Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / tools / llvm-mca / Views / BottleneckAnalysis.cpp
blobb702113b39617af44e78693057bdd5a3fa73cc02
1 //===--------------------- BottleneckAnalysis.cpp ---------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This file implements the functionalities used by the BottleneckAnalysis
11 /// to report bottleneck info.
12 ///
13 //===----------------------------------------------------------------------===//
15 #include "Views/BottleneckAnalysis.h"
16 #include "llvm/MC/MCInst.h"
17 #include "llvm/MCA/Support.h"
18 #include "llvm/Support/Format.h"
20 namespace llvm {
21 namespace mca {
23 #define DEBUG_TYPE "llvm-mca"
25 PressureTracker::PressureTracker(const MCSchedModel &Model)
26 : SM(Model),
27 ResourcePressureDistribution(Model.getNumProcResourceKinds(), 0),
28 ProcResID2Mask(Model.getNumProcResourceKinds(), 0),
29 ResIdx2ProcResID(Model.getNumProcResourceKinds(), 0),
30 ProcResID2ResourceUsersIndex(Model.getNumProcResourceKinds(), 0) {
31 computeProcResourceMasks(SM, ProcResID2Mask);
33 // Ignore the invalid resource at index zero.
34 unsigned NextResourceUsersIdx = 0;
35 for (unsigned I = 1, E = Model.getNumProcResourceKinds(); I < E; ++I) {
36 const MCProcResourceDesc &ProcResource = *SM.getProcResource(I);
37 ProcResID2ResourceUsersIndex[I] = NextResourceUsersIdx;
38 NextResourceUsersIdx += ProcResource.NumUnits;
39 uint64_t ResourceMask = ProcResID2Mask[I];
40 ResIdx2ProcResID[getResourceStateIndex(ResourceMask)] = I;
43 ResourceUsers.resize(NextResourceUsersIdx);
44 std::fill(ResourceUsers.begin(), ResourceUsers.end(),
45 std::make_pair<unsigned, unsigned>(~0U, 0U));
48 void PressureTracker::getResourceUsers(uint64_t ResourceMask,
49 SmallVectorImpl<User> &Users) const {
50 unsigned Index = getResourceStateIndex(ResourceMask);
51 unsigned ProcResID = ResIdx2ProcResID[Index];
52 const MCProcResourceDesc &PRDesc = *SM.getProcResource(ProcResID);
53 for (unsigned I = 0, E = PRDesc.NumUnits; I < E; ++I) {
54 const User U = getResourceUser(ProcResID, I);
55 if (U.second && IPI.contains(U.first))
56 Users.emplace_back(U);
60 void PressureTracker::onInstructionDispatched(unsigned IID) {
61 IPI.insert(std::make_pair(IID, InstructionPressureInfo()));
64 void PressureTracker::onInstructionExecuted(unsigned IID) { IPI.erase(IID); }
66 void PressureTracker::handleInstructionIssuedEvent(
67 const HWInstructionIssuedEvent &Event) {
68 unsigned IID = Event.IR.getSourceIndex();
69 for (const ResourceUse &Use : Event.UsedResources) {
70 const ResourceRef &RR = Use.first;
71 unsigned Index = ProcResID2ResourceUsersIndex[RR.first];
72 Index += llvm::countr_zero(RR.second);
73 ResourceUsers[Index] = std::make_pair(IID, Use.second.getNumerator());
77 void PressureTracker::updateResourcePressureDistribution(
78 uint64_t CumulativeMask) {
79 while (CumulativeMask) {
80 uint64_t Current = CumulativeMask & (-CumulativeMask);
81 unsigned ResIdx = getResourceStateIndex(Current);
82 unsigned ProcResID = ResIdx2ProcResID[ResIdx];
83 uint64_t Mask = ProcResID2Mask[ProcResID];
85 if (Mask == Current) {
86 ResourcePressureDistribution[ProcResID]++;
87 CumulativeMask ^= Current;
88 continue;
91 Mask ^= Current;
92 while (Mask) {
93 uint64_t SubUnit = Mask & (-Mask);
94 ResIdx = getResourceStateIndex(SubUnit);
95 ProcResID = ResIdx2ProcResID[ResIdx];
