock = II->getNormalDest();
3817 if (PhisNotSupportedBlock)
3818 for (User *U : Caller->users())
3819 if (PHINode *PN = dyn_cast<PHINode>(U))
3820 if (PN->getParent() == PhisNotSupportedBlock)
3821 return false;
3825 unsigned NumActualArgs = Call.arg_size();
3826 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
3828 // Prevent us turning:
3829 // declare void @takes_i32_inalloca(i32* inalloca)
3830 // call void bitcast (void (i32*)* @takes_i32_inalloca to void (i32)*)(i32 0)
3832 // into:
3833 // call void @takes_i32_inalloca(i32* null)
3835 // Similarly, avoid folding away bitcasts of byval calls.
3836 if (Callee->getAttributes().hasAttrSomewhere(Attribute::InAlloca) ||
3837 Callee->getAttributes().hasAttrSomewhere(Attribute::Preallocated))
3838 return false;
3840 auto AI = Call.arg_begin();
3841 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
3842 Type *ParamTy = FT->getParamType(i);
3843 Type *ActTy = (*AI)->getType();
3845 if (!CastInst::isBitOrNoopPointerCastable(ActTy, ParamTy, DL))
3846 return false; // Cannot transform this parameter value.
3848 // Check if there are any incompatible attributes we cannot drop safely.
3849 if (AttrBuilder(FT->getContext(), CallerPAL.getParamAttrs(i))
3850 .overlaps(AttributeFuncs::typeIncompatible(
3851 ParamTy, AttributeFuncs::ASK_UNSAFE_TO_DROP)))
3852 return false; // Attribute not compatible with transformed value.
3854 if (Call.isInAllocaArgument(i) ||
3855 CallerPAL.hasParamAttr(i, Attribute::Preallocated))
3856 return false; // Cannot transform to and from inalloca/preallocated.
3858 if (CallerPAL.hasParamAttr(i, Attribute::SwiftError))
3859 return false;
3861 if (CallerPAL.hasParamAttr(i, Attribute::ByVal) !=
3862 Callee->getAttributes().hasParamAttr(i, Attribute::ByVal))
3863 return false; // Cannot transform to or from byval.
3866 if (Callee->isDeclaration()) {
3867 // Do not delete arguments unless we have a function body.
3868 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
3869 return false;
3871 // If the callee is just a declaration, don't change the varargsness of the
3872 // call. We don't want to introduce a varargs call where one doesn't
3873 // already exist.
3874 if (FT->isVarArg() != Call.getFunctionType()->isVarArg())
3875 return false;
3877 // If both the callee and the cast type are varargs, we still have to make
3878 // sure the number of fixed parameters are the same or we have the same
3879 // ABI issues as if we introduce a varargs call.
3880 if (FT->isVarArg() && Call.getFunctionType()->isVarArg() &&
3881 FT->getNumParams() != Call.getFunctionType()->getNumParams())
3882 return false;
3885 if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
3886 !CallerPAL.isEmpty()) {
3887 // In this case we have more arguments than the new function type, but we
3888 // won't be dropping them. Check that these extra arguments have attributes
3889 // that are compatible with being a vararg call argument.
3890 unsigned SRetIdx;
3891 if (CallerPAL.hasAttrSomewhere(Attribute::StructRet, &SRetIdx) &&
3892 SRetIdx - AttributeList::FirstArgIndex >= FT->getNumParams())
3893 return false;
3896 // Okay, we decided that this is a safe thing to do: go ahead and start
3897 // inserting cast instructions as necessary.
3898 SmallVector<Value *, 8> Args;
3899 SmallVector<AttributeSet, 8> ArgAttrs;
3900 Args.reserve(NumActualArgs);
3901 ArgAttrs.reserve(NumActualArgs);
3903 // Get any return attributes.
3904 AttrBuilder RAttrs(FT->getContext(), CallerPAL.getRetAttrs());
3906 // If the return value is not being used, the type may not be compatible
3907 // with the existing attributes. Wipe out any problematic attributes.
3908 RAttrs.remove(AttributeFuncs::typeIncompatible(NewRetTy));
3910 LLVMContext &Ctx = Call.getContext();
3911 AI = Call.arg_begin();
3912 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
3913 Type *ParamTy = FT->getParamType(i);
3915 Value *NewArg = *AI;
3916 if ((*AI)->getType() != ParamTy)
3917 NewArg = Builder.CreateBitOrPointerCast(*AI, ParamTy);
3918 Args.push_back(NewArg);
3920 // Add any parameter attributes except the ones incompatible with the new
3921 // type. Note that we made sure all incompatible ones are safe to drop.
