Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / test / CodeGen / X86 / win32_sret.ll
blob6d0e47bccfa76ff8ad18a82f2a7d9990d7d3ad8d
1 ; We specify -mcpu explicitly to avoid instruction reordering that happens on
2 ; some setups (e.g., Atom) from affecting the output.
3 ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32
4 ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86
5 ; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN
6 ; RUN: llc < %s -mcpu=core2 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX
7 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32
8 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86
9 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN
10 ; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX
12 ; The SysV ABI used by most Unixes and Mingw on x86 specifies that an sret pointer
13 ; is callee-cleanup. However, in MSVC's cdecl calling convention, sret pointer
14 ; arguments are caller-cleanup like normal arguments.
16 define void @sret1(ptr sret(i8) %x) nounwind {
17 entry:
18 ; WIN32-LABEL:      _sret1:
19 ; WIN32:      movb $42, ({{%e[abcd]x}})
20 ; WIN32-NOT:  popl %eax
21 ; WIN32:    {{retl$}}
23 ; MINGW_X86-LABEL:  _sret1:
24 ; MINGW_X86:  {{retl$}}
26 ; CYGWIN-LABEL:     _sret1:
27 ; CYGWIN:     retl $4
29 ; LINUX-LABEL:      sret1:
30 ; LINUX:      retl $4
32   store i8 42, ptr %x, align 4
33   ret void
36 define void @sret2(ptr sret(i8) %x, i8 %y) nounwind {
37 entry:
38 ; WIN32-LABEL:      _sret2:
39 ; WIN32:      movb {{.*}}, ({{%e[abcd]x}})
40 ; WIN32-NOT:  popl %eax
41 ; WIN32:    {{retl$}}
43 ; MINGW_X86-LABEL:  _sret2:
44 ; MINGW_X86:  {{retl$}}
46 ; CYGWIN-LABEL:     _sret2:
47 ; CYGWIN:     retl $4
49 ; LINUX-LABEL:      sret2:
50 ; LINUX:      retl $4
52   store i8 %y, ptr %x
53   ret void
56 define void @sret3(ptr sret(i8) %x, ptr %y) nounwind {
57 entry:
58 ; WIN32-LABEL:      _sret3:
59 ; WIN32:      movb $42, ([[REG1:%e[abcd]x]])
60 ; WIN32-NOT:  movb $13, ([[REG1]])
61 ; WIN32-NOT:  popl %eax
62 ; WIN32:    {{retl$}}
64 ; MINGW_X86-LABEL:  _sret3:
65 ; MINGW_X86:  {{retl$}}
67 ; CYGWIN-LABEL:     _sret3:
68 ; CYGWIN:     retl $4
70 ; LINUX-LABEL:      sret3:
71 ; LINUX:      retl $4
73   store i8 42, ptr %x
74   store i8 13, ptr %y
75   ret void
78 ; PR15556
79 %struct.S4 = type { i32, i32, i32 }
81 define void @sret4(ptr noalias sret(%struct.S4) %agg.result) {
82 entry:
83 ; WIN32-LABEL:     _sret4:
84 ; WIN32:     movl $42, ({{%e[abcd]x}})
85 ; WIN32-NOT: popl %eax
86 ; WIN32:   {{retl$}}
88 ; MINGW_X86-LABEL: _sret4:
89 ; MINGW_X86: {{retl$}}
91 ; CYGWIN-LABEL:    _sret4:
92 ; CYGWIN:    retl $4
94 ; LINUX-LABEL:     sret4:
95 ; LINUX:     retl $4
97   store i32 42, ptr %agg.result, align 4
98   ret void
101 %struct.S5 = type { i32 }
102 %class.C5 = type { i8 }
104 define x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(ptr noalias sret(%struct.S5) %agg.result, ptr %this) {
105 entry:
106   %this.addr = alloca ptr, align 4
107   store ptr %this, ptr %this.addr, align 4
108   %this1 = load ptr, ptr %this.addr
109   store i32 42, ptr %agg.result, align 4
110   ret void
111 ; WIN32-LABEL:     {{^}}"?foo@C5@@QAE?AUS5@@XZ":
112 ; MINGW_X86-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
113 ; CYGWIN-LABEL:    {{^}}"?foo@C5@@QAE?AUS5@@XZ":
114 ; LINUX-LABEL:     {{^}}"?foo@C5@@QAE?AUS5@@XZ":
116 ; The address of the return structure is passed as an implicit parameter.
117 ; In the -O0 build, %eax is spilled at the beginning of the function, hence we
118 ; should match both 4(%esp) and 8(%esp).
119 ; WIN32:     {{[48]}}(%esp), [[REG:%e[abcd]x]]
120 ; WIN32:     movl $42, ([[REG]])
121 ; WIN32:     retl $4
124 define void @call_foo5() {
125 entry:
126   %c = alloca %class.C5, align 1
127   %s = alloca %struct.S5, align 4
128   call x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(ptr sret(%struct.S5) %s, ptr %c)
129 ; WIN32-LABEL:      {{^}}_call_foo5:
130 ; MINGW_X86-LABEL:  {{^}}_call_foo5:
131 ; CYGWIN-LABEL:     {{^}}_call_foo5:
132 ; LINUX-LABEL:      {{^}}call_foo5:
135 ; Load the address of the result and put it onto stack
136 ; The this pointer goes to ECX.
