1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the visit functions for load, store and alloca.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/PatternMatch.h"
24 #include "llvm/Transforms/InstCombine/InstCombiner.h"
25 #include "llvm/Transforms/Utils/Local.h"
27 using namespace PatternMatch
;
29 #define DEBUG_TYPE "instcombine"
31 STATISTIC(NumDeadStore
, "Number of dead stores eliminated");
32 STATISTIC(NumGlobalCopies
, "Number of allocas copied from constant global");
34 static cl::opt
<unsigned> MaxCopiedFromConstantUsers(
35 "instcombine-max-copied-from-constant-users", cl::init(300),
36 cl::desc("Maximum users to visit in copy from constant transform"),
40 cl::opt
<bool> EnableInferAlignmentPass(
41 "enable-infer-alignment-pass", cl::init(true), cl::Hidden
, cl::ZeroOrMore
,
42 cl::desc("Enable the InferAlignment pass, disabling alignment inference in "
46 /// isOnlyCopiedFromConstantMemory - Recursively walk the uses of a (derived)
47 /// pointer to an alloca. Ignore any reads of the pointer, return false if we
48 /// see any stores or other unknown uses. If we see pointer arithmetic, keep
49 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
50 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
51 /// the alloca, and if the source pointer is a pointer to a constant memory
52 /// location, we can optimize this.
54 isOnlyCopiedFromConstantMemory(AAResults
*AA
, AllocaInst
*V
,
55 MemTransferInst
*&TheCopy
,
56 SmallVectorImpl
<Instruction
*> &ToDelete
) {
57 // We track lifetime intrinsics as we encounter them. If we decide to go
58 // ahead and replace the value with the memory location, this lets the caller
59 // quickly eliminate the markers.
61 using ValueAndIsOffset
= PointerIntPair
<Value
*, 1, bool>;
62 SmallVector
<ValueAndIsOffset
, 32> Worklist
;
63 SmallPtrSet
<ValueAndIsOffset
, 32> Visited
;
64 Worklist
.emplace_back(V
, false);
65 while (!Worklist
.empty()) {
66 ValueAndIsOffset Elem
= Worklist
.pop_back_val();
67 if (!Visited
.insert(Elem
).second
)
69 if (Visited
.size() > MaxCopiedFromConstantUsers
)
72 const auto [Value
, IsOffset
] = Elem
;
73 for (auto &U
: Value
->uses()) {
74 auto *I
= cast
<Instruction
>(U
.getUser());
76 if (auto *LI
= dyn_cast
<LoadInst
>(I
)) {
77 // Ignore non-volatile loads, they are always ok.
78 if (!LI
->isSimple()) return false;
82 if (isa
<PHINode
, SelectInst
>(I
)) {
83 // We set IsOffset=true, to forbid the memcpy from occurring after the
84 // phi: If one of the phi operands is not based on the alloca, we
85 // would incorrectly omit a write.
86 Worklist
.emplace_back(I
, true);
89 if (isa
<BitCastInst
, AddrSpaceCastInst
>(I
)) {
90 // If uses of the bitcast are ok, we are ok.
91 Worklist
.emplace_back(I
, IsOffset
);
94 if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
95 // If the GEP has all zero indices, it doesn't offset the pointer. If it
97 Worklist
.emplace_back(I
, IsOffset
|| !GEP
->hasAllZeroIndices());
101 if (auto *Call
= dyn_cast
<CallBase
>(I
)) {
102 // If this is the function being called then we treat it like a load and
104 if (Call
->isCallee(&U
))
107 unsigned DataOpNo
= Call
->getDataOperandNo(&U
);
108 bool IsArgOperand
= Call
->isArgOperand(&U
);
110 // Inalloca arguments are clobbered by the call.
111 if (IsArgOperand
&& Call
->isInAllocaArgument(DataOpNo
))
114 // If this call site doesn't modify the memory, then we know it is just
115 // a load (but one that potentially returns the value itself), so we can
116 // ignore it if we know that the value isn't captured.
117 bool NoCapture
= Call
->doesNotCapture(DataOpNo
);
118 if ((Call
->onlyReadsMemory() && (Call
->use_empty() || NoCapture
)) ||
119 (Call
->onlyReadsMemory(DataOpNo
) && NoCapture
))
122 // If this is being passed as a byval argument, the caller is making a
123 // copy, so it is only a read of the alloca.
124 if (IsArgOperand
&& Call
->isByValArgument(DataOpNo
))
128 // Lifetime intrinsics can be handled by the caller.
129 if (I
->isLifetimeStartOrEnd()) {
130 assert(I
->use_empty() && "Lifetime markers have no result to use!");
131 ToDelete
.push_back(I
);
135 // If this is isn't our memcpy/memmove, reject it as something we can't
137 MemTransferInst
*MI
= dyn_cast
<MemTransferInst
>(I
);
141 // If the transfer is volatile, reject it.
142 if (MI
->isVolatile())
145 // If the transfer is using the alloca as a source of the transfer, then
146 // ignore it since it is a load (unless the transfer is volatile).
147 if (U
.getOperandNo() == 1)
150 // If we already have seen a copy, reject the second one.
151 if (TheCopy
) return false;
153 // If the pointer has been offset from the start of the alloca, we can't
154 // safely handle this.
155 if (IsOffset
) return false;
157 // If the memintrinsic isn't using the alloca as the dest, reject it.
158 if (U
.getOperandNo() != 0) return false;
160 // If the source of the memcpy/move is not constant, reject it.
161 if (isModSet(AA
->getModRefInfoMask(MI
->getSource())))
164 // Otherwise, the transform is safe. Remember the copy instruction.
171 /// isOnlyCopiedFromConstantMemory - Return true if the specified alloca is only
172 /// modified by a copy from a constant memory location. If we can prove this, we
173 /// can replace any uses of the alloca with uses of the memory location
175 static MemTransferInst
*
176 isOnlyCopiedFromConstantMemory(AAResults
*AA
,
178 SmallVectorImpl
<Instruction
*> &ToDelete
) {
179 MemTransferInst
*TheCopy
= nullptr;
180 if (isOnlyCopiedFromConstantMemory(AA
, AI
, TheCopy
, ToDelete
))
185 /// Returns true if V is dereferenceable for size of alloca.
186 static bool isDereferenceableForAllocaSize(const Value
*V
, const AllocaInst
*AI
,
187 const DataLayout
&DL
) {
188 if (AI
->isArrayAllocation())
190 uint64_t AllocaSize
= DL
.getTypeStoreSize(AI
->getAllocatedType());
193 return isDereferenceableAndAlignedPointer(V
, AI
->getAlign(),
194 APInt(64, AllocaSize
), DL
);
197 static Instruction
*simplifyAllocaArraySize(InstCombinerImpl
&IC
,
198 AllocaInst
&AI
, DominatorTree
&DT
) {
199 // Check for array size of 1 (scalar allocation).
200 if (!AI
.isArrayAllocation()) {
201 // i32 1 is the canonical array size for scalar allocations.
202 if (AI
.getArraySize()->getType()->isIntegerTy(32))
206 return IC
.replaceOperand(AI
, 0, IC
.Builder
.getInt32(1));
209 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
210 if (const ConstantInt
*C
= dyn_cast
<ConstantInt
>(AI
.getArraySize())) {
211 if (C
->getValue().getActiveBits() <= 64) {
212 Type
*NewTy
= ArrayType::get(AI
.getAllocatedType(), C
->getZExtValue());
213 AllocaInst
*New
= IC
.Builder
.CreateAlloca(NewTy
, AI
.getAddressSpace(),
214 nullptr, AI
.getName());
215 New
->setAlignment(AI
.getAlign());
217 replaceAllDbgUsesWith(AI
, *New
, *New
, DT
);
219 // Scan to the end of the allocation instructions, to skip over a block of
220 // allocas if possible...also skip interleaved debug info
222 BasicBlock::iterator
It(New
);
223 while (isa
<AllocaInst
>(*It
) || isa
<DbgInfoIntrinsic
>(*It
))
226 // Now that I is pointing to the first non-allocation-inst in the block,
227 // insert our getelementptr instruction...