3922 AttributeMask IncompatibleAttrs = AttributeFuncs::typeIncompatible(
3923 ParamTy, AttributeFuncs::ASK_SAFE_TO_DROP);
3924 ArgAttrs.push_back(
3925 CallerPAL.getParamAttrs(i).removeAttributes(Ctx, IncompatibleAttrs));
3928 // If the function takes more arguments than the call was taking, add them
3929 // now.
3930 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i) {
3931 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
3932 ArgAttrs.push_back(AttributeSet());
3935 // If we are removing arguments to the function, emit an obnoxious warning.
3936 if (FT->getNumParams() < NumActualArgs) {
3937 // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
3938 if (FT->isVarArg()) {
3939 // Add all of the arguments in their promoted form to the arg list.
3940 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
3941 Type *PTy = getPromotedType((*AI)->getType());
3942 Value *NewArg = *AI;
3943 if (PTy != (*AI)->getType()) {
3944 // Must promote to pass through va_arg area!
3945 Instruction::CastOps opcode =
3946 CastInst::getCastOpcode(*AI, false, PTy, false);
3947 NewArg = Builder.CreateCast(opcode, *AI, PTy);
3949 Args.push_back(NewArg);
3951 // Add any parameter attributes.
3952 ArgAttrs.push_back(CallerPAL.getParamAttrs(i));
3957 AttributeSet FnAttrs = CallerPAL.getFnAttrs();
3959 if (NewRetTy->isVoidTy())
3960 Caller->setName(""); // Void type should not have a name.
3962 assert((ArgAttrs.size() == FT->getNumParams() || FT->isVarArg()) &&
3963 "missing argument attributes");
3964 AttributeList NewCallerPAL = AttributeList::get(
3965 Ctx, FnAttrs, AttributeSet::get(Ctx, RAttrs), ArgAttrs);
3967 SmallVector<OperandBundleDef, 1> OpBundles;
3968 Call.getOperandBundlesAsDefs(OpBundles);
3970 CallBase *NewCall;
3971 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
3972 NewCall = Builder.CreateInvoke(Callee, II->getNormalDest(),
3973 II->getUnwindDest(), Args, OpBundles);
3974 } else {
3975 NewCall = Builder.CreateCall(Callee, Args, OpBundles);
3976 cast<CallInst>(NewCall)->setTailCallKind(
3977 cast<CallInst>(Caller)->getTailCallKind());
3979 NewCall->takeName(Caller);
3980 NewCall->setCallingConv(Call.getCallingConv());
3981 NewCall->setAttributes(NewCallerPAL);
3983 // Preserve prof metadata if any.
3984 NewCall->copyMetadata(*Caller, {LLVMContext::MD_prof});
3986 // Insert a cast of the return type as necessary.
3987 Instruction *NC = NewCall;
3988 Value *NV = NC;
3989 if (OldRetTy != NV->getType() && !Caller->use_empty()) {
3990 if (!NV->getType()->isVoidTy()) {
3991 NV = NC = CastInst::CreateBitOrPointerCast(NC, OldRetTy);
3992 NC->setDebugLoc(Caller->getDebugLoc());
3994 Instruction *InsertPt = NewCall->getInsertionPointAfterDef();
3995 assert(InsertPt && "No place to insert cast");
3996 InsertNewInstBefore(NC, InsertPt->getIterator());
3997 Worklist.pushUsersToWorkList(*Caller);
3998 } else {
3999 NV = PoisonValue::get(Caller->getType());
4003 if (!Caller->use_empty())
4004 replaceInstUsesWith(*Caller, NV);
4005 else if (Caller->hasValueHandle()) {
4006 if (OldRetTy == NV->getType())
4007 ValueHandleBase::ValueIsRAUWd(Caller, NV);
4008 else
4009 // We cannot call ValueIsRAUWd with a different type, and the
4010 // actual tracked value will disappear.
4011 ValueHandleBase::ValueIsDeleted(Caller);
4014 eraseInstFromFunction(*Caller);
4015 return true;
4018 /// Turn a call to a function created by init_trampoline / adjust_trampoline
4019 /// intrinsic pair into a direct call to the underlying function.
4020 Instruction *
4021 InstCombinerImpl::transformCallThroughTrampoline(CallBase &Call,
4022 IntrinsicInst &Tramp) {
4023 FunctionType *FTy = Call.getFunctionType();
4024 AttributeList Attrs = Call.getAttributes();
4026 // If the call already has the 'nest' attribute somewhere then give up -
4027 // otherwise 'nest' would occur twice after splicing in the chain.
4028 if (Attrs.hasAttrSomewhere(Attribute::Nest))
4029 return nullptr;
4031 Function *NestF = cast<Function>(Tramp.getArgOperand(1)->stripPointerCasts());
4032 FunctionType *NestFTy = NestF->getFunctionType();
4034 AttributeList NestAttrs = NestF->getAttributes();
4035 if (!NestAttrs.isEmpty()) {
4036 unsigned NestArgNo = 0;
4037 Type *NestTy = nullptr;
4038 AttributeSet NestAttr;
4040 // Look for a parameter marked with the 'nest' attribute.
