1 //===-- llvm-objdump.cpp - Object file dumping utility for llvm -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This program is a utility that works like binutils "objdump", that is, it
10 // dumps out a plethora of information about an object file depending on the
13 // The flags and output of this program should be near identical to those of
16 //===----------------------------------------------------------------------===//
18 #include "llvm-objdump.h"
21 #include "MachODump.h"
22 #include "ObjdumpOptID.h"
23 #include "OffloadDump.h"
24 #include "SourcePrinter.h"
26 #include "XCOFFDump.h"
27 #include "llvm/ADT/IndexedMap.h"
28 #include "llvm/ADT/STLExtras.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/StringExtras.h"
32 #include "llvm/ADT/StringSet.h"
33 #include "llvm/ADT/Twine.h"
34 #include "llvm/DebugInfo/BTF/BTFParser.h"
35 #include "llvm/DebugInfo/DWARF/DWARFContext.h"
36 #include "llvm/DebugInfo/Symbolize/SymbolizableModule.h"
37 #include "llvm/DebugInfo/Symbolize/Symbolize.h"
38 #include "llvm/Debuginfod/BuildIDFetcher.h"
39 #include "llvm/Debuginfod/Debuginfod.h"
40 #include "llvm/Debuginfod/HTTPClient.h"
41 #include "llvm/Demangle/Demangle.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/MC/MCContext.h"
44 #include "llvm/MC/MCDisassembler/MCDisassembler.h"
45 #include "llvm/MC/MCDisassembler/MCRelocationInfo.h"
46 #include "llvm/MC/MCInst.h"
47 #include "llvm/MC/MCInstPrinter.h"
48 #include "llvm/MC/MCInstrAnalysis.h"
49 #include "llvm/MC/MCInstrInfo.h"
50 #include "llvm/MC/MCObjectFileInfo.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/MC/MCTargetOptions.h"
53 #include "llvm/MC/TargetRegistry.h"
54 #include "llvm/Object/Archive.h"
55 #include "llvm/Object/BuildID.h"
56 #include "llvm/Object/COFF.h"
57 #include "llvm/Object/COFFImportFile.h"
58 #include "llvm/Object/ELFObjectFile.h"
59 #include "llvm/Object/ELFTypes.h"
60 #include "llvm/Object/FaultMapParser.h"
61 #include "llvm/Object/MachO.h"
62 #include "llvm/Object/MachOUniversal.h"
63 #include "llvm/Object/ObjectFile.h"
64 #include "llvm/Object/OffloadBinary.h"
65 #include "llvm/Object/Wasm.h"
66 #include "llvm/Option/Arg.h"
67 #include "llvm/Option/ArgList.h"
68 #include "llvm/Option/Option.h"
69 #include "llvm/Support/Casting.h"
70 #include "llvm/Support/Debug.h"
71 #include "llvm/Support/Errc.h"
72 #include "llvm/Support/FileSystem.h"
73 #include "llvm/Support/Format.h"
74 #include "llvm/Support/FormatVariadic.h"
75 #include "llvm/Support/GraphWriter.h"
76 #include "llvm/Support/InitLLVM.h"
77 #include "llvm/Support/LLVMDriver.h"
78 #include "llvm/Support/MemoryBuffer.h"
79 #include "llvm/Support/SourceMgr.h"
80 #include "llvm/Support/StringSaver.h"
81 #include "llvm/Support/TargetSelect.h"
82 #include "llvm/Support/WithColor.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include "llvm/TargetParser/Host.h"
85 #include "llvm/TargetParser/Triple.h"
90 #include <system_error>
91 #include <unordered_map>
95 using namespace llvm::object
;
96 using namespace llvm::objdump
;
97 using namespace llvm::opt
;
101 class CommonOptTable
: public opt::GenericOptTable
{
103 CommonOptTable(ArrayRef
<Info
> OptionInfos
, const char *Usage
,
104 const char *Description
)
105 : opt::GenericOptTable(OptionInfos
), Usage(Usage
),
106 Description(Description
) {
107 setGroupedShortOptions(true);
110 void printHelp(StringRef Argv0
, bool ShowHidden
= false) const {
111 Argv0
= sys::path::filename(Argv0
);
112 opt::GenericOptTable::printHelp(outs(), (Argv0
+ Usage
).str().c_str(),
113 Description
, ShowHidden
, ShowHidden
);
114 // TODO Replace this with OptTable API once it adds extrahelp support.
115 outs() << "\nPass @FILE as argument to read options from FILE.\n";
120 const char *Description
;
123 // ObjdumpOptID is in ObjdumpOptID.h
124 namespace objdump_opt
{
125 #define PREFIX(NAME, VALUE) \
126 static constexpr StringLiteral NAME##_init[] = VALUE; \
127 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
128 std::size(NAME##_init) - 1);
129 #include "ObjdumpOpts.inc"
132 static constexpr opt::OptTable::Info ObjdumpInfoTable
[] = {
133 #define OPTION(...) \
134 LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OBJDUMP_, __VA_ARGS__),
135 #include "ObjdumpOpts.inc"
138 } // namespace objdump_opt
140 class ObjdumpOptTable
: public CommonOptTable
{
143 : CommonOptTable(objdump_opt::ObjdumpInfoTable
,
144 " [options] <input object files>",
145 "llvm object file dumper") {}
149 OTOOL_INVALID
= 0, // This is not an option ID.
150 #define OPTION(...) LLVM_MAKE_OPT_ID_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
151 #include "OtoolOpts.inc"
156 #define PREFIX(NAME, VALUE) \
157 static constexpr StringLiteral NAME##_init[] = VALUE; \
158 static constexpr ArrayRef<StringLiteral> NAME(NAME##_init, \
159 std::size(NAME##_init) - 1);
160 #include "OtoolOpts.inc"
163 static constexpr opt::OptTable::Info OtoolInfoTable
[] = {
164 #define OPTION(...) LLVM_CONSTRUCT_OPT_INFO_WITH_ID_PREFIX(OTOOL_, __VA_ARGS__),
165 #include "OtoolOpts.inc"
170 class OtoolOptTable
: public CommonOptTable
{
173 : CommonOptTable(otool::OtoolInfoTable
, " [option...] [file...]",
174 "Mach-O object file displaying tool") {}
179 #define DEBUG_TYPE "objdump"
181 enum class ColorOutput
{
188 static uint64_t AdjustVMA
;
189 static bool AllHeaders
;
190 static std::string ArchName
;
191 bool objdump::ArchiveHeaders
;
192 bool objdump::Demangle
;
193 bool objdump::Disassemble
;
194 bool objdump::DisassembleAll
;
195 bool objdump::SymbolDescription
;
196 bool objdump::TracebackTable
;
197 static std::vector
<std::string
> DisassembleSymbols
;
198 static bool DisassembleZeroes
;
199 static std::vector
<std::string
> DisassemblerOptions
;
200 static ColorOutput DisassemblyColor
;
201 DIDumpType
objdump::DwarfDumpType
;
202 static bool DynamicRelocations
;
203 static bool FaultMapSection
;
204 static bool FileHeaders
;
205 bool objdump::SectionContents
;
206 static std::vector
<std::string
> InputFilenames
;
207 bool objdump::PrintLines
;
208 static bool MachOOpt
;
209 std::string
objdump::MCPU
;
210 std::vector
<std::string
> objdump::MAttrs
;
211 bool objdump::ShowRawInsn
;
212 bool objdump::LeadingAddr
;
213 static bool Offloading
;
214 static bool RawClangAST
;
215 bool objdump::Relocations
;
216 bool objdump::PrintImmHex
;
217 bool objdump::PrivateHeaders
;
218 std::vector
<std::string
> objdump::FilterSections
;
219 bool objdump::SectionHeaders
;
220 static bool ShowAllSymbols
;
222 bool objdump::PrintSource
;
224 static uint64_t StartAddress
;
225 static bool HasStartAddressFlag
;
226 static uint64_t StopAddress
= UINT64_MAX
;
227 static bool HasStopAddressFlag
;
229 bool objdump::SymbolTable
;
230 static bool SymbolizeOperands
;
231 static bool DynamicSymbolTable
;
232 std::string
objdump::TripleName
;
233 bool objdump::UnwindInfo
;
235 std::string
objdump::Prefix
;
236 uint32_t objdump::PrefixStrip
;
238 DebugVarsFormat
objdump::DbgVariables
= DVDisabled
;
240 int objdump::DbgIndent
= 52;
242 static StringSet
<> DisasmSymbolSet
;
243 StringSet
<> objdump::FoundSectionSet
;
244 static StringRef ToolName
;
246 std::unique_ptr
<BuildIDFetcher
> BIDFetcher
;
248 Dumper::Dumper(const object::ObjectFile
&O
) : O(O
) {
249 WarningHandler
= [this](const Twine
&Msg
) {
250 if (Warnings
.insert(Msg
.str()).second
)
251 reportWarning(Msg
, this->O
.getFileName());
252 return Error::success();
256 void Dumper::reportUniqueWarning(Error Err
) {
257 reportUniqueWarning(toString(std::move(Err
)));
260 void Dumper::reportUniqueWarning(const Twine
&Msg
) {
261 cantFail(WarningHandler(Msg
));
264 static Expected
<std::unique_ptr
<Dumper
>> createDumper(const ObjectFile
&Obj
) {
265 if (const auto *O
= dyn_cast
<COFFObjectFile
>(&Obj
))
266 return createCOFFDumper(*O
);
267 if (const auto *O
= dyn_cast
<ELFObjectFileBase
>(&Obj
))
268 return createELFDumper(*O
);
269 if (const auto *O
= dyn_cast
<MachOObjectFile
>(&Obj
))
270 return createMachODumper(*O
);
271 if (const auto *O
= dyn_cast
<WasmObjectFile
>(&Obj
))
272 return createWasmDumper(*O
);
273 if (const auto *O
= dyn_cast
<XCOFFObjectFile
>(&Obj
))
274 return createXCOFFDumper(*O
);
276 return createStringError(errc::invalid_argument
,
277 "unsupported object file format");
281 struct FilterResult
{
282 // True if the section should not be skipped.
285 // True if the index counter should be incremented, even if the section should
286 // be skipped. For example, sections may be skipped if they are not included
287 // in the --section flag, but we still want those to count toward the section
293 static FilterResult
checkSectionFilter(object::SectionRef S
) {
294 if (FilterSections
.empty())
295 return {/*Keep=*/true, /*IncrementIndex=*/true};
297 Expected
<StringRef
> SecNameOrErr
= S
.getName();
299 consumeError(SecNameOrErr
.takeError());
300 return {/*Keep=*/false, /*IncrementIndex=*/false};
302 StringRef SecName
= *SecNameOrErr
;
304 // StringSet does not allow empty key so avoid adding sections with
305 // no name (such as the section with index 0) here.
306 if (!SecName
.empty())
307 FoundSectionSet
.insert(SecName
);
309 // Only show the section if it's in the FilterSections list, but always
310 // increment so the indexing is stable.
311 return {/*Keep=*/is_contained(FilterSections
, SecName
),
312 /*IncrementIndex=*/true};
315 SectionFilter
objdump::ToolSectionFilter(object::ObjectFile
const &O
,
317 // Start at UINT64_MAX so that the first index returned after an increment is
318 // zero (after the unsigned wrap).
321 return SectionFilter(
322 [Idx
](object::SectionRef S
) {
323 FilterResult Result
= checkSectionFilter(S
);
324 if (Idx
!= nullptr && Result
.IncrementIndex
)
331 std::string
objdump::getFileNameForError(const object::Archive::Child
&C
,
333 Expected
<StringRef
> NameOrErr
= C
.getName();
335 return std::string(NameOrErr
.get());
336 // If we have an error getting the name then we print the index of the archive
337 // member. Since we are already in an error state, we just ignore this error.
338 consumeError(NameOrErr
.takeError());
339 return "<file index: " + std::to_string(Index
) + ">";
342 void objdump::reportWarning(const Twine
&Message
, StringRef File
) {
343 // Output order between errs() and outs() matters especially for archive
344 // files where the output is per member object.
346 WithColor::warning(errs(), ToolName
)
347 << "'" << File
<< "': " << Message
<< "\n";
350 [[noreturn
]] void objdump::reportError(StringRef File
, const Twine
&Message
) {
352 WithColor::error(errs(), ToolName
) << "'" << File
<< "': " << Message
<< "\n";
356 [[noreturn
]] void objdump::reportError(Error E
, StringRef FileName
,
357 StringRef ArchiveName
,
358 StringRef ArchitectureName
) {
361 WithColor::error(errs(), ToolName
);
362 if (ArchiveName
!= "")
363 errs() << ArchiveName
<< "(" << FileName
<< ")";
365 errs() << "'" << FileName
<< "'";
366 if (!ArchitectureName
.empty())
367 errs() << " (for architecture " << ArchitectureName
<< ")";
369 logAllUnhandledErrors(std::move(E
), errs());
373 static void reportCmdLineWarning(const Twine
&Message
) {
374 WithColor::warning(errs(), ToolName
) << Message
<< "\n";
377 [[noreturn
]] static void reportCmdLineError(const Twine
&Message
) {
378 WithColor::error(errs(), ToolName
) << Message
<< "\n";
382 static void warnOnNoMatchForSections() {
383 SetVector
<StringRef
> MissingSections
;
384 for (StringRef S
: FilterSections
) {
385 if (FoundSectionSet
.count(S
))
387 // User may specify a unnamed section. Don't warn for it.
389 MissingSections
.insert(S
);
392 // Warn only if no section in FilterSections is matched.
393 for (StringRef S
: MissingSections
)
394 reportCmdLineWarning("section '" + S
+
395 "' mentioned in a -j/--section option, but not "
396 "found in any input file");
399 static const Target
*getTarget(const ObjectFile
*Obj
) {
400 // Figure out the target triple.
401 Triple
TheTriple("unknown-unknown-unknown");
402 if (TripleName
.empty()) {
403 TheTriple
= Obj
->makeTriple();
405 TheTriple
.setTriple(Triple::normalize(TripleName
));
406 auto Arch
= Obj
->getArch();
407 if (Arch
== Triple::arm
|| Arch
== Triple::armeb
)
408 Obj
->setARMSubArch(TheTriple
);
411 // Get the target specific parser.
413 const Target
*TheTarget
= TargetRegistry::lookupTarget(ArchName
, TheTriple
,
416 reportError(Obj
->getFileName(), "can't find target: " + Error
);
418 // Update the triple name and return the found target.
419 TripleName
= TheTriple
.getTriple();
423 bool objdump::isRelocAddressLess(RelocationRef A
, RelocationRef B
) {
424 return A
.getOffset() < B
.getOffset();
427 static Error
getRelocationValueString(const RelocationRef
&Rel
,
428 SmallVectorImpl
<char> &Result
) {
429 const ObjectFile
*Obj
= Rel
.getObject();
430 if (auto *ELF
= dyn_cast
<ELFObjectFileBase
>(Obj
))
431 return getELFRelocationValueString(ELF
, Rel
, Result
);
432 if (auto *COFF
= dyn_cast
<COFFObjectFile
>(Obj
))
433 return getCOFFRelocationValueString(COFF
, Rel
, Result
);
434 if (auto *Wasm
= dyn_cast
<WasmObjectFile
>(Obj
))
435 return getWasmRelocationValueString(Wasm
, Rel
, Result
);
436 if (auto *MachO
= dyn_cast
<MachOObjectFile
>(Obj
))
437 return getMachORelocationValueString(MachO
, Rel
, Result
);
438 if (auto *XCOFF
= dyn_cast
<XCOFFObjectFile
>(Obj
))
439 return getXCOFFRelocationValueString(*XCOFF
, Rel
, Result
);
440 llvm_unreachable("unknown object file format");
443 /// Indicates whether this relocation should hidden when listing
444 /// relocations, usually because it is the trailing part of a multipart
445 /// relocation that will be printed as part of the leading relocation.
