Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Transforms / Vectorize / LoopVectorizationPlanner.h
blob577ce8000de27b987c9b3c527392e8b42c390a29
1 //===- LoopVectorizationPlanner.h - Planner for LoopVectorization ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file provides a LoopVectorizationPlanner class.
11 /// InnerLoopVectorizer vectorizes loops which contain only one basic
12 /// LoopVectorizationPlanner - drives the vectorization process after having
13 /// passed Legality checks.
14 /// The planner builds and optimizes the Vectorization Plans which record the
15 /// decisions how to vectorize the given loop. In particular, represent the
16 /// control-flow of the vectorized version, the replication of instructions that
17 /// are to be scalarized, and interleave access groups.
18 ///
19 /// Also provides a VPlan-based builder utility analogous to IRBuilder.
20 /// It provides an instruction-level API for generating VPInstructions while
21 /// abstracting away the Recipe manipulation details.
22 //===----------------------------------------------------------------------===//
24 #ifndef LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
25 #define LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H
27 #include "VPlan.h"
28 #include "llvm/ADT/SmallSet.h"
29 #include "llvm/Support/InstructionCost.h"
31 namespace llvm {
33 class LoopInfo;
34 class DominatorTree;
35 class LoopVectorizationLegality;
36 class LoopVectorizationCostModel;
37 class PredicatedScalarEvolution;
38 class LoopVectorizeHints;
39 class OptimizationRemarkEmitter;
40 class TargetTransformInfo;
41 class TargetLibraryInfo;
42 class VPRecipeBuilder;
44 /// VPlan-based builder utility analogous to IRBuilder.
45 class VPBuilder {
46 VPBasicBlock *BB = nullptr;
47 VPBasicBlock::iterator InsertPt = VPBasicBlock::iterator();
49 /// Insert \p VPI in BB at InsertPt if BB is set.
50 VPInstruction *tryInsertInstruction(VPInstruction *VPI) {
51 if (BB)
52 BB->insert(VPI, InsertPt);
53 return VPI;
56 VPInstruction *createInstruction(unsigned Opcode,
57 ArrayRef<VPValue *> Operands, DebugLoc DL,
58 const Twine &Name = "") {
59 return tryInsertInstruction(new VPInstruction(Opcode, Operands, DL, Name));
62 VPInstruction *createInstruction(unsigned Opcode,
63 std::initializer_list<VPValue *> Operands,
64 DebugLoc DL, const Twine &Name = "") {
65 return createInstruction(Opcode, ArrayRef<VPValue *>(Operands), DL, Name);
68 public:
69 VPBuilder() = default;
70 VPBuilder(VPBasicBlock *InsertBB) { setInsertPoint(InsertBB); }
72 /// Clear the insertion point: created instructions will not be inserted into
73 /// a block.
74 void clearInsertionPoint() {
75 BB = nullptr;
76 InsertPt = VPBasicBlock::iterator();
79 VPBasicBlock *getInsertBlock() const { return BB; }
80 VPBasicBlock::iterator getInsertPoint() const { return InsertPt; }
82 /// InsertPoint - A saved insertion point.
83 class VPInsertPoint {
84 VPBasicBlock *Block = nullptr;
85 VPBasicBlock::iterator Point;
87 public:
88 /// Creates a new insertion point which doesn't point to anything.
89 VPInsertPoint() = default;
91 /// Creates a new insertion point at the given location.
92 VPInsertPoint(VPBasicBlock *InsertBlock, VPBasicBlock::iterator InsertPoint)
93 : Block(InsertBlock), Point(InsertPoint) {}
95 /// Returns true if this insert point is set.
96 bool isSet() const { return Block != nullptr; }
98 VPBasicBlock *getBlock() const { return Block; }
99 VPBasicBlock::iterator getPoint() const { return Point; }
102 /// Sets the current insert point to a previously-saved location.
103 void restoreIP(VPInsertPoint IP) {
104 if (IP.isSet())
105 setInsertPoint(IP.getBlock(), IP.getPoint());
106 else
107 clearInsertionPoint();
110 /// This specifies that created VPInstructions should be appended to the end
111 /// of the specified block.
112 void setInsertPoint(VPBasicBlock *TheBB) {
113 assert(TheBB && "Attempting to set a null insert point");
114 BB = TheBB;
115 InsertPt = BB->end();
118 /// This specifies that created instructions should be inserted at the
119 /// specified point.
