Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / tools / llvm-exegesis / lib / Clustering.cpp
blob1f1fca4d530bac96448b38c786959141d7f23fbb
1 //===-- Clustering.cpp ------------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "Clustering.h"
10 #include "Error.h"
11 #include "SchedClassResolution.h"
12 #include "llvm/ADT/MapVector.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/ADT/SmallSet.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include <algorithm>
17 #include <deque>
18 #include <string>
19 #include <vector>
21 namespace llvm {
22 namespace exegesis {
24 // The clustering problem has the following characteristics:
25 // (A) - Low dimension (dimensions are typically proc resource units,
26 // typically < 10).
27 // (B) - Number of points : ~thousands (points are measurements of an MCInst)
28 // (C) - Number of clusters: ~tens.
29 // (D) - The number of clusters is not known /a priory/.
30 // (E) - The amount of noise is relatively small.
31 // The problem is rather small. In terms of algorithms, (D) disqualifies
32 // k-means and makes algorithms such as DBSCAN[1] or OPTICS[2] more applicable.
34 // We've used DBSCAN here because it's simple to implement. This is a pretty
35 // straightforward and inefficient implementation of the pseudocode in [2].
37 // [1] https://en.wikipedia.org/wiki/DBSCAN
38 // [2] https://en.wikipedia.org/wiki/OPTICS_algorithm
40 // Finds the points at distance less than sqrt(EpsilonSquared) of Q (not
41 // including Q).
42 void BenchmarkClustering::rangeQuery(
43 const size_t Q, std::vector<size_t> &Neighbors) const {
44 Neighbors.clear();
45 Neighbors.reserve(Points_.size() - 1); // The Q itself isn't a neighbor.
46 const auto &QMeasurements = Points_[Q].Measurements;
47 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
48 if (P == Q)
49 continue;
50 const auto &PMeasurements = Points_[P].Measurements;
51 if (PMeasurements.empty()) // Error point.
52 continue;
53 if (isNeighbour(PMeasurements, QMeasurements,
54 AnalysisClusteringEpsilonSquared_)) {
55 Neighbors.push_back(P);
60 // Given a set of points, checks that all the points are neighbours
61 // up to AnalysisClusteringEpsilon. This is O(2*N).
62 bool BenchmarkClustering::areAllNeighbours(
63 ArrayRef<size_t> Pts) const {
64 // First, get the centroid of this group of points. This is O(N).
65 SchedClassClusterCentroid G;
66 for (size_t P : Pts) {
67 assert(P < Points_.size());
68 ArrayRef<BenchmarkMeasure> Measurements = Points_[P].Measurements;
69 if (Measurements.empty()) // Error point.
70 continue;
71 G.addPoint(Measurements);
73 const std::vector<BenchmarkMeasure> Centroid = G.getAsPoint();
75 // Since we will be comparing with the centroid, we need to halve the epsilon.
76 double AnalysisClusteringEpsilonHalvedSquared =
77 AnalysisClusteringEpsilonSquared_ / 4.0;
79 // And now check that every point is a neighbour of the centroid. Also O(N).
80 return all_of(
81 Pts, [this, &Centroid, AnalysisClusteringEpsilonHalvedSquared](size_t P) {
82 assert(P < Points_.size());
83 const auto &PMeasurements = Points_[P].Measurements;
84 if (PMeasurements.empty()) // Error point.
85 return true; // Pretend that error point is a neighbour.
86 return isNeighbour(PMeasurements, Centroid,
87 AnalysisClusteringEpsilonHalvedSquared);
88 });
91 BenchmarkClustering::BenchmarkClustering(
92 const std::vector<Benchmark> &Points,
93 const double AnalysisClusteringEpsilonSquared)
94 : Points_(Points),
95 AnalysisClusteringEpsilonSquared_(AnalysisClusteringEpsilonSquared),
96 NoiseCluster_(ClusterId::noise()), ErrorCluster_(ClusterId::error()) {}
98 Error BenchmarkClustering::validateAndSetup() {
99 ClusterIdForPoint_.resize(Points_.size());
100 // Mark erroneous measurements out.
101 // All points must have the same number of dimensions, in the same order.