446 static bool getHidden(RelocationRef RelRef
) {
447 auto *MachO
= dyn_cast
<MachOObjectFile
>(RelRef
.getObject());
451 unsigned Arch
= MachO
->getArch();
452 DataRefImpl Rel
= RelRef
.getRawDataRefImpl();
453 uint64_t Type
= MachO
->getRelocationType(Rel
);
455 // On arches that use the generic relocations, GENERIC_RELOC_PAIR
457 if (Arch
== Triple::x86
|| Arch
== Triple::arm
|| Arch
== Triple::ppc
)
458 return Type
== MachO::GENERIC_RELOC_PAIR
;
460 if (Arch
== Triple::x86_64
) {
461 // On x86_64, X86_64_RELOC_UNSIGNED is hidden only when it follows
462 // an X86_64_RELOC_SUBTRACTOR.
463 if (Type
== MachO::X86_64_RELOC_UNSIGNED
&& Rel
.d
.a
> 0) {
464 DataRefImpl RelPrev
= Rel
;
466 uint64_t PrevType
= MachO
->getRelocationType(RelPrev
);
467 if (PrevType
== MachO::X86_64_RELOC_SUBTRACTOR
)
475 /// Get the column at which we want to start printing the instruction
476 /// disassembly, taking into account anything which appears to the left of it.
477 unsigned objdump::getInstStartColumn(const MCSubtargetInfo
&STI
) {
478 return !ShowRawInsn
? 16 : STI
.getTargetTriple().isX86() ? 40 : 24;
481 static void AlignToInstStartColumn(size_t Start
, const MCSubtargetInfo
&STI
,
483 // The output of printInst starts with a tab. Print some spaces so that
484 // the tab has 1 column and advances to the target tab stop.
485 unsigned TabStop
= getInstStartColumn(STI
);
486 unsigned Column
= OS
.tell() - Start
;
487 OS
.indent(Column
< TabStop
- 1 ? TabStop
- 1 - Column
: 7 - Column
% 8);
490 void objdump::printRawData(ArrayRef
<uint8_t> Bytes
, uint64_t Address
,
491 formatted_raw_ostream
&OS
,
492 MCSubtargetInfo
const &STI
) {
493 size_t Start
= OS
.tell();
495 OS
<< format("%8" PRIx64
":", Address
);
498 dumpBytes(Bytes
, OS
);
500 AlignToInstStartColumn(Start
, STI
, OS
);
505 static bool isAArch64Elf(const ObjectFile
&Obj
) {
506 const auto *Elf
= dyn_cast
<ELFObjectFileBase
>(&Obj
);
507 return Elf
&& Elf
->getEMachine() == ELF::EM_AARCH64
;
510 static bool isArmElf(const ObjectFile
&Obj
) {
511 const auto *Elf
= dyn_cast
<ELFObjectFileBase
>(&Obj
);
512 return Elf
&& Elf
->getEMachine() == ELF::EM_ARM
;
515 static bool isCSKYElf(const ObjectFile
&Obj
) {
516 const auto *Elf
= dyn_cast
<ELFObjectFileBase
>(&Obj
);
517 return Elf
&& Elf
->getEMachine() == ELF::EM_CSKY
;
520 static bool hasMappingSymbols(const ObjectFile
&Obj
) {
521 return isArmElf(Obj
) || isAArch64Elf(Obj
) || isCSKYElf(Obj
) ;
524 static void printRelocation(formatted_raw_ostream
&OS
, StringRef FileName
,
525 const RelocationRef
&Rel
, uint64_t Address
,
527 StringRef Fmt
= Is64Bits
? "%016" PRIx64
": " : "%08" PRIx64
": ";
528 SmallString
<16> Name
;
530 Rel
.getTypeName(Name
);
531 if (Error E
= getRelocationValueString(Rel
, Val
))
532 reportError(std::move(E
), FileName
);
533 OS
<< (Is64Bits
|| !LeadingAddr
? "\t\t" : "\t\t\t");
535 OS
<< format(Fmt
.data(), Address
);
536 OS
<< Name
<< "\t" << Val
;
539 static void printBTFRelocation(formatted_raw_ostream
&FOS
, llvm::BTFParser
&BTF
,
540 object::SectionedAddress Address
,
541 LiveVariablePrinter
&LVP
) {
542 const llvm::BTF::BPFFieldReloc
*Reloc
= BTF
.findFieldReloc(Address
);
547 BTF
.symbolize(Reloc
, Val
);
550 FOS
<< format("%016" PRIx64
": ", Address
.Address
+ AdjustVMA
);
551 FOS
<< "CO-RE " << Val
;
552 LVP
.printAfterOtherLine(FOS
, true);
555 class PrettyPrinter
{
557 virtual ~PrettyPrinter() = default;
559 printInst(MCInstPrinter
&IP
, const MCInst
*MI
, ArrayRef
<uint8_t> Bytes
,
560 object::SectionedAddress Address
, formatted_raw_ostream
&OS
,
561 StringRef Annot
, MCSubtargetInfo
const &STI
, SourcePrinter
*SP
,
562 StringRef ObjectFilename
, std::vector
<RelocationRef
> *Rels
,
563 LiveVariablePrinter
&LVP
) {
564 if (SP
&& (PrintSource
|| PrintLines
))
565 SP
->printSourceLine(OS
, Address
, ObjectFilename
, LVP
);
566 LVP
.printBetweenInsts(OS
, false);
568 printRawData(Bytes
, Address
.Address
, OS
, STI
);
571 // See MCInstPrinter::printInst. On targets where a PC relative immediate
572 // is relative to the next instruction and the length of a MCInst is
573 // difficult to measure (x86), this is the address of the next
576 Address
.Address
+ (STI
.getTargetTriple().isX86() ? Bytes
.size() : 0);
577 IP
.printInst(MI
, Addr
, "", STI
, OS
);
582 PrettyPrinter PrettyPrinterInst
;
584 class HexagonPrettyPrinter
: public PrettyPrinter
{
586 void printLead(ArrayRef
<uint8_t> Bytes
, uint64_t Address
,
587 formatted_raw_ostream
&OS
) {
589 (Bytes
[3] << 24) | (Bytes
[2] << 16) | (Bytes
[1] << 8) | Bytes
[0];
591 OS
<< format("%8" PRIx64
":", Address
);
594 dumpBytes(Bytes
.slice(0, 4), OS
);
595 OS
<< format("\t%08" PRIx32
, opcode
);
598 void printInst(MCInstPrinter
&IP
, const MCInst
*MI
, ArrayRef
<uint8_t> Bytes
,
599 object::SectionedAddress Address
, formatted_raw_ostream
&OS
,
600 StringRef Annot
, MCSubtargetInfo
const &STI
, SourcePrinter
*SP
,
601 StringRef ObjectFilename
, std::vector
<RelocationRef
> *Rels
,
602 LiveVariablePrinter
&LVP
) override
{
603 if (SP
&& (PrintSource
|| PrintLines
))
604 SP
->printSourceLine(OS
, Address
, ObjectFilename
, LVP
, "");
606 printLead(Bytes
, Address
.Address
, OS
);
612 raw_string_ostream
TempStream(Buffer
);
613 IP
.printInst(MI
, Address
.Address
, "", STI
, TempStream
);
615 StringRef
Contents(Buffer
);
616 // Split off bundle attributes
617 auto PacketBundle
= Contents
.rsplit('\n');
618 // Split off first instruction from the rest
619 auto HeadTail
= PacketBundle
.first
.split('\n');
620 auto Preamble
= " { ";
623 // Hexagon's packets require relocations to be inline rather than
624 // clustered at the end of the packet.
625 std::vector
<RelocationRef
>::const_iterator RelCur
= Rels
->begin();
626 std::vector
<RelocationRef
>::const_iterator RelEnd
= Rels
->end();
627 auto PrintReloc
= [&]() -> void {
628 while ((RelCur
!= RelEnd
) && (RelCur
->getOffset() <= Address
.Address
)) {
629 if (RelCur
->getOffset() == Address
.Address
) {
630 printRelocation(OS
, ObjectFilename
, *RelCur
, Address
.Address
, false);
637 while (!HeadTail
.first
.empty()) {
640 if (SP
&& (PrintSource
|| PrintLines
))
641 SP
->printSourceLine(OS
, Address
, ObjectFilename
, LVP
, "");
642 printLead(Bytes
, Address
.Address
, OS
);
646 auto Duplex
= HeadTail
.first
.split('\v');
647 if (!Duplex
.second
.empty()) {
650 Inst
= Duplex
.second
;
653 Inst
= HeadTail
.first
;
655 HeadTail
= HeadTail
.second
.split('\n');
656 if (HeadTail
.first
.empty())
657 OS
<< " } " << PacketBundle
.second
;
659 Bytes
= Bytes
.slice(4);
660 Address
.Address
+= 4;
664 HexagonPrettyPrinter HexagonPrettyPrinterInst
;
666 class AMDGCNPrettyPrinter
: public PrettyPrinter
{
668 void printInst(MCInstPrinter
&IP
, const MCInst
*MI
, ArrayRef
<uint8_t> Bytes
,
669 object::SectionedAddress Address
, formatted_raw_ostream
&OS
,
670 StringRef Annot
, MCSubtargetInfo
const &STI
, SourcePrinter
*SP
,
671 StringRef ObjectFilename
, std::vector
<RelocationRef
> *Rels
,
672 LiveVariablePrinter
&LVP
) override
{
673 if (SP
&& (PrintSource
|| PrintLines
))
674 SP
->printSourceLine(OS
, Address
, ObjectFilename
, LVP
);
677 SmallString
<40> InstStr
;
678 raw_svector_ostream
IS(InstStr
);
680 IP
.printInst(MI
, Address
.Address
, "", STI
, IS
);
682 OS
<< left_justify(IS
.str(), 60);
684 // an unrecognized encoding - this is probably data so represent it
685 // using the .long directive, or .byte directive if fewer than 4 bytes
687 if (Bytes
.size() >= 4) {
689 "\t.long 0x%08" PRIx32
" ",
690 support::endian::read32
<llvm::endianness::little
>(Bytes
.data()));
693 OS
<< format("\t.byte 0x%02" PRIx8
, Bytes
[0]);
694 for (unsigned int i
= 1; i
< Bytes
.size(); i
++)
695 OS
<< format(", 0x%02" PRIx8
, Bytes
[i
]);
696 OS
.indent(55 - (6 * Bytes
.size()));
700 OS
<< format("// %012" PRIX64
":", Address
.Address
);
701 if (Bytes
.size() >= 4) {
702 // D should be casted to uint32_t here as it is passed by format to
703 // snprintf as vararg.
705 ArrayRef(reinterpret_cast<const support::little32_t
*>(Bytes
.data()),
707 OS
<< format(" %08" PRIX32
, D
);
709 for (unsigned char B
: Bytes
)
710 OS
<< format(" %02" PRIX8
, B
);
714 OS
<< " // " << Annot
;
717 AMDGCNPrettyPrinter AMDGCNPrettyPrinterInst
;
719 class BPFPrettyPrinter
: public PrettyPrinter
{
721 void printInst(MCInstPrinter
&IP
, const MCInst
*MI
, ArrayRef
<uint8_t> Bytes
,
722 object::SectionedAddress Address
, formatted_raw_ostream
&OS
,
723 StringRef Annot
, MCSubtargetInfo
const &STI
, SourcePrinter
*SP
,
724 StringRef ObjectFilename
, std::vector
<RelocationRef
> *Rels
,
725 LiveVariablePrinter
&LVP
) override
{
726 if (SP
&& (PrintSource
|| PrintLines
))
727 SP
->printSourceLine(OS
, Address
, ObjectFilename
, LVP
);
729 OS
<< format("%8" PRId64
":", Address
.Address
/ 8);
732 dumpBytes(Bytes
, OS
);
735 IP
.printInst(MI
, Address
.Address
, "", STI
, OS
);
740 BPFPrettyPrinter BPFPrettyPrinterInst
;
742 class ARMPrettyPrinter
: public PrettyPrinter
{
744 void printInst(MCInstPrinter
&IP
, const MCInst
*MI
, ArrayRef
<uint8_t> Bytes
,
745 object::SectionedAddress Address
, formatted_raw_ostream
&OS
,
746 StringRef Annot
, MCSubtargetInfo
const &STI
, SourcePrinter
*SP
,
747 StringRef ObjectFilename
, std::vector
<RelocationRef
> *Rels
,
748 LiveVariablePrinter
&LVP
) override
{
749 if (SP
&& (PrintSource
|| PrintLines
))
750 SP
->printSourceLine(OS
, Address
, ObjectFilename
, LVP
);
751 LVP
.printBetweenInsts(OS
, false);
753 size_t Start
= OS
.tell();
755 OS
<< format("%8" PRIx64
":", Address
.Address
);
757 size_t Pos
= 0, End
= Bytes
.size();
758 if (STI
.checkFeatures("+thumb-mode")) {
759 for (; Pos
+ 2 <= End
; Pos
+= 2)
761 << format_hex_no_prefix(
762 llvm::support::endian::read
<uint16_t>(
763 Bytes
.data() + Pos
, InstructionEndianness
),
766 for (; Pos
+ 4 <= End
; Pos
+= 4)
768 << format_hex_no_prefix(
769 llvm::support::endian::read
<uint32_t>(
770 Bytes
.data() + Pos
, InstructionEndianness
),
775 dumpBytes(Bytes
.slice(Pos
), OS
);
779 AlignToInstStartColumn(Start
, STI
, OS
);
782 IP
.printInst(MI
, Address
.Address
, "", STI
, OS
);
787 void setInstructionEndianness(llvm::endianness Endianness
) {
788 InstructionEndianness
= Endianness
;
792 llvm::endianness InstructionEndianness
= llvm::endianness::little
;
794 ARMPrettyPrinter ARMPrettyPrinterInst
;
796 class AArch64PrettyPrinter
: public PrettyPrinter
{
798 void printInst(MCInstPrinter
&IP
, const MCInst
*MI
, ArrayRef
<uint8_t> Bytes
,
799 object::SectionedAddress Address
, formatted_raw_ostream
&OS
,
800 StringRef Annot
, MCSubtargetInfo
const &STI
, SourcePrinter
*SP
,
801 StringRef ObjectFilename
, std::vector
<RelocationRef
> *Rels
,
802 LiveVariablePrinter
&LVP
) override
{
803 if (SP
&& (PrintSource
|| PrintLines
))
804 SP
->printSourceLine(OS
, Address
, ObjectFilename
, LVP
);
805 LVP
.printBetweenInsts(OS
, false);
807 size_t Start
= OS
.tell();
809 OS
<< format("%8" PRIx64
":", Address
.Address
);
811 size_t Pos
= 0, End
= Bytes
.size();
812 for (; Pos
+ 4 <= End
; Pos
+= 4)
814 << format_hex_no_prefix(
815 llvm::support::endian::read
<uint32_t>(
816 Bytes
.data() + Pos
, llvm::endianness::little
),
820 dumpBytes(Bytes
.slice(Pos
), OS
);
824 AlignToInstStartColumn(Start
, STI
, OS
);
827 IP
.printInst(MI
, Address
.Address
, "", STI
, OS
);
832 AArch64PrettyPrinter AArch64PrettyPrinterInst
;
834 PrettyPrinter
&selectPrettyPrinter(Triple
const &Triple
) {
835 switch(Triple
.getArch()) {
837 return PrettyPrinterInst
;
838 case Triple::hexagon
:
839 return HexagonPrettyPrinterInst
;
841 return AMDGCNPrettyPrinterInst
;
844 return BPFPrettyPrinterInst
;
848 case Triple::thumbeb
:
849 return ARMPrettyPrinterInst
;
850 case Triple::aarch64
:
851 case Triple::aarch64_be
:
852 case Triple::aarch64_32
:
853 return AArch64PrettyPrinterInst
;
857 class DisassemblerTarget
{
859 const Target
*TheTarget
;
860 std::unique_ptr
<const MCSubtargetInfo
> SubtargetInfo
;
861 std::shared_ptr
<MCContext
> Context
;
862 std::unique_ptr
<MCDisassembler
> DisAsm
;
863 std::shared_ptr
<MCInstrAnalysis
> InstrAnalysis
;
864 std::shared_ptr
<MCInstPrinter
> InstPrinter
;
865 PrettyPrinter
*Printer
;
867 DisassemblerTarget(const Target
*TheTarget
, ObjectFile
&Obj
,
868 StringRef TripleName
, StringRef MCPU
,
869 SubtargetFeatures
&Features
);
870 DisassemblerTarget(DisassemblerTarget
&Other
, SubtargetFeatures
&Features
);
873 MCTargetOptions Options
;
874 std::shared_ptr
<const MCRegisterInfo
> RegisterInfo
;
875 std::shared_ptr
<const MCAsmInfo
> AsmInfo
;
876 std::shared_ptr
<const MCInstrInfo
> InstrInfo
;
877 std::shared_ptr
<MCObjectFileInfo
> ObjectFileInfo
;
880 DisassemblerTarget::DisassemblerTarget(const Target
*TheTarget
, ObjectFile
&Obj
,
881 StringRef TripleName
, StringRef MCPU
,
882 SubtargetFeatures
&Features
)
883 : TheTarget(TheTarget
),
884 Printer(&selectPrettyPrinter(Triple(TripleName
))),
885 RegisterInfo(TheTarget
->createMCRegInfo(TripleName
)) {
887 reportError(Obj
.getFileName(), "no register info for target " + TripleName
);
889 // Set up disassembler.