120 void setInsertPoint(VPBasicBlock *TheBB, VPBasicBlock::iterator IP) {
121 BB = TheBB;
122 InsertPt = IP;
125 /// This specifies that created instructions should be inserted at the
126 /// specified point.
127 void setInsertPoint(VPRecipeBase *IP) {
128 BB = IP->getParent();
129 InsertPt = IP->getIterator();
132 /// Create an N-ary operation with \p Opcode, \p Operands and set \p Inst as
133 /// its underlying Instruction.
134 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
135 Instruction *Inst = nullptr, const Twine &Name = "") {
136 DebugLoc DL;
137 if (Inst)
138 DL = Inst->getDebugLoc();
139 VPInstruction *NewVPInst = createInstruction(Opcode, Operands, DL, Name);
140 NewVPInst->setUnderlyingValue(Inst);
141 return NewVPInst;
143 VPValue *createNaryOp(unsigned Opcode, ArrayRef<VPValue *> Operands,
144 DebugLoc DL, const Twine &Name = "") {
145 return createInstruction(Opcode, Operands, DL, Name);
148 VPInstruction *createOverflowingOp(unsigned Opcode,
149 std::initializer_list<VPValue *> Operands,
150 VPRecipeWithIRFlags::WrapFlagsTy WrapFlags,
151 DebugLoc DL, const Twine &Name = "") {
152 return tryInsertInstruction(
153 new VPInstruction(Opcode, Operands, WrapFlags, DL, Name));
155 VPValue *createNot(VPValue *Operand, DebugLoc DL, const Twine &Name = "") {
156 return createInstruction(VPInstruction::Not, {Operand}, DL, Name);
159 VPValue *createAnd(VPValue *LHS, VPValue *RHS, DebugLoc DL,
160 const Twine &Name = "") {
161 return createInstruction(Instruction::BinaryOps::And, {LHS, RHS}, DL, Name);
164 VPValue *createOr(VPValue *LHS, VPValue *RHS, DebugLoc DL,
165 const Twine &Name = "") {
166 return createInstruction(Instruction::BinaryOps::Or, {LHS, RHS}, DL, Name);
169 VPValue *createSelect(VPValue *Cond, VPValue *TrueVal, VPValue *FalseVal,
170 DebugLoc DL, const Twine &Name = "") {
171 return createNaryOp(Instruction::Select, {Cond, TrueVal, FalseVal}, DL,
172 Name);
175 /// Create a new ICmp VPInstruction with predicate \p Pred and operands \p A
176 /// and \p B.
177 /// TODO: add createFCmp when needed.
178 VPValue *createICmp(CmpInst::Predicate Pred, VPValue *A, VPValue *B,
179 DebugLoc DL = {}, const Twine &Name = "");
181 //===--------------------------------------------------------------------===//
182 // RAII helpers.
183 //===--------------------------------------------------------------------===//
185 /// RAII object that stores the current insertion point and restores it when
186 /// the object is destroyed.
187 class InsertPointGuard {
188 VPBuilder &Builder;
189 VPBasicBlock *Block;
190 VPBasicBlock::iterator Point;
192 public:
193 InsertPointGuard(VPBuilder &B)
194 : Builder(B), Block(B.getInsertBlock()), Point(B.getInsertPoint()) {}
196 InsertPointGuard(const InsertPointGuard &) = delete;
197 InsertPointGuard &operator=(const InsertPointGuard &) = delete;
199 ~InsertPointGuard() { Builder.restoreIP(VPInsertPoint(Block, Point)); }
203 /// TODO: The following VectorizationFactor was pulled out of
204 /// LoopVectorizationCostModel class. LV also deals with
205 /// VectorizerParams::VectorizationFactor and VectorizationCostTy.
206 /// We need to streamline them.
208 /// Information about vectorization costs.
209 struct VectorizationFactor {
210 /// Vector width with best cost.
211 ElementCount Width;
213 /// Cost of the loop with that width.
214 InstructionCost Cost;
216 /// Cost of the scalar loop.
217 InstructionCost ScalarCost;
219 /// The minimum trip count required to make vectorization profitable, e.g. due
220 /// to runtime checks.
221 ElementCount MinProfitableTripCount;
223 VectorizationFactor(ElementCount Width, InstructionCost Cost,
224 InstructionCost ScalarCost)
225 : Width(Width), Cost(Cost), ScalarCost(ScalarCost) {}
227 /// Width 1 means no vectorization, cost 0 means uncomputed cost.