229 Type
*IdxTy
= IC
.getDataLayout().getIndexType(AI
.getType());
230 Value
*NullIdx
= Constant::getNullValue(IdxTy
);
231 Value
*Idx
[2] = {NullIdx
, NullIdx
};
232 Instruction
*GEP
= GetElementPtrInst::CreateInBounds(
233 NewTy
, New
, Idx
, New
->getName() + ".sub");
234 IC
.InsertNewInstBefore(GEP
, It
);
236 // Now make everything use the getelementptr instead of the original
238 return IC
.replaceInstUsesWith(AI
, GEP
);
242 if (isa
<UndefValue
>(AI
.getArraySize()))
243 return IC
.replaceInstUsesWith(AI
, Constant::getNullValue(AI
.getType()));
245 // Ensure that the alloca array size argument has type equal to the offset
246 // size of the alloca() pointer, which, in the tyical case, is intptr_t,
247 // so that any casting is exposed early.
248 Type
*PtrIdxTy
= IC
.getDataLayout().getIndexType(AI
.getType());
249 if (AI
.getArraySize()->getType() != PtrIdxTy
) {
250 Value
*V
= IC
.Builder
.CreateIntCast(AI
.getArraySize(), PtrIdxTy
, false);
251 return IC
.replaceOperand(AI
, 0, V
);
258 // If I and V are pointers in different address space, it is not allowed to
259 // use replaceAllUsesWith since I and V have different types. A
260 // non-target-specific transformation should not use addrspacecast on V since
261 // the two address space may be disjoint depending on target.
263 // This class chases down uses of the old pointer until reaching the load
264 // instructions, then replaces the old pointer in the load instructions with
265 // the new pointer. If during the chasing it sees bitcast or GEP, it will
266 // create new bitcast or GEP with the new pointer and use them in the load
268 class PointerReplacer
{
270 PointerReplacer(InstCombinerImpl
&IC
, Instruction
&Root
, unsigned SrcAS
)
271 : IC(IC
), Root(Root
), FromAS(SrcAS
) {}
274 void replacePointer(Value
*V
);
277 bool collectUsersRecursive(Instruction
&I
);
278 void replace(Instruction
*I
);
279 Value
*getReplacement(Value
*I
);
280 bool isAvailable(Instruction
*I
) const {
281 return I
== &Root
|| Worklist
.contains(I
);
284 bool isEqualOrValidAddrSpaceCast(const Instruction
*I
,
285 unsigned FromAS
) const {
286 const auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(I
);
289 unsigned ToAS
= ASC
->getDestAddressSpace();
290 return (FromAS
== ToAS
) || IC
.isValidAddrSpaceCast(FromAS
, ToAS
);
293 SmallPtrSet
<Instruction
*, 32> ValuesToRevisit
;
294 SmallSetVector
<Instruction
*, 4> Worklist
;
295 MapVector
<Value
*, Value
*> WorkMap
;
296 InstCombinerImpl
&IC
;
300 } // end anonymous namespace
302 bool PointerReplacer::collectUsers() {
303 if (!collectUsersRecursive(Root
))
306 // Ensure that all outstanding (indirect) users of I
307 // are inserted into the Worklist. Return false
309 for (auto *Inst
: ValuesToRevisit
)
310 if (!Worklist
.contains(Inst
))
315 bool PointerReplacer::collectUsersRecursive(Instruction
&I
) {
316 for (auto *U
: I
.users()) {
317 auto *Inst
= cast
<Instruction
>(&*U
);
318 if (auto *Load
= dyn_cast
<LoadInst
>(Inst
)) {
319 if (Load
->isVolatile())
321 Worklist
.insert(Load
);
322 } else if (auto *PHI
= dyn_cast
<PHINode
>(Inst
)) {
323 // All incoming values must be instructions for replacability
324 if (any_of(PHI
->incoming_values(),
325 [](Value
*V
) { return !isa
<Instruction
>(V
); }))
328 // If at least one incoming value of the PHI is not in Worklist,
329 // store the PHI for revisiting and skip this iteration of the
331 if (any_of(PHI
->incoming_values(), [this](Value
*V
) {
332 return !isAvailable(cast
<Instruction
>(V
));
334 ValuesToRevisit
.insert(Inst
);
338 Worklist
.insert(PHI
);
339 if (!collectUsersRecursive(*PHI
))
341 } else if (auto *SI
= dyn_cast
<SelectInst
>(Inst
)) {
342 if (!isa
<Instruction
>(SI
->getTrueValue()) ||
343 !isa
<Instruction
>(SI
->getFalseValue()))
346 if (!isAvailable(cast
<Instruction
>(SI
->getTrueValue())) ||
347 !isAvailable(cast
<Instruction
>(SI
->getFalseValue()))) {
348 ValuesToRevisit
.insert(Inst
);
352 if (!collectUsersRecursive(*SI
))
354 } else if (isa
<GetElementPtrInst
, BitCastInst
>(Inst
)) {
355 Worklist
.insert(Inst
);
356 if (!collectUsersRecursive(*Inst
))
358 } else if (auto *MI
= dyn_cast
<MemTransferInst
>(Inst
)) {
359 if (MI
->isVolatile())
361 Worklist
.insert(Inst
);
362 } else if (isEqualOrValidAddrSpaceCast(Inst
, FromAS
)) {
363 Worklist
.insert(Inst
);
364 } else if (Inst
->isLifetimeStartOrEnd()) {
367 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U
<< '\n');
375 Value
*PointerReplacer::getReplacement(Value
*V
) { return WorkMap
.lookup(V
); }
377 void PointerReplacer::replace(Instruction
*I
) {
378 if (getReplacement(I
))
381 if (auto *LT
= dyn_cast
<LoadInst
>(I
)) {
382 auto *V
= getReplacement(LT
->getPointerOperand());
383 assert(V
&& "Operand not replaced");
384 auto *NewI
= new LoadInst(LT
->getType(), V
, "", LT
->isVolatile(),
385 LT
->getAlign(), LT
->getOrdering(),
386 LT
->getSyncScopeID());
388 copyMetadataForLoad(*NewI
, *LT
);
390 IC
.InsertNewInstWith(NewI
, LT
->getIterator());
391 IC
.replaceInstUsesWith(*LT
, NewI
);
393 } else if (auto *PHI
= dyn_cast
<PHINode
>(I
)) {
394 Type
*NewTy
= getReplacement(PHI
->getIncomingValue(0))->getType();
395 auto *NewPHI
= PHINode::Create(NewTy
, PHI
->getNumIncomingValues(),
396 PHI
->getName(), PHI
);
397 for (unsigned int I
= 0; I
< PHI
->getNumIncomingValues(); ++I
)
398 NewPHI
->addIncoming(getReplacement(PHI
->getIncomingValue(I
)),
399 PHI
->getIncomingBlock(I
));
400 WorkMap
[PHI
] = NewPHI
;
401 } else if (auto *GEP
= dyn_cast
<GetElementPtrInst
>(I
)) {
402 auto *V
= getReplacement(GEP
->getPointerOperand());
403 assert(V
&& "Operand not replaced");
404 SmallVector
<Value
*, 8> Indices
;
405 Indices
.append(GEP
->idx_begin(), GEP
->idx_end());
407 GetElementPtrInst::Create(GEP
->getSourceElementType(), V
, Indices
);
408 IC
.InsertNewInstWith(NewI
, GEP
->getIterator());
411 } else if (auto *BC
= dyn_cast
<BitCastInst
>(I
)) {
412 auto *V
= getReplacement(BC
->getOperand(0));
413 assert(V
&& "Operand not replaced");
414 auto *NewT
= PointerType::get(BC
->getType()->getContext(),
415 V
->getType()->getPointerAddressSpace());
416 auto *NewI
= new BitCastInst(V
, NewT
);
417 IC
.InsertNewInstWith(NewI
, BC
->getIterator());
420 } else if (auto *SI
= dyn_cast
<SelectInst
>(I
)) {
421 auto *NewSI
= SelectInst::Create(
422 SI
->getCondition(), getReplacement(SI
->getTrueValue()),
423 getReplacement(SI
->getFalseValue()), SI