890 AsmInfo
.reset(TheTarget
->createMCAsmInfo(*RegisterInfo
, TripleName
, Options
));
892 reportError(Obj
.getFileName(), "no assembly info for target " + TripleName
);
895 TheTarget
->createMCSubtargetInfo(TripleName
, MCPU
, Features
.getString()));
897 reportError(Obj
.getFileName(),
898 "no subtarget info for target " + TripleName
);
899 InstrInfo
.reset(TheTarget
->createMCInstrInfo());
901 reportError(Obj
.getFileName(),
902 "no instruction info for target " + TripleName
);
904 std::make_shared
<MCContext
>(Triple(TripleName
), AsmInfo
.get(),
905 RegisterInfo
.get(), SubtargetInfo
.get());
907 // FIXME: for now initialize MCObjectFileInfo with default values
908 ObjectFileInfo
.reset(
909 TheTarget
->createMCObjectFileInfo(*Context
, /*PIC=*/false));
910 Context
->setObjectFileInfo(ObjectFileInfo
.get());
912 DisAsm
.reset(TheTarget
->createMCDisassembler(*SubtargetInfo
, *Context
));
914 reportError(Obj
.getFileName(), "no disassembler for target " + TripleName
);
916 InstrAnalysis
.reset(TheTarget
->createMCInstrAnalysis(InstrInfo
.get()));
918 int AsmPrinterVariant
= AsmInfo
->getAssemblerDialect();
919 InstPrinter
.reset(TheTarget
->createMCInstPrinter(Triple(TripleName
),
920 AsmPrinterVariant
, *AsmInfo
,
921 *InstrInfo
, *RegisterInfo
));
923 reportError(Obj
.getFileName(),
924 "no instruction printer for target " + TripleName
);
925 InstPrinter
->setPrintImmHex(PrintImmHex
);
926 InstPrinter
->setPrintBranchImmAsAddress(true);
927 InstPrinter
->setSymbolizeOperands(SymbolizeOperands
);
928 InstPrinter
->setMCInstrAnalysis(InstrAnalysis
.get());
930 switch (DisassemblyColor
) {
931 case ColorOutput::Enable
:
932 InstPrinter
->setUseColor(true);
934 case ColorOutput::Auto
:
935 InstPrinter
->setUseColor(outs().has_colors());
937 case ColorOutput::Disable
:
938 case ColorOutput::Invalid
:
939 InstPrinter
->setUseColor(false);
944 DisassemblerTarget::DisassemblerTarget(DisassemblerTarget
&Other
,
945 SubtargetFeatures
&Features
)
946 : TheTarget(Other
.TheTarget
),
947 SubtargetInfo(TheTarget
->createMCSubtargetInfo(TripleName
, MCPU
,
948 Features
.getString())),
949 Context(Other
.Context
),
950 DisAsm(TheTarget
->createMCDisassembler(*SubtargetInfo
, *Context
)),
951 InstrAnalysis(Other
.InstrAnalysis
), InstPrinter(Other
.InstPrinter
),
952 Printer(Other
.Printer
), RegisterInfo(Other
.RegisterInfo
),
953 AsmInfo(Other
.AsmInfo
), InstrInfo(Other
.InstrInfo
),
954 ObjectFileInfo(Other
.ObjectFileInfo
) {}
957 static uint8_t getElfSymbolType(const ObjectFile
&Obj
, const SymbolRef
&Sym
) {
959 if (auto *Elf32LEObj
= dyn_cast
<ELF32LEObjectFile
>(&Obj
))
960 return unwrapOrError(Elf32LEObj
->getSymbol(Sym
.getRawDataRefImpl()),
963 if (auto *Elf64LEObj
= dyn_cast
<ELF64LEObjectFile
>(&Obj
))
964 return unwrapOrError(Elf64LEObj
->getSymbol(Sym
.getRawDataRefImpl()),
967 if (auto *Elf32BEObj
= dyn_cast
<ELF32BEObjectFile
>(&Obj
))
968 return unwrapOrError(Elf32BEObj
->getSymbol(Sym
.getRawDataRefImpl()),
971 if (auto *Elf64BEObj
= cast
<ELF64BEObjectFile
>(&Obj
))
972 return unwrapOrError(Elf64BEObj
->getSymbol(Sym
.getRawDataRefImpl()),
975 llvm_unreachable("Unsupported binary format");
978 template <class ELFT
>
980 addDynamicElfSymbols(const ELFObjectFile
<ELFT
> &Obj
,
981 std::map
<SectionRef
, SectionSymbolsTy
> &AllSymbols
) {
982 for (auto Symbol
: Obj
.getDynamicSymbolIterators()) {
983 uint8_t SymbolType
= Symbol
.getELFType();
984 if (SymbolType
== ELF::STT_SECTION
)
987 uint64_t Address
= unwrapOrError(Symbol
.getAddress(), Obj
.getFileName());
988 // ELFSymbolRef::getAddress() returns size instead of value for common
989 // symbols which is not desirable for disassembly output. Overriding.
990 if (SymbolType
== ELF::STT_COMMON
)
991 Address
= unwrapOrError(Obj
.getSymbol(Symbol
.getRawDataRefImpl()),
995 StringRef Name
= unwrapOrError(Symbol
.getName(), Obj
.getFileName());
999 section_iterator SecI
=
1000 unwrapOrError(Symbol
.getSection(), Obj
.getFileName());
1001 if (SecI
== Obj
.section_end())
1004 AllSymbols
[*SecI
].emplace_back(Address
, Name
, SymbolType
);
1009 addDynamicElfSymbols(const ELFObjectFileBase
&Obj
,
1010 std::map
<SectionRef
, SectionSymbolsTy
> &AllSymbols
) {
1011 if (auto *Elf32LEObj
= dyn_cast
<ELF32LEObjectFile
>(&Obj
))
1012 addDynamicElfSymbols(*Elf32LEObj
, AllSymbols
);
1013 else if (auto *Elf64LEObj
= dyn_cast
<ELF64LEObjectFile
>(&Obj
))
1014 addDynamicElfSymbols(*Elf64LEObj
, AllSymbols
);
1015 else if (auto *Elf32BEObj
= dyn_cast
<ELF32BEObjectFile
>(&Obj
))
1016 addDynamicElfSymbols(*Elf32BEObj
, AllSymbols
);
1017 else if (auto *Elf64BEObj
= cast
<ELF64BEObjectFile
>(&Obj
))
1018 addDynamicElfSymbols(*Elf64BEObj
, AllSymbols
);
1020 llvm_unreachable("Unsupported binary format");
1023 static std::optional
<SectionRef
> getWasmCodeSection(const WasmObjectFile
&Obj
) {
1024 for (auto SecI
: Obj
.sections()) {
1025 const WasmSection
&Section
= Obj
.getWasmSection(SecI
);
1026 if (Section
.Type
== wasm::WASM_SEC_CODE
)
1029 return std::nullopt
;
1033 addMissingWasmCodeSymbols(const WasmObjectFile
&Obj
,
1034 std::map
<SectionRef
, SectionSymbolsTy
> &AllSymbols
) {
1035 std::optional
<SectionRef
> Section
= getWasmCodeSection(Obj
);
1038 SectionSymbolsTy
&Symbols
= AllSymbols
[*Section
];
1040 std::set
<uint64_t> SymbolAddresses
;
1041 for (const auto &Sym
: Symbols
)
1042 SymbolAddresses
.insert(Sym
.Addr
);
1044 for (const wasm::WasmFunction
&Function
: Obj
.functions()) {
1045 uint64_t Address
= Function
.CodeSectionOffset
;
1046 // Only add fallback symbols for functions not already present in the symbol
1048 if (SymbolAddresses
.count(Address
))
1050 // This function has no symbol, so it should have no SymbolName.
1051 assert(Function
.SymbolName
.empty());
1052 // We use DebugName for the name, though it may be empty if there is no
1053 // "name" custom section, or that section is missing a name for this
1055 StringRef Name
= Function
.DebugName
;
1056 Symbols
.emplace_back(Address
, Name
, ELF::STT_NOTYPE
);
1060 static void addPltEntries(const ObjectFile
&Obj
,
1061 std::map
<SectionRef
, SectionSymbolsTy
> &AllSymbols
,
1062 StringSaver
&Saver
) {
1063 auto *ElfObj
= dyn_cast
<ELFObjectFileBase
>(&Obj
);
1066 DenseMap
<StringRef
, SectionRef
> Sections
;
1067 for (SectionRef Section
: Obj
.sections()) {
1068 Expected
<StringRef
> SecNameOrErr
= Section
.getName();
1069 if (!SecNameOrErr
) {
1070 consumeError(SecNameOrErr
.takeError());
1073 Sections
[*SecNameOrErr
] = Section
;
1075 for (auto Plt
: ElfObj
->getPltEntries()) {
1077 SymbolRef
Symbol(*Plt
.Symbol
, ElfObj
);
1078 uint8_t SymbolType
= getElfSymbolType(Obj
, Symbol
);
1079 if (Expected
<StringRef
> NameOrErr
= Symbol
.getName()) {
1080 if (!NameOrErr
->empty())
1081 AllSymbols
[Sections
[Plt
.Section
]].emplace_back(
1082 Plt
.Address
, Saver
.save((*NameOrErr
+ "@plt").str()), SymbolType
);
1085 // The warning has been reported in disassembleObject().
1086 consumeError(NameOrErr
.takeError());
1089 reportWarning("PLT entry at 0x" + Twine::utohexstr(Plt
.Address
) +
1090 " references an invalid symbol",
1095 // Normally the disassembly output will skip blocks of zeroes. This function
1096 // returns the number of zero bytes that can be skipped when dumping the
1097 // disassembly of the instructions in Buf.
1098 static size_t countSkippableZeroBytes(ArrayRef
<uint8_t> Buf
) {
1099 // Find the number of leading zeroes.
1101 while (N
< Buf
.size() && !Buf
[N
])
1104 // We may want to skip blocks of zero bytes, but unless we see
1105 // at least 8 of them in a row.
1109 // We skip zeroes in multiples of 4 because do not want to truncate an
1110 // instruction if it starts with a zero byte.
1114 // Returns a map from sections to their relocations.
1115 static std::map
<SectionRef
, std::vector
<RelocationRef
>>
1116 getRelocsMap(object::ObjectFile
const &Obj
) {
1117 std::map
<SectionRef
, std::vector
<RelocationRef
>> Ret
;
1118 uint64_t I
= (uint64_t)-1;
1119 for (SectionRef Sec
: Obj
.sections()) {
1121 Expected
<section_iterator
> RelocatedOrErr
= Sec
.getRelocatedSection();
1122 if (!RelocatedOrErr
)
1123 reportError(Obj
.getFileName(),
1124 "section (" + Twine(I
) +
1125 "): failed to get a relocated section: " +
1126 toString(RelocatedOrErr
.takeError()));
1128 section_iterator Relocated
= *RelocatedOrErr
;
1129 if (Relocated
== Obj
.section_end() || !checkSectionFilter(*Relocated
).Keep
)
1131 std::vector
<RelocationRef
> &V
= Ret
[*Relocated
];
1132 append_range(V
, Sec
.relocations());
1133 // Sort relocations by address.
1134 llvm::stable_sort(V
, isRelocAddressLess
);
1139 // Used for --adjust-vma to check if address should be adjusted by the
1140 // specified value for a given section.
1141 // For ELF we do not adjust non-allocatable sections like debug ones,
1142 // because they are not loadable.
1143 // TODO: implement for other file formats.
1144 static bool shouldAdjustVA(const SectionRef
&Section
) {
1145 const ObjectFile
*Obj
= Section
.getObject();
1147 return ELFSectionRef(Section
).getFlags() & ELF::SHF_ALLOC
;
1152 typedef std::pair
<uint64_t, char> MappingSymbolPair
;
1153 static char getMappingSymbolKind(ArrayRef
<MappingSymbolPair
> MappingSymbols
,
1156 partition_point(MappingSymbols
, [Address
](const MappingSymbolPair
&Val
) {
1157 return Val
.first
<= Address
;
1159 // Return zero for any address before the first mapping symbol; this means
1160 // we should use the default disassembly mode, depending on the target.
1161 if (It
== MappingSymbols
.begin())
1163 return (It
- 1)->second
;
1166 static uint64_t dumpARMELFData(uint64_t SectionAddr
, uint64_t Index
,
1167 uint64_t End
, const ObjectFile
&Obj
,
1168 ArrayRef
<uint8_t> Bytes
,
1169 ArrayRef
<MappingSymbolPair
> MappingSymbols
,
1170 const MCSubtargetInfo
&STI
, raw_ostream
&OS
) {
1171 llvm::endianness Endian
=
1172 Obj
.isLittleEndian() ? llvm::endianness::little
: llvm::endianness::big
;
1173 size_t Start
= OS
.tell();
1174 OS
<< format("%8" PRIx64
": ", SectionAddr
+ Index
);
1175 if (Index
+ 4 <= End
) {
1176 dumpBytes(Bytes
.slice(Index
, 4), OS
);
1177 AlignToInstStartColumn(Start
, STI
, OS
);
1179 << format_hex(support::endian::read32(Bytes
.data() + Index
, Endian
),
1183 if (Index
+ 2 <= End
) {
1184 dumpBytes(Bytes
.slice(Index
, 2), OS
);
1185 AlignToInstStartColumn(Start
, STI
, OS
);
1187 << format_hex(support::endian::read16(Bytes
.data() + Index
, Endian
), 6);
1190 dumpBytes(Bytes
.slice(Index
, 1), OS
);
1191 AlignToInstStartColumn(Start
, STI
, OS
);
1192 OS
<< "\t.byte\t" << format_hex(Bytes
[Index
], 4);
1196 static void dumpELFData(uint64_t SectionAddr
, uint64_t Index
, uint64_t End
,
1197 ArrayRef
<uint8_t> Bytes
) {
1198 // print out data up to 8 bytes at a time in hex and ascii
1199 uint8_t AsciiData
[9] = {'\0'};
1203 for (; Index
< End
; ++Index
) {
1205 outs() << format("%8" PRIx64
":", SectionAddr
+ Index
);
1206 Byte
= Bytes
.slice(Index
)[0];
1207 outs() << format(" %02x", Byte
);
1208 AsciiData
[NumBytes
] = isPrint(Byte
) ? Byte
: '.';
1210 uint8_t IndentOffset
= 0;
1212 if (Index
== End
- 1 || NumBytes
> 8) {
1213 // Indent the space for less than 8 bytes data.
