Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / test / Analysis / ScalarEvolution / add-expr-pointer-operand-sorting.ll
blob3cd464c01eb61852ca08dd3f44545371795827c0
1 ; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
2 ; RUN: opt < %s -S -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s
4 ; Reduced from test-suite/MultiSource/Benchmarks/MiBench/office-ispell/correct.c
5 ; getelementptr, obviously, takes pointer as it's base, and returns a pointer.
6 ; SCEV operands are sorted in hope that it increases folding potential,
7 ; and at the same time SCEVAddExpr's type is the type of the last(!) operand.
8 ; Which means, in some exceedingly rare cases, pointer operand may happen to
9 ; end up not being the last operand, and as a result SCEV for GEP will suddenly
10 ; have a non-pointer return type. We should ensure that does not happen.
12 target datalayout = "e-m:e-p270:32:32-p271:32:32-p272:64:64-i64:64-f80:128-n8:16:32:64-S128"
13 target triple = "x86_64-unknown-linux-gnu"
15 @c = dso_local local_unnamed_addr global ptr null, align 8
16 @a = dso_local local_unnamed_addr global i32 0, align 4
17 @b = dso_local global [1 x i32] zeroinitializer, align 4
19 define i32 @d(i32 %base) {
20 ; CHECK-LABEL: 'd'
21 ; CHECK-NEXT:  Classifying expressions for: @d
22 ; CHECK-NEXT:    %e = alloca [1 x [1 x i8]], align 1
23 ; CHECK-NEXT:    --> %e U: full-set S: full-set
24 ; CHECK-NEXT:    %0 = bitcast ptr %e to ptr
25 ; CHECK-NEXT:    --> %e U: full-set S: full-set
26 ; CHECK-NEXT:    %f.0 = phi i32 [ %base, %entry ], [ %inc, %for.cond ]
27 ; CHECK-NEXT:    --> {%base,+,1}<nsw><%for.cond> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Computable }
28 ; CHECK-NEXT:    %idxprom = sext i32 %f.0 to i64
29 ; CHECK-NEXT:    --> {(sext i32 %base to i64),+,1}<nsw><%for.cond> U: [-2147483648,-9223372036854775808) S: [-2147483648,-9223372036854775808) Exits: <<Unknown>> LoopDispositions: { %for.cond: Computable }
30 ; CHECK-NEXT:    %arrayidx = getelementptr inbounds [1 x [1 x i8]], ptr %e, i64 0, i64 %idxprom
31 ; CHECK-NEXT:    --> {((sext i32 %base to i64) + %e),+,1}<nw><%for.cond> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Computable }
32 ; CHECK-NEXT:    %1 = load ptr, ptr @c, align 8
33 ; CHECK-NEXT:    --> %1 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
34 ; CHECK-NEXT:    %sub.ptr.lhs.cast = ptrtoint ptr %1 to i64
35 ; CHECK-NEXT:    --> (ptrtoint ptr %1 to i64) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
36 ; CHECK-NEXT:    %sub.ptr.sub = sub i64 %sub.ptr.lhs.cast, ptrtoint (ptr @b to i64)
37 ; CHECK-NEXT:    --> ((-1 * (ptrtoint ptr @b to i64)) + (ptrtoint ptr %1 to i64)) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
38 ; CHECK-NEXT:    %sub.ptr.div = sdiv exact i64 %sub.ptr.sub, 4
39 ; CHECK-NEXT:    --> %sub.ptr.div U: [-2305843009213693952,2305843009213693952) S: [-2305843009213693952,2305843009213693952) Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
40 ; CHECK-NEXT:    %arrayidx1 = getelementptr inbounds [1 x i8], ptr %arrayidx, i64 0, i64 %sub.ptr.div
41 ; CHECK-NEXT:    --> ({((sext i32 %base to i64) + %e),+,1}<nw><%for.cond> + %sub.ptr.div) U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
42 ; CHECK-NEXT:    %2 = load i8, ptr %arrayidx1, align 1
43 ; CHECK-NEXT:    --> %2 U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
44 ; CHECK-NEXT:    %conv = sext i8 %2 to i32
45 ; CHECK-NEXT:    --> (sext i8 %2 to i32) U: [-128,128) S: [-128,128) Exits: <<Unknown>> LoopDispositions: { %for.cond: Variant }
46 ; CHECK-NEXT:    %inc = add nsw i32 %f.0, 1
47 ; CHECK-NEXT:    --> {(1 + %base),+,1}<nw><%for.cond> U: full-set S: full-set Exits: <<Unknown>> LoopDispositions: { %for.cond: Computable }
48 ; CHECK-NEXT:  Determining loop execution counts for: @d
49 ; CHECK-NEXT:  Loop %for.cond: <multiple exits> Unpredictable backedge-taken count.
50 ; CHECK-NEXT:  Loop %for.cond: Unpredictable constant max backedge-taken count.
51 ; CHECK-NEXT:  Loop %for.cond: Unpredictable symbolic max backedge-taken count.
52 ; CHECK-NEXT:  Loop %for.cond: Unpredictable predicated backedge-taken count.
54 entry:
55   %e = alloca [1 x [1 x i8]], align 1
56   %0 = bitcast ptr %e to ptr
57   call void @llvm.lifetime.start.p0(i64 1, ptr %0) #2
58   br label %for.cond
60 for.cond:                                         ; preds = %for.cond, %entry
61   %f.0 = phi i32 [ %base, %entry ], [ %inc, %for.cond ]
62   %idxprom = sext i32 %f.0 to i64
63   %arrayidx = getelementptr inbounds [1 x [1 x i8]], ptr %e, i64 0, i64 %idxprom
64   %1 = load ptr, ptr @c, align 8
65   %sub.ptr.lhs.cast = ptrtoint ptr %1 to i64
66   %sub.ptr.sub = sub i64 %sub.ptr.lhs.cast, ptrtoint (ptr @b to i64)
67   %sub.ptr.div = sdiv exact i64 %sub.ptr.sub, 4
68   %arrayidx1 = getelementptr inbounds [1 x i8], ptr %arrayidx, i64 0, i64 %sub.ptr.div
69   %2 = load i8, ptr %arrayidx1, align 1
70   %conv = sext i8 %2 to i32
71   store i32 %conv, ptr @a, align 4
72   %inc = add nsw i32 %f.0, 1
73   br label %for.cond
76 declare void @llvm.lifetime.start.p0(i64 immarg, ptr nocapture)