->getName(), nullptr, SI
);
424 IC
.InsertNewInstWith(NewSI
, SI
->getIterator());
427 } else if (auto *MemCpy
= dyn_cast
<MemTransferInst
>(I
)) {
428 auto *SrcV
= getReplacement(MemCpy
->getRawSource());
429 // The pointer may appear in the destination of a copy, but we don't want to
432 assert(getReplacement(MemCpy
->getRawDest()) &&
433 "destination not in replace list");
437 IC
.Builder
.SetInsertPoint(MemCpy
);
438 auto *NewI
= IC
.Builder
.CreateMemTransferInst(
439 MemCpy
->getIntrinsicID(), MemCpy
->getRawDest(), MemCpy
->getDestAlign(),
440 SrcV
, MemCpy
->getSourceAlign(), MemCpy
->getLength(),
441 MemCpy
->isVolatile());
442 AAMDNodes AAMD
= MemCpy
->getAAMetadata();
444 NewI
->setAAMetadata(AAMD
);
446 IC
.eraseInstFromFunction(*MemCpy
);
447 WorkMap
[MemCpy
] = NewI
;
448 } else if (auto *ASC
= dyn_cast
<AddrSpaceCastInst
>(I
)) {
449 auto *V
= getReplacement(ASC
->getPointerOperand());
450 assert(V
&& "Operand not replaced");
451 assert(isEqualOrValidAddrSpaceCast(
452 ASC
, V
->getType()->getPointerAddressSpace()) &&
453 "Invalid address space cast!");
455 if (V
->getType()->getPointerAddressSpace() !=
456 ASC
->getType()->getPointerAddressSpace()) {
457 auto *NewI
= new AddrSpaceCastInst(V
, ASC
->getType(), "");
459 IC
.InsertNewInstWith(NewI
, ASC
->getIterator());
462 IC
.replaceInstUsesWith(*ASC
, NewV
);
463 IC
.eraseInstFromFunction(*ASC
);
465 llvm_unreachable("should never reach here");
469 void PointerReplacer::replacePointer(Value
*V
) {
471 auto *PT
= cast
<PointerType
>(Root
.getType());
472 auto *NT
= cast
<PointerType
>(V
->getType());
473 assert(PT
!= NT
&& "Invalid usage");
477 for (Instruction
*Workitem
: Worklist
)
481 Instruction
*InstCombinerImpl::visitAllocaInst(AllocaInst
&AI
) {
482 if (auto *I
= simplifyAllocaArraySize(*this, AI
, DT
))
485 if (AI
.getAllocatedType()->isSized()) {
486 // Move all alloca's of zero byte objects to the entry block and merge them
487 // together. Note that we only do this for alloca's, because malloc should
488 // allocate and return a unique pointer, even for a zero byte allocation.
489 if (DL
.getTypeAllocSize(AI
.getAllocatedType()).getKnownMinValue() == 0) {
490 // For a zero sized alloca there is no point in doing an array allocation.
491 // This is helpful if the array size is a complicated expression not used
493 if (AI
.isArrayAllocation())
494 return replaceOperand(AI
, 0,
495 ConstantInt::get(AI
.getArraySize()->getType(), 1));
497 // Get the first instruction in the entry block.
498 BasicBlock
&EntryBlock
= AI
.getParent()->getParent()->getEntryBlock();
499 Instruction
*FirstInst
= EntryBlock
.getFirstNonPHIOrDbg();
500 if (FirstInst
!= &AI
) {
501 // If the entry block doesn't start with a zero-size alloca then move
502 // this one to the start of the entry block. There is no problem with
503 // dominance as the array size was forced to a constant earlier already.
504 AllocaInst
*EntryAI
= dyn_cast
<AllocaInst
>(FirstInst
);
505 if (!EntryAI
|| !EntryAI
->getAllocatedType()->isSized() ||
506 DL
.getTypeAllocSize(EntryAI
->getAllocatedType())
507 .getKnownMinValue() != 0) {
508 AI
.moveBefore(FirstInst
);
512 // Replace this zero-sized alloca with the one at the start of the entry
513 // block after ensuring that the address will be aligned enough for both
515 const Align MaxAlign
= std::max(EntryAI
->getAlign(), AI
.getAlign());
516 EntryAI
->setAlignment(MaxAlign
);
517 return replaceInstUsesWith(AI
, EntryAI
);
522 // Check to see if this allocation is only modified by a memcpy/memmove from
523 // a memory location whose alignment is equal to or exceeds that of the
524 // allocation. If this is the case, we can change all users to use the
525 // constant memory location instead. This is commonly produced by the CFE by
526 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
527 // is only subsequently read.
528 SmallVector
<Instruction
*, 4> ToDelete
;
529 if (MemTransferInst
*Copy
= isOnlyCopiedFromConstantMemory(AA
, &AI
, ToDelete
)) {
530 Value
*TheSrc
= Copy
->getSource();
531 Align AllocaAlign
= AI
.getAlign();
532 Align SourceAlign
= getOrEnforceKnownAlignment(
533 TheSrc
, AllocaAlign
, DL
, &AI
, &AC
, &DT
);
534 if (AllocaAlign
<= SourceAlign
&&
535 isDereferenceableForAllocaSize(TheSrc
, &AI
, DL
) &&
536 !isa
<Instruction
>(TheSrc
)) {
537 // FIXME: Can we sink instructions without violating dominance when TheSrc
538 // is an instruction instead of a constant or argument?
539 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI
<< '\n');
540 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy
<< '\n');
541 unsigned SrcAddrSpace
= TheSrc
->getType()->getPointerAddressSpace();
542 if (AI
.getAddressSpace() == SrcAddrSpace
) {
543 for (Instruction
*Delete
: ToDelete
)
544 eraseInstFromFunction(*Delete
);
546 Instruction
*NewI
= replaceInstUsesWith(AI
, TheSrc
);
547 eraseInstFromFunction(*Copy
);
552 PointerReplacer
PtrReplacer(*this, AI
, SrcAddrSpace
);
553 if (PtrReplacer
.collectUsers()) {
554 for (Instruction
*Delete
: ToDelete
)
555 eraseInstFromFunction(*Delete
);
557 PtrReplacer
.replacePointer(TheSrc
);
563 // At last, use the generic allocation site handler to aggressively remove
565 return visitAllocSite(AI
);
568 // Are we allowed to form a atomic load or store of this type?
569 static bool isSupportedAtomicType(Type
*Ty
) {
570 return Ty
->isIntOrPtrTy() || Ty
->isFloatingPointTy();
573 /// Helper to combine a load to a new type.
575 /// This just does the work of combining a load to a new type. It handles
576 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
577 /// loaded *value* type. This will convert it to a pointer, cast the operand to
578 /// that pointer type, load it, etc.
580 /// Note that this will create all of the instructions with whatever insert
581 /// point the \c InstCombinerImpl currently is using.
582 LoadInst
*InstCombinerImpl::combineLoadToNewType(LoadInst
&LI
, Type
*NewTy
,
583 const Twine
&Suffix
) {
584 assert((!LI
.isAtomic() || isSupportedAtomicType(NewTy
)) &&
585 "can't fold an atomic load to requested type");
588 Builder
.CreateAlignedLoad(NewTy
, LI
.getPointerOperand(), LI
.getAlign(),
589 LI
.isVolatile(), LI
.getName() + Suffix
);
590 NewLoad
->setAtomic(LI
.getOrdering(), LI
.getSyncScopeID());
591 copyMetadataForLoad(*NewLoad
, LI
);
595 /// Combine a store to a new type.
597 /// Returns the newly created store instruction.