1214 // 2 spaces for byte and one for space between bytes
1215 IndentOffset
= 3 * (8 - NumBytes
);
1216 for (int Excess
= NumBytes
; Excess
< 8; Excess
++)
1217 AsciiData
[Excess
] = '\0';
1220 if (NumBytes
== 8) {
1221 AsciiData
[8] = '\0';
1222 outs() << std::string(IndentOffset
, ' ') << " ";
1223 outs() << reinterpret_cast<char *>(AsciiData
);
1230 SymbolInfoTy
objdump::createSymbolInfo(const ObjectFile
&Obj
,
1231 const SymbolRef
&Symbol
,
1232 bool IsMappingSymbol
) {
1233 const StringRef FileName
= Obj
.getFileName();
1234 const uint64_t Addr
= unwrapOrError(Symbol
.getAddress(), FileName
);
1235 const StringRef Name
= unwrapOrError(Symbol
.getName(), FileName
);
1237 if (Obj
.isXCOFF() && (SymbolDescription
|| TracebackTable
)) {
1238 const auto &XCOFFObj
= cast
<XCOFFObjectFile
>(Obj
);
1239 DataRefImpl SymbolDRI
= Symbol
.getRawDataRefImpl();
1241 const uint32_t SymbolIndex
= XCOFFObj
.getSymbolIndex(SymbolDRI
.p
);
1242 std::optional
<XCOFF::StorageMappingClass
> Smc
=
1243 getXCOFFSymbolCsectSMC(XCOFFObj
, Symbol
);
1244 return SymbolInfoTy(Smc
, Addr
, Name
, SymbolIndex
,
1245 isLabel(XCOFFObj
, Symbol
));
1246 } else if (Obj
.isXCOFF()) {
1247 const SymbolRef::Type SymType
= unwrapOrError(Symbol
.getType(), FileName
);
1248 return SymbolInfoTy(Addr
, Name
, SymType
, /*IsMappingSymbol=*/false,
1252 Obj
.isELF() ? getElfSymbolType(Obj
, Symbol
) : (uint8_t)ELF::STT_NOTYPE
;
1253 return SymbolInfoTy(Addr
, Name
, Type
, IsMappingSymbol
);
1257 static SymbolInfoTy
createDummySymbolInfo(const ObjectFile
&Obj
,
1258 const uint64_t Addr
, StringRef
&Name
,
1260 if (Obj
.isXCOFF() && (SymbolDescription
|| TracebackTable
))
1261 return SymbolInfoTy(std::nullopt
, Addr
, Name
, std::nullopt
, false);
1263 return SymbolInfoTy(Addr
, Name
, Type
);
1267 collectBBAddrMapLabels(const std::unordered_map
<uint64_t, BBAddrMap
> &AddrToBBAddrMap
,
1268 uint64_t SectionAddr
, uint64_t Start
, uint64_t End
,
1269 std::unordered_map
<uint64_t, std::vector
<std::string
>> &Labels
) {
1270 if (AddrToBBAddrMap
.empty())
1273 uint64_t StartAddress
= SectionAddr
+ Start
;
1274 uint64_t EndAddress
= SectionAddr
+ End
;
1275 auto Iter
= AddrToBBAddrMap
.find(StartAddress
);
1276 if (Iter
== AddrToBBAddrMap
.end())
1278 for (const BBAddrMap::BBEntry
&BBEntry
: Iter
->second
.BBEntries
) {
1279 uint64_t BBAddress
= BBEntry
.Offset
+ Iter
->second
.Addr
;
1280 if (BBAddress
>= EndAddress
)
1282 Labels
[BBAddress
].push_back(("BB" + Twine(BBEntry
.ID
)).str());
1287 collectLocalBranchTargets(ArrayRef
<uint8_t> Bytes
, MCInstrAnalysis
*MIA
,
1288 MCDisassembler
*DisAsm
, MCInstPrinter
*IP
,
1289 const MCSubtargetInfo
*STI
, uint64_t SectionAddr
,
1290 uint64_t Start
, uint64_t End
,
1291 std::unordered_map
<uint64_t, std::string
> &Labels
) {
1292 // So far only supports PowerPC and X86.
1293 if (!STI
->getTargetTriple().isPPC() && !STI
->getTargetTriple().isX86())
1300 unsigned LabelCount
= 0;
1301 Start
+= SectionAddr
;
1303 uint64_t Index
= Start
;
1304 while (Index
< End
) {
1305 // Disassemble a real instruction and record function-local branch labels.
1308 ArrayRef
<uint8_t> ThisBytes
= Bytes
.slice(Index
- SectionAddr
);
1310 DisAsm
->getInstruction(Inst
, Size
, ThisBytes
, Index
, nulls());
1312 Size
= std::min
<uint64_t>(ThisBytes
.size(),
1313 DisAsm
->suggestBytesToSkip(ThisBytes
, Index
));
1315 if (Disassembled
&& MIA
) {
1317 bool TargetKnown
= MIA
->evaluateBranch(Inst
, Index
, Size
, Target
);
1318 // On PowerPC, if the address of a branch is the same as the target, it
1319 // means that it's a function call. Do not mark the label for this case.
1320 if (TargetKnown
&& (Target
>= Start
&& Target
< End
) &&
1321 !Labels
.count(Target
) &&
1322 !(STI
->getTargetTriple().isPPC() && Target
== Index
))
1323 Labels
[Target
] = ("L" + Twine(LabelCount
++)).str();
1324 MIA
->updateState(Inst
, Index
);
1325 } else if (!Disassembled
&& MIA
) {
1332 // Create an MCSymbolizer for the target and add it to the MCDisassembler.
1333 // This is currently only used on AMDGPU, and assumes the format of the
1334 // void * argument passed to AMDGPU's createMCSymbolizer.
1335 static void addSymbolizer(
1336 MCContext
&Ctx
, const Target
*Target
, StringRef TripleName
,
1337 MCDisassembler
*DisAsm
, uint64_t SectionAddr
, ArrayRef
<uint8_t> Bytes
,
1338 SectionSymbolsTy
&Symbols
,
1339 std::vector
<std::unique_ptr
<std::string
>> &SynthesizedLabelNames
) {
1341 std::unique_ptr
<MCRelocationInfo
> RelInfo(
1342 Target
->createMCRelocationInfo(TripleName
, Ctx
));
1345 std::unique_ptr
<MCSymbolizer
> Symbolizer(Target
->createMCSymbolizer(
1346 TripleName
, nullptr, nullptr, &Symbols
, &Ctx
, std::move(RelInfo
)));
1347 MCSymbolizer
*SymbolizerPtr
= &*Symbolizer
;
1348 DisAsm
->setSymbolizer(std::move(Symbolizer
));
1350 if (!SymbolizeOperands
)
1353 // Synthesize labels referenced by branch instructions by
1354 // disassembling, discarding the output, and collecting the referenced
1355 // addresses from the symbolizer.
1356 for (size_t Index
= 0; Index
!= Bytes
.size();) {
1359 ArrayRef
<uint8_t> ThisBytes
= Bytes
.slice(Index
);
1360 const uint64_t ThisAddr
= SectionAddr
+ Index
;
1361 DisAsm
->getInstruction(Inst
, Size
, ThisBytes
, ThisAddr
, nulls());
1363 Size
= std::min
<uint64_t>(ThisBytes
.size(),
1364 DisAsm
->suggestBytesToSkip(ThisBytes
, Index
));
1367 ArrayRef
<uint64_t> LabelAddrsRef
= SymbolizerPtr
->getReferencedAddresses();
1368 // Copy and sort to remove duplicates.
1369 std::vector
<uint64_t> LabelAddrs
;
1370 LabelAddrs
.insert(LabelAddrs
.end(), LabelAddrsRef
.begin(),
1371 LabelAddrsRef
.end());
1372 llvm::sort(LabelAddrs
);
1373 LabelAddrs
.resize(std::unique(LabelAddrs
.begin(), LabelAddrs
.end()) -
1374 LabelAddrs
.begin());
1376 for (unsigned LabelNum
= 0; LabelNum
!= LabelAddrs
.size(); ++LabelNum
) {
1377 auto Name
= std::make_unique
<std::string
>();
1378 *Name
= (Twine("L") + Twine(LabelNum
)).str();
1379 SynthesizedLabelNames
.push_back(std::move(Name
));
1380 Symbols
.push_back(SymbolInfoTy(
1381 LabelAddrs
[LabelNum
], *SynthesizedLabelNames
.back(), ELF::STT_NOTYPE
));
1383 llvm::stable_sort(Symbols
);
1384 // Recreate the symbolizer with the new symbols list.
1385 RelInfo
.reset(Target
->createMCRelocationInfo(TripleName
, Ctx
));
1386 Symbolizer
.reset(Target
->createMCSymbolizer(
1387 TripleName
, nullptr, nullptr, &Symbols
, &Ctx
, std::move(RelInfo
)));
1388 DisAsm
->setSymbolizer(std::move(Symbolizer
));
1391 static StringRef
getSegmentName(const MachOObjectFile
*MachO
,
1392 const SectionRef
&Section
) {
1394 DataRefImpl DR
= Section
.getRawDataRefImpl();
1395 StringRef SegmentName
= MachO
->getSectionFinalSegmentName(DR
);
1401 static void emitPostInstructionInfo(formatted_raw_ostream
&FOS
,
1402 const MCAsmInfo
&MAI
,
1403 const MCSubtargetInfo
&STI
,
1405 LiveVariablePrinter
&LVP
) {
1407 if (!Comments
.empty()) {
1408 // Emit a line of comments.
1410 std::tie(Comment
, Comments
) = Comments
.split('\n');
1411 // MAI.getCommentColumn() assumes that instructions are printed at the
1412 // position of 8, while getInstStartColumn() returns the actual position.
1413 unsigned CommentColumn
=
1414 MAI
.getCommentColumn() - 8 + getInstStartColumn(STI
);
1415 FOS
.PadToColumn(CommentColumn
);
1416 FOS
<< MAI
.getCommentString() << ' ' << Comment
;
1418 LVP
.printAfterInst(FOS
);
1420 } while (!Comments
.empty());
1424 static void createFakeELFSections(ObjectFile
&Obj
) {
1425 assert(Obj
.isELF());
1426 if (auto *Elf32LEObj
= dyn_cast
<ELF32LEObjectFile
>(&Obj
))
1427 Elf32LEObj
->createFakeSections();
1428 else if (auto *Elf64LEObj
= dyn_cast
<ELF64LEObjectFile
>(&Obj
))
1429 Elf64LEObj
->createFakeSections();
1430 else if (auto *Elf32BEObj
= dyn_cast
<ELF32BEObjectFile
>(&Obj
))
1431 Elf32BEObj
->createFakeSections();
1432 else if (auto *Elf64BEObj
= cast
<ELF64BEObjectFile
>(&Obj
))
1433 Elf64BEObj
->createFakeSections();
1435 llvm_unreachable("Unsupported binary format");
1438 // Tries to fetch a more complete version of the given object file using its
1439 // Build ID. Returns std::nullopt if nothing was found.
1440 static std::optional
<OwningBinary
<Binary
>>
1441 fetchBinaryByBuildID(const ObjectFile
&Obj
) {
1442 object::BuildIDRef BuildID
= getBuildID(&Obj
);
1443 if (BuildID
.empty())
1444 return std::nullopt
;
1445 std::optional
<std::string
> Path
= BIDFetcher
->fetch(BuildID
);
1447 return std::nullopt
;
1448 Expected
<OwningBinary
<Binary
>> DebugBinary
= createBinary(*Path
);
1450 reportWarning(toString(DebugBinary
.takeError()), *Path
);
1451 return std::nullopt
;
1453 return std::move(*DebugBinary
);
1457 disassembleObject(ObjectFile
&Obj
, const ObjectFile
&DbgObj
,
1458 DisassemblerTarget
&PrimaryTarget
,
1459 std::optional
<DisassemblerTarget
> &SecondaryTarget
,
1460 SourcePrinter
&SP
, bool InlineRelocs
) {
1461 DisassemblerTarget
*DT
= &PrimaryTarget
;
1462 bool PrimaryIsThumb
= false;
1463 SmallVector
<std::pair
<uint64_t, uint64_t>, 0> CHPECodeMap
;
1465 if (SecondaryTarget
) {
1466 if (isArmElf(Obj
)) {
1468 PrimaryTarget
.SubtargetInfo
->checkFeatures("+thumb-mode");
1469 } else if (const auto *COFFObj
= dyn_cast
<COFFObjectFile
>(&Obj
)) {
1470 const chpe_metadata
*CHPEMetadata
= COFFObj
->getCHPEMetadata();
1471 if (CHPEMetadata
&& CHPEMetadata
->CodeMapCount
) {
1472 uintptr_t CodeMapInt
;
1473 cantFail(COFFObj
->getRvaPtr(CHPEMetadata
->CodeMap
, CodeMapInt
));
1474 auto CodeMap
= reinterpret_cast<const chpe_range_entry
*>(CodeMapInt
);
1476 for (uint32_t i
= 0; i
< CHPEMetadata
->CodeMapCount
; ++i
) {
1477 if (CodeMap
[i
].getType() == chpe_range_type::Amd64
&&
1478 CodeMap
[i
].Length
) {
1479 // Store x86_64 CHPE code ranges.
1480 uint64_t Start
= CodeMap
[i
].getStart() + COFFObj
->getImageBase();
1481 CHPECodeMap
.emplace_back(Start
, Start
+ CodeMap
[i
].Length
);
1484 llvm::sort(CHPECodeMap
);
1489 std::map
<SectionRef
, std::vector
<RelocationRef
>> RelocMap
;
1491 RelocMap
= getRelocsMap(Obj
);
1492 bool Is64Bits
= Obj
.getBytesInAddress() > 4;
1494 // Create a mapping from virtual address to symbol name. This is used to
1495 // pretty print the symbols while disassembling.
1496 std::map
<SectionRef
, SectionSymbolsTy
> AllSymbols
;
1497 std::map
<SectionRef
, SmallVector
<MappingSymbolPair
, 0>> AllMappingSymbols
;
1498 SectionSymbolsTy AbsoluteSymbols
;
1499 const StringRef FileName
= Obj
.getFileName();
1500 const MachOObjectFile
*MachO
= dyn_cast
<const MachOObjectFile
>(&Obj
);
1501 for (const SymbolRef
&Symbol
: Obj
.symbols()) {
1502 Expected
<StringRef
> NameOrErr
= Symbol
.getName();
1504 reportWarning(toString(NameOrErr
.takeError()), FileName
);
1507 if (NameOrErr
->empty() && !(Obj
.isXCOFF() && SymbolDescription
))
1511 (cantFail(Symbol
.getFlags()) & SymbolRef::SF_FormatSpecific
)) {
1512 // Symbol is intended not to be displayed by default (STT_FILE,
1513 // STT_SECTION, or a mapping symbol). Ignore STT_SECTION symbols. We will
1514 // synthesize a section symbol if no symbol is defined at offset 0.
1516 // For a mapping symbol, store it within both AllSymbols and
1517 // AllMappingSymbols. If --show-all-symbols is unspecified, its label will
1518 // not be printed in disassembly listing.