96 ResourcePressureDistribution[ProcResID]++;
97 Mask ^= SubUnit;
100 CumulativeMask ^= Current;
104 void PressureTracker::handlePressureEvent(const HWPressureEvent &Event) {
105 assert(Event.Reason != HWPressureEvent::INVALID &&
106 "Unexpected invalid event!");
108 switch (Event.Reason) {
109 default:
110 break;
112 case HWPressureEvent::RESOURCES: {
113 const uint64_t ResourceMask = Event.ResourceMask;
114 updateResourcePressureDistribution(Event.ResourceMask);
116 for (const InstRef &IR : Event.AffectedInstructions) {
117 const Instruction &IS = *IR.getInstruction();
118 unsigned BusyResources = IS.getCriticalResourceMask() & ResourceMask;
119 if (!BusyResources)
120 continue;
122 unsigned IID = IR.getSourceIndex();
123 IPI[IID].ResourcePressureCycles++;
125 break;
128 case HWPressureEvent::REGISTER_DEPS:
129 for (const InstRef &IR : Event.AffectedInstructions) {
130 unsigned IID = IR.getSourceIndex();
131 IPI[IID].RegisterPressureCycles++;
133 break;
135 case HWPressureEvent::MEMORY_DEPS:
136 for (const InstRef &IR : Event.AffectedInstructions) {
137 unsigned IID = IR.getSourceIndex();
138 IPI[IID].MemoryPressureCycles++;
143 #ifndef NDEBUG
144 void DependencyGraph::dumpDependencyEdge(raw_ostream &OS,
145 const DependencyEdge &DepEdge,
146 MCInstPrinter &MCIP) const {
147 unsigned FromIID = DepEdge.FromIID;
148 unsigned ToIID = DepEdge.ToIID;
149 assert(FromIID < ToIID && "Graph should be acyclic!");
151 const DependencyEdge::Dependency &DE = DepEdge.Dep;
152 assert(DE.Type != DependencyEdge::DT_INVALID && "Unexpected invalid edge!");
154 OS << " FROM: " << FromIID << " TO: " << ToIID << " ";
155 if (DE.Type == DependencyEdge::DT_REGISTER) {
156 OS << " - REGISTER: ";
157 MCIP.printRegName(OS, DE.ResourceOrRegID);
158 } else if (DE.Type == DependencyEdge::DT_MEMORY) {
159 OS << " - MEMORY";
160 } else {
161 assert(DE.Type == DependencyEdge::DT_RESOURCE &&
162 "Unsupported dependency type!");
163 OS << " - RESOURCE MASK: " << DE.ResourceOrRegID;
165 OS << " - COST: " << DE.Cost << '\n';
167 #endif // NDEBUG
169 void DependencyGraph::pruneEdges(unsigned Iterations) {
170 for (DGNode &N : Nodes) {
171 unsigned NumPruned = 0;
172 const unsigned Size = N.OutgoingEdges.size();
173 // Use a cut-off threshold to prune edges with a low frequency.
174 for (unsigned I = 0, E = Size; I < E; ++I) {
175 DependencyEdge &Edge = N.OutgoingEdges[I];
176 if (Edge.Frequency == Iterations)
177 continue;
178 double Factor = (double)Edge.Frequency / Iterations;
179 if (0.10 < Factor)
180 continue;
181 Nodes[Edge.ToIID].NumPredecessors--;
182 std::swap(Edge, N.OutgoingEdges[E - 1]);
183 --E;
184 ++NumPruned;
187 if (NumPruned)
188 N.OutgoingEdges.resize(Size - NumPruned);
192 void DependencyGraph::initializeRootSet(
193 SmallVectorImpl<unsigned> &RootSet) const {
194 for (unsigned I = 0, E = Nodes.size(); I < E; ++I) {
195 const DGNode &N = Nodes[I];
196 if (N.NumPredecessors == 0 && !N.OutgoingEdges.empty())
197 RootSet.emplace_back(I);
201 void DependencyGraph::propagateThroughEdges(SmallVectorImpl<unsigned> &RootSet,
202 unsigned Iterations) {
203 SmallVector<unsigned, 8> ToVisit;
205 // A critical sequence is computed as the longest path from a node of the
206 // RootSet to a leaf node (i.e. a node with no successors). The RootSet is
207 // composed of nodes with at least one successor, and no predecessors.