102 const std::vector<BenchmarkMeasure> *LastMeasurement = nullptr;
103 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
104 const auto &Point = Points_[P];
105 if (!Point.Error.empty()) {
106 ClusterIdForPoint_[P] = ClusterId::error();
107 ErrorCluster_.PointIndices.push_back(P);
108 continue;
110 const auto *CurMeasurement = &Point.Measurements;
111 if (LastMeasurement) {
112 if (LastMeasurement->size() != CurMeasurement->size()) {
113 return make_error<ClusteringError>(
114 "inconsistent measurement dimensions");
116 for (size_t I = 0, E = LastMeasurement->size(); I < E; ++I) {
117 if (LastMeasurement->at(I).Key != CurMeasurement->at(I).Key) {
118 return make_error<ClusteringError>(
119 "inconsistent measurement dimensions keys");
123 LastMeasurement = CurMeasurement;
125 if (LastMeasurement) {
126 NumDimensions_ = LastMeasurement->size();
128 return Error::success();
131 void BenchmarkClustering::clusterizeDbScan(const size_t MinPts) {
132 std::vector<size_t> Neighbors; // Persistent buffer to avoid allocs.
133 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
134 if (!ClusterIdForPoint_[P].isUndef())
135 continue; // Previously processed in inner loop.
136 rangeQuery(P, Neighbors);
137 if (Neighbors.size() + 1 < MinPts) { // Density check.
138 // The region around P is not dense enough to create a new cluster, mark
139 // as noise for now.
140 ClusterIdForPoint_[P] = ClusterId::noise();
141 continue;
144 // Create a new cluster, add P.
145 Clusters_.emplace_back(ClusterId::makeValid(Clusters_.size()));
146 Cluster &CurrentCluster = Clusters_.back();
147 ClusterIdForPoint_[P] = CurrentCluster.Id; /* Label initial point */
148 CurrentCluster.PointIndices.push_back(P);
150 // Process P's neighbors.
151 SetVector<size_t, std::deque<size_t>> ToProcess;
152 ToProcess.insert(Neighbors.begin(), Neighbors.end());
153 while (!ToProcess.empty()) {
154 // Retrieve a point from the set.
155 const size_t Q = *ToProcess.begin();
156 ToProcess.erase(ToProcess.begin());
158 if (ClusterIdForPoint_[Q].isNoise()) {
159 // Change noise point to border point.
160 ClusterIdForPoint_[Q] = CurrentCluster.Id;
161 CurrentCluster.PointIndices.push_back(Q);
162 continue;
164 if (!ClusterIdForPoint_[Q].isUndef()) {
165 continue; // Previously processed.
167 // Add Q to the current custer.
168 ClusterIdForPoint_[Q] = CurrentCluster.Id;
169 CurrentCluster.PointIndices.push_back(Q);
170 // And extend to the neighbors of Q if the region is dense enough.
171 rangeQuery(Q, Neighbors);
172 if (Neighbors.size() + 1 >= MinPts) {
173 ToProcess.insert(Neighbors.begin(), Neighbors.end());
177 // assert(Neighbors.capacity() == (Points_.size() - 1));
178 // ^ True, but it is not quaranteed to be true in all the cases.
180 // Add noisy points to noise cluster.
181 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
182 if (ClusterIdForPoint_[P].isNoise()) {
183 NoiseCluster_.PointIndices.push_back(P);
188 void BenchmarkClustering::clusterizeNaive(
189 const MCSubtargetInfo &SubtargetInfo, const MCInstrInfo &InstrInfo) {
190 // Given an instruction Opcode, which sched class id's are represented,
191 // and which are the benchmarks for each sched class?
192 std::vector<SmallMapVector<unsigned, SmallVector<size_t, 1>, 1>>
193 OpcodeToSchedClassesToPoints;
194 const unsigned NumOpcodes = InstrInfo.getNumOpcodes();
195 OpcodeToSchedClassesToPoints.resize(NumOpcodes);
196 size_t NumClusters = 0;
197 for (size_t P = 0, NumPoints = Points_.size(); P < NumPoints; ++P) {
198 const Benchmark &Point = Points_[P];
199 const MCInst &MCI = Point.keyInstruction();
200 unsigned SchedClassId;
201 std::tie(SchedClassId, std::ignore) =
202 ResolvedSchedClass::resolveSchedClassId(SubtargetInfo, InstrInfo, MCI);
203 const unsigned Opcode = MCI.getOpcode();
204 assert(Opcode < NumOpcodes && "NumOpcodes is incorrect (too small)");
205 auto &Points = OpcodeToSchedClassesToPoints[Opcode][SchedClassId];
206 if (Points.empty()) // If we previously have not seen any points of
207 ++NumClusters; // this opcode's sched class, then new cluster begins.
208 Points.emplace_back(P);
210 assert(NumClusters <= NumOpcodes &&
211 "can't see more opcodes than there are total opcodes");
212 assert(NumClusters <= Points_.size() &&
213 "can't see more opcodes than there are total points");
215 Clusters_.reserve(NumClusters); // We already know how many clusters there is.
216 for (const auto &SchedClassesOfOpcode : OpcodeToSchedClassesToPoints) {
217 if (SchedClassesOfOpcode.empty())
218 continue;
219 for (ArrayRef<size_t> PointsOfSchedClass :
220 make_second_range(SchedClassesOfOpcode)) {
221 if (PointsOfSchedClass.empty())
222 continue;
223 // Create a new cluster.