1519 if (getElfSymbolType(Obj
, Symbol
) != ELF::STT_SECTION
&&
1520 hasMappingSymbols(Obj
)) {
1521 section_iterator SecI
= unwrapOrError(Symbol
.getSection(), FileName
);
1522 if (SecI
!= Obj
.section_end()) {
1523 uint64_t SectionAddr
= SecI
->getAddress();
1524 uint64_t Address
= cantFail(Symbol
.getAddress());
1525 StringRef Name
= *NameOrErr
;
1526 if (Name
.consume_front("$") && Name
.size() &&
1527 strchr("adtx", Name
[0])) {
1528 AllMappingSymbols
[*SecI
].emplace_back(Address
- SectionAddr
,
1530 AllSymbols
[*SecI
].push_back(
1531 createSymbolInfo(Obj
, Symbol
, /*MappingSymbol=*/true));
1539 // __mh_(execute|dylib|dylinker|bundle|preload|object)_header are special
1540 // symbols that support MachO header introspection. They do not bind to
1541 // code locations and are irrelevant for disassembly.
1542 if (NameOrErr
->startswith("__mh_") && NameOrErr
->endswith("_header"))
1544 // Don't ask a Mach-O STAB symbol for its section unless you know that
1545 // STAB symbol's section field refers to a valid section index. Otherwise
1546 // the symbol may error trying to load a section that does not exist.
1547 DataRefImpl SymDRI
= Symbol
.getRawDataRefImpl();
1548 uint8_t NType
= (MachO
->is64Bit() ?
1549 MachO
->getSymbol64TableEntry(SymDRI
).n_type
:
1550 MachO
->getSymbolTableEntry(SymDRI
).n_type
);
1551 if (NType
& MachO::N_STAB
)
1555 section_iterator SecI
= unwrapOrError(Symbol
.getSection(), FileName
);
1556 if (SecI
!= Obj
.section_end())
1557 AllSymbols
[*SecI
].push_back(createSymbolInfo(Obj
, Symbol
));
1559 AbsoluteSymbols
.push_back(createSymbolInfo(Obj
, Symbol
));
1562 if (AllSymbols
.empty() && Obj
.isELF())
1563 addDynamicElfSymbols(cast
<ELFObjectFileBase
>(Obj
), AllSymbols
);
1566 addMissingWasmCodeSymbols(cast
<WasmObjectFile
>(Obj
), AllSymbols
);
1568 if (Obj
.isELF() && Obj
.sections().empty())
1569 createFakeELFSections(Obj
);
1572 StringSaver
Saver(A
);
1573 addPltEntries(Obj
, AllSymbols
, Saver
);
1575 // Create a mapping from virtual address to section. An empty section can
1576 // cause more than one section at the same address. Sort such sections to be
1577 // before same-addressed non-empty sections so that symbol lookups prefer the
1578 // non-empty section.
1579 std::vector
<std::pair
<uint64_t, SectionRef
>> SectionAddresses
;
1580 for (SectionRef Sec
: Obj
.sections())
1581 SectionAddresses
.emplace_back(Sec
.getAddress(), Sec
);
1582 llvm::stable_sort(SectionAddresses
, [](const auto &LHS
, const auto &RHS
) {
1583 if (LHS
.first
!= RHS
.first
)
1584 return LHS
.first
< RHS
.first
;
1585 return LHS
.second
.getSize() < RHS
.second
.getSize();
1588 // Linked executables (.exe and .dll files) typically don't include a real
1589 // symbol table but they might contain an export table.
1590 if (const auto *COFFObj
= dyn_cast
<COFFObjectFile
>(&Obj
)) {
1591 for (const auto &ExportEntry
: COFFObj
->export_directories()) {
1593 if (Error E
= ExportEntry
.getSymbolName(Name
))
1594 reportError(std::move(E
), Obj
.getFileName());
1599 if (Error E
= ExportEntry
.getExportRVA(RVA
))
1600 reportError(std::move(E
), Obj
.getFileName());
1602 uint64_t VA
= COFFObj
->getImageBase() + RVA
;
1603 auto Sec
= partition_point(
1604 SectionAddresses
, [VA
](const std::pair
<uint64_t, SectionRef
> &O
) {
1605 return O
.first
<= VA
;
1607 if (Sec
!= SectionAddresses
.begin()) {
1609 AllSymbols
[Sec
->second
].emplace_back(VA
, Name
, ELF::STT_NOTYPE
);
1611 AbsoluteSymbols
.emplace_back(VA
, Name
, ELF::STT_NOTYPE
);
1615 // Sort all the symbols, this allows us to use a simple binary search to find
1616 // Multiple symbols can have the same address. Use a stable sort to stabilize
1618 StringSet
<> FoundDisasmSymbolSet
;
1619 for (std::pair
<const SectionRef
, SectionSymbolsTy
> &SecSyms
: AllSymbols
)
1620 llvm::stable_sort(SecSyms
.second
);
1621 llvm::stable_sort(AbsoluteSymbols
);
1623 std::unique_ptr
<DWARFContext
> DICtx
;
1624 LiveVariablePrinter
LVP(*DT
->Context
->getRegisterInfo(), *DT
->SubtargetInfo
);
1626 if (DbgVariables
!= DVDisabled
) {
1627 DICtx
= DWARFContext::create(DbgObj
);
1628 for (const std::unique_ptr
<DWARFUnit
> &CU
: DICtx
->compile_units())
1629 LVP
.addCompileUnit(CU
->getUnitDIE(false));
1632 LLVM_DEBUG(LVP
.dump());
1634 std::unordered_map
<uint64_t, BBAddrMap
> AddrToBBAddrMap
;
1635 auto ReadBBAddrMap
= [&](std::optional
<unsigned> SectionIndex
=
1637 AddrToBBAddrMap
.clear();
1638 if (const auto *Elf
= dyn_cast
<ELFObjectFileBase
>(&Obj
)) {
1639 auto BBAddrMapsOrErr
= Elf
->readBBAddrMap(SectionIndex
);
1640 if (!BBAddrMapsOrErr
) {
1641 reportWarning(toString(BBAddrMapsOrErr
.takeError()), Obj
.getFileName());
1644 for (auto &FunctionBBAddrMap
: *BBAddrMapsOrErr
)
1645 AddrToBBAddrMap
.emplace(FunctionBBAddrMap
.Addr
,
1646 std::move(FunctionBBAddrMap
));
1650 // For non-relocatable objects, Read all LLVM_BB_ADDR_MAP sections into a
1651 // single mapping, since they don't have any conflicts.
1652 if (SymbolizeOperands
&& !Obj
.isRelocatableObject())
1655 std::optional
<llvm::BTFParser
> BTF
;
1656 if (InlineRelocs
&& BTFParser::hasBTFSections(Obj
)) {
1658 BTFParser::ParseOptions Opts
= {};
1659 Opts
.LoadTypes
= true;
1660 Opts
.LoadRelocs
= true;
1661 if (Error E
= BTF
->parse(Obj
, Opts
))
1662 WithColor::defaultErrorHandler(std::move(E
));
1665 for (const SectionRef
&Section
: ToolSectionFilter(Obj
)) {
1666 if (FilterSections
.empty() && !DisassembleAll
&&
1667 (!Section
.isText() || Section
.isVirtual()))
1670 uint64_t SectionAddr
= Section
.getAddress();
1671 uint64_t SectSize
= Section
.getSize();
1675 // For relocatable object files, read the LLVM_BB_ADDR_MAP section
1676 // corresponding to this section, if present.
1677 if (SymbolizeOperands
&& Obj
.isRelocatableObject())
1678 ReadBBAddrMap(Section
.getIndex());
1680 // Get the list of all the symbols in this section.
1681 SectionSymbolsTy
&Symbols
= AllSymbols
[Section
];
1682 auto &MappingSymbols
= AllMappingSymbols
[Section
];
1683 llvm::sort(MappingSymbols
);
1685 ArrayRef
<uint8_t> Bytes
= arrayRefFromStringRef(
1686 unwrapOrError(Section
.getContents(), Obj
.getFileName()));
1688 std::vector
<std::unique_ptr
<std::string
>> SynthesizedLabelNames
;
1689 if (Obj
.isELF() && Obj
.getArch() == Triple::amdgcn
) {
1690 // AMDGPU disassembler uses symbolizer for printing labels
1691 addSymbolizer(*DT
->Context
, DT
->TheTarget
, TripleName
, DT
->DisAsm
.get(),
1692 SectionAddr
, Bytes
, Symbols
, SynthesizedLabelNames
);
1695 StringRef SegmentName
= getSegmentName(MachO
, Section
);
1696 StringRef SectionName
= unwrapOrError(Section
.getName(), Obj
.getFileName());
1697 // If the section has no symbol at the start, just insert a dummy one.
1698 // Without --show-all-symbols, also insert one if all symbols at the start
1699 // are mapping symbols.
1700 bool CreateDummy
= Symbols
.empty();
1703 for (auto &Sym
: Symbols
) {
1704 if (Sym
.Addr
!= SectionAddr
)
1706 if (!Sym
.IsMappingSymbol
|| ShowAllSymbols
)
1707 CreateDummy
= false;
1711 SymbolInfoTy Sym
= createDummySymbolInfo(
1712 Obj
, SectionAddr
, SectionName
,
1713 Section
.isText() ? ELF::STT_FUNC
: ELF::STT_OBJECT
);
1715 Symbols
.insert(Symbols
.begin(), Sym
);
1717 Symbols
.insert(llvm::lower_bound(Symbols
, Sym
), Sym
);
1720 SmallString
<40> Comments
;
1721 raw_svector_ostream
CommentStream(Comments
);
1723 uint64_t VMAAdjustment
= 0;
1724 if (shouldAdjustVA(Section
))
1725 VMAAdjustment
= AdjustVMA
;
1727 // In executable and shared objects, r_offset holds a virtual address.
1728 // Subtract SectionAddr from the r_offset field of a relocation to get
1729 // the section offset.
1730 uint64_t RelAdjustment
= Obj
.isRelocatableObject() ? 0 : SectionAddr
;
1733 bool PrintedSection
= false;
1734 std::vector
<RelocationRef
> Rels
= RelocMap
[Section
];
1735 std::vector
<RelocationRef
>::const_iterator RelCur
= Rels
.begin();
1736 std::vector
<RelocationRef
>::const_iterator RelEnd
= Rels
.end();
1738 // Loop over each chunk of code between two points where at least
1739 // one symbol is defined.
1740 for (size_t SI
= 0, SE
= Symbols
.size(); SI
!= SE
;) {
1741 // Advance SI past all the symbols starting at the same address,
1742 // and make an ArrayRef of them.
1743 unsigned FirstSI
= SI
;
1744 uint64_t Start
= Symbols
[SI
].Addr
;
1745 ArrayRef
<SymbolInfoTy
> SymbolsHere
;
1746 while (SI
!= SE
&& Symbols
[SI
].Addr
== Start
)
1748 SymbolsHere
= ArrayRef
<SymbolInfoTy
>(&Symbols
[FirstSI
], SI
- FirstSI
);
1750 // Get the demangled names of all those symbols. We end up with a vector
1751 // of StringRef that holds the names we're going to use, and a vector of
1752 // std::string that stores the new strings returned by demangle(), if
1753 // any. If we don't call demangle() then that vector can stay empty.
1754 std::vector
<StringRef
> SymNamesHere
;
1755 std::vector
<std::string
> DemangledSymNamesHere
;
1757 // Fetch the demangled names and store them locally.
1758 for (const SymbolInfoTy
&Symbol
: SymbolsHere
)
1759 DemangledSymNamesHere
.push_back(demangle(Symbol
.Name
));
1760 // Now we've finished modifying that vector, it's safe to make
1761 // a vector of StringRefs pointing into it.
1762 SymNamesHere
.insert(SymNamesHere
.begin(), DemangledSymNamesHere
.begin(),
1763 DemangledSymNamesHere
.end());
1765 for (const SymbolInfoTy
&Symbol
: SymbolsHere
)
1766 SymNamesHere
.push_back(Symbol
.Name
);
1769 // Distinguish ELF data from code symbols, which will be used later on to
1770 // decide whether to 'disassemble' this chunk as a data declaration via
1771 // dumpELFData(), or whether to treat it as code.
1773 // If data _and_ code symbols are defined at the same address, the code
1774 // takes priority, on the grounds that disassembling code is our main
1775 // purpose here, and it would be a worse failure to _not_ interpret
1776 // something that _was_ meaningful as code than vice versa.
1778 // Any ELF symbol type that is not clearly data will be regarded as code.
1779 // In particular, one of the uses of STT_NOTYPE is for branch targets
1780 // inside functions, for which STT_FUNC would be inaccurate.
1782 // So here, we spot whether there's any non-data symbol present at all,
1783 // and only set the DisassembleAsData flag if there isn't. Also, we use
1784 // this distinction to inform the decision of which symbol to print at
1785 // the head of the section, so that if we're printing code, we print a
1786 // code-related symbol name to go with it.
1787 bool DisassembleAsData
= false;
1788 size_t DisplaySymIndex
= SymbolsHere
.size() - 1;
1789 if (Obj
.isELF() && !DisassembleAll
&& Section
.isText()) {
1790 DisassembleAsData
= true; // unless we find a code symbol below
1792 for (size_t i
= 0; i
< SymbolsHere
.size(); ++i
) {
1793 uint8_t SymTy
= SymbolsHere
[i
].Type
;
1794 if (SymTy
!= ELF::STT_OBJECT
&& SymTy
!= ELF::STT_COMMON
) {
1795 DisassembleAsData
= false;
1796 DisplaySymIndex
= i
;
1801 // Decide which symbol(s) from this collection we're going to print.
1802 std::vector
<bool> SymsToPrint(SymbolsHere
.size(), false);
1803 // If the user has given the --disassemble-symbols option, then we must
1804 // display every symbol in that set, and no others.
1805 if (!DisasmSymbolSet
.empty()) {
1806 bool FoundAny
= false;
1807 for (size_t i
= 0; i
< SymbolsHere
.size(); ++i
) {
1808 if (DisasmSymbolSet
.count(SymNamesHere
[i
])) {
1809 SymsToPrint
[i
] = true;
1814 // And if none of the symbols here is one that the user asked for, skip
1815 // disassembling this entire chunk of code.
1818 } else if (!SymbolsHere
[DisplaySymIndex
].IsMappingSymbol
) {
1819 // Otherwise, print whichever symbol at this location is last in the
1820 // Symbols array, because that array is pre-sorted in a way intended to
1821 // correlate with priority of which symbol to display.
1822 SymsToPrint
[DisplaySymIndex
] = true;
1825 // Now that we know we're disassembling this section, override the choice
1826 // of which symbols to display by printing _all_ of them at this address
1827 // if the user asked for all symbols.
1829 // That way, '--show-all-symbols --disassemble-symbol=foo' will print
1830 // only the chunk of code headed by 'foo', but also show any other
1831 // symbols defined at that address, such as aliases for 'foo', or the ARM
1832 // mapping symbol preceding its code.
1833 if (ShowAllSymbols
) {
1834 for (size_t i
= 0; i
< SymbolsHere
.size(); ++i
)
1835 SymsToPrint
[i
] = true;
1838 if (Start
< SectionAddr
|| StopAddress
<= Start
)
1841 for (size_t i
= 0; i
< SymbolsHere
.size(); ++i
)
1842 FoundDisasmSymbolSet
.insert(SymNamesHere
[i
]);
1844 // The end is the section end, the beginning of the next symbol, or
1846 uint64_t End
= std::min
<uint64_t>(SectionAddr
+ SectSize
, StopAddress
);
1848 End
= std::min(End
, Symbols
[SI
].Addr
);
1849 if (Start
>= End
|| End
<= StartAddress
)
1851 Start
-= SectionAddr
;
1854 if (!PrintedSection
) {
1855 PrintedSection
= true;
1856 outs() << "\nDisassembly of section ";
1857 if (!SegmentName
.empty())
1858 outs() << SegmentName
<< ",";
1859 outs() << SectionName
<< ":\n";
1862 bool PrintedLabel
= false;
1863 for (size_t i
= 0; i
< SymbolsHere
.size(); ++i
) {
1864 if (!SymsToPrint
[i
])
1867 const SymbolInfoTy
&Symbol
= SymbolsHere
[i
];
1868 const StringRef SymbolName
= SymNamesHere
[i
];
1870 if (!PrintedLabel
) {
1872 PrintedLabel
= true;
1875 outs() << format(Is64Bits
? "%016" PRIx64
" " : "%08" PRIx64
" ",
1876 SectionAddr
+ Start
+ VMAAdjustment
);
1877 if (Obj
.isXCOFF() && SymbolDescription
) {
1878 outs() << getXCOFFSymbolDescription(Symbol
, SymbolName
) << ":\n";
1880 outs() << '<' << SymbolName
<< ">:\n";
1883 // Don't print raw contents of a virtual section. A virtual section
1884 // doesn't have any contents in the file.
