Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / test / CodeGen / X86 / load-slice.ll
blobb6925f526965fa055effdcd0c101e0a761482de9
1 ; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx -combiner-stress-load-slicing < %s -o - | FileCheck %s --check-prefix=STRESS
2 ; RUN: llc -mtriple x86_64-apple-macosx -mcpu=corei7-avx < %s -o - | FileCheck %s --check-prefix=REGULAR
4 ; <rdar://problem/14477220>
6 %class.Complex = type { float, float }
9 ; Check that independent slices leads to independent loads then the slices leads to
10 ; different register file.
12 ; The layout is:
13 ; LSB 0 1 2 3 | 4 5 6 7 MSB
14 ;       Low      High
15 ; The base address points to 0 and is 8-bytes aligned.
16 ; Low slice starts at 0 (base) and is 8-bytes aligned.
17 ; High slice starts at 4 (base + 4-bytes) and is 4-bytes aligned.
19 ; STRESS-LABEL: _t1:
20 ; Load out[out_start + 8].real, this is base + 8 * 8 + 0.
21 ; STRESS: vmovss 64([[BASE:[^(]+]]), [[OUT_Real:%xmm[0-9]+]]
22 ; Load out[out_start + 8].imm, this is base + 8 * 8 + 4.
23 ; STRESS-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]]
24 ; Add low slice: out[out_start].real, this is base + 0.
25 ; STRESS-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]]
26 ; Add high slice: out[out_start].imm, this is base + 4.
27 ; STRESS-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]]
28 ; Swap Imm and Real.
29 ; STRESS-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]]
30 ; Put the results back into out[out_start].
31 ; STRESS-NEXT: vmovlps [[RES_Vec]], ([[BASE]])
33 ; Same for REGULAR, we eliminate register bank copy with each slices.
34 ; REGULAR-LABEL: _t1:
35 ; Load out[out_start + 8].real, this is base + 8 * 8 + 0.
36 ; REGULAR: vmovss 64([[BASE:[^)]+]]), [[OUT_Real:%xmm[0-9]+]]
37 ; Load out[out_start + 8].imm, this is base + 8 * 8 + 4.
38 ; REGULAR-NEXT: vmovss 68([[BASE]]), [[OUT_Imm:%xmm[0-9]+]]
39 ; Add low slice: out[out_start].real, this is base + 0.
40 ; REGULAR-NEXT: vaddss ([[BASE]]), [[OUT_Real]], [[RES_Real:%xmm[0-9]+]]
41 ; Add high slice: out[out_start].imm, this is base + 4.
42 ; REGULAR-NEXT: vaddss 4([[BASE]]), [[OUT_Imm]], [[RES_Imm:%xmm[0-9]+]]
43 ; Swap Imm and Real.
44 ; REGULAR-NEXT: vinsertps $16, [[RES_Imm]], [[RES_Real]], [[RES_Vec:%xmm[0-9]+]]
45 ; Put the results back into out[out_start].