209 // Each node of the graph starts with an initial default cost of zero. The
210 // cost of a node is a measure of criticality: the higher the cost, the bigger
211 // is the performance impact.
212 // For register and memory dependencies, the cost is a function of the write
213 // latency as well as the actual delay (in cycles) caused to users.
214 // For processor resource dependencies, the cost is a function of the resource
215 // pressure. Resource interferences with low frequency values are ignored.
217 // This algorithm is very similar to a (reverse) Dijkstra. Every iteration of
218 // the inner loop selects (i.e. visits) a node N from a set of `unvisited
219 // nodes`, and then propagates the cost of N to all its neighbors.
221 // The `unvisited nodes` set initially contains all the nodes from the
222 // RootSet. A node N is added to the `unvisited nodes` if all its
223 // predecessors have been visited already.
225 // For simplicity, every node tracks the number of unvisited incoming edges in
226 // field `NumVisitedPredecessors`. When the value of that field drops to
227 // zero, then the corresponding node is added to a `ToVisit` set.
229 // At the end of every iteration of the outer loop, set `ToVisit` becomes our
230 // new `unvisited nodes` set.
232 // The algorithm terminates when the set of unvisited nodes (i.e. our RootSet)
233 // is empty. This algorithm works under the assumption that the graph is
234 // acyclic.
235 do {
236 for (unsigned IID : RootSet) {
237 const DGNode &N = Nodes[IID];
238 for (const DependencyEdge &DepEdge : N.OutgoingEdges) {
239 unsigned ToIID = DepEdge.ToIID;
240 DGNode &To = Nodes[ToIID];
241 uint64_t Cost = N.Cost + DepEdge.Dep.Cost;
242 // Check if this is the most expensive incoming edge seen so far. In
243 // case, update the total cost of the destination node (ToIID), as well
244 // its field `CriticalPredecessor`.
245 if (Cost > To.Cost) {
246 To.CriticalPredecessor = DepEdge;
247 To.Cost = Cost;
248 To.Depth = N.Depth + 1;
250 To.NumVisitedPredecessors++;
251 if (To.NumVisitedPredecessors == To.NumPredecessors)
252 ToVisit.emplace_back(ToIID);
256 std::swap(RootSet, ToVisit);
257 ToVisit.clear();
258 } while (!RootSet.empty());
261 void DependencyGraph::getCriticalSequence(
262 SmallVectorImpl<const DependencyEdge *> &Seq) const {
263 // At this stage, nodes of the graph have been already visited, and costs have
264 // been propagated through the edges (see method `propagateThroughEdges()`).
266 // Identify the node N with the highest cost in the graph. By construction,
267 // that node is the last instruction of our critical sequence.
268 // Field N.Depth would tell us the total length of the sequence.
270 // To obtain the sequence of critical edges, we simply follow the chain of
271 // critical predecessors starting from node N (field
272 // DGNode::CriticalPredecessor).