228 static VectorizationFactor Disabled() {
229 return {ElementCount::getFixed(1), 0, 0};
232 bool operator==(const VectorizationFactor &rhs) const {
233 return Width == rhs.Width && Cost == rhs.Cost;
236 bool operator!=(const VectorizationFactor &rhs) const {
237 return !(*this == rhs);
241 /// ElementCountComparator creates a total ordering for ElementCount
242 /// for the purposes of using it in a set structure.
243 struct ElementCountComparator {
244 bool operator()(const ElementCount &LHS, const ElementCount &RHS) const {
245 return std::make_tuple(LHS.isScalable(), LHS.getKnownMinValue()) <
246 std::make_tuple(RHS.isScalable(), RHS.getKnownMinValue());
249 using ElementCountSet = SmallSet<ElementCount, 16, ElementCountComparator>;
251 /// A class that represents two vectorization factors (initialized with 0 by
252 /// default). One for fixed-width vectorization and one for scalable
253 /// vectorization. This can be used by the vectorizer to choose from a range of
254 /// fixed and/or scalable VFs in order to find the most cost-effective VF to
255 /// vectorize with.
256 struct FixedScalableVFPair {
257 ElementCount FixedVF;
258 ElementCount ScalableVF;
260 FixedScalableVFPair()
261 : FixedVF(ElementCount::getFixed(0)),
262 ScalableVF(ElementCount::getScalable(0)) {}
263 FixedScalableVFPair(const ElementCount &Max) : FixedScalableVFPair() {
264 *(Max.isScalable() ? &ScalableVF : &FixedVF) = Max;
266 FixedScalableVFPair(const ElementCount &FixedVF,
267 const ElementCount &ScalableVF)
268 : FixedVF(FixedVF), ScalableVF(ScalableVF) {
269 assert(!FixedVF.isScalable() && ScalableVF.isScalable() &&
270 "Invalid scalable properties");
273 static FixedScalableVFPair getNone() { return FixedScalableVFPair(); }
275 /// \return true if either fixed- or scalable VF is non-zero.
276 explicit operator bool() const { return FixedVF || ScalableVF; }
278 /// \return true if either fixed- or scalable VF is a valid vector VF.
279 bool hasVector() const { return FixedVF.isVector() || ScalableVF.isVector(); }
282 /// Planner drives the vectorization process after having passed
283 /// Legality checks.
284 class LoopVectorizationPlanner {
285 /// The loop that we evaluate.
286 Loop *OrigLoop;
288 /// Loop Info analysis.
289 LoopInfo *LI;
291 /// The dominator tree.
292 DominatorTree *DT;
294 /// Target Library Info.
295 const TargetLibraryInfo *TLI;
297 /// Target Transform Info.
298 const TargetTransformInfo &TTI;
300 /// The legality analysis.
301 LoopVectorizationLegality *Legal;
303 /// The profitability analysis.
304 LoopVectorizationCostModel &CM;
306 /// The interleaved access analysis.
307 InterleavedAccessInfo &IAI;
309 PredicatedScalarEvolution &PSE;
311 const LoopVectorizeHints &Hints;
313 OptimizationRemarkEmitter *ORE;
315 SmallVector<VPlanPtr, 4> VPlans;
317 /// Profitable vector factors.
318 SmallVector<VectorizationFactor, 8> ProfitableVFs;
320 /// A builder used to construct the current plan.
321 VPBuilder Builder;
323 public:
324 LoopVectorizationPlanner(
325 Loop *L, LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
326 const TargetTransformInfo &TTI, LoopVectorizationLegality *Legal,
327 LoopVectorizationCostModel &CM, InterleavedAccessInfo &IAI,
328 PredicatedScalarEvolution &PSE, const LoopVectorizeHints &Hints,
329 OptimizationRemarkEmitter *ORE)
330 : OrigLoop(L), LI(LI), DT(DT), TLI(TLI), TTI(TTI), Legal(Legal), CM(CM),
331 IAI(IAI), PSE(PSE), Hints(Hints), ORE(ORE) {}
333 /// Plan how to best vectorize, return the best VF and its cost, or
334 /// std::nullopt if vectorization and interleaving should be avoided up front.
335 std::optional<VectorizationFactor> plan(ElementCount UserVF, unsigned UserIC);
337 /// Use the VPlan-native path to plan how to best vectorize, return the best
338 /// VF and its cost.
339 VectorizationFactor planInVPlanNativePath(ElementCount UserVF);
341 /// Return the best VPlan for \p VF.
342 VPlan &getBestPlanFor(ElementCount VF) const;
344 /// Generate the IR code for the body of the vectorized loop according to the
345 /// best selected \p VF, \p UF and VPlan \p BestPlan.