224 Clusters_.emplace_back(ClusterId::makeValid(
225 Clusters_.size(),
226 /*IsUnstable=*/!areAllNeighbours(PointsOfSchedClass)));
227 Cluster &CurrentCluster = Clusters_.back();
228 // Mark points as belonging to the new cluster.
229 for (size_t P : PointsOfSchedClass)
230 ClusterIdForPoint_[P] = CurrentCluster.Id;
231 // And add all the points of this opcode's sched class to the new cluster.
232 CurrentCluster.PointIndices.reserve(PointsOfSchedClass.size());
233 CurrentCluster.PointIndices.assign(PointsOfSchedClass.begin(),
234 PointsOfSchedClass.end());
235 assert(CurrentCluster.PointIndices.size() == PointsOfSchedClass.size());
238 assert(Clusters_.size() == NumClusters);
241 // Given an instruction Opcode, we can make benchmarks (measurements) of the
242 // instruction characteristics/performance. Then, to facilitate further analysis
243 // we group the benchmarks with *similar* characteristics into clusters.
244 // Now, this is all not entirely deterministic. Some instructions have variable
245 // characteristics, depending on their arguments. And thus, if we do several
246 // benchmarks of the same instruction Opcode, we may end up with *different*
247 // performance characteristics measurements. And when we then do clustering,
248 // these several benchmarks of the same instruction Opcode may end up being
249 // clustered into *different* clusters. This is not great for further analysis.
250 // We shall find every opcode with benchmarks not in just one cluster, and move
251 // *all* the benchmarks of said Opcode into one new unstable cluster per Opcode.
252 void BenchmarkClustering::stabilize(unsigned NumOpcodes) {
253 // Given an instruction Opcode and Config, in which clusters do benchmarks of
254 // this instruction lie? Normally, they all should be in the same cluster.
255 struct OpcodeAndConfig {
256 explicit OpcodeAndConfig(const Benchmark &IB)
257 : Opcode(IB.keyInstruction().getOpcode()), Config(&IB.Key.Config) {}
258 unsigned Opcode;
259 const std::string *Config;
261 auto Tie() const -> auto { return std::tie(Opcode, *Config); }
263 bool operator<(const OpcodeAndConfig &O) const { return Tie() < O.Tie(); }
264 bool operator!=(const OpcodeAndConfig &O) const { return Tie() != O.Tie(); }
266 std::map<OpcodeAndConfig, SmallSet<ClusterId, 1>> OpcodeConfigToClusterIDs;
267 // Populate OpcodeConfigToClusterIDs and UnstableOpcodes data structures.
268 assert(ClusterIdForPoint_.size() == Points_.size() && "size mismatch");
269 for (auto Point : zip(Points_, ClusterIdForPoint_)) {
270 const ClusterId &ClusterIdOfPoint = std::get<1>(Point);
271 if (!ClusterIdOfPoint.isValid())
272 continue; // Only process fully valid clusters.
273 const OpcodeAndConfig Key(std::get<0>(Point));
274 SmallSet<ClusterId, 1> &ClusterIDsOfOpcode = OpcodeConfigToClusterIDs[Key];
275 ClusterIDsOfOpcode.insert(ClusterIdOfPoint);
278 for (const auto &OpcodeConfigToClusterID : OpcodeConfigToClusterIDs) {
279 const SmallSet<ClusterId, 1> &ClusterIDs = OpcodeConfigToClusterID.second;
280 const OpcodeAndConfig &Key = OpcodeConfigToClusterID.first;
281 // We only care about unstable instructions.
282 if (ClusterIDs.size() < 2)
283 continue;
285 // Create a new unstable cluster, one per Opcode.
286 Clusters_.emplace_back(ClusterId::makeValidUnstable(Clusters_.size()));
287 Cluster &UnstableCluster = Clusters_.back();
288 // We will find *at least* one point in each of these clusters.
289 UnstableCluster.PointIndices.reserve(ClusterIDs.size());
291 // Go through every cluster which we recorded as containing benchmarks
292 // of this UnstableOpcode. NOTE: we only recorded valid clusters.
293 for (const ClusterId &CID : ClusterIDs) {
294 assert(CID.isValid() &&
295 "We only recorded valid clusters, not noise/error clusters.");
296 Cluster &OldCluster = Clusters_[CID.getId()]; // Valid clusters storage.
297 // Within each cluster, go through each point, and either move it to the
298 // new unstable cluster, or 'keep' it.
