Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Transforms / Vectorize / VPlanHCFGBuilder.cpp
bloba49332f39ceebefb40e15362ecafb20be32b0838
1 //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the construction of a VPlan-based Hierarchical CFG
11 /// (H-CFG) for an incoming IR. This construction comprises the following
12 /// components and steps:
14 /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that
15 /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top
16 /// Region) is created to enclose and serve as parent of all the VPBasicBlocks
17 /// in the plain CFG.
18 /// NOTE: At this point, there is a direct correspondence between all the
19 /// VPBasicBlocks created for the initial plain CFG and the incoming
20 /// BasicBlocks. However, this might change in the future.
21 ///
22 //===----------------------------------------------------------------------===//
24 #include "VPlanHCFGBuilder.h"
25 #include "LoopVectorizationPlanner.h"
26 #include "llvm/Analysis/LoopIterator.h"
28 #define DEBUG_TYPE "loop-vectorize"
30 using namespace llvm;
32 namespace {
33 // Class that is used to build the plain CFG for the incoming IR.
34 class PlainCFGBuilder {
35 private:
36 // The outermost loop of the input loop nest considered for vectorization.
37 Loop *TheLoop;
39 // Loop Info analysis.
40 LoopInfo *LI;
42 // Vectorization plan that we are working on.
43 VPlan &Plan;
45 // Builder of the VPlan instruction-level representation.
46 VPBuilder VPIRBuilder;
48 // NOTE: The following maps are intentionally destroyed after the plain CFG
49 // construction because subsequent VPlan-to-VPlan transformation may
50 // invalidate them.
51 // Map incoming BasicBlocks to their newly-created VPBasicBlocks.
52 DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB;
53 // Map incoming Value definitions to their newly-created VPValues.
54 DenseMap<Value *, VPValue *> IRDef2VPValue;
56 // Hold phi node's that need to be fixed once the plain CFG has been built.
57 SmallVector<PHINode *, 8> PhisToFix;
59 /// Maps loops in the original IR to their corresponding region.
60 DenseMap<Loop *, VPRegionBlock *> Loop2Region;
62 // Utility functions.
63 void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB);
64 void setRegionPredsFromBB(VPRegionBlock *VPBB, BasicBlock *BB);
65 void fixPhiNodes();
66 VPBasicBlock *getOrCreateVPBB(BasicBlock *BB);
67 #ifndef NDEBUG
68 bool isExternalDef(Value *Val);
69 #endif
70 VPValue *getOrCreateVPOperand(Value *IRVal);
71 void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB);
73 public:
74 PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P)
75 : TheLoop(Lp), LI(LI), Plan(P) {}
77 /// Build plain CFG for TheLoop and connects it to Plan's entry.
78 void buildPlainCFG();
80 } // anonymous namespace
82 // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB
83 // must have no predecessors.
84 void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) {
85 auto GetLatchOfExit = [this](BasicBlock *BB) -> BasicBlock * {
86 auto *SinglePred = BB->getSinglePredecessor();
87 Loop *LoopForBB = LI->getLoopFor(BB);
88 if (!SinglePred || LI->getLoopFor(SinglePred) == LoopForBB)
89 return nullptr;
90 // The input IR must be in loop-simplify form, ensuring a single predecessor
91 // for exit blocks.
92 assert(SinglePred == LI->getLoopFor(SinglePred)->getLoopLatch() &&
93 "SinglePred must be the only loop latch");
94 return SinglePred;
96 if (auto *LatchBB = GetLatchOfExit(BB)) {
97 auto *PredRegion = getOrCreateVPBB(LatchBB)->getParent();
98 assert(VPBB == cast<VPBasicBlock>(PredRegion->getSingleSuccessor()) &&
99 "successor must already be set for PredRegion; it must have VPBB "
100 "as single successor");
101 VPBB->setPredecessors({PredRegion});
102 return;
104 // Collect VPBB predecessors.
105 SmallVector<VPBlockBase *, 2> VPBBPreds;
106 for (BasicBlock *Pred : predecessors(BB))
107 VPBBPreds.push_back(getOrCreateVPBB(Pred));
108 VPBB->setPredecessors(VPBBPreds);
111 static bool isHeaderBB(BasicBlock *BB, Loop *L) {
112 return L && BB == L->getHeader();
115 void PlainCFGBuilder::setRegionPredsFromBB(VPRegionBlock *Region,
116 BasicBlock *BB) {
117 // BB is a loop header block. Connect the region to the loop preheader.
118 Loop *LoopOfBB = LI->getLoopFor(BB);
119 Region->setPredecessors({getOrCreateVPBB(LoopOfBB->getLoopPredecessor())});
122 // Add operands to VPInstructions representing phi nodes from the input IR.