137 ; (through %ecx in the -O0 build).
138 ; WIN32-DAG:  leal {{[0-9]*}}(%esp), %e{{[a-d]}}x
139 ; WIN32-DAG:  {{leal [1-9]+\(%esp\)|movl %esp}}, %ecx
140 ; WIN32-DAG:  {{pushl %e[a-d]x|movl %e[a-d]x, \(%esp\)}}
141 ; WIN32-NEXT: calll "?foo@C5@@QAE?AUS5@@XZ"
142 ; WIN32:      retl
143   ret void
147 %struct.test6 = type { i32, i32, i32 }
148 define void @test6_f(ptr %x) nounwind {
149 ; WIN32-LABEL: _test6_f:
150 ; MINGW_X86-LABEL: _test6_f:
151 ; CYGWIN-LABEL: _test6_f:
152 ; LINUX-LABEL: test6_f:
154 ; The %x argument is moved to %ecx. It will be the this pointer.
155 ; WIN32-DAG: movl    {{16|20}}(%esp), %ecx
158 ; The sret pointer is (%esp)
159 ; WIN32-DAG:      {{leal 4\(%esp\)|movl %esp}}, %eax
160 ; WIN32-DAG:      {{pushl   %eax|movl %eax, \(%esp\)}}
162 ; The sret pointer is %ecx
163 ; The %x argument is moved to (%esp). It will be the this pointer.
164 ; MINGW_X86-DAG:  {{leal 4\(%esp\)|movl %esp}}, %ecx
165 ; MINGW_X86-DAG: {{pushl   16\(%esp\)|movl %eax, \(%esp\)}}
166 ; MINGW_X86-NEXT: calll   _test6_g
168 ; CYGWIN-DAG:  {{leal 4\(%esp\)|movl %esp}}, %ecx
169 ; CYGWIN-DAG:  {{pushl   16\(%esp\)|movl %eax, \(%esp\)}}
170 ; CYGWIN-NEXT: calll   _test6_g
172   %tmp = alloca %struct.test6, align 4
173   call x86_thiscallcc void @test6_g(ptr sret(%struct.test6) %tmp, ptr %x)
174   ret void
176 declare x86_thiscallcc void @test6_g(ptr sret(%struct.test6), ptr)
178 ; Flipping the parameters at the IR level generates the same code.
179 %struct.test7 = type { i32, i32, i32 }
180 define void @test7_f(ptr %x) nounwind {
181 ; WIN32-LABEL: _test7_f:
182 ; MINGW_X86-LABEL: _test7_f:
183 ; CYGWIN-LABEL: _test7_f:
184 ; LINUX-LABEL: test7_f:
186 ; The %x argument is moved to %ecx on all OSs. It will be the this pointer.
187 ; WIN32:      movl    {{16|20}}(%esp), %ecx
188 ; MINGW_X86:  movl    {{16|20}}(%esp), %ecx
189 ; CYGWIN:     movl    {{16|20}}(%esp), %ecx
191 ; The sret pointer is (%esp)
192 ; WIN32:      {{leal 4\(%esp\)|movl %esp}}, %eax
193 ; WIN32-NEXT:     {{pushl   %eax|movl %eax, \(%esp\)}}
194 ; MINGW_X86:      {{leal 4\(%esp\)|movl %esp}}, %eax
195 ; MINGW_X86-NEXT: {{pushl   %eax|movl %eax, \(%esp\)}}
196 ; CYGWIN:      {{leal 4\(%esp\)|movl %esp}}, %eax
197 ; CYGWIN-NEXT: {{pushl   %eax|movl %eax, \(%esp\)}}
199   %tmp = alloca %struct.test7, align 4
200   call x86_thiscallcc void @test7_g(ptr %x, ptr sret(%struct.test7) %tmp)
201   ret void
204 define x86_thiscallcc void @test7_g(ptr %in, ptr sret(%struct.test7) %out) {
205   %v = load i32, ptr %in
206   store i32 %v, ptr %out
207   call void @clobber_eax()
208   ret void
210 ; Make sure we return the second parameter in %eax.
211 ; WIN32-LABEL: _test7_g:
212 ; WIN32: calll _clobber_eax
213 ; WIN32: movl {{.*}}, %eax
214 ; WIN32: retl
217 declare void @clobber_eax()
219 ; Test what happens if the first parameter has to be split by codegen.
220 ; Realistically, no frontend will generate code like this, but here it is for
221 ; completeness.
222 define void @test8_f(i64 inreg %a, ptr sret(i64) %out) {
223   store i64 %a, ptr %out
224   call void @clobber_eax()
225   ret void
227 ; WIN32-LABEL: _test8_f:
228 ; WIN32: movl {{[0-9]+}}(%esp), %[[out:[a-z]+]]
229 ; WIN32-DAG: movl {{%e[abcd]x}}, 4(%[[out]])
230 ; WIN32-DAG: movl {{%e[abcd]x}}, (%[[out]])
231 ; WIN32: calll _clobber_eax
232 ; WIN32: movl {{.*}}, %eax
233 ; WIN32: retl