598 static StoreInst
*combineStoreToNewValue(InstCombinerImpl
&IC
, StoreInst
&SI
,
600 assert((!SI
.isAtomic() || isSupportedAtomicType(V
->getType())) &&
601 "can't fold an atomic store of requested type");
603 Value
*Ptr
= SI
.getPointerOperand();
604 SmallVector
<std::pair
<unsigned, MDNode
*>, 8> MD
;
605 SI
.getAllMetadata(MD
);
607 StoreInst
*NewStore
=
608 IC
.Builder
.CreateAlignedStore(V
, Ptr
, SI
.getAlign(), SI
.isVolatile());
609 NewStore
->setAtomic(SI
.getOrdering(), SI
.getSyncScopeID());
610 for (const auto &MDPair
: MD
) {
611 unsigned ID
= MDPair
.first
;
612 MDNode
*N
= MDPair
.second
;
613 // Note, essentially every kind of metadata should be preserved here! This
614 // routine is supposed to clone a store instruction changing *only its
615 // type*. The only metadata it makes sense to drop is metadata which is
616 // invalidated when the pointer type changes. This should essentially
617 // never be the case in LLVM, but we explicitly switch over only known
618 // metadata to be conservatively correct. If you are adding metadata to
619 // LLVM which pertains to stores, you almost certainly want to add it
622 case LLVMContext::MD_dbg
:
623 case LLVMContext::MD_DIAssignID
:
624 case LLVMContext::MD_tbaa
:
625 case LLVMContext::MD_prof
:
626 case LLVMContext::MD_fpmath
:
627 case LLVMContext::MD_tbaa_struct
:
628 case LLVMContext::MD_alias_scope
:
629 case LLVMContext::MD_noalias
:
630 case LLVMContext::MD_nontemporal
:
631 case LLVMContext::MD_mem_parallel_loop_access
:
632 case LLVMContext::MD_access_group
:
633 // All of these directly apply.
634 NewStore
->setMetadata(ID
, N
);
636 case LLVMContext::MD_invariant_load
:
637 case LLVMContext::MD_nonnull
:
638 case LLVMContext::MD_noundef
:
639 case LLVMContext::MD_range
:
640 case LLVMContext::MD_align
:
641 case LLVMContext::MD_dereferenceable
:
642 case LLVMContext::MD_dereferenceable_or_null
:
643 // These don't apply for stores.
651 /// Combine loads to match the type of their uses' value after looking
652 /// through intervening bitcasts.
654 /// The core idea here is that if the result of a load is used in an operation,
655 /// we should load the type most conducive to that operation. For example, when
656 /// loading an integer and converting that immediately to a pointer, we should
657 /// instead directly load a pointer.
659 /// However, this routine must never change the width of a load or the number of
660 /// loads as that would introduce a semantic change. This combine is expected to
661 /// be a semantic no-op which just allows loads to more closely model the types
662 /// of their consuming operations.
664 /// Currently, we also refuse to change the precise type used for an atomic load
665 /// or a volatile load. This is debatable, and might be reasonable to change
666 /// later. However, it is risky in case some backend or other part of LLVM is
667 /// relying on the exact type loaded to select appropriate atomic operations.
668 static Instruction
*combineLoadToOperationType(InstCombinerImpl
&IC
,
670 // FIXME: We could probably with some care handle both volatile and ordered
671 // atomic loads here but it isn't clear that this is important.
672 if (!Load
.isUnordered())
675 if (Load
.use_empty())
678 // swifterror values can't be bitcasted.
679 if (Load
.getPointerOperand()->isSwiftError())
682 // Fold away bit casts of the loaded value by loading the desired type.
683 // Note that we should not do this for pointer<->integer casts,
684 // because that would result in type punning.
685 if (Load
.hasOneUse()) {
686 // Don't transform when the type is x86_amx, it makes the pass that lower
687 // x86_amx type happy.
688 Type
*LoadTy
= Load
.getType();
689 if (auto *BC
= dyn_cast
<BitCastInst
>(Load
.user_back())) {
690 assert(!LoadTy
->isX86_AMXTy() && "Load from x86_amx* should not happen!");
691 if (BC
->getType()->isX86_AMXTy())
695 if (auto *CastUser
= dyn_cast
<CastInst
>(Load
.user_back())) {
696 Type
*DestTy
= CastUser
->getDestTy();
697 if (CastUser
->isNoopCast(IC
.getDataLayout()) &&
698 LoadTy
->isPtrOrPtrVectorTy() == DestTy
->isPtrOrPtrVectorTy() &&
699 (!Load
.isAtomic() || isSupportedAtomicType(DestTy
))) {
700 LoadInst
*NewLoad
= IC
.combineLoadToNewType(Load
, DestTy
);
701 CastUser
->replaceAllUsesWith(NewLoad
);
702 IC
.eraseInstFromFunction(*CastUser
);
708 // FIXME: We should also canonicalize loads of vectors when their elements are
709 // cast to other types.
713 static Instruction
*unpackLoadToAggregate(InstCombinerImpl
&IC
, LoadInst
&LI
) {
714 // FIXME: We could probably with some care handle both volatile and atomic
715 // stores here but it isn't clear that this is important.
719 Type
*T
= LI
.getType();
720 if (!T
->isAggregateType())
723 StringRef Name
= LI
.getName();
725 if (auto *ST
= dyn_cast
<StructType
>(T
)) {
726 // If the struct only have one element, we unpack.
727 auto NumElements
= ST
->getNumElements();
728 if (NumElements
== 1) {
729 LoadInst
*NewLoad
= IC
.combineLoadToNewType(LI
, ST
->getTypeAtIndex(0U),
731 NewLoad
->setAAMetadata(LI
.getAAMetadata());
732 return IC
.replaceInstUsesWith(LI
, IC
.Builder
.CreateInsertValue(
733 PoisonValue::get(T
), NewLoad
, 0, Name
));
736 // We don't want to break loads with padding here as we'd loose
737 // the knowledge that padding exists for the rest of the pipeline.
738 const DataLayout
&DL
= IC
.getDataLayout();
739 auto *SL
= DL
.getStructLayout(ST
);
741 // Don't unpack for structure with scalable vector.
742 if (SL
->getSizeInBits().isScalable())
745 if (SL
->hasPadding())
748 const auto Align
= LI
.getAlign();
749 auto *Addr
= LI
.getPointerOperand();
750 auto *IdxType
= Type::getInt32Ty(T
->getContext());
751 auto *Zero
= ConstantInt::get(IdxType
, 0);
753 Value
*V
= PoisonValue::get(T
);
754 for (unsigned i
= 0; i
< NumElements
; i
++) {
755 Value
*Indices
[2] = {
757 ConstantInt::get(IdxType
, i
),
759 auto *Ptr
= IC
.Builder
.CreateInBoundsGEP(ST
, Addr
, ArrayRef(Indices
),
761 auto *L
= IC
.Builder
.CreateAlignedLoad(
762 ST
->getElementType(i
), Ptr
,
763 commonAlignment(Align
, SL
->getElementOffset(i
)), Name
+ ".unpack");
764 // Propagate AA metadata. It'll still be valid on the narrowed load.
765 L
->setAAMetadata(LI
.getAAMetadata());
766 V
= IC
.Builder
.CreateInsertValue(V
, L
, i
);
770 return IC
.replaceInstUsesWith(LI
, V
);
773 if (auto *AT
= dyn_cast
<ArrayType
>(T
)) {
774 auto *ET
= AT
->getElementType();
775 auto NumElements
= AT
->getNumElements();
776 if (NumElements
== 1) {
777 LoadInst
*NewLoad
= IC
.combineLoadToNewType(LI
, ET
, ".unpack");
778 NewLoad
->setAAMetadata(LI
.getAAMetadata());
779 return IC
.replaceInstUsesWith(LI
, IC
.Builder
.CreateInsertValue(
780 PoisonValue::get(T
), NewLoad
, 0, Name
));
783 // Bail out if the array is too large. Ideally we would like to optimize
784 // arrays of arbitrary size but this has a terrible impact on compile time.
785 // The threshold here is chosen arbitrarily, maybe needs a little bit of
787 if (NumElements
> IC
.MaxArraySizeForCombine
)
790 const DataLayout
&DL
= IC
.getDataLayout();
791 TypeSize EltSize
= DL
.getTypeAllocSize(ET
);
792 const auto Align
= LI
.getAlign();
794 auto *Addr
= LI
.getPointerOperand();
795 auto *IdxType
= Type::getInt64Ty(T
->getContext());
796 auto *Zero
= ConstantInt::get(IdxType
, 0);
798 Value
*V
= PoisonValue::get(T
);
799 TypeSize Offset
= TypeSize::get(0, ET
->isScalableTy());
800 for (uint64_t i
= 0; i
< NumElements
; i
++) {
801 Value
*Indices
[2] = {
803 ConstantInt::get(IdxType
, i
),
805 auto *Ptr
= IC
.Builder
.CreateInBoundsGEP(AT
, Addr
, ArrayRef(Indices
),
807 auto EltAlign
= commonAlignment(Align
, Offset
.getKnownMinValue());
808 auto *L
= IC
.Builder
.CreateAlignedLoad(AT
->getElementType(), Ptr
,
809 EltAlign
, Name
+ ".unpack");
810 L
->setAAMetadata(LI
.getAAMetadata());
811 V
= IC
.Builder
.CreateInsertValue(V
, L
, i
);
816 return IC
.replaceInstUsesWith(LI
, V
);
822 // If we can determine that all possible objects pointed to by the provided
823 // pointer value are, not only dereferenceable, but also definitively less than
824 // or equal to the provided maximum size, then return true. Otherwise, return
825 // false (constant global values and allocas fall into this category).