273 const auto It = std::max_element(
274 Nodes.begin(), Nodes.end(),
275 [](const DGNode &Lhs, const DGNode &Rhs) { return Lhs.Cost < Rhs.Cost; });
276 unsigned IID = std::distance(Nodes.begin(), It);
277 Seq.resize(Nodes[IID].Depth);
278 for (const DependencyEdge *&DE : llvm::reverse(Seq)) {
279 const DGNode &N = Nodes[IID];
280 DE = &N.CriticalPredecessor;
281 IID = N.CriticalPredecessor.FromIID;
285 void BottleneckAnalysis::printInstruction(formatted_raw_ostream &FOS,
286 const MCInst &MCI,
287 bool UseDifferentColor) const {
288 FOS.PadToColumn(14);
289 if (UseDifferentColor)
290 FOS.changeColor(raw_ostream::CYAN, true, false);
291 FOS << printInstructionString(MCI);
292 if (UseDifferentColor)
293 FOS.resetColor();
296 void BottleneckAnalysis::printCriticalSequence(raw_ostream &OS) const {
297 // Early exit if no bottlenecks were found during the simulation.
298 if (!SeenStallCycles || !BPI.PressureIncreaseCycles)
299 return;
301 SmallVector<const DependencyEdge *, 16> Seq;
302 DG.getCriticalSequence(Seq);
303 if (Seq.empty())
304 return;
306 OS << "\nCritical sequence based on the simulation:\n\n";
308 const DependencyEdge &FirstEdge = *Seq[0];
309 ArrayRef<llvm::MCInst> Source = getSource();
310 unsigned FromIID = FirstEdge.FromIID % Source.size();
311 unsigned ToIID = FirstEdge.ToIID % Source.size();
312 bool IsLoopCarried = FromIID >= ToIID;
314 formatted_raw_ostream FOS(OS);
315 FOS.PadToColumn(14);
316 FOS << "Instruction";
317 FOS.PadToColumn(58);
318 FOS << "Dependency Information";
320 bool HasColors = FOS.has_colors();
322 unsigned CurrentIID = 0;
323 if (IsLoopCarried) {
324 FOS << "\n +----< " << FromIID << ".";
325 printInstruction(FOS, Source[FromIID], HasColors);
326 FOS << "\n |\n | < loop carried > \n |";
327 } else {
328 while (CurrentIID < FromIID) {
329 FOS << "\n " << CurrentIID << ".";
330 printInstruction(FOS, Source[CurrentIID]);
331 CurrentIID++;
334 FOS << "\n +----< " << CurrentIID << ".";
335 printInstruction(FOS, Source[CurrentIID], HasColors);
336 CurrentIID++;
339 for (const DependencyEdge *&DE : Seq) {
340 ToIID = DE->ToIID % Source.size();
341 unsigned LastIID = CurrentIID > ToIID ? Source.size() : ToIID;
343 while (CurrentIID < LastIID) {
344 FOS << "\n | " << CurrentIID << ".";
345 printInstruction(FOS, Source[CurrentIID]);
346 CurrentIID++;
349 if (CurrentIID == ToIID) {
350 FOS << "\n +----> " << ToIID << ".";
351 printInstruction(FOS, Source[CurrentIID], HasColors);
352 } else {
353 FOS << "\n |\n | < loop carried > \n |"
354 << "\n +----> " << ToIID << ".";
355 printInstruction(FOS, Source[ToIID], HasColors);
357 FOS.PadToColumn(58);
359 const DependencyEdge::Dependency &Dep = DE->Dep;
360 if (HasColors)
361 FOS.changeColor(raw_ostream::SAVEDCOLOR, true, false);
363 if (Dep.Type == DependencyEdge::DT_REGISTER) {
364 FOS << "## REGISTER dependency: ";