1885 if (Section
.isVirtual()) {
1890 // See if any of the symbols defined at this location triggers target-
1891 // specific disassembly behavior, e.g. of special descriptors or function
1892 // prelude information.
1894 // We stop this loop at the first symbol that triggers some kind of
1895 // interesting behavior (if any), on the assumption that if two symbols
1896 // defined at the same address trigger two conflicting symbol handlers,
1897 // the object file is probably confused anyway, and it would make even
1898 // less sense to present the output of _both_ handlers, because that
1899 // would describe the same data twice.
1900 for (size_t SHI
= 0; SHI
< SymbolsHere
.size(); ++SHI
) {
1901 SymbolInfoTy Symbol
= SymbolsHere
[SHI
];
1903 auto Status
= DT
->DisAsm
->onSymbolStart(
1904 Symbol
, Size
, Bytes
.slice(Start
, End
- Start
), SectionAddr
+ Start
,
1908 // If onSymbolStart returns std::nullopt, that means it didn't trigger
1909 // any interesting handling for this symbol. Try the other symbols
1910 // defined at this address.
1914 if (*Status
== MCDisassembler::Fail
) {
1915 // If onSymbolStart returns Fail, that means it identified some kind
1916 // of special data at this address, but wasn't able to disassemble it
1917 // meaningfully. So we fall back to disassembling the failed region
1918 // as bytes, assuming that the target detected the failure before
1919 // printing anything.
1921 // Return values Success or SoftFail (i.e no 'real' failure) are
1922 // expected to mean that the target has emitted its own output.
1924 // Either way, 'Size' will have been set to the amount of data
1925 // covered by whatever prologue the target identified. So we advance
1926 // our own position to beyond that. Sometimes that will be the entire
1927 // distance to the next symbol, and sometimes it will be just a
1928 // prologue and we should start disassembling instructions from where
1930 outs() << DT
->Context
->getAsmInfo()->getCommentString()
1931 << " error in decoding " << SymNamesHere
[SHI
]
1932 << " : decoding failed region as bytes.\n";
1933 for (uint64_t I
= 0; I
< Size
; ++I
) {
1934 outs() << "\t.byte\t " << format_hex(Bytes
[I
], 1, /*Upper=*/true)
1943 if (SectionAddr
< StartAddress
)
1944 Index
= std::max
<uint64_t>(Index
, StartAddress
- SectionAddr
);
1946 if (DisassembleAsData
) {
1947 dumpELFData(SectionAddr
, Index
, End
, Bytes
);
1952 bool DumpARMELFData
= false;
1953 bool DumpTracebackTableForXCOFFFunction
=
1954 Obj
.isXCOFF() && Section
.isText() && TracebackTable
&&
1955 Symbols
[SI
- 1].XCOFFSymInfo
.StorageMappingClass
&&
1956 (*Symbols
[SI
- 1].XCOFFSymInfo
.StorageMappingClass
== XCOFF::XMC_PR
);
1958 formatted_raw_ostream
FOS(outs());
1960 // FIXME: Workaround for bug in formatted_raw_ostream. Color escape codes
1961 // are (incorrectly) written directly to the unbuffered raw_ostream
1962 // wrapped by the formatted_raw_ostream.
1963 if (DisassemblyColor
== ColorOutput::Enable
||
1964 DisassemblyColor
== ColorOutput::Auto
)
1965 FOS
.SetUnbuffered();
1967 std::unordered_map
<uint64_t, std::string
> AllLabels
;
1968 std::unordered_map
<uint64_t, std::vector
<std::string
>> BBAddrMapLabels
;
1969 if (SymbolizeOperands
) {
1970 collectLocalBranchTargets(Bytes
, DT
->InstrAnalysis
.get(),
1971 DT
->DisAsm
.get(), DT
->InstPrinter
.get(),
1972 PrimaryTarget
.SubtargetInfo
.get(),
1973 SectionAddr
, Index
, End
, AllLabels
);
1974 collectBBAddrMapLabels(AddrToBBAddrMap
, SectionAddr
, Index
, End
,
1978 if (DT
->InstrAnalysis
)
1979 DT
->InstrAnalysis
->resetState();
1981 while (Index
< End
) {
1982 // ARM and AArch64 ELF binaries can interleave data and text in the
1983 // same section. We rely on the markers introduced to understand what
1984 // we need to dump. If the data marker is within a function, it is
1985 // denoted as a word/short etc.
1986 if (!MappingSymbols
.empty()) {
1987 char Kind
= getMappingSymbolKind(MappingSymbols
, Index
);
1988 DumpARMELFData
= Kind
== 'd';
1989 if (SecondaryTarget
) {
1991 DT
= PrimaryIsThumb
? &*SecondaryTarget
: &PrimaryTarget
;
1992 } else if (Kind
== 't') {
1993 DT
= PrimaryIsThumb
? &PrimaryTarget
: &*SecondaryTarget
;
1996 } else if (!CHPECodeMap
.empty()) {
1997 uint64_t Address
= SectionAddr
+ Index
;
1998 auto It
= partition_point(
2000 [Address
](const std::pair
<uint64_t, uint64_t> &Entry
) {
2001 return Entry
.first
<= Address
;
2003 if (It
!= CHPECodeMap
.begin() && Address
< (It
- 1)->second
) {
2004 DT
= &*SecondaryTarget
;
2006 DT
= &PrimaryTarget
;
2007 // X64 disassembler range may have left Index unaligned, so
2008 // make sure that it's aligned when we switch back to ARM64
2010 Index
= llvm::alignTo(Index
, 4);
2016 if (DumpARMELFData
) {
2017 Size
= dumpARMELFData(SectionAddr
, Index
, End
, Obj
, Bytes
,
2018 MappingSymbols
, *DT
->SubtargetInfo
, FOS
);
2020 // When -z or --disassemble-zeroes are given we always dissasemble
2021 // them. Otherwise we might want to skip zero bytes we see.
2022 if (!DisassembleZeroes
) {
2023 uint64_t MaxOffset
= End
- Index
;
2024 // For --reloc: print zero blocks patched by relocations, so that
2025 // relocations can be shown in the dump.
2026 if (RelCur
!= RelEnd
)
2027 MaxOffset
= std::min(RelCur
->getOffset() - RelAdjustment
- Index
,
2031 countSkippableZeroBytes(Bytes
.slice(Index
, MaxOffset
))) {
2032 FOS
<< "\t\t..." << '\n';
2038 if (DumpTracebackTableForXCOFFFunction
&&
2039 doesXCOFFTracebackTableBegin(Bytes
.slice(Index
, 4))) {
2040 dumpTracebackTable(Bytes
.slice(Index
),
2041 SectionAddr
+ Index
+ VMAAdjustment
, FOS
,
2042 SectionAddr
+ End
+ VMAAdjustment
,
2043 *DT
->SubtargetInfo
, cast
<XCOFFObjectFile
>(&Obj
));
2048 // Print local label if there's any.
2049 auto Iter1
= BBAddrMapLabels
.find(SectionAddr
+ Index
);
2050 if (Iter1
!= BBAddrMapLabels
.end()) {
2051 for (StringRef Label
: Iter1
->second
)
2052 FOS
<< "<" << Label
<< ">:\n";
2054 auto Iter2
= AllLabels
.find(SectionAddr
+ Index
);
2055 if (Iter2
!= AllLabels
.end())
2056 FOS
<< "<" << Iter2
->second
<< ">:\n";
2059 // Disassemble a real instruction or a data when disassemble all is
2062 ArrayRef
<uint8_t> ThisBytes
= Bytes
.slice(Index
);
2063 uint64_t ThisAddr
= SectionAddr
+ Index
;
2064 bool Disassembled
= DT
->DisAsm
->getInstruction(
2065 Inst
, Size
, ThisBytes
, ThisAddr
, CommentStream
);
2067 Size
= std::min
<uint64_t>(
2069 DT
->DisAsm
->suggestBytesToSkip(ThisBytes
, ThisAddr
));
2071 LVP
.update({Index
, Section
.getIndex()},
2072 {Index
+ Size
, Section
.getIndex()}, Index
+ Size
!= End
);
2074 DT
->InstPrinter
->setCommentStream(CommentStream
);
2076 DT
->Printer
->printInst(
2077 *DT
->InstPrinter
, Disassembled
? &Inst
: nullptr,
2078 Bytes
.slice(Index
, Size
),
2079 {SectionAddr
+ Index
+ VMAAdjustment
, Section
.getIndex()}, FOS
,
2080 "", *DT
->SubtargetInfo
, &SP
, Obj
.getFileName(), &Rels
, LVP
);
2082 DT
->InstPrinter
->setCommentStream(llvm::nulls());
2084 // If disassembly has failed, avoid analysing invalid/incomplete
2085 // instruction information. Otherwise, try to resolve the target
2086 // address (jump target or memory operand address) and print it on the
2087 // right of the instruction.
2088 if (Disassembled
&& DT
->InstrAnalysis
) {
2089 // Branch targets are printed just after the instructions.
2090 llvm::raw_ostream
*TargetOS
= &FOS
;
2092 bool PrintTarget
= DT
->InstrAnalysis
->evaluateBranch(
2093 Inst
, SectionAddr
+ Index
, Size
, Target
);
2095 if (std::optional
<uint64_t> MaybeTarget
=
2096 DT
->InstrAnalysis
->evaluateMemoryOperandAddress(
2097 Inst
, DT
->SubtargetInfo
.get(), SectionAddr
+ Index
,
2099 Target
= *MaybeTarget
;
2101 // Do not print real address when symbolizing.
2102 if (!SymbolizeOperands
) {
2103 // Memory operand addresses are printed as comments.
2104 TargetOS
= &CommentStream
;
2105 *TargetOS
<< "0x" << Twine::utohexstr(Target
);
2109 // In a relocatable object, the target's section must reside in
2110 // the same section as the call instruction or it is accessed
2111 // through a relocation.
2113 // In a non-relocatable object, the target may be in any section.
2114 // In that case, locate the section(s) containing the target
2115 // address and find the symbol in one of those, if possible.
2117 // N.B. We don't walk the relocations in the relocatable case yet.
2118 std::vector
<const SectionSymbolsTy
*> TargetSectionSymbols
;
2119 if (!Obj
.isRelocatableObject()) {
2120 auto It
= llvm::partition_point(
2122 [=](const std::pair
<uint64_t, SectionRef
> &O
) {
2123 return O
.first
<= Target
;
2125 uint64_t TargetSecAddr
= 0;
2126 while (It
!= SectionAddresses
.begin()) {
2128 if (TargetSecAddr
== 0)
2129 TargetSecAddr
= It
->first
;
2130 if (It
->first
!= TargetSecAddr
)
2132 TargetSectionSymbols
.push_back(&AllSymbols
[It
->second
]);
2135 TargetSectionSymbols
.push_back(&Symbols
);
2137 TargetSectionSymbols
.push_back(&AbsoluteSymbols
);
2139 // Find the last symbol in the first candidate section whose
2140 // offset is less than or equal to the target. If there are no
2141 // such symbols, try in the next section and so on, before finally
2142 // using the nearest preceding absolute symbol (if any), if there
2143 // are no other valid symbols.
2144 const SymbolInfoTy
*TargetSym
= nullptr;
2145 for (const SectionSymbolsTy
*TargetSymbols
:
2146 TargetSectionSymbols
) {
2147 auto It
= llvm::partition_point(
2149 [=](const SymbolInfoTy
&O
) { return O
.Addr
<= Target
; });
2150 while (It
!= TargetSymbols
->begin()) {
2152 // Skip mapping symbols to avoid possible ambiguity as they
2153 // do not allow uniquely identifying the target address.
2154 if (!It
->IsMappingSymbol
) {
2163 // Print the labels corresponding to the target if there's any.
2164 bool BBAddrMapLabelAvailable
= BBAddrMapLabels
.count(Target
);
2165 bool LabelAvailable
= AllLabels
.count(Target
);
2166 if (TargetSym
!= nullptr) {
2167 uint64_t TargetAddress
= TargetSym
->Addr
;
2168 uint64_t Disp
= Target
- TargetAddress
;
2169 std::string TargetName
= Demangle
? demangle(TargetSym
->Name
)
2170 : TargetSym
->Name
.str();
2174 // Always Print the binary symbol precisely corresponding to
2175 // the target address.
2176 *TargetOS
<< TargetName
;
2177 } else if (BBAddrMapLabelAvailable
) {
2178 *TargetOS
<< BBAddrMapLabels
[Target
].front();
2179 } else if (LabelAvailable
) {
2180 *TargetOS
<< AllLabels
[Target
];
2182 // Always Print the binary symbol plus an offset if there's no
2183 // local label corresponding to the target address.
2184 *TargetOS
<< TargetName
<< "+0x" << Twine::utohexstr(Disp
);
2187 } else if (BBAddrMapLabelAvailable
) {
2188 *TargetOS
<< " <" << BBAddrMapLabels
[Target
].front() << ">";
2189 } else if (LabelAvailable
) {
2190 *TargetOS
<< " <" << AllLabels
[Target
] << ">";
2192 // By convention, each record in the comment stream should be
2194 if (TargetOS
== &CommentStream
)
2198 DT
->InstrAnalysis
->updateState(Inst
, SectionAddr
+ Index
);
2199 } else if (!Disassembled
&& DT
->InstrAnalysis
) {
2200 DT
->InstrAnalysis
->resetState();
2204 assert(DT
->Context
->getAsmInfo());
2205 emitPostInstructionInfo(FOS
, *DT
->Context
->getAsmInfo(),
2206 *DT
->SubtargetInfo
, CommentStream
.str(), LVP
);
2210 printBTFRelocation(FOS
, *BTF
, {Index
, Section
.getIndex()}, LVP
);
2212 // Hexagon does this in pretty printer
2213 if (Obj
.getArch() != Triple::hexagon
) {
2214 // Print relocation for instruction and data.
2215 while (RelCur
!= RelEnd
) {
2216 uint64_t Offset
= RelCur
->getOffset() - RelAdjustment
;
2217 // If this relocation is hidden, skip it.
2218 if (getHidden(*RelCur
) || SectionAddr
+ Offset
< StartAddress
) {
2223 // Stop when RelCur's offset is past the disassembled
2224 // instruction/data. Note that it's possible the disassembled data
2225 // is not the complete data: we might see the relocation printed in
2226 // the middle of the data, but this matches the binutils objdump
2228 if (Offset
>= Index
+ Size
)
2231 // When --adjust-vma is used, update the address printed.
2232 if (RelCur
->getSymbol() != Obj
.symbol_end()) {
2233 Expected
<section_iterator
> SymSI
=
2234 RelCur
->getSymbol()->getSection();
2235 if (SymSI
&& *SymSI
!= Obj
.section_end() &&
2236 shouldAdjustVA(**SymSI
))
2237 Offset
+= AdjustVMA
;
2240 printRelocation(FOS
, Obj
.getFileName(), *RelCur
,
2241 SectionAddr
+ Offset
, Is64Bits
);
2242 LVP
.printAfterOtherLine(FOS
, true);
2251 StringSet
<> MissingDisasmSymbolSet
=
2252 set_difference(DisasmSymbolSet
, FoundDisasmSymbolSet
);
2253 for (StringRef Sym
: MissingDisasmSymbolSet
.keys())
2254 reportWarning("failed to disassemble missing symbol " + Sym
, FileName
);
2257 static void disassembleObject(ObjectFile
*Obj
, bool InlineRelocs
) {
2258 // If information useful for showing the disassembly is missing, try to find a
2259 // more complete binary and disassemble that instead.