123 void PlainCFGBuilder::fixPhiNodes() {
124 for (auto *Phi : PhisToFix) {
125 assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode.");
126 VPValue *VPVal = IRDef2VPValue[Phi];
127 assert(isa<VPWidenPHIRecipe>(VPVal) &&
128 "Expected WidenPHIRecipe for phi node.");
129 auto *VPPhi = cast<VPWidenPHIRecipe>(VPVal);
130 assert(VPPhi->getNumOperands() == 0 &&
131 "Expected VPInstruction with no operands.");
133 Loop *L = LI->getLoopFor(Phi->getParent());
134 if (isHeaderBB(Phi->getParent(), L)) {
135 // For header phis, make sure the incoming value from the loop
136 // predecessor is the first operand of the recipe.
137 assert(Phi->getNumOperands() == 2);
138 BasicBlock *LoopPred = L->getLoopPredecessor();
139 VPPhi->addIncoming(
140 getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopPred)),
141 BB2VPBB[LoopPred]);
142 BasicBlock *LoopLatch = L->getLoopLatch();
143 VPPhi->addIncoming(
144 getOrCreateVPOperand(Phi->getIncomingValueForBlock(LoopLatch)),
145 BB2VPBB[LoopLatch]);
146 continue;
149 for (unsigned I = 0; I != Phi->getNumOperands(); ++I)
150 VPPhi->addIncoming(getOrCreateVPOperand(Phi->getIncomingValue(I)),
151 BB2VPBB[Phi->getIncomingBlock(I)]);
155 static bool isHeaderVPBB(VPBasicBlock *VPBB) {
156 return VPBB->getParent() && VPBB->getParent()->getEntry() == VPBB;
159 // Create a new empty VPBasicBlock for an incoming BasicBlock in the region
160 // corresponding to the containing loop or retrieve an existing one if it was
161 // already created. If no region exists yet for the loop containing \p BB, a new
162 // one is created.
163 VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) {
164 if (auto *VPBB = BB2VPBB.lookup(BB)) {
165 // Retrieve existing VPBB.
166 return VPBB;
169 // Create new VPBB.
170 LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n");
171 VPBasicBlock *VPBB = new VPBasicBlock(BB->getName());
172 BB2VPBB[BB] = VPBB;
174 // Get or create a region for the loop containing BB.
175 Loop *LoopOfBB = LI->getLoopFor(BB);
176 if (!LoopOfBB)
177 return VPBB;
179 VPRegionBlock *RegionOfBB = Loop2Region.lookup(LoopOfBB);
180 assert((RegionOfBB != nullptr) ^ isHeaderBB(BB, LoopOfBB) &&
181 "region must exist or BB must be a loop header");
182 if (RegionOfBB) {
183 VPBB->setParent(RegionOfBB);
184 } else {
185 // If BB's loop is nested inside another loop within VPlan's scope, the
186 // header of that enclosing loop was already visited and its region
187 // constructed and recorded in Loop2Region. That region is now set as the
188 // parent of VPBB's region. Otherwise it is set to null.
189 auto *RegionOfVPBB = new VPRegionBlock(
190 LoopOfBB->getHeader()->getName().str(), false /*isReplicator*/);
191 RegionOfVPBB->setParent(Loop2Region[LoopOfBB->getParentLoop()]);
192 RegionOfVPBB->setEntry(VPBB);
193 Loop2Region[LoopOfBB] = RegionOfVPBB;
195 return VPBB;
198 #ifndef NDEBUG
199 // Return true if \p Val is considered an external definition. An external
200 // definition is either:
201 // 1. A Value that is not an Instruction. This will be refined in the future.
202 // 2. An Instruction that is outside of the CFG snippet represented in VPlan,
203 // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c)
204 // outermost loop exits.
205 bool PlainCFGBuilder::isExternalDef(Value *Val) {
206 // All the Values that are not Instructions are considered external
207 // definitions for now.
208 Instruction *Inst = dyn_cast<Instruction>(Val);
209 if (!Inst)
210 return true;
212 BasicBlock *InstParent = Inst->getParent();
213 assert(InstParent && "Expected instruction parent.");
215 // Check whether Instruction definition is in loop PH.
216 BasicBlock *PH = TheLoop->getLoopPreheader();
217 assert(PH && "Expected loop pre-header.");
219 if (InstParent == PH)
220 // Instruction definition is in outermost loop PH.
221 return false;
223 // Check whether Instruction definition is in the loop exit.