346 /// TODO: \p IsEpilogueVectorization is needed to avoid issues due to epilogue
347 /// vectorization re-using plans for both the main and epilogue vector loops.
348 /// It should be removed once the re-use issue has been fixed.
349 /// \p ExpandedSCEVs is passed during execution of the plan for epilogue loop
350 /// to re-use expansion results generated during main plan execution. Returns
351 /// a mapping of SCEVs to their expanded IR values. Note that this is a
352 /// temporary workaround needed due to the current epilogue handling.
353 DenseMap<const SCEV *, Value *>
354 executePlan(ElementCount VF, unsigned UF, VPlan &BestPlan,
355 InnerLoopVectorizer &LB, DominatorTree *DT,
356 bool IsEpilogueVectorization,
357 const DenseMap<const SCEV *, Value *> *ExpandedSCEVs = nullptr);
359 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
360 void printPlans(raw_ostream &O);
361 #endif
363 /// Look through the existing plans and return true if we have one with
364 /// vectorization factor \p VF.
365 bool hasPlanWithVF(ElementCount VF) const {
366 return any_of(VPlans,
367 [&](const VPlanPtr &Plan) { return Plan->hasVF(VF); });
370 /// Test a \p Predicate on a \p Range of VF's. Return the value of applying
371 /// \p Predicate on Range.Start, possibly decreasing Range.End such that the
372 /// returned value holds for the entire \p Range.
373 static bool
374 getDecisionAndClampRange(const std::function<bool(ElementCount)> &Predicate,
375 VFRange &Range);
377 /// \return The most profitable vectorization factor and the cost of that VF
378 /// for vectorizing the epilogue. Returns VectorizationFactor::Disabled if
379 /// epilogue vectorization is not supported for the loop.
380 VectorizationFactor
381 selectEpilogueVectorizationFactor(const ElementCount MaxVF, unsigned IC);
383 protected:
384 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
385 /// according to the information gathered by Legal when it checked if it is
386 /// legal to vectorize the loop.
387 void buildVPlans(ElementCount MinVF, ElementCount MaxVF);
389 private:
390 /// Build a VPlan according to the information gathered by Legal. \return a
391 /// VPlan for vectorization factors \p Range.Start and up to \p Range.End
392 /// exclusive, possibly decreasing \p Range.End.
393 VPlanPtr buildVPlan(VFRange &Range);
395 /// Build a VPlan using VPRecipes according to the information gather by
396 /// Legal. This method is only used for the legacy inner loop vectorizer.
397 /// \p Range's largest included VF is restricted to the maximum VF the
398 /// returned VPlan is valid for. If no VPlan can be built for the input range,
399 /// set the largest included VF to the maximum VF for which no plan could be
400 /// built.
401 VPlanPtr tryToBuildVPlanWithVPRecipes(VFRange &Range);
403 /// Build VPlans for power-of-2 VF's between \p MinVF and \p MaxVF inclusive,
404 /// according to the information gathered by Legal when it checked if it is
405 /// legal to vectorize the loop. This method creates VPlans using VPRecipes.
406 void buildVPlansWithVPRecipes(ElementCount MinVF, ElementCount MaxVF);
408 // Adjust the recipes for reductions. For in-loop reductions the chain of
409 // instructions leading from the loop exit instr to the phi need to be
410 // converted to reductions, with one operand being vector and the other being
411 // the scalar reduction chain. For other reductions, a select is introduced
412 // between the phi and live-out recipes when folding the tail.
413 void adjustRecipesForReductions(VPBasicBlock *LatchVPBB, VPlanPtr &Plan,
414 VPRecipeBuilder &RecipeBuilder,
415 ElementCount MinVF);
417 /// \return The most profitable vectorization factor and the cost of that VF.
418 /// This method checks every VF in \p CandidateVFs.
419 VectorizationFactor
420 selectVectorizationFactor(const ElementCountSet &CandidateVFs);
422 /// Returns true if the per-lane cost of VectorizationFactor A is lower than
423 /// that of B.
424 bool isMoreProfitable(const VectorizationFactor &A,
425 const VectorizationFactor &B) const;
427 /// Determines if we have the infrastructure to vectorize the loop and its
428 /// epilogue, assuming the main loop is vectorized by \p VF.
429 bool isCandidateForEpilogueVectorization(const ElementCount VF) const;
432 } // namespace llvm
434 #endif // LLVM_TRANSFORMS_VECTORIZE_LOOPVECTORIZATIONPLANNER_H