2260 OwningBinary
<Binary
> FetchedBinary
;
2261 if (Obj
->symbols().empty()) {
2262 if (std::optional
<OwningBinary
<Binary
>> FetchedBinaryOpt
=
2263 fetchBinaryByBuildID(*Obj
)) {
2264 if (auto *O
= dyn_cast
<ObjectFile
>(FetchedBinaryOpt
->getBinary())) {
2265 if (!O
->symbols().empty() ||
2266 (!O
->sections().empty() && Obj
->sections().empty())) {
2267 FetchedBinary
= std::move(*FetchedBinaryOpt
);
2274 const Target
*TheTarget
= getTarget(Obj
);
2276 // Package up features to be passed to target/subtarget
2277 Expected
<SubtargetFeatures
> FeaturesValue
= Obj
->getFeatures();
2279 reportError(FeaturesValue
.takeError(), Obj
->getFileName());
2280 SubtargetFeatures Features
= *FeaturesValue
;
2281 if (!MAttrs
.empty()) {
2282 for (unsigned I
= 0; I
!= MAttrs
.size(); ++I
)
2283 Features
.AddFeature(MAttrs
[I
]);
2284 } else if (MCPU
.empty() && Obj
->getArch() == llvm::Triple::aarch64
) {
2285 Features
.AddFeature("+all");
2289 MCPU
= Obj
->tryGetCPUName().value_or("").str();
2291 if (isArmElf(*Obj
)) {
2292 // When disassembling big-endian Arm ELF, the instruction endianness is
2293 // determined in a complex way. In relocatable objects, AAELF32 mandates
2294 // that instruction endianness matches the ELF file endianness; in
2295 // executable images, that's true unless the file header has the EF_ARM_BE8
2296 // flag, in which case instructions are little-endian regardless of data
2299 // We must set the big-endian-instructions SubtargetFeature to make the
2300 // disassembler read the instructions the right way round, and also tell
2301 // our own prettyprinter to retrieve the encodings the same way to print in
2303 const auto *Elf32BE
= dyn_cast
<ELF32BEObjectFile
>(Obj
);
2305 if (Elf32BE
&& (Elf32BE
->isRelocatableObject() ||
2306 !(Elf32BE
->getPlatformFlags() & ELF::EF_ARM_BE8
))) {
2307 Features
.AddFeature("+big-endian-instructions");
2308 ARMPrettyPrinterInst
.setInstructionEndianness(llvm::endianness::big
);
2310 ARMPrettyPrinterInst
.setInstructionEndianness(llvm::endianness::little
);
2314 DisassemblerTarget
PrimaryTarget(TheTarget
, *Obj
, TripleName
, MCPU
, Features
);
2316 // If we have an ARM object file, we need a second disassembler, because
2317 // ARM CPUs have two different instruction sets: ARM mode, and Thumb mode.
2318 // We use mapping symbols to switch between the two assemblers, where
2320 std::optional
<DisassemblerTarget
> SecondaryTarget
;
2322 if (isArmElf(*Obj
)) {
2323 if (!PrimaryTarget
.SubtargetInfo
->checkFeatures("+mclass")) {
2324 if (PrimaryTarget
.SubtargetInfo
->checkFeatures("+thumb-mode"))
2325 Features
.AddFeature("-thumb-mode");
2327 Features
.AddFeature("+thumb-mode");
2328 SecondaryTarget
.emplace(PrimaryTarget
, Features
);
2330 } else if (const auto *COFFObj
= dyn_cast
<COFFObjectFile
>(Obj
)) {
2331 const chpe_metadata
*CHPEMetadata
= COFFObj
->getCHPEMetadata();
2332 if (CHPEMetadata
&& CHPEMetadata
->CodeMapCount
) {
2333 // Set up x86_64 disassembler for ARM64EC binaries.
2334 Triple
X64Triple(TripleName
);
2335 X64Triple
.setArch(Triple::ArchType::x86_64
);
2338 const Target
*X64Target
=
2339 TargetRegistry::lookupTarget("", X64Triple
, Error
);
2341 SubtargetFeatures X64Features
;
2342 SecondaryTarget
.emplace(X64Target
, *Obj
, X64Triple
.getTriple(), "",
2345 reportWarning(Error
, Obj
->getFileName());
2350 const ObjectFile
*DbgObj
= Obj
;
2351 if (!FetchedBinary
.getBinary() && !Obj
->hasDebugInfo()) {
2352 if (std::optional
<OwningBinary
<Binary
>> DebugBinaryOpt
=
2353 fetchBinaryByBuildID(*Obj
)) {
2354 if (auto *FetchedObj
=
2355 dyn_cast
<const ObjectFile
>(DebugBinaryOpt
->getBinary())) {
2356 if (FetchedObj
->hasDebugInfo()) {
2357 FetchedBinary
= std::move(*DebugBinaryOpt
);
2358 DbgObj
= FetchedObj
;
2364 std::unique_ptr
<object::Binary
> DSYMBinary
;
2365 std::unique_ptr
<MemoryBuffer
> DSYMBuf
;
2366 if (!DbgObj
->hasDebugInfo()) {
2367 if (const MachOObjectFile
*MachOOF
= dyn_cast
<MachOObjectFile
>(&*Obj
)) {
2368 DbgObj
= objdump::getMachODSymObject(MachOOF
, Obj
->getFileName(),
2369 DSYMBinary
, DSYMBuf
);
2375 SourcePrinter
SP(DbgObj
, TheTarget
->getName());
2377 for (StringRef Opt
: DisassemblerOptions
)
2378 if (!PrimaryTarget
.InstPrinter
->applyTargetSpecificCLOption(Opt
))
2379 reportError(Obj
->getFileName(),
2380 "Unrecognized disassembler option: " + Opt
);
2382 disassembleObject(*Obj
, *DbgObj
, PrimaryTarget
, SecondaryTarget
, SP
,
2386 void Dumper::printRelocations() {
2387 StringRef Fmt
= O
.getBytesInAddress() > 4 ? "%016" PRIx64
: "%08" PRIx64
;
2389 // Build a mapping from relocation target to a vector of relocation
2390 // sections. Usually, there is an only one relocation section for
2391 // each relocated section.
2392 MapVector
<SectionRef
, std::vector
<SectionRef
>> SecToRelSec
;
2394 for (const SectionRef
&Section
: ToolSectionFilter(O
, &Ndx
)) {
2395 if (O
.isELF() && (ELFSectionRef(Section
).getFlags() & ELF::SHF_ALLOC
))
2397 if (Section
.relocation_begin() == Section
.relocation_end())
2399 Expected
<section_iterator
> SecOrErr
= Section
.getRelocatedSection();
2401 reportError(O
.getFileName(),
2402 "section (" + Twine(Ndx
) +
2403 "): unable to get a relocation target: " +
2404 toString(SecOrErr
.takeError()));
2405 SecToRelSec
[**SecOrErr
].push_back(Section
);
2408 for (std::pair
<SectionRef
, std::vector
<SectionRef
>> &P
: SecToRelSec
) {
2409 StringRef SecName
= unwrapOrError(P
.first
.getName(), O
.getFileName());
2410 outs() << "\nRELOCATION RECORDS FOR [" << SecName
<< "]:\n";
2411 uint32_t OffsetPadding
= (O
.getBytesInAddress() > 4 ? 16 : 8);
2412 uint32_t TypePadding
= 24;
2413 outs() << left_justify("OFFSET", OffsetPadding
) << " "
2414 << left_justify("TYPE", TypePadding
) << " "
2417 for (SectionRef Section
: P
.second
) {
2418 for (const RelocationRef
&Reloc
: Section
.relocations()) {
2419 uint64_t Address
= Reloc
.getOffset();
2420 SmallString
<32> RelocName
;
2421 SmallString
<32> ValueStr
;
2422 if (Address
< StartAddress
|| Address
> StopAddress
|| getHidden(Reloc
))
2424 Reloc
.getTypeName(RelocName
);
2425 if (Error E
= getRelocationValueString(Reloc
, ValueStr
))
2426 reportUniqueWarning(std::move(E
));
2428 outs() << format(Fmt
.data(), Address
) << " "
2429 << left_justify(RelocName
, TypePadding
) << " " << ValueStr
2436 // Returns true if we need to show LMA column when dumping section headers. We
2437 // show it only when the platform is ELF and either we have at least one section
2438 // whose VMA and LMA are different and/or when --show-lma flag is used.
2439 static bool shouldDisplayLMA(const ObjectFile
&Obj
) {
2442 for (const SectionRef
&S
: ToolSectionFilter(Obj
))
2443 if (S
.getAddress() != getELFSectionLMA(S
))
2448 static size_t getMaxSectionNameWidth(const ObjectFile
&Obj
) {
2449 // Default column width for names is 13 even if no names are that long.
2450 size_t MaxWidth
= 13;
2451 for (const SectionRef
&Section
: ToolSectionFilter(Obj
)) {
2452 StringRef Name
= unwrapOrError(Section
.getName(), Obj
.getFileName());
2453 MaxWidth
= std::max(MaxWidth
, Name
.size());
2458 void objdump::printSectionHeaders(ObjectFile
&Obj
) {
2459 if (Obj
.isELF() && Obj
.sections().empty())
2460 createFakeELFSections(Obj
);
2462 size_t NameWidth
= getMaxSectionNameWidth(Obj
);
2463 size_t AddressWidth
= 2 * Obj
.getBytesInAddress();
2464 bool HasLMAColumn
= shouldDisplayLMA(Obj
);
2465 outs() << "\nSections:\n";
2467 outs() << "Idx " << left_justify("Name", NameWidth
) << " Size "
2468 << left_justify("VMA", AddressWidth
) << " "
2469 << left_justify("LMA", AddressWidth
) << " Type\n";
2471 outs() << "Idx " << left_justify("Name", NameWidth
) << " Size "
2472 << left_justify("VMA", AddressWidth
) << " Type\n";
2475 for (const SectionRef
&Section
: ToolSectionFilter(Obj
, &Idx
)) {
2476 StringRef Name
= unwrapOrError(Section
.getName(), Obj
.getFileName());
2477 uint64_t VMA
= Section
.getAddress();
2478 if (shouldAdjustVA(Section
))
2481 uint64_t Size
= Section
.getSize();
2483 std::string Type
= Section
.isText() ? "TEXT" : "";
2484 if (Section
.isData())
2485 Type
+= Type
.empty() ? "DATA" : ", DATA";
2486 if (Section
.isBSS())
2487 Type
+= Type
.empty() ? "BSS" : ", BSS";
2488 if (Section
.isDebugSection())
2489 Type
+= Type
.empty() ? "DEBUG" : ", DEBUG";
2492 outs() << format("%3" PRIu64
" %-*s %08" PRIx64
" ", Idx
, NameWidth
,
2493 Name
.str().c_str(), Size
)
2494 << format_hex_no_prefix(VMA
, AddressWidth
) << " "
2495 << format_hex_no_prefix(getELFSectionLMA(Section
), AddressWidth
)
2496 << " " << Type
<< "\n";
2498 outs() << format("%3" PRIu64
" %-*s %08" PRIx64
" ", Idx
, NameWidth
,
2499 Name
.str().c_str(), Size
)
2500 << format_hex_no_prefix(VMA
, AddressWidth
) << " " << Type
<< "\n";
2504 void objdump::printSectionContents(const ObjectFile
*Obj
) {
2505 const MachOObjectFile
*MachO
= dyn_cast
<const MachOObjectFile
>(Obj
);
2507 for (const SectionRef
&Section
: ToolSectionFilter(*Obj
)) {
2508 StringRef Name
= unwrapOrError(Section
.getName(), Obj
->getFileName());
2509 uint64_t BaseAddr
= Section
.getAddress();
2510 uint64_t Size
= Section
.getSize();
2514 outs() << "Contents of section ";
2515 StringRef SegmentName
= getSegmentName(MachO
, Section
);
2516 if (!SegmentName
.empty())
2517 outs() << SegmentName
<< ",";
2518 outs() << Name
<< ":\n";
2519 if (Section
.isBSS()) {
2520 outs() << format("<skipping contents of bss section at [%04" PRIx64
2521 ", %04" PRIx64
")>\n",
2522 BaseAddr
, BaseAddr
+ Size
);
2526 StringRef Contents
= unwrapOrError(Section
.getContents(), Obj
->getFileName());
2528 // Dump out the content as hex and printable ascii characters.
2529 for (std::size_t Addr
= 0, End
= Contents
.size(); Addr
< End
; Addr
+= 16) {
2530 outs() << format(" %04" PRIx64
" ", BaseAddr
+ Addr
);
2531 // Dump line of hex.
2532 for (std::size_t I
= 0; I
< 16; ++I
) {
2533 if (I
!= 0 && I
% 4 == 0)
2536 outs() << hexdigit((Contents
[Addr
+ I
] >> 4) & 0xF, true)
2537 << hexdigit(Contents
[Addr
+ I
] & 0xF, true);
2543 for (std::size_t I
= 0; I
< 16 && Addr
+ I
< End
; ++I
) {
2544 if (isPrint(static_cast<unsigned char>(Contents
[Addr
+ I
]) & 0xFF))
2545 outs() << Contents
[Addr
+ I
];
2554 void Dumper::printSymbolTable(StringRef ArchiveName
, StringRef ArchitectureName
,
2556 if (O
.isCOFF() && !DumpDynamic
) {
2557 outs() << "\nSYMBOL TABLE:\n";
2558 printCOFFSymbolTable(cast
<const COFFObjectFile
>(O
));
2562 const StringRef FileName
= O
.getFileName();
2565 outs() << "\nSYMBOL TABLE:\n";
2566 for (auto I
= O
.symbol_begin(); I
!= O
.symbol_end(); ++I
)
2567 printSymbol(*I
, {}, FileName
, ArchiveName
, ArchitectureName
, DumpDynamic
);
2571 outs() << "\nDYNAMIC SYMBOL TABLE:\n";
2574 "this operation is not currently supported for this file format",
2579 const ELFObjectFileBase
*ELF
= cast
<const ELFObjectFileBase
>(&O
);
2580 auto Symbols
= ELF
->getDynamicSymbolIterators();
2581 Expected
<std::vector
<VersionEntry
>> SymbolVersionsOrErr
=
2582 ELF
->readDynsymVersions();
2583 if (!SymbolVersionsOrErr
) {
2584 reportWarning(toString(SymbolVersionsOrErr
.takeError()), FileName
);
2585 SymbolVersionsOrErr
= std::vector
<VersionEntry
>();
2586 (void)!SymbolVersionsOrErr
;
2588 for (auto &Sym
: Symbols
)
2589 printSymbol(Sym
, *SymbolVersionsOrErr
, FileName
, ArchiveName
,
2590 ArchitectureName
, DumpDynamic
);
2593 void Dumper::printSymbol(const SymbolRef
&Symbol
,
2594 ArrayRef
<VersionEntry
> SymbolVersions
,
2595 StringRef FileName
, StringRef ArchiveName
,
2596 StringRef ArchitectureName
, bool DumpDynamic
) {
2597 const MachOObjectFile
*MachO
= dyn_cast
<const MachOObjectFile
>(&O
);
2598 Expected
<uint64_t> AddrOrErr
= Symbol
.getAddress();
2600 reportUniqueWarning(AddrOrErr
.takeError());
2603 uint64_t Address
= *AddrOrErr
;
2604 section_iterator SecI
= unwrapOrError(Symbol
.getSection(), FileName
);
2605 if (SecI
!= O
.section_end() && shouldAdjustVA(*SecI
))
2606 Address
+= AdjustVMA
;
2607 if ((Address
< StartAddress
) || (Address
> StopAddress
))
2609 SymbolRef::Type Type
=
2610 unwrapOrError(Symbol
.getType(), FileName
, ArchiveName
, ArchitectureName
);
2612 unwrapOrError(Symbol
.getFlags(), FileName
, ArchiveName
, ArchitectureName
);
2614 // Don't ask a Mach-O STAB symbol for its section unless you know that
2615 // STAB symbol's section field refers to a valid section index. Otherwise
2616 // the symbol may error trying to load a section that does not exist.