365 if (HasColors)
366 FOS.changeColor(raw_ostream::MAGENTA, true, false);
367 getInstPrinter().printRegName(FOS, Dep.ResourceOrRegID);
368 } else if (Dep.Type == DependencyEdge::DT_MEMORY) {
369 FOS << "## MEMORY dependency.";
370 } else {
371 assert(Dep.Type == DependencyEdge::DT_RESOURCE &&
372 "Unsupported dependency type!");
373 FOS << "## RESOURCE interference: ";
374 if (HasColors)
375 FOS.changeColor(raw_ostream::MAGENTA, true, false);
376 FOS << Tracker.resolveResourceName(Dep.ResourceOrRegID);
377 if (HasColors) {
378 FOS.resetColor();
379 FOS.changeColor(raw_ostream::SAVEDCOLOR, true, false);
381 FOS << " [ probability: " << ((DE->Frequency * 100) / Iterations)
382 << "% ]";
384 if (HasColors)
385 FOS.resetColor();
386 ++CurrentIID;
389 while (CurrentIID < Source.size()) {
390 FOS << "\n " << CurrentIID << ".";
391 printInstruction(FOS, Source[CurrentIID]);
392 CurrentIID++;
395 FOS << '\n';
396 FOS.flush();
399 #ifndef NDEBUG
400 void DependencyGraph::dump(raw_ostream &OS, MCInstPrinter &MCIP) const {
401 OS << "\nREG DEPS\n";
402 for (const DGNode &Node : Nodes)
403 for (const DependencyEdge &DE : Node.OutgoingEdges)
404 if (DE.Dep.Type == DependencyEdge::DT_REGISTER)
405 dumpDependencyEdge(OS, DE, MCIP);
407 OS << "\nMEM DEPS\n";
408 for (const DGNode &Node : Nodes)
409 for (const DependencyEdge &DE : Node.OutgoingEdges)
410 if (DE.Dep.Type == DependencyEdge::DT_MEMORY)
411 dumpDependencyEdge(OS, DE, MCIP);
413 OS << "\nRESOURCE DEPS\n";
414 for (const DGNode &Node : Nodes)
415 for (const DependencyEdge &DE : Node.OutgoingEdges)
416 if (DE.Dep.Type == DependencyEdge::DT_RESOURCE)
417 dumpDependencyEdge(OS, DE, MCIP);
419 #endif // NDEBUG
421 void DependencyGraph::addDependency(unsigned From, unsigned To,
422 DependencyEdge::Dependency &&Dep) {
423 DGNode &NodeFrom = Nodes[From];
424 DGNode &NodeTo = Nodes[To];
425 SmallVectorImpl<DependencyEdge> &Vec = NodeFrom.OutgoingEdges;
427 auto It = find_if(Vec, [To, Dep](DependencyEdge &DE) {
428 return DE.ToIID == To && DE.Dep.ResourceOrRegID == Dep.ResourceOrRegID;
431 if (It != Vec.end()) {
432 It->Dep.Cost += Dep.Cost;
433 It->Frequency++;
434 return;
437 DependencyEdge DE = {Dep, From, To, 1};
438 Vec.emplace_back(DE);
439 NodeTo.NumPredecessors++;
442 BottleneckAnalysis::BottleneckAnalysis(const MCSubtargetInfo &sti,
443 MCInstPrinter &Printer,
444 ArrayRef<MCInst> S, unsigned NumIter)
445 : InstructionView(sti, Printer, S), Tracker(sti.getSchedModel()),
446 DG(S.size() * 3), Iterations(NumIter), TotalCycles(0),
447 PressureIncreasedBecauseOfResources(false),
448 PressureIncreasedBecauseOfRegisterDependencies(false),
449 PressureIncreasedBecauseOfMemoryDependencies(false),
450 SeenStallCycles(false), BPI() {}
452 void BottleneckAnalysis::addRegisterDep(unsigned From, unsigned To,
453 unsigned RegID, unsigned Cost) {