46 ; REGULAR-NEXT: vmovlps [[RES_Vec]], ([[BASE]])
47 define void @t1(ptr nocapture %out, i64 %out_start) {
48 entry:
49   %arrayidx = getelementptr inbounds %class.Complex, ptr %out, i64 %out_start
50   %tmp1 = load i64, ptr %arrayidx, align 8
51   %t0.sroa.0.0.extract.trunc = trunc i64 %tmp1 to i32
52   %tmp2 = bitcast i32 %t0.sroa.0.0.extract.trunc to float
53   %t0.sroa.2.0.extract.shift = lshr i64 %tmp1, 32
54   %t0.sroa.2.0.extract.trunc = trunc i64 %t0.sroa.2.0.extract.shift to i32
55   %tmp3 = bitcast i32 %t0.sroa.2.0.extract.trunc to float
56   %add = add i64 %out_start, 8
57   %arrayidx2 = getelementptr inbounds %class.Complex, ptr %out, i64 %add
58   %tmp4 = load float, ptr %arrayidx2, align 4
59   %add.i = fadd float %tmp4, %tmp2
60   %retval.sroa.0.0.vec.insert.i = insertelement <2 x float> undef, float %add.i, i32 0
61   %r.i = getelementptr inbounds %class.Complex, ptr %arrayidx2, i64 0, i32 1
62   %tmp5 = load float, ptr %r.i, align 4
63   %add5.i = fadd float %tmp5, %tmp3
64   %retval.sroa.0.4.vec.insert.i = insertelement <2 x float> %retval.sroa.0.0.vec.insert.i, float %add5.i, i32 1
65   store <2 x float> %retval.sroa.0.4.vec.insert.i, ptr %arrayidx, align 4
66   ret void
69 ; Function Attrs: nounwind
70 declare void @llvm.memcpy.p0.p0.i64(ptr nocapture, ptr nocapture readonly, i64, i1) #1
72 ; Function Attrs: nounwind
73 declare void @llvm.lifetime.start.p0(i64, ptr nocapture)
75 ; Function Attrs: nounwind
76 declare void @llvm.lifetime.end.p0(i64, ptr nocapture)
78 ; Check that we do not read outside of the chunk of bits of the original loads.
80 ; The 64-bits should have been split in one 32-bits and one 16-bits slices.
81 ; The 16-bits should be zero extended to match the final type.
83 ; The memory layout is:
84 ; LSB 0 1 2 3 | 4 5 | 6 7 MSB
85 ;      Low            High
86 ; The base address points to 0 and is 8-bytes aligned.
87 ; Low slice starts at 0 (base) and is 8-bytes aligned.
88 ; High slice starts at 6 (base + 6-bytes) and is 2-bytes aligned.
90 ; STRESS-LABEL: _t2:
91 ; STRESS: movzwl 6([[BASE:[^)]+]]), %eax
92 ; STRESS-NEXT: addl ([[BASE]]), %eax
93 ; STRESS-NEXT: ret
95 ; For the REGULAR heuristic, this is not profitable to slice things that are not
96 ; next to each other in memory. Here we have a hole with bytes #4-5.
97 ; REGULAR-LABEL: _t2:
98 ; REGULAR: shrq $48
99 define i32 @t2(ptr nocapture %out, i64 %out_start) {
100   %arrayidx = getelementptr inbounds %class.Complex, ptr %out, i64 %out_start
101   %chunk64 = load i64, ptr %arrayidx, align 8
102   %slice32_low = trunc i64 %chunk64 to i32
103   %shift48 = lshr i64 %chunk64, 48
104   %slice32_high = trunc i64 %shift48 to i32
105   %res = add i32 %slice32_high, %slice32_low
106   ret i32 %res
109 ; Check that we do not optimize overlapping slices.
111 ; The 64-bits should NOT have been split in as slices are overlapping.
112 ; First slice uses bytes numbered 0 to 3.
113 ; Second slice uses bytes numbered 6 and 7.
114 ; Third slice uses bytes numbered 4 to 7.
116 ; STRESS-LABEL: _t3:
117 ; STRESS: shrq $48
118 ; STRESS: shrq $32
120 ; REGULAR-LABEL: _t3:
121 ; REGULAR: shrq $48
122 ; REGULAR: shrq $32
123 define i32 @t3(ptr nocapture %out, i64 %out_start) {
124   %arrayidx = getelementptr inbounds %class.Complex, ptr %out, i64 %out_start
125   %chunk64 = load i64, ptr %arrayidx, align 8
126   %slice32_low = trunc i64 %chunk64 to i32
127   %shift48 = lshr i64 %chunk64, 48
128   %slice32_high = trunc i64 %shift48 to i32
129   %shift32 = lshr i64 %chunk64, 32
130   %slice32_lowhigh = trunc i64 %shift32 to i32
131   %tmpres = add i32 %slice32_high, %slice32_low
132   %res = add i32 %slice32_lowhigh, %tmpres
133   ret i32 %res