Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / test / Analysis / ScalarEvolution / nsw-offset.ll
blob4e9e91d294e20cd300ecfae7f497eba289ca55f1
1 ; NOTE: Assertions have been autogenerated by utils/update_analyze_test_checks.py
2 ; RUN: opt < %s -S -disable-output "-passes=print<scalar-evolution>" 2>&1 | FileCheck %s
4 ; ScalarEvolution should be able to fold away the sign-extensions
5 ; on this loop with a primary induction variable incremented with
6 ; a nsw add of 2.
8 target datalayout = "e-p:64:64:64-i1:8:8-i8:8:8-i16:16:16-i32:32:32-i64:64:64-f32:32:32-f64:64:64-v64:64:64-v128:128:128-a0:0:64-s0:64:64-f80:128:128"
10 define void @foo(i32 %no, ptr nocapture %d, ptr nocapture %q) nounwind {
11 ; CHECK-LABEL: 'foo'
12 ; CHECK-NEXT:  Classifying expressions for: @foo
13 ; CHECK-NEXT:    %n = and i32 %no, -2
14 ; CHECK-NEXT:    --> (2 * (%no /u 2))<nuw> U: [0,-1) S: [-2147483648,2147483647)
15 ; CHECK-NEXT:    %i.01 = phi i32 [ %16, %bb1 ], [ 0, %bb.nph ]
16 ; CHECK-NEXT:    --> {0,+,2}<nuw><nsw><%bb> U: [0,2147483645) S: [0,2147483645) Exits: (2 * ((-1 + (2 * (%no /u 2))<nuw>) /u 2))<nuw> LoopDispositions: { %bb: Computable }
17 ; CHECK-NEXT:    %1 = sext i32 %i.01 to i64
18 ; CHECK-NEXT:    --> {0,+,2}<nuw><nsw><%bb> U: [0,2147483645) S: [0,2147483645) Exits: (2 * ((1 + (zext i32 (-2 + (2 * (%no /u 2))<nuw>) to i64))<nuw><nsw> /u 2))<nuw><nsw> LoopDispositions: { %bb: Computable }
19 ; CHECK-NEXT:    %2 = getelementptr inbounds double, ptr %d, i64 %1
20 ; CHECK-NEXT:    --> {%d,+,16}<nuw><%bb> U: full-set S: full-set Exits: ((16 * ((1 + (zext i32 (-2 + (2 * (%no /u 2))<nuw>) to i64))<nuw><nsw> /u 2))<nuw><nsw> + %d) LoopDispositions: { %bb: Computable }
21 ; CHECK-NEXT:    %4 = sext i32 %i.01 to i64
22 ; CHECK-NEXT:    --> {0,+,2}<nuw><nsw><%bb> U: [0,2147483645) S: [0,2147483645) Exits: (2 * ((1 + (zext i32 (-2 + (2 * (%no /u 2))<nuw>) to i64))<nuw><nsw> /u 2))<nuw><nsw> LoopDispositions: { %bb: Computable }
23 ; CHECK-NEXT:    %5 = getelementptr inbounds double, ptr %q, i64 %4
24 ; CHECK-NEXT:    --> {%q,+,16}<nuw><%bb> U: full-set S: full-set Exits: ((16 * ((1 + (zext i32 (-2 + (2 * (%no /u 2))<nuw>) to i64))<nuw><nsw> /u 2))<nuw><nsw> + %q) LoopDispositions: { %bb: Computable }
25 ; CHECK-NEXT:    %7 = or i32 %i.01, 1
26 ; CHECK-NEXT:    --> {1,+,2}<nuw><nsw><%bb> U: [1,2147483646) S: [1,2147483646) Exits: (1 + (2 * ((-1 + (2 * (%no /u 2))<nuw>) /u 2))<nuw>)<nuw><nsw> LoopDispositions: { %bb: Computable }
27 ; CHECK-NEXT:    %8 = sext i32 %7 to i64
28 ; CHECK-NEXT:    --> {1,+,2}<nuw><nsw><%bb> U: [1,2147483646) S: [1,2147483646) Exits: (1 + (2 * ((1 + (zext i32 (-2 + (2 * (%no /u 2))<nuw>) to i64))<nuw><nsw> /u 2))<nuw><nsw>)<nuw><nsw> LoopDispositions: { %bb: Computable }
29 ; CHECK-NEXT:    %9 = getelementptr inbounds double, ptr %q, i64 %8
30 ; CHECK-NEXT:    --> {(8 + %q),+,16}<nuw><%bb> U: full-set S: full-set Exits: (8 + (16 * ((1 + (zext i32 (-2 + (2 * (%no /u 2))<nuw>) to i64))<nuw><nsw> /u 2))<nuw><nsw> + %q) LoopDispositions: { %bb: Computable }
31 ; CHECK-NEXT:    %t7 = add nsw i32 %i.01, 1
32 ; CHECK-NEXT:    --> {1,+,2}<nuw><nsw><%bb> U: [1,2147483646) S: [1,2147483646) Exits: (1 + (2 * ((-1 + (2 * (%no /u 2))<nuw>) /u 2))<nuw>)<nuw><nsw> LoopDispositions: { %bb: Computable }
33 ; CHECK-NEXT:    %t8 = sext i32 %t7 to i64
34 ; CHECK-NEXT:    --> {1,+,2}<nuw><nsw><%bb> U: [1,2147483646) S: [1,2147483646) Exits: (1 + (2 * ((1 + (zext i32 (-2 + (2 * (%no /u 2))<nuw>) to i64))<nuw><nsw> /u 2))<nuw><nsw>)<nuw><nsw> LoopDispositions: { %bb: Computable }
35 ; CHECK-NEXT:    %t9 = getelementptr inbounds double, ptr %q, i64 %t8
36 ; CHECK-NEXT:    --> {(8 + %q),+,16}<nuw><%bb> U: full-set S: full-set Exits: (8 + (16 * ((1 + (zext i32 (-2 + (2 * (%no /u 2))<nuw>) to i64))<nuw><nsw> /u 2))<nuw><nsw> + %q) LoopDispositions: { %bb: Computable }