224 BasicBlock *Exit = TheLoop->getUniqueExitBlock();
225 assert(Exit && "Expected loop with single exit.");
226 if (InstParent == Exit) {
227 // Instruction definition is in outermost loop exit.
228 return false;
231 // Check whether Instruction definition is in loop body.
232 return !TheLoop->contains(Inst);
234 #endif
236 // Create a new VPValue or retrieve an existing one for the Instruction's
237 // operand \p IRVal. This function must only be used to create/retrieve VPValues
238 // for *Instruction's operands* and not to create regular VPInstruction's. For
239 // the latter, please, look at 'createVPInstructionsForVPBB'.
240 VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) {
241 auto VPValIt = IRDef2VPValue.find(IRVal);
242 if (VPValIt != IRDef2VPValue.end())
243 // Operand has an associated VPInstruction or VPValue that was previously
244 // created.
245 return VPValIt->second;
247 // Operand doesn't have a previously created VPInstruction/VPValue. This
248 // means that operand is:
249 // A) a definition external to VPlan,
250 // B) any other Value without specific representation in VPlan.
251 // For now, we use VPValue to represent A and B and classify both as external
252 // definitions. We may introduce specific VPValue subclasses for them in the
253 // future.
254 assert(isExternalDef(IRVal) && "Expected external definition as operand.");
256 // A and B: Create VPValue and add it to the pool of external definitions and
257 // to the Value->VPValue map.
258 VPValue *NewVPVal = Plan.getVPValueOrAddLiveIn(IRVal);
259 IRDef2VPValue[IRVal] = NewVPVal;
260 return NewVPVal;
263 // Create new VPInstructions in a VPBasicBlock, given its BasicBlock
264 // counterpart. This function must be invoked in RPO so that the operands of a
265 // VPInstruction in \p BB have been visited before (except for Phi nodes).
266 void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB,
267 BasicBlock *BB) {
268 VPIRBuilder.setInsertPoint(VPBB);
269 for (Instruction &InstRef : *BB) {
270 Instruction *Inst = &InstRef;
272 // There shouldn't be any VPValue for Inst at this point. Otherwise, we
273 // visited Inst when we shouldn't, breaking the RPO traversal order.
274 assert(!IRDef2VPValue.count(Inst) &&
275 "Instruction shouldn't have been visited.");
277 if (auto *Br = dyn_cast<BranchInst>(Inst)) {
278 // Conditional branch instruction are represented using BranchOnCond
279 // recipes.
280 if (Br->isConditional()) {
281 VPValue *Cond = getOrCreateVPOperand(Br->getCondition());
282 VPBB->appendRecipe(
283 new VPInstruction(VPInstruction::BranchOnCond, {Cond}));
286 // Skip the rest of the Instruction processing for Branch instructions.
287 continue;
290 VPValue *NewVPV;
291 if (auto *Phi = dyn_cast<PHINode>(Inst)) {
292 // Phi node's operands may have not been visited at this point. We create
293 // an empty VPInstruction that we will fix once the whole plain CFG has
294 // been built.
295 NewVPV = new VPWidenPHIRecipe(Phi);
296 VPBB->appendRecipe(cast<VPWidenPHIRecipe>(NewVPV));
297 PhisToFix.push_back(Phi);
298 } else {
299 // Translate LLVM-IR operands into VPValue operands and set them in the
300 // new VPInstruction.
301 SmallVector<VPValue *, 4> VPOperands;
302 for (Value *Op : Inst->operands())
303 VPOperands.push_back(getOrCreateVPOperand(Op));
305 // Build VPInstruction for any arbitrary Instruction without specific
306 // representation in VPlan.
307 NewVPV = cast<VPInstruction>(
308 VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst));
311 IRDef2VPValue[Inst] = NewVPV;
315 // Main interface to build the plain CFG.
316 void PlainCFGBuilder::buildPlainCFG() {
317 // 1. Scan the body of the loop in a topological order to visit each basic
318 // block after having visited its predecessor basic blocks. Create a VPBB for
319 // each BB and link it to its successor and predecessor VPBBs. Note that
320 // predecessors must be set in the same order as they are in the incomming IR.
321 // Otherwise, there might be problems with existing phi nodes and algorithm
322 // based on predecessors traversal.
324 // Loop PH needs to be explicitly visited since it's not taken into account by
325 // LoopBlocksDFS.
326 BasicBlock *ThePreheaderBB = TheLoop->getLoopPreheader();
327 assert((ThePreheaderBB->getTerminator()->getNumSuccessors() == 1) &&
328 "Unexpected loop preheader");
329 // buildPlainCFG needs to be called after createInitialVPlan, which creates
330 // the initial skeleton (including the preheader VPBB). buildPlainCFG builds
331 // the CFG for the loop nest and hooks it up to the initial skeleton.