454 bool IsLoopCarried = From >= To;
455 unsigned SourceSize = getSource().size();
456 if (IsLoopCarried) {
457 DG.addRegisterDep(From, To + SourceSize, RegID, Cost);
458 DG.addRegisterDep(From + SourceSize, To + (SourceSize * 2), RegID, Cost);
459 return;
461 DG.addRegisterDep(From + SourceSize, To + SourceSize, RegID, Cost);
464 void BottleneckAnalysis::addMemoryDep(unsigned From, unsigned To,
465 unsigned Cost) {
466 bool IsLoopCarried = From >= To;
467 unsigned SourceSize = getSource().size();
468 if (IsLoopCarried) {
469 DG.addMemoryDep(From, To + SourceSize, Cost);
470 DG.addMemoryDep(From + SourceSize, To + (SourceSize * 2), Cost);
471 return;
473 DG.addMemoryDep(From + SourceSize, To + SourceSize, Cost);
476 void BottleneckAnalysis::addResourceDep(unsigned From, unsigned To,
477 uint64_t Mask, unsigned Cost) {
478 bool IsLoopCarried = From >= To;
479 unsigned SourceSize = getSource().size();
480 if (IsLoopCarried) {
481 DG.addResourceDep(From, To + SourceSize, Mask, Cost);
482 DG.addResourceDep(From + SourceSize, To + (SourceSize * 2), Mask, Cost);
483 return;
485 DG.addResourceDep(From + SourceSize, To + SourceSize, Mask, Cost);
488 void BottleneckAnalysis::onEvent(const HWInstructionEvent &Event) {
489 const unsigned IID = Event.IR.getSourceIndex();
490 if (Event.Type == HWInstructionEvent::Dispatched) {
491 Tracker.onInstructionDispatched(IID);
492 return;
494 if (Event.Type == HWInstructionEvent::Executed) {
495 Tracker.onInstructionExecuted(IID);
496 return;
499 if (Event.Type != HWInstructionEvent::Issued)
500 return;
502 ArrayRef<llvm::MCInst> Source = getSource();
503 const Instruction &IS = *Event.IR.getInstruction();
504 unsigned To = IID % Source.size();
506 unsigned Cycles = 2 * Tracker.getResourcePressureCycles(IID);
507 uint64_t ResourceMask = IS.getCriticalResourceMask();
508 SmallVector<std::pair<unsigned, unsigned>, 4> Users;
509 while (ResourceMask) {
510 uint64_t Current = ResourceMask & (-ResourceMask);
511 Tracker.getResourceUsers(Current, Users);
512 for (const std::pair<unsigned, unsigned> &U : Users)
513 addResourceDep(U.first % Source.size(), To, Current, U.second + Cycles);
514 Users.clear();
515 ResourceMask ^= Current;
518 const CriticalDependency &RegDep = IS.getCriticalRegDep();
519 if (RegDep.Cycles) {
520 Cycles = RegDep.Cycles + 2 * Tracker.getRegisterPressureCycles(IID);
521 unsigned From = RegDep.IID % Source.size();
522 addRegisterDep(From, To, RegDep.RegID, Cycles);
525 const CriticalDependency &MemDep = IS.getCriticalMemDep();
526 if (MemDep.Cycles) {
527 Cycles = MemDep.Cycles + 2 * Tracker.getMemoryPressureCycles(IID);
528 unsigned From = MemDep.IID % Source.size();
529 addMemoryDep(From, To, Cycles);
532 Tracker.handleInstructionIssuedEvent(
533 static_cast<const HWInstructionIssuedEvent &>(Event));
535 // Check if this is the last simulated instruction.