4041 for (FunctionType::param_iterator I = NestFTy->param_begin(),
4042 E = NestFTy->param_end();
4043 I != E; ++NestArgNo, ++I) {
4044 AttributeSet AS = NestAttrs.getParamAttrs(NestArgNo);
4045 if (AS.hasAttribute(Attribute::Nest)) {
4046 // Record the parameter type and any other attributes.
4047 NestTy = *I;
4048 NestAttr = AS;
4049 break;
4053 if (NestTy) {
4054 std::vector<Value*> NewArgs;
4055 std::vector<AttributeSet> NewArgAttrs;
4056 NewArgs.reserve(Call.arg_size() + 1);
4057 NewArgAttrs.reserve(Call.arg_size());
4059 // Insert the nest argument into the call argument list, which may
4060 // mean appending it. Likewise for attributes.
4063 unsigned ArgNo = 0;
4064 auto I = Call.arg_begin(), E = Call.arg_end();
4065 do {
4066 if (ArgNo == NestArgNo) {
4067 // Add the chain argument and attributes.
4068 Value *NestVal = Tramp.getArgOperand(2);
4069 if (NestVal->getType() != NestTy)
4070 NestVal = Builder.CreateBitCast(NestVal, NestTy, "nest");
4071 NewArgs.push_back(NestVal);
4072 NewArgAttrs.push_back(NestAttr);
4075 if (I == E)
4076 break;
4078 // Add the original argument and attributes.
4079 NewArgs.push_back(*I);
4080 NewArgAttrs.push_back(Attrs.getParamAttrs(ArgNo));
4082 ++ArgNo;
4083 ++I;
4084 } while (true);
4087 // The trampoline may have been bitcast to a bogus type (FTy).
4088 // Handle this by synthesizing a new function type, equal to FTy
4089 // with the chain parameter inserted.
4091 std::vector<Type*> NewTypes;
4092 NewTypes.reserve(FTy->getNumParams()+1);
4094 // Insert the chain's type into the list of parameter types, which may
4095 // mean appending it.
4097 unsigned ArgNo = 0;
4098 FunctionType::param_iterator I = FTy->param_begin(),
4099 E = FTy->param_end();
4101 do {
4102 if (ArgNo == NestArgNo)
4103 // Add the chain's type.
4104 NewTypes.push_back(NestTy);
4106 if (I == E)
4107 break;
4109 // Add the original type.
4110 NewTypes.push_back(*I);
4112 ++ArgNo;
4113 ++I;
4114 } while (true);
4117 // Replace the trampoline call with a direct call. Let the generic
4118 // code sort out any function type mismatches.
4119 FunctionType *NewFTy =
4120 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
4121 AttributeList NewPAL =
4122 AttributeList::get(FTy->getContext(), Attrs.getFnAttrs(),
4123 Attrs.getRetAttrs(), NewArgAttrs);
4125 SmallVector<OperandBundleDef, 1> OpBundles;
4126 Call.getOperandBundlesAsDefs(OpBundles);
4128 Instruction *NewCaller;
4129 if (InvokeInst *II = dyn_cast<InvokeInst>(&Call)) {
4130 NewCaller = InvokeInst::Create(NewFTy, NestF, II->getNormalDest(),
4131 II->getUnwindDest(), NewArgs, OpBundles);
4132 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
4133 cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
4134 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(&Call)) {
4135 NewCaller =
4136 CallBrInst::Create(NewFTy, NestF, CBI->getDefaultDest(),
4137 CBI->getIndirectDests(), NewArgs, OpBundles);
4138 cast<CallBrInst>(NewCaller)->setCallingConv(CBI->getCallingConv());
4139 cast<CallBrInst>(NewCaller)->setAttributes(NewPAL);
4140 } else {
4141 NewCaller = CallInst::Create(NewFTy, NestF, NewArgs, OpBundles);
4142 cast<CallInst>(NewCaller)->setTailCallKind(
4143 cast<CallInst>(Call).getTailCallKind());
4144 cast<CallInst>(NewCaller)->setCallingConv(
4145 cast<CallInst>(Call).getCallingConv());
4146 cast<CallInst>(NewCaller)->setAttributes(NewPAL);
4148 NewCaller->setDebugLoc(Call.getDebugLoc());
4150 return NewCaller;
4154 // Replace the trampoline call with a direct call. Since there is no 'nest'
4155 // parameter, there is no need to adjust the argument list. Let the generic
4156 // code sort out any function type mismatches.
4157 Call.setCalledFunction(FTy, NestF);
4158 return &Call;