299 // In this case, we'll reshuffle OldCluster.PointIndices vector
300 // so that all the points that are *not* for UnstableOpcode are first,
301 // and the rest of the points is for the UnstableOpcode.
302 const auto it = std::stable_partition(
303 OldCluster.PointIndices.begin(), OldCluster.PointIndices.end(),
304 [this, &Key](size_t P) {
305 return OpcodeAndConfig(Points_[P]) != Key;
307 assert(std::distance(it, OldCluster.PointIndices.end()) > 0 &&
308 "Should have found at least one bad point");
309 // Mark to-be-moved points as belonging to the new cluster.
310 for (size_t P : llvm::make_range(it, OldCluster.PointIndices.end()))
311 ClusterIdForPoint_[P] = UnstableCluster.Id;
312 // Actually append to-be-moved points to the new cluster.
313 UnstableCluster.PointIndices.insert(UnstableCluster.PointIndices.end(),
314 it, OldCluster.PointIndices.end());
315 // And finally, remove "to-be-moved" points from the old cluster.
316 OldCluster.PointIndices.erase(it, OldCluster.PointIndices.end());
317 // Now, the old cluster may end up being empty, but let's just keep it
318 // in whatever state it ended up. Purging empty clusters isn't worth it.
320 assert(UnstableCluster.PointIndices.size() > 1 &&
321 "New unstable cluster should end up with more than one point.");
322 assert(UnstableCluster.PointIndices.size() >= ClusterIDs.size() &&
323 "New unstable cluster should end up with no less points than there "
324 "was clusters");
328 Expected<BenchmarkClustering> BenchmarkClustering::create(
329 const std::vector<Benchmark> &Points, const ModeE Mode,
330 const size_t DbscanMinPts, const double AnalysisClusteringEpsilon,
331 const MCSubtargetInfo *SubtargetInfo, const MCInstrInfo *InstrInfo) {
332 BenchmarkClustering Clustering(
333 Points, AnalysisClusteringEpsilon * AnalysisClusteringEpsilon);
334 if (auto Error = Clustering.validateAndSetup()) {
335 return std::move(Error);
337 if (Clustering.ErrorCluster_.PointIndices.size() == Points.size()) {
338 return Clustering; // Nothing to cluster.
341 if (Mode == ModeE::Dbscan) {
342 Clustering.clusterizeDbScan(DbscanMinPts);
344 if (InstrInfo)
345 Clustering.stabilize(InstrInfo->getNumOpcodes());
346 } else /*if(Mode == ModeE::Naive)*/ {
347 if (!SubtargetInfo || !InstrInfo)
348 return make_error<Failure>("'naive' clustering mode requires "
349 "SubtargetInfo and InstrInfo to be present");
350 Clustering.clusterizeNaive(*SubtargetInfo, *InstrInfo);
353 return Clustering;
356 void SchedClassClusterCentroid::addPoint(ArrayRef<BenchmarkMeasure> Point) {
357 if (Representative.empty())
358 Representative.resize(Point.size());
359 assert(Representative.size() == Point.size() &&
360 "All points should have identical dimensions.");
362 for (auto I : zip(Representative, Point))
363 std::get<0>(I).push(std::get<1>(I));
366 std::vector<BenchmarkMeasure> SchedClassClusterCentroid::getAsPoint() const {
367 std::vector<BenchmarkMeasure> ClusterCenterPoint(Representative.size());
368 for (auto I : zip(ClusterCenterPoint, Representative))
369 std::get<0>(I).PerInstructionValue = std::get<1>(I).avg();
370 return ClusterCenterPoint;
373 bool SchedClassClusterCentroid::validate(
374 Benchmark::ModeE Mode) const {
375 size_t NumMeasurements = Representative.size();
376 switch (Mode) {
377 case Benchmark::Latency:
378 if (NumMeasurements != 1) {
379 errs()
380 << "invalid number of measurements in latency mode: expected 1, got "
381 << NumMeasurements << "\n";
382 return false;
384 break;
385 case Benchmark::Uops:
386 // Can have many measurements.
387 break;
388 case Benchmark::InverseThroughput:
389 if (NumMeasurements != 1) {
390 errs() << "invalid number of measurements in inverse throughput "
391 "mode: expected 1, got "
392 << NumMeasurements << "\n";
393 return false;
395 break;
396 default:
397 llvm_unreachable("unimplemented measurement matching mode");
398 return false;
401 return true; // All good.
404 } // namespace exegesis
405 } // namespace llvm