37 ; CHECK-NEXT:    %14 = sext i32 %i.01 to i64
38 ; CHECK-NEXT:    --> {0,+,2}<nuw><nsw><%bb> U: [0,2147483645) S: [0,2147483645) Exits: (2 * ((1 + (zext i32 (-2 + (2 * (%no /u 2))<nuw>) to i64))<nuw><nsw> /u 2))<nuw><nsw> LoopDispositions: { %bb: Computable }
39 ; CHECK-NEXT:    %15 = getelementptr inbounds double, ptr %d, i64 %14
40 ; CHECK-NEXT:    --> {%d,+,16}<nuw><%bb> U: full-set S: full-set Exits: ((16 * ((1 + (zext i32 (-2 + (2 * (%no /u 2))<nuw>) to i64))<nuw><nsw> /u 2))<nuw><nsw> + %d) LoopDispositions: { %bb: Computable }
41 ; CHECK-NEXT:    %16 = add nsw i32 %i.01, 2
42 ; CHECK-NEXT:    --> {2,+,2}<nuw><nsw><%bb> U: [2,2147483647) S: [2,2147483647) Exits: (2 + (2 * ((-1 + (2 * (%no /u 2))<nuw>) /u 2))<nuw>) LoopDispositions: { %bb: Computable }
43 ; CHECK-NEXT:  Determining loop execution counts for: @foo
44 ; CHECK-NEXT:  Loop %bb: backedge-taken count is ((-1 + (2 * (%no /u 2))<nuw>) /u 2)
45 ; CHECK-NEXT:  Loop %bb: constant max backedge-taken count is 1073741822
46 ; CHECK-NEXT:  Loop %bb: symbolic max backedge-taken count is ((-1 + (2 * (%no /u 2))<nuw>) /u 2)
47 ; CHECK-NEXT:  Loop %bb: Predicated backedge-taken count is ((-1 + (2 * (%no /u 2))<nuw>) /u 2)
48 ; CHECK-NEXT:   Predicates:
49 ; CHECK:       Loop %bb: Trip multiple is 1
51 entry:
52   %n = and i32 %no, 4294967294
53   %0 = icmp sgt i32 %n, 0                         ; <i1> [#uses=1]
54   br i1 %0, label %bb.nph, label %return
56 bb.nph:                                           ; preds = %entry
57   br label %bb
59 bb:                                               ; preds = %bb.nph, %bb1
60   %i.01 = phi i32 [ %16, %bb1 ], [ 0, %bb.nph ]   ; <i32> [#uses=5]
62   %1 = sext i32 %i.01 to i64                      ; <i64> [#uses=1]
64   %2 = getelementptr inbounds double, ptr %d, i64 %1  ; <ptr> [#uses=1]
66   %3 = load double, ptr %2, align 8                   ; <double> [#uses=1]
67   %4 = sext i32 %i.01 to i64                      ; <i64> [#uses=1]
68   %5 = getelementptr inbounds double, ptr %q, i64 %4  ; <ptr> [#uses=1]
69   %6 = load double, ptr %5, align 8                   ; <double> [#uses=1]
70   %7 = or i32 %i.01, 1                            ; <i32> [#uses=1]
72   %8 = sext i32 %7 to i64                         ; <i64> [#uses=1]
74   %9 = getelementptr inbounds double, ptr %q, i64 %8  ; <ptr> [#uses=1]
76 ; Artificially repeat the above three instructions, this time using
77 ; add nsw instead of or.
78   %t7 = add nsw i32 %i.01, 1                            ; <i32> [#uses=1]
80   %t8 = sext i32 %t7 to i64                         ; <i64> [#uses=1]
82   %t9 = getelementptr inbounds double, ptr %q, i64 %t8  ; <ptr> [#uses=1]
84   %10 = load double, ptr %9, align 8                  ; <double> [#uses=1]
85   %11 = fadd double %6, %10                       ; <double> [#uses=1]
86   %12 = fadd double %11, 3.200000e+00             ; <double> [#uses=1]
87   %13 = fmul double %3, %12                       ; <double> [#uses=1]
88   %14 = sext i32 %i.01 to i64                     ; <i64> [#uses=1]
89   %15 = getelementptr inbounds double, ptr %d, i64 %14 ; <ptr> [#uses=1]
90   store double %13, ptr %15, align 8
91   %16 = add nsw i32 %i.01, 2                      ; <i32> [#uses=2]
92   br label %bb1
94 bb1:                                              ; preds = %bb
95   %17 = icmp slt i32 %16, %n                      ; <i1> [#uses=1]
96   br i1 %17, label %bb, label %bb1.return_crit_edge
98 bb1.return_crit_edge:                             ; preds = %bb1
99   br label %return
101 return:                                           ; preds = %bb1.return_crit_edge, %entry
102   ret void