332 VPBasicBlock *ThePreheaderVPBB = Plan.getEntry();
333 BB2VPBB[ThePreheaderBB] = ThePreheaderVPBB;
334 ThePreheaderVPBB->setName("vector.ph");
335 for (auto &I : *ThePreheaderBB) {
336 if (I.getType()->isVoidTy())
337 continue;
338 IRDef2VPValue[&I] = Plan.getVPValueOrAddLiveIn(&I);
340 // Create region (and header block) for the outer loop, so that we can link
341 // PH->Region.
342 VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader());
343 HeaderVPBB->setName("vector.body");
344 ThePreheaderVPBB->setOneSuccessor(HeaderVPBB->getParent());
346 LoopBlocksRPO RPO(TheLoop);
347 RPO.perform(LI);
349 for (BasicBlock *BB : RPO) {
350 // Create or retrieve the VPBasicBlock for this BB and create its
351 // VPInstructions.
352 VPBasicBlock *VPBB = getOrCreateVPBB(BB);
353 VPRegionBlock *Region = VPBB->getParent();
354 createVPInstructionsForVPBB(VPBB, BB);
355 Loop *LoopForBB = LI->getLoopFor(BB);
356 // Set VPBB predecessors in the same order as they are in the incoming BB.
357 if (!isHeaderBB(BB, LoopForBB))
358 setVPBBPredsFromBB(VPBB, BB);
359 else {
360 // BB is a loop header, set the predecessor for the region.
361 assert(isHeaderVPBB(VPBB) && "isHeaderBB and isHeaderVPBB disagree");
362 setRegionPredsFromBB(Region, BB);
365 // Set VPBB successors. We create empty VPBBs for successors if they don't
366 // exist already. Recipes will be created when the successor is visited
367 // during the RPO traversal.
368 auto *BI = cast<BranchInst>(BB->getTerminator());
369 unsigned NumSuccs = succ_size(BB);
370 if (NumSuccs == 1) {
371 auto *Successor = getOrCreateVPBB(BB->getSingleSuccessor());
372 VPBB->setOneSuccessor(isHeaderVPBB(Successor)
373 ? Successor->getParent()
374 : static_cast<VPBlockBase *>(Successor));
375 continue;
377 assert(BI->isConditional() && NumSuccs == 2 && BI->isConditional() &&
378 "block must have conditional branch with 2 successors");
379 // Look up the branch condition to get the corresponding VPValue
380 // representing the condition bit in VPlan (which may be in another VPBB).
381 assert(IRDef2VPValue.contains(BI->getCondition()) &&
382 "Missing condition bit in IRDef2VPValue!");
383 VPBasicBlock *Successor0 = getOrCreateVPBB(BI->getSuccessor(0));
384 VPBasicBlock *Successor1 = getOrCreateVPBB(BI->getSuccessor(1));
385 if (!LoopForBB || BB != LoopForBB->getLoopLatch()) {
386 VPBB->setTwoSuccessors(Successor0, Successor1);
387 continue;
389 // For a latch we need to set the successor of the region rather than that
390 // of VPBB and it should be set to the exit, i.e., non-header successor.
391 Region->setOneSuccessor(isHeaderVPBB(Successor0) ? Successor1 : Successor0);
392 Region->setExiting(VPBB);
395 // 2. Process outermost loop exit. We created an empty VPBB for the loop
396 // single exit BB during the RPO traversal of the loop body but Instructions
397 // weren't visited because it's not part of the loop.
398 BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock();
399 assert(LoopExitBB && "Loops with multiple exits are not supported.");
400 VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB];
401 // Loop exit was already set as successor of the loop exiting BB.
402 // We only set its predecessor VPBB now.
403 setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB);
405 // 3. The whole CFG has been built at this point so all the input Values must
406 // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding
407 // VPlan operands.
408 fixPhiNodes();
411 void VPlanHCFGBuilder::buildPlainCFG() {
412 PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan);
413 PCFGBuilder.buildPlainCFG();
416 // Public interface to build a H-CFG.
417 void VPlanHCFGBuilder::buildHierarchicalCFG() {
418 // Build Top Region enclosing the plain CFG.
419 buildPlainCFG();
420 LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan);
422 VPRegionBlock *TopRegion = Plan.getVectorLoopRegion();
423 Verifier.verifyHierarchicalCFG(TopRegion);
425 // Compute plain CFG dom tree for VPLInfo.
426 VPDomTree.recalculate(Plan);
427 LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n";
428 VPDomTree.print(dbgs()));