827 // FIXME: This should probably live in ValueTracking (or similar).
828 static bool isObjectSizeLessThanOrEq(Value
*V
, uint64_t MaxSize
,
829 const DataLayout
&DL
) {
830 SmallPtrSet
<Value
*, 4> Visited
;
831 SmallVector
<Value
*, 4> Worklist(1, V
);
834 Value
*P
= Worklist
.pop_back_val();
835 P
= P
->stripPointerCasts();
837 if (!Visited
.insert(P
).second
)
840 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(P
)) {
841 Worklist
.push_back(SI
->getTrueValue());
842 Worklist
.push_back(SI
->getFalseValue());
846 if (PHINode
*PN
= dyn_cast
<PHINode
>(P
)) {
847 append_range(Worklist
, PN
->incoming_values());
851 if (GlobalAlias
*GA
= dyn_cast
<GlobalAlias
>(P
)) {
852 if (GA
->isInterposable())
854 Worklist
.push_back(GA
->getAliasee());
858 // If we know how big this object is, and it is less than MaxSize, continue
859 // searching. Otherwise, return false.
860 if (AllocaInst
*AI
= dyn_cast
<AllocaInst
>(P
)) {
861 if (!AI
->getAllocatedType()->isSized())
864 ConstantInt
*CS
= dyn_cast
<ConstantInt
>(AI
->getArraySize());
868 TypeSize TS
= DL
.getTypeAllocSize(AI
->getAllocatedType());
871 // Make sure that, even if the multiplication below would wrap as an
872 // uint64_t, we still do the right thing.
873 if ((CS
->getValue().zext(128) * APInt(128, TS
.getFixedValue()))
879 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(P
)) {
880 if (!GV
->hasDefinitiveInitializer() || !GV
->isConstant())
883 uint64_t InitSize
= DL
.getTypeAllocSize(GV
->getValueType());
884 if (InitSize
> MaxSize
)
890 } while (!Worklist
.empty());
895 // If we're indexing into an object of a known size, and the outer index is
896 // not a constant, but having any value but zero would lead to undefined
897 // behavior, replace it with zero.
899 // For example, if we have:
900 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
902 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
903 // ... = load i32* %arrayidx, align 4
904 // Then we know that we can replace %x in the GEP with i64 0.
906 // FIXME: We could fold any GEP index to zero that would cause UB if it were
907 // not zero. Currently, we only handle the first such index. Also, we could
908 // also search through non-zero constant indices if we kept track of the
909 // offsets those indices implied.
910 static bool canReplaceGEPIdxWithZero(InstCombinerImpl
&IC
,
911 GetElementPtrInst
*GEPI
, Instruction
*MemI
,
913 if (GEPI
->getNumOperands() < 2)
916 // Find the first non-zero index of a GEP. If all indices are zero, return
917 // one past the last index.
918 auto FirstNZIdx
= [](const GetElementPtrInst
*GEPI
) {
920 for (unsigned IE
= GEPI
->getNumOperands(); I
!= IE
; ++I
) {
921 Value
*V
= GEPI
->getOperand(I
);
922 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
))
932 // Skip through initial 'zero' indices, and find the corresponding pointer
933 // type. See if the next index is not a constant.
934 Idx
= FirstNZIdx(GEPI
);
935 if (Idx
== GEPI
->getNumOperands())
937 if (isa
<Constant
>(GEPI
->getOperand(Idx
)))
940 SmallVector
<Value
*, 4> Ops(GEPI
->idx_begin(), GEPI
->idx_begin() + Idx
);
941 Type
*SourceElementType
= GEPI
->getSourceElementType();
942 // Size information about scalable vectors is not available, so we cannot
943 // deduce whether indexing at n is undefined behaviour or not. Bail out.
944 if (SourceElementType
->isScalableTy())
947 Type
*AllocTy
= GetElementPtrInst::getIndexedType(SourceElementType
, Ops
);
948 if (!AllocTy
|| !AllocTy
->isSized())
950 const DataLayout
&DL
= IC
.getDataLayout();
951 uint64_t TyAllocSize
= DL
.getTypeAllocSize(AllocTy
).getFixedValue();
953 // If there are more indices after the one we might replace with a zero, make
954 // sure they're all non-negative. If any of them are negative, the overall
955 // address being computed might be before the base address determined by the
956 // first non-zero index.
957 auto IsAllNonNegative
= [&]() {
958 for (unsigned i
= Idx
+1, e
= GEPI
->getNumOperands(); i
!= e
; ++i
) {
959 KnownBits Known
= IC
.computeKnownBits(GEPI
->getOperand(i
), 0, MemI
);
960 if (Known
.isNonNegative())
968 // FIXME: If the GEP is not inbounds, and there are extra indices after the
969 // one we'll replace, those could cause the address computation to wrap
970 // (rendering the IsAllNonNegative() check below insufficient). We can do
971 // better, ignoring zero indices (and other indices we can prove small
972 // enough not to wrap).
973 if (Idx
+1 != GEPI
->getNumOperands() && !GEPI
->isInBounds())
976 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
977 // also known to be dereferenceable.
978 return isObjectSizeLessThanOrEq(GEPI
->getOperand(0), TyAllocSize
, DL
) &&
982 // If we're indexing into an object with a variable index for the memory
983 // access, but the object has only one element, we can assume that the index
984 // will always be zero. If we replace the GEP, return it.
985 static Instruction
*replaceGEPIdxWithZero(InstCombinerImpl
&IC
, Value
*Ptr
,
987 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
989 if (canReplaceGEPIdxWithZero(IC
, GEPI
, &MemI
, Idx
)) {
990 Instruction
*NewGEPI
= GEPI
->clone();
991 NewGEPI
->setOperand(Idx
,
992 ConstantInt::get(GEPI
->getOperand(Idx
)->getType(), 0));
993 IC
.InsertNewInstBefore(NewGEPI
, GEPI
->getIterator());
1001 static bool canSimplifyNullStoreOrGEP(StoreInst
&SI
) {
1002 if (NullPointerIsDefined(SI
.getFunction(), SI
.getPointerAddressSpace()))
1005 auto *Ptr
= SI
.getPointerOperand();
1006 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(Ptr
))
1007 Ptr
= GEPI
->getOperand(0);
1008 return (isa
<ConstantPointerNull
>(Ptr
) &&
1009 !NullPointerIsDefined(SI
.getFunction(), SI
.getPointerAddressSpace()));
1012 static bool canSimplifyNullLoadOrGEP(LoadInst
&LI
, Value
*Op
) {
1013 if (GetElementPtrInst
*GEPI
= dyn_cast
<GetElementPtrInst
>(Op
)) {
1014 const Value
*GEPI0
= GEPI
->getOperand(0);
1015 if (isa
<ConstantPointerNull
>(GEPI0
) &&
1016 !NullPointerIsDefined(LI
.getFunction(), GEPI
->getPointerAddressSpace()))
1019 if (isa
<UndefValue
>(Op
) ||
1020 (isa
<ConstantPointerNull
>(Op
) &&
1021 !NullPointerIsDefined(LI
.getFunction(), LI
.getPointerAddressSpace())))
1026 Instruction
*InstCombinerImpl::visitLoadInst(LoadInst
&LI
) {
1027 Value
*Op
= LI
.getOperand(0);
1028 if (Value
*Res
= simplifyLoadInst(&LI
, Op
, SQ
.getWithInstruction(&LI
)))
1029 return replaceInstUsesWith(LI
, Res
);
1031 // Try to canonicalize the loaded type.