536 if (IID == ((Iterations * Source.size()) - 1))
537 DG.finalizeGraph(Iterations);
540 void BottleneckAnalysis::onEvent(const HWPressureEvent &Event) {
541 assert(Event.Reason != HWPressureEvent::INVALID &&
542 "Unexpected invalid event!");
544 Tracker.handlePressureEvent(Event);
546 switch (Event.Reason) {
547 default:
548 break;
550 case HWPressureEvent::RESOURCES:
551 PressureIncreasedBecauseOfResources = true;
552 break;
553 case HWPressureEvent::REGISTER_DEPS:
554 PressureIncreasedBecauseOfRegisterDependencies = true;
555 break;
556 case HWPressureEvent::MEMORY_DEPS:
557 PressureIncreasedBecauseOfMemoryDependencies = true;
558 break;
562 void BottleneckAnalysis::onCycleEnd() {
563 ++TotalCycles;
565 bool PressureIncreasedBecauseOfDataDependencies =
566 PressureIncreasedBecauseOfRegisterDependencies ||
567 PressureIncreasedBecauseOfMemoryDependencies;
568 if (!PressureIncreasedBecauseOfResources &&
569 !PressureIncreasedBecauseOfDataDependencies)
570 return;
572 ++BPI.PressureIncreaseCycles;
573 if (PressureIncreasedBecauseOfRegisterDependencies)
574 ++BPI.RegisterDependencyCycles;
575 if (PressureIncreasedBecauseOfMemoryDependencies)
576 ++BPI.MemoryDependencyCycles;
577 if (PressureIncreasedBecauseOfDataDependencies)
578 ++BPI.DataDependencyCycles;
579 if (PressureIncreasedBecauseOfResources)
580 ++BPI.ResourcePressureCycles;
581 PressureIncreasedBecauseOfResources = false;
582 PressureIncreasedBecauseOfRegisterDependencies = false;
583 PressureIncreasedBecauseOfMemoryDependencies = false;
586 void BottleneckAnalysis::printBottleneckHints(raw_ostream &OS) const {
587 if (!SeenStallCycles || !BPI.PressureIncreaseCycles) {
588 OS << "\n\nNo resource or data dependency bottlenecks discovered.\n";
589 return;
592 double PressurePerCycle =
593 (double)BPI.PressureIncreaseCycles * 100 / TotalCycles;
594 double ResourcePressurePerCycle =
595 (double)BPI.ResourcePressureCycles * 100 / TotalCycles;
596 double DDPerCycle = (double)BPI.DataDependencyCycles * 100 / TotalCycles;
597 double RegDepPressurePerCycle =
598 (double)BPI.RegisterDependencyCycles * 100 / TotalCycles;
599 double MemDepPressurePerCycle =
600 (double)BPI.MemoryDependencyCycles * 100 / TotalCycles;
602 OS << "\n\nCycles with backend pressure increase [ "
603 << format("%.2f", floor((PressurePerCycle * 100) + 0.5) / 100) << "% ]";
605 OS << "\nThroughput Bottlenecks: "
606 << "\n Resource Pressure [ "
607 << format("%.2f", floor((ResourcePressurePerCycle * 100) + 0.5) / 100)
608 << "% ]";
610 if (BPI.PressureIncreaseCycles) {
611 ArrayRef<unsigned> Distribution = Tracker.getResourcePressureDistribution();
612 const MCSchedModel &SM = getSubTargetInfo().getSchedModel();
613 for (unsigned I = 0, E = Distribution.size(); I < E; ++I) {
614 unsigned ReleaseAtCycles = Distribution[I];
615 if (ReleaseAtCycles) {
616 double Frequency = (double)ReleaseAtCycles * 100 / TotalCycles;
617 const MCProcResourceDesc &PRDesc = *SM.getProcResource(I);
618 OS << "\n - " << PRDesc.Name << " [ "
619 << format("%.2f", floor((Frequency * 100) + 0.5) / 100) << "% ]";
624 OS << "\n Data Dependencies: [ "
625 << format("%.2f", floor((DDPerCycle * 100) + 0.5) / 100) << "% ]";
626 OS << "\n - Register Dependencies [ "
627 << format("%.2f", floor((RegDepPressurePerCycle * 100) + 0.5) / 100)
628 << "% ]";
629 OS << "\n - Memory Dependencies [ "
630 << format("%.2f", floor((MemDepPressurePerCycle * 100) + 0.5) / 100)
631 << "% ]\n";
634 void BottleneckAnalysis::printView(raw_ostream &OS) const {
635 std::string Buffer;
636 raw_string_ostream TempStream(Buffer);
637 printBottleneckHints(TempStream);
638 TempStream.flush();
639 OS << Buffer;
640 printCriticalSequence(OS);
643 } // namespace mca.
644 } // namespace llvm