1032 if (Instruction
*Res
= combineLoadToOperationType(*this, LI
))
1035 if (!EnableInferAlignmentPass
) {
1036 // Attempt to improve the alignment.
1037 Align KnownAlign
= getOrEnforceKnownAlignment(
1038 Op
, DL
.getPrefTypeAlign(LI
.getType()), DL
, &LI
, &AC
, &DT
);
1039 if (KnownAlign
> LI
.getAlign())
1040 LI
.setAlignment(KnownAlign
);
1043 // Replace GEP indices if possible.
1044 if (Instruction
*NewGEPI
= replaceGEPIdxWithZero(*this, Op
, LI
))
1045 return replaceOperand(LI
, 0, NewGEPI
);
1047 if (Instruction
*Res
= unpackLoadToAggregate(*this, LI
))
1050 // Do really simple store-to-load forwarding and load CSE, to catch cases
1051 // where there are several consecutive memory accesses to the same location,
1052 // separated by a few arithmetic operations.
1053 bool IsLoadCSE
= false;
1054 if (Value
*AvailableVal
= FindAvailableLoadedValue(&LI
, *AA
, &IsLoadCSE
)) {
1056 combineMetadataForCSE(cast
<LoadInst
>(AvailableVal
), &LI
, false);
1058 return replaceInstUsesWith(
1059 LI
, Builder
.CreateBitOrPointerCast(AvailableVal
, LI
.getType(),
1060 LI
.getName() + ".cast"));
1063 // None of the following transforms are legal for volatile/ordered atomic
1064 // loads. Most of them do apply for unordered atomics.
1065 if (!LI
.isUnordered()) return nullptr;
1067 // load(gep null, ...) -> unreachable
1068 // load null/undef -> unreachable
1069 // TODO: Consider a target hook for valid address spaces for this xforms.
1070 if (canSimplifyNullLoadOrGEP(LI
, Op
)) {
1071 CreateNonTerminatorUnreachable(&LI
);
1072 return replaceInstUsesWith(LI
, PoisonValue::get(LI
.getType()));
1075 if (Op
->hasOneUse()) {
1076 // Change select and PHI nodes to select values instead of addresses: this
1077 // helps alias analysis out a lot, allows many others simplifications, and
1078 // exposes redundancy in the code.
1080 // Note that we cannot do the transformation unless we know that the
1081 // introduced loads cannot trap! Something like this is valid as long as
1082 // the condition is always false: load (select bool %C, int* null, int* %G),
1083 // but it would not be valid if we transformed it to load from null
1086 if (SelectInst
*SI
= dyn_cast
<SelectInst
>(Op
)) {
1087 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
1088 Align Alignment
= LI
.getAlign();
1089 if (isSafeToLoadUnconditionally(SI
->getOperand(1), LI
.getType(),
1090 Alignment
, DL
, SI
) &&
1091 isSafeToLoadUnconditionally(SI
->getOperand(2), LI
.getType(),
1092 Alignment
, DL
, SI
)) {
1094 Builder
.CreateLoad(LI
.getType(), SI
->getOperand(1),
1095 SI
->getOperand(1)->getName() + ".val");
1097 Builder
.CreateLoad(LI
.getType(), SI
->getOperand(2),
1098 SI
->getOperand(2)->getName() + ".val");
1099 assert(LI
.isUnordered() && "implied by above");
1100 V1
->setAlignment(Alignment
);
1101 V1
->setAtomic(LI
.getOrdering(), LI
.getSyncScopeID());
1102 V2
->setAlignment(Alignment
);
1103 V2
->setAtomic(LI
.getOrdering(), LI
.getSyncScopeID());
1104 return SelectInst::Create(SI
->getCondition(), V1
, V2
);
1107 // load (select (cond, null, P)) -> load P
1108 if (isa
<ConstantPointerNull
>(SI
->getOperand(1)) &&
1109 !NullPointerIsDefined(SI
->getFunction(),
1110 LI
.getPointerAddressSpace()))
1111 return replaceOperand(LI
, 0, SI
->getOperand(2));
1113 // load (select (cond, P, null)) -> load P
1114 if (isa
<ConstantPointerNull
>(SI
->getOperand(2)) &&
1115 !NullPointerIsDefined(SI
->getFunction(),
1116 LI
.getPointerAddressSpace()))
1117 return replaceOperand(LI
, 0, SI
->getOperand(1));
1123 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1125 /// \returns underlying value that was "cast", or nullptr otherwise.
1127 /// For example, if we have:
1129 /// %E0 = extractelement <2 x double> %U, i32 0
1130 /// %V0 = insertvalue [2 x double] undef, double %E0, 0
1131 /// %E1 = extractelement <2 x double> %U, i32 1
1132 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1
1134 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1135 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1136 /// Note that %U may contain non-undef values where %V1 has undef.
1137 static Value
*likeBitCastFromVector(InstCombinerImpl
&IC
, Value
*V
) {
1139 while (auto *IV
= dyn_cast
<InsertValueInst
>(V
)) {
1140 auto *E
= dyn_cast
<ExtractElementInst
>(IV
->getInsertedValueOperand());
1143 auto *W
= E
->getVectorOperand();
1148 auto *CI
= dyn_cast
<ConstantInt
>(E
->getIndexOperand());
1149 if (!CI
|| IV
->getNumIndices() != 1 || CI
->getZExtValue() != *IV
->idx_begin())
1151 V
= IV
->getAggregateOperand();
1153 if (!match(V
, m_Undef()) || !U
)
1156 auto *UT
= cast
<VectorType
>(U
->getType());
1157 auto *VT
= V
->getType();
1158 // Check that types UT and VT are bitwise isomorphic.
1159 const auto &DL
= IC
.getDataLayout();
1160 if (DL
.getTypeStoreSizeInBits(UT
) != DL
.getTypeStoreSizeInBits(VT
)) {
1163 if (auto *AT
= dyn_cast
<ArrayType
>(VT
)) {
1164 if (AT
->getNumElements() != cast
<FixedVectorType
>(UT
)->getNumElements())
1167 auto *ST
= cast
<StructType
>(VT
);
1168 if (ST
->getNumElements() != cast
<FixedVectorType
>(UT
)->getNumElements())
1170 for (const auto *EltT
: ST
->elements()) {
1171 if (EltT
!= UT
->getElementType())
1178 /// Combine stores to match the type of value being stored.
1180 /// The core idea here is that the memory does not have any intrinsic type and
1181 /// where we can we should match the type of a store to the type of value being
1184 /// However, this routine must never change the width of a store or the number of
1185 /// stores as that would introduce a semantic change. This combine is expected to
1186 /// be a semantic no-op which just allows stores to more closely model the types
1187 /// of their incoming values.
1189 /// Currently, we also refuse to change the precise type used for an atomic or
1190 /// volatile store. This is debatable, and might be reasonable to change later.
1191 /// However, it is risky in case some backend or other part of LLVM is relying
1192 /// on the exact type stored to select appropriate atomic operations.
1194 /// \returns true if the store was successfully combined away. This indicates
1195 /// the caller must erase the store instruction. We have to let the caller erase
1196 /// the store instruction as otherwise there is no way to signal whether it was
1197 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1198 static bool combineStoreToValueType(InstCombinerImpl
&IC
, StoreInst
&SI
) {
1199 // FIXME: We could probably with some care handle both volatile and ordered
1200 // atomic stores here but it isn't clear that this is important.
1201 if (!SI
.isUnordered())
1204 // swifterror values can't be bitcasted.
1205 if (SI
.getPointerOperand()->isSwiftError())
1208 Value
*V
= SI
.getValueOperand();
1210 // Fold away bit casts of the stored value by storing the original type.
1211 if (auto *BC
= dyn_cast
<BitCastInst
>(V
)) {
1212 assert(!BC
->getType()->isX86_AMXTy() &&
1213 "store to x86_amx* should not happen!");
1214 V
= BC
->getOperand(0);
1215 // Don't transform when the type is x86_amx, it makes the pass that lower
1216 // x86_amx type happy.
1217 if (V
->getType()->isX86_AMXTy())
1219 if (!SI
.isAtomic() || isSupportedAtomicType(V
->getType())) {
1220 combineStoreToNewValue(IC
, SI
, V
);
1225 if (Value
*U
= likeBitCastFromVector(IC
, V
))
1226 if (!SI
.isAtomic() || isSupportedAtomicType(U
->getType())) {
1227 combineStoreToNewValue(IC
, SI
, U
);
1231 // FIXME: We should also canonicalize stores of vectors when their elements
1232 // are cast to other types.
1236 static bool unpackStoreToAggregate(InstCombinerImpl
&IC
, StoreInst
&SI
) {
1237 // FIXME: We could probably with some care handle both volatile and atomic
1238 // stores here but it isn't clear that this is important.
1242 Value
*V
= SI
.getValueOperand();
1243 Type
*T
= V
->getType();
1245 if (!T
->isAggregateType())
1248 if (auto *ST
= dyn_cast
<StructType
>(T
)) {
1249 // If the struct only have one element, we unpack.
1250 unsigned Count
= ST
->getNumElements();
1252 V
= IC
.Builder
.CreateExtractValue(V
, 0);
1253 combineStoreToNewValue(IC
, SI
, V
);
1257 // We don't want to break loads with padding here as we'd loose
1258 // the knowledge that padding exists for the rest of the pipeline.
1259 const DataLayout
&DL
= IC
.getDataLayout();
1260 auto *SL
= DL
.getStructLayout(ST
);
1262 // Don't unpack for structure with scalable vector.
1263 if (SL
->getSizeInBits().isScalable())
1266 if (SL
->hasPadding())
1269 const auto Align
= SI
.getAlign();
1271 SmallString
<16> EltName
= V
->getName();
1273 auto *Addr
= SI
.getPointerOperand();
1274 SmallString
<16> AddrName
= Addr
->getName();
1275 AddrName
+= ".repack";
1277 auto *IdxType
= Type::getInt32Ty(ST
->getContext());
1278 auto *Zero
= ConstantInt::get(IdxType
, 0);
1279 for (unsigned i
= 0; i
< Count
; i
++) {
1280 Value
*Indices
[2] = {
1282 ConstantInt::get(IdxType
, i
),
1285 IC
.Builder
.CreateInBoundsGEP(ST
, Addr
, ArrayRef(Indices
), AddrName
);
1286 auto *Val
= IC
.Builder
.CreateExtractValue(V
, i
, EltName
);
1287 auto EltAlign
= commonAlignment(Align
, SL
->getElementOffset(i
));
1288 llvm::Instruction
*NS
= IC
.Builder
.CreateAlignedStore(Val
, Ptr
, EltAlign
);
1289 NS
->setAAMetadata(SI
.getAAMetadata());
1295 if (auto *AT
= dyn_cast
<ArrayType
>(T
)) {
1296 // If the array only have one element, we unpack.
1297 auto NumElements
= AT
->getNumElements();
1298 if (NumElements
== 1) {
1299 V
= IC
.Builder
.CreateExtractValue(V
, 0);
1300 combineStoreToNewValue(IC
, SI
, V
);
1304 // Bail out if the array is too large. Ideally we would like to optimize
1305 // arrays of arbitrary size but this has a terrible impact on compile time.
1306 // The threshold here is chosen arbitrarily, maybe needs a little bit of
1308 if (NumElements
> IC
.MaxArraySizeForCombine
)
1311 const DataLayout
&DL
= IC
.getDataLayout();
1312 TypeSize EltSize
= DL
.getTypeAllocSize(AT
->getElementType());
1313 const auto Align
= SI
.getAlign();
1315 SmallString
<16> EltName
= V
->getName();
1317 auto *Addr
= SI
.getPointerOperand();
1318 SmallString
<16> AddrName
= Addr
->getName();
1319 AddrName
+= ".repack";
1321 auto *IdxType
= Type::getInt64Ty(T
->getContext());
1322 auto *Zero
= ConstantInt::get(IdxType
, 0);
1324 TypeSize Offset
= TypeSize::get(0, AT
->getElementType()->isScalableTy());
1325 for (uint64_t i
= 0; i
< NumElements
; i
++) {
1326 Value
*Indices
[2] = {
1328 ConstantInt::get(IdxType
, i
),
1331 IC
.Builder
.CreateInBoundsGEP(AT
, Addr
, ArrayRef(Indices
), AddrName
);
1332 auto *Val
= IC
.Builder
.CreateExtractValue(V
, i
, EltName
);
1333 auto EltAlign
= commonAlignment(Align
, Offset
.getKnownMinValue());
1334 Instruction
*NS
= IC
.Builder
.CreateAlignedStore(Val
, Ptr
, EltAlign
);
1335 NS
->setAAMetadata(SI
.getAAMetadata());
1345 /// equivalentAddressValues - Test if A and B will obviously have the same
1346 /// value. This includes recognizing that %t0 and %t1 will have the same
1347 /// value in code like this:
1348 /// %t0 = getelementptr \@a, 0, 3
1349 /// store i32 0, i32* %t0
1350 /// %t1 = getelementptr \@a, 0, 3
1351 /// %t2 = load i32* %t1
1353 static bool equivalentAddressValues(Value
*A
, Value
*B
) {
1354 // Test if the values are trivially equivalent.
1355 if (A
== B
) return true;
1357 // Test if the values come form identical arithmetic instructions.
1358 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1359 // its only used to compare two uses within the same basic block, which
1360 // means that they'll always either have the same value or one of them
1361 // will have an undefined value.
1362 if (isa
<BinaryOperator
>(A
) ||
1365 isa
<GetElementPtrInst
>(A
))
1366 if (Instruction
*BI
= dyn_cast
<Instruction
>(B
))
1367 if (cast
<Instruction
>(A
)->isIdenticalToWhenDefined(BI
))
1370 // Otherwise they may not be equivalent.
1374 Instruction
*InstCombinerImpl::visitStoreInst(StoreInst
&SI
) {
1375 Value
*Val
= SI
.getOperand(0);
1376 Value
*Ptr
= SI
.getOperand(1);
1378 // Try to canonicalize the stored type.
1379 if (combineStoreToValueType(*this, SI
))
1380 return eraseInstFromFunction(SI
);
1382 if (!EnableInferAlignmentPass
) {
1383 // Attempt to improve the alignment.
1384 const Align KnownAlign
= getOrEnforceKnownAlignment(
1385 Ptr
, DL
.getPrefTypeAlign(Val
->getType()), DL
, &SI
, &AC
, &DT
);
1386 if (KnownAlign
> SI
.getAlign())
1387 SI
.setAlignment(KnownAlign
);
1390 // Try to canonicalize the stored type.
1391 if (unpackStoreToAggregate(*this, SI
))
1392 return eraseInstFromFunction(SI
);
1394 // Replace GEP indices if possible.
1395 if (Instruction
*NewGEPI
= replaceGEPIdxWithZero(*this, Ptr
, SI
))
1396 return replaceOperand(SI
, 1, NewGEPI
);
1398 // Don't hack volatile/ordered stores.
1399 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1400 if (!SI
.isUnordered()) return nullptr;
1402 // If the RHS is an alloca with a single use, zapify the store, making the
1404 if (Ptr
->hasOneUse()) {
1405 if (isa
<AllocaInst
>(Ptr
))
1406 return eraseInstFromFunction(SI
);
1407 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
)) {
1408 if (isa
<AllocaInst
>(GEP
->getOperand(0))) {
1409 if (GEP
->getOperand(0)->hasOneUse())
1410 return eraseInstFromFunction(SI
);
1415 // If we have a store to a location which is known constant, we can conclude
1416 // that the store must be storing the constant value (else the memory
1417 // wouldn't be constant), and this must be a noop.
1418 if (!isModSet(AA
->getModRefInfoMask(Ptr
)))
1419 return eraseInstFromFunction(SI
);
1421 // Do really simple DSE, to catch cases where there are several consecutive
1422 // stores to the same location, separated by a few arithmetic operations. This
1423 // situation often occurs with bitfield accesses.
1424 BasicBlock::iterator
BBI(SI
);
1425 for (unsigned ScanInsts
= 6; BBI
!= SI
.getParent()->begin() && ScanInsts
;
1428 // Don't count debug info directives, lest they affect codegen,
1429 // and we skip pointer-to-pointer bitcasts, which are NOPs.
1430 if (BBI
->isDebugOrPseudoInst()) {
1435 if (StoreInst
*PrevSI
= dyn_cast
<StoreInst
>(BBI
)) {
1436 // Prev store isn't volatile, and stores to the same location?
1437 if (PrevSI
->isUnordered() &&
1438 equivalentAddressValues(PrevSI
->getOperand(1), SI
.getOperand(1)) &&
1439 PrevSI
->getValueOperand()->getType() ==
1440 SI
.getValueOperand()->getType()) {
1442 // Manually add back the original store to the worklist now, so it will
1443 // be processed after the operands of the removed store, as this may
1444 // expose additional DSE opportunities.
1446 eraseInstFromFunction(*PrevSI
);
1452 // If this is a load, we have to stop. However, if the loaded value is from
1453 // the pointer we're loading and is producing the pointer we're storing,
1454 // then *this* store is dead (X = load P; store X -> P).
1455 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(BBI
)) {
1456 if (LI
== Val
&& equivalentAddressValues(LI
->getOperand(0), Ptr
)) {
1457 assert(SI
.isUnordered() && "can't eliminate ordering operation");
1458 return eraseInstFromFunction(SI
);
1461 // Otherwise, this is a load from some other location. Stores before it
1466 // Don't skip over loads, throws or things that can modify memory.
1467 if (BBI
->mayWriteToMemory() || BBI
->mayReadFromMemory() || BBI
->mayThrow())
1471 // store X, null -> turns into 'unreachable' in SimplifyCFG
1472 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1473 if (canSimplifyNullStoreOrGEP(SI
)) {
1474 if (!isa
<PoisonValue
>(Val
))
1475 return replaceOperand(SI
, 0, PoisonValue::get(Val
->getType()));
1476 return nullptr; // Do not modify these!
1479 // This is a non-terminator unreachable marker. Don't remove it.
1480 if (isa
<UndefValue
>(Ptr
)) {
1481 // Remove guaranteed-to-transfer instructions before the marker.
1482 if (removeInstructionsBeforeUnreachable(SI
))
1485 // Remove all instructions after the marker and handle dead blocks this
1487 SmallVector
<BasicBlock
*> Worklist
;
1488 handleUnreachableFrom(SI
.getNextNode(), Worklist
);
1489 handlePotentiallyDeadBlocks(Worklist
);
1493 // store undef, Ptr -> noop
1494 // FIXME: This is technically incorrect because it might overwrite a poison
1495 // value. Change to PoisonValue once #52930 is resolved.
1496 if (isa
<UndefValue
>(Val
))
1497 return eraseInstFromFunction(SI
);
1502 /// Try to transform:
1503 /// if () { *P = v1; } else { *P = v2 }
1505 /// *P = v1; if () { *P = v2; }
1506 /// into a phi node with a store in the successor.
1507 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst
&SI
) {
1508 if (!SI
.isUnordered())
1509 return false; // This code has not been audited for volatile/ordered case.
1511 // Check if the successor block has exactly 2 incoming edges.
1512 BasicBlock
*StoreBB
= SI
.getParent();
1513 BasicBlock
*DestBB
= StoreBB
->getTerminator()->getSuccessor(0);
1514 if (!DestBB
->hasNPredecessors(2))
1517 // Capture the other block (the block that doesn't contain our store).
1518 pred_iterator PredIter
= pred_begin(DestBB
);
1519 if (*PredIter
== StoreBB
)
1521 BasicBlock
*OtherBB
= *PredIter
;
1523 // Bail out if all of the relevant blocks aren't distinct. This can happen,
1524 // for example, if SI is in an infinite loop.
1525 if (StoreBB
== DestBB
|| OtherBB
== DestBB
)
1528 // Verify that the other block ends in a branch and is not otherwise empty.
1529 BasicBlock::iterator
BBI(OtherBB
->getTerminator());
1530 BranchInst
*OtherBr
= dyn_cast
<BranchInst
>(BBI
);
1531 if (!OtherBr
|| BBI
== OtherBB
->begin())
1534 auto OtherStoreIsMergeable
= [&](StoreInst
*OtherStore
) -> bool {
1536 OtherStore
->getPointerOperand() != SI
.getPointerOperand())
1539 auto *SIVTy
= SI
.getValueOperand()->getType();
1540 auto *OSVTy
= OtherStore
->getValueOperand()->getType();
1541 return CastInst::isBitOrNoopPointerCastable(OSVTy
, SIVTy
, DL
) &&
1542 SI
.hasSameSpecialState(OtherStore
);
1545 // If the other block ends in an unconditional branch, check for the 'if then
1546 // else' case. There is an instruction before the branch.
1547 StoreInst
*OtherStore
= nullptr;
1548 if (OtherBr
->isUnconditional()) {
1550 // Skip over debugging info and pseudo probes.
1551 while (BBI
->isDebugOrPseudoInst()) {
1552 if (BBI
==OtherBB
->begin())
1556 // If this isn't a store, isn't a store to the same location, or is not the
1557 // right kind of store, bail out.
1558 OtherStore
= dyn_cast
<StoreInst
>(BBI
);
1559 if (!OtherStoreIsMergeable(OtherStore
))
1562 // Otherwise, the other block ended with a conditional branch. If one of the
1563 // destinations is StoreBB, then we have the if/then case.
1564 if (OtherBr
->getSuccessor(0) != StoreBB
&&
1565 OtherBr
->getSuccessor(1) != StoreBB
)
1568 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1569 // if/then triangle. See if there is a store to the same ptr as SI that
1570 // lives in OtherBB.
1572 // Check to see if we find the matching store.
1573 OtherStore
= dyn_cast
<StoreInst
>(BBI
);
1574 if (OtherStoreIsMergeable(OtherStore
))
1577 // If we find something that may be using or overwriting the stored
1578 // value, or if we run out of instructions, we can't do the transform.
1579 if (BBI
->mayReadFromMemory() || BBI
->mayThrow() ||
1580 BBI
->mayWriteToMemory() || BBI
== OtherBB
->begin())
1584 // In order to eliminate the store in OtherBr, we have to make sure nothing
1585 // reads or overwrites the stored value in StoreBB.
1586 for (BasicBlock::iterator I
= StoreBB
->begin(); &*I
!= &SI
; ++I
) {
1587 // FIXME: This should really be AA driven.
1588 if (I
->mayReadFromMemory() || I
->mayThrow() || I
->mayWriteToMemory())
1593 // Insert a PHI node now if we need it.
1594 Value
*MergedVal
= OtherStore
->getValueOperand();
1595 // The debug locations of the original instructions might differ. Merge them.
1596 DebugLoc MergedLoc
= DILocation::getMergedLocation(SI
.getDebugLoc(),
1597 OtherStore
->getDebugLoc());
1598 if (MergedVal
!= SI
.getValueOperand()) {
1600 PHINode::Create(SI
.getValueOperand()->getType(), 2, "storemerge");
1601 PN
->addIncoming(SI
.getValueOperand(), SI
.getParent());
1602 Builder
.SetInsertPoint(OtherStore
);
1603 PN
->addIncoming(Builder
.CreateBitOrPointerCast(MergedVal
, PN
->getType()),
1605 MergedVal
= InsertNewInstBefore(PN
, DestBB
->begin());
1606 PN
->setDebugLoc(MergedLoc
);
1609 // Advance to a place where it is safe to insert the new store and insert it.
1610 BBI
= DestBB
->getFirstInsertionPt();
1612 new StoreInst(MergedVal
, SI
.getOperand(1), SI
.isVolatile(), SI
.getAlign(),
1613 SI
.getOrdering(), SI
.getSyncScopeID());
1614 InsertNewInstBefore(NewSI
, BBI
);
1615 NewSI
->setDebugLoc(MergedLoc
);
1616 NewSI
->mergeDIAssignID({&SI
, OtherStore
});
1618 // If the two stores had AA tags, merge them.
1619 AAMDNodes AATags
= SI
.getAAMetadata();
1621 NewSI
->setAAMetadata(AATags
.merge(OtherStore
->getAAMetadata()));
1623 // Nuke the old stores.
1624 eraseInstFromFunction(SI
);
1625 eraseInstFromFunction(*OtherStore
);