2617 bool IsSTAB
= false;
2619 DataRefImpl SymDRI
= Symbol
.getRawDataRefImpl();
2621 (MachO
->is64Bit() ? MachO
->getSymbol64TableEntry(SymDRI
).n_type
2622 : MachO
->getSymbolTableEntry(SymDRI
).n_type
);
2623 if (NType
& MachO::N_STAB
)
2626 section_iterator Section
= IsSTAB
2628 : unwrapOrError(Symbol
.getSection(), FileName
,
2629 ArchiveName
, ArchitectureName
);
2632 if (Type
== SymbolRef::ST_Debug
&& Section
!= O
.section_end()) {
2633 if (Expected
<StringRef
> NameOrErr
= Section
->getName())
2636 consumeError(NameOrErr
.takeError());
2639 Name
= unwrapOrError(Symbol
.getName(), FileName
, ArchiveName
,
2643 bool Global
= Flags
& SymbolRef::SF_Global
;
2644 bool Weak
= Flags
& SymbolRef::SF_Weak
;
2645 bool Absolute
= Flags
& SymbolRef::SF_Absolute
;
2646 bool Common
= Flags
& SymbolRef::SF_Common
;
2647 bool Hidden
= Flags
& SymbolRef::SF_Hidden
;
2650 if ((Section
!= O
.section_end() || Absolute
) && !Weak
)
2651 GlobLoc
= Global
? 'g' : 'l';
2654 if (ELFSymbolRef(Symbol
).getELFType() == ELF::STT_GNU_IFUNC
)
2656 if (ELFSymbolRef(Symbol
).getBinding() == ELF::STB_GNU_UNIQUE
)
2663 else if (Type
== SymbolRef::ST_Debug
|| Type
== SymbolRef::ST_File
)
2666 char FileFunc
= ' ';
2667 if (Type
== SymbolRef::ST_File
)
2669 else if (Type
== SymbolRef::ST_Function
)
2671 else if (Type
== SymbolRef::ST_Data
)
2674 const char *Fmt
= O
.getBytesInAddress() > 4 ? "%016" PRIx64
: "%08" PRIx64
;
2676 outs() << format(Fmt
, Address
) << " "
2677 << GlobLoc
// Local -> 'l', Global -> 'g', Neither -> ' '
2678 << (Weak
? 'w' : ' ') // Weak?
2679 << ' ' // Constructor. Not supported yet.
2680 << ' ' // Warning. Not supported yet.
2681 << IFunc
// Indirect reference to another symbol.
2682 << Debug
// Debugging (d) or dynamic (D) symbol.
2683 << FileFunc
// Name of function (F), file (f) or object (O).
2687 } else if (Common
) {
2689 } else if (Section
== O
.section_end()) {
2691 XCOFFSymbolRef XCOFFSym
= cast
<const XCOFFObjectFile
>(O
).toSymbolRef(
2692 Symbol
.getRawDataRefImpl());
2693 if (XCOFF::N_DEBUG
== XCOFFSym
.getSectionNumber())
2694 outs() << "*DEBUG*";
2700 StringRef SegmentName
= getSegmentName(MachO
, *Section
);
2701 if (!SegmentName
.empty())
2702 outs() << SegmentName
<< ",";
2703 StringRef SectionName
= unwrapOrError(Section
->getName(), FileName
);
2704 outs() << SectionName
;
2706 std::optional
<SymbolRef
> SymRef
=
2707 getXCOFFSymbolContainingSymbolRef(cast
<XCOFFObjectFile
>(O
), Symbol
);
2710 Expected
<StringRef
> NameOrErr
= SymRef
->getName();
2713 outs() << " (csect:";
2714 std::string SymName
=
2715 Demangle
? demangle(*NameOrErr
) : NameOrErr
->str();
2717 if (SymbolDescription
)
2718 SymName
= getXCOFFSymbolDescription(createSymbolInfo(O
, *SymRef
),
2721 outs() << ' ' << SymName
;
2724 reportWarning(toString(NameOrErr
.takeError()), FileName
);
2730 outs() << '\t' << format(Fmt
, static_cast<uint64_t>(Symbol
.getAlignment()));
2731 else if (O
.isXCOFF())
2733 << format(Fmt
, cast
<XCOFFObjectFile
>(O
).getSymbolSize(
2734 Symbol
.getRawDataRefImpl()));
2736 outs() << '\t' << format(Fmt
, ELFSymbolRef(Symbol
).getSize());
2739 if (!SymbolVersions
.empty()) {
2740 const VersionEntry
&Ver
=
2741 SymbolVersions
[Symbol
.getRawDataRefImpl().d
.b
- 1];
2743 if (!Ver
.Name
.empty())
2744 Str
= Ver
.IsVerDef
? ' ' + Ver
.Name
: '(' + Ver
.Name
+ ')';
2745 outs() << ' ' << left_justify(Str
, 12);
2748 uint8_t Other
= ELFSymbolRef(Symbol
).getOther();
2750 case ELF::STV_DEFAULT
:
2752 case ELF::STV_INTERNAL
:
2753 outs() << " .internal";
2755 case ELF::STV_HIDDEN
:
2756 outs() << " .hidden";
2758 case ELF::STV_PROTECTED
:
2759 outs() << " .protected";
2762 outs() << format(" 0x%02x", Other
);
2765 } else if (Hidden
) {
2766 outs() << " .hidden";
2769 std::string SymName
= Demangle
? demangle(Name
) : Name
.str();
2770 if (O
.isXCOFF() && SymbolDescription
)
2771 SymName
= getXCOFFSymbolDescription(createSymbolInfo(O
, Symbol
), SymName
);
2773 outs() << ' ' << SymName
<< '\n';
2776 static void printUnwindInfo(const ObjectFile
*O
) {
2777 outs() << "Unwind info:\n\n";
2779 if (const COFFObjectFile
*Coff
= dyn_cast
<COFFObjectFile
>(O
))
2780 printCOFFUnwindInfo(Coff
);
2781 else if (const MachOObjectFile
*MachO
= dyn_cast
<MachOObjectFile
>(O
))
2782 printMachOUnwindInfo(MachO
);
2784 // TODO: Extract DWARF dump tool to objdump.
2785 WithColor::error(errs(), ToolName
)
2786 << "This operation is only currently supported "
2787 "for COFF and MachO object files.\n";
2790 /// Dump the raw contents of the __clangast section so the output can be piped
2791 /// into llvm-bcanalyzer.
2792 static void printRawClangAST(const ObjectFile
*Obj
) {
2793 if (outs().is_displayed()) {
2794 WithColor::error(errs(), ToolName
)
2795 << "The -raw-clang-ast option will dump the raw binary contents of "
2796 "the clang ast section.\n"
2797 "Please redirect the output to a file or another program such as "
2798 "llvm-bcanalyzer.\n";
2802 StringRef
ClangASTSectionName("__clangast");
2803 if (Obj
->isCOFF()) {
2804 ClangASTSectionName
= "clangast";
2807 std::optional
<object::SectionRef
> ClangASTSection
;
2808 for (auto Sec
: ToolSectionFilter(*Obj
)) {
2810 if (Expected
<StringRef
> NameOrErr
= Sec
.getName())
2813 consumeError(NameOrErr
.takeError());
2815 if (Name
== ClangASTSectionName
) {
2816 ClangASTSection
= Sec
;
2820 if (!ClangASTSection
)
2823 StringRef ClangASTContents
=
2824 unwrapOrError(ClangASTSection
->getContents(), Obj
->getFileName());
2825 outs().write(ClangASTContents
.data(), ClangASTContents
.size());
2828 static void printFaultMaps(const ObjectFile
*Obj
) {
2829 StringRef FaultMapSectionName
;
2832 FaultMapSectionName
= ".llvm_faultmaps";
2833 } else if (Obj
->isMachO()) {
2834 FaultMapSectionName
= "__llvm_faultmaps";
2836 WithColor::error(errs(), ToolName
)
2837 << "This operation is only currently supported "
2838 "for ELF and Mach-O executable files.\n";
2842 std::optional
<object::SectionRef
> FaultMapSection
;
2844 for (auto Sec
: ToolSectionFilter(*Obj
)) {
2846 if (Expected
<StringRef
> NameOrErr
= Sec
.getName())
2849 consumeError(NameOrErr
.takeError());
2851 if (Name
== FaultMapSectionName
) {
2852 FaultMapSection
= Sec
;
2857 outs() << "FaultMap table:\n";
2859 if (!FaultMapSection
) {
2860 outs() << "<not found>\n";
2864 StringRef FaultMapContents
=
2865 unwrapOrError(FaultMapSection
->getContents(), Obj
->getFileName());
2866 FaultMapParser
FMP(FaultMapContents
.bytes_begin(),
2867 FaultMapContents
.bytes_end());
2872 void Dumper::printPrivateHeaders() {
2873 reportError(O
.getFileName(), "Invalid/Unsupported object file format");
2876 static void printFileHeaders(const ObjectFile
*O
) {
2877 if (!O
->isELF() && !O
->isCOFF())
2878 reportError(O
->getFileName(), "Invalid/Unsupported object file format");
2880 Triple::ArchType AT
= O
->getArch();
2881 outs() << "architecture: " << Triple::getArchTypeName(AT
) << "\n";
2882 uint64_t Address
= unwrapOrError(O
->getStartAddress(), O
->getFileName());
2884 StringRef Fmt
= O
->getBytesInAddress() > 4 ? "%016" PRIx64
: "%08" PRIx64
;
2885 outs() << "start address: "
2886 << "0x" << format(Fmt
.data(), Address
) << "\n";
2889 static void printArchiveChild(StringRef Filename
, const Archive::Child
&C
) {
2890 Expected
<sys::fs::perms
> ModeOrErr
= C
.getAccessMode();
2892 WithColor::error(errs(), ToolName
) << "ill-formed archive entry.\n";
2893 consumeError(ModeOrErr
.takeError());
2896 sys::fs::perms Mode
= ModeOrErr
.get();
2897 outs() << ((Mode
& sys::fs::owner_read
) ? "r" : "-");
2898 outs() << ((Mode
& sys::fs::owner_write
) ? "w" : "-");
2899 outs() << ((Mode
& sys::fs::owner_exe
) ? "x" : "-");
2900 outs() << ((Mode
& sys::fs::group_read
) ? "r" : "-");
2901 outs() << ((Mode
& sys::fs::group_write
) ? "w" : "-");
2902 outs() << ((Mode
& sys::fs::group_exe
) ? "x" : "-");
2903 outs() << ((Mode
& sys::fs::others_read
) ? "r" : "-");
2904 outs() << ((Mode
& sys::fs::others_write
) ? "w" : "-");
2905 outs() << ((Mode
& sys::fs::others_exe
) ? "x" : "-");
2909 outs() << format("%d/%d %6" PRId64
" ", unwrapOrError(C
.getUID(), Filename
),
2910 unwrapOrError(C
.getGID(), Filename
),
2911 unwrapOrError(C
.getRawSize(), Filename
));
2913 StringRef RawLastModified
= C
.getRawLastModified();
2915 if (RawLastModified
.getAsInteger(10, Seconds
))
2916 outs() << "(date: \"" << RawLastModified
2917 << "\" contains non-decimal chars) ";
2919 // Since ctime(3) returns a 26 character string of the form:
2920 // "Sun Sep 16 01:03:52 1973\n\0"
2921 // just print 24 characters.
2923 outs() << format("%.24s ", ctime(&t
));
2926 StringRef Name
= "";
2927 Expected
<StringRef
> NameOrErr
= C
.getName();
2929 consumeError(NameOrErr
.takeError());
2930 Name
= unwrapOrError(C
.getRawName(), Filename
);
2932 Name
= NameOrErr
.get();
2934 outs() << Name
<< "\n";
2937 // For ELF only now.
2938 static bool shouldWarnForInvalidStartStopAddress(ObjectFile
*Obj
) {
2939 if (const auto *Elf
= dyn_cast
<ELFObjectFileBase
>(Obj
)) {
2940 if (Elf
->getEType() != ELF::ET_REL
)
2946 static void checkForInvalidStartStopAddress(ObjectFile
*Obj
,
2947 uint64_t Start
, uint64_t Stop
) {
2948 if (!shouldWarnForInvalidStartStopAddress(Obj
))
2951 for (const SectionRef
&Section
: Obj
->sections())
2952 if (ELFSectionRef(Section
).getFlags() & ELF::SHF_ALLOC
) {
2953 uint64_t BaseAddr
= Section
.getAddress();
2954 uint64_t Size
= Section
.getSize();
2955 if ((Start
< BaseAddr
+ Size
) && Stop
> BaseAddr
)
2959 if (!HasStartAddressFlag
)
2960 reportWarning("no section has address less than 0x" +
2961 Twine::utohexstr(Stop
) + " specified by --stop-address",
2962 Obj
->getFileName());
2963 else if (!HasStopAddressFlag
)
2964 reportWarning("no section has address greater than or equal to 0x" +
2965 Twine::utohexstr(Start
) + " specified by --start-address",
2966 Obj
->getFileName());
2968 reportWarning("no section overlaps the range [0x" +
2969 Twine::utohexstr(Start
) + ",0x" + Twine::utohexstr(Stop
) +
2970 ") specified by --start-address/--stop-address",
2971 Obj
->getFileName());
2974 static void dumpObject(ObjectFile
*O
, const Archive
*A
= nullptr,
2975 const Archive::Child
*C
= nullptr) {
2976 Expected
<std::unique_ptr
<Dumper
>> DumperOrErr
= createDumper(*O
);
2978 reportError(DumperOrErr
.takeError(), O
->getFileName(),
2979 A
? A
->getFileName() : "");
2982 Dumper
&D
= **DumperOrErr
;
2984 // Avoid other output when using a raw option.
2988 outs() << A
->getFileName() << "(" << O
->getFileName() << ")";
2990 outs() << O
->getFileName();
2991 outs() << ":\tfile format " << O
->getFileFormatName().lower() << "\n";
2994 if (HasStartAddressFlag
|| HasStopAddressFlag
)
2995 checkForInvalidStartStopAddress(O
, StartAddress
, StopAddress
);
2997 // TODO: Change print* free functions to Dumper member functions to utilitize
2998 // stateful functions like reportUniqueWarning.
3000 // Note: the order here matches GNU objdump for compatability.
3001 StringRef ArchiveName
= A
? A
->getFileName() : "";
3002 if (ArchiveHeaders
&& !MachOOpt
&& C
)
3003 printArchiveChild(ArchiveName
, *C
);
3005 printFileHeaders(O
);
3006 if (PrivateHeaders
|| FirstPrivateHeader
)
3007 D
.printPrivateHeaders();
3009 printSectionHeaders(*O
);
3011 D
.printSymbolTable(ArchiveName
);
3012 if (DynamicSymbolTable
)
3013 D
.printSymbolTable(ArchiveName
, /*ArchitectureName=*/"",
3014 /*DumpDynamic=*/true);
3015 if (DwarfDumpType
!= DIDT_Null
) {
3016 std::unique_ptr
<DIContext
> DICtx
= DWARFContext::create(*O
);
3017 // Dump the complete DWARF structure.
3018 DIDumpOptions DumpOpts
;
3019 DumpOpts
.DumpType
= DwarfDumpType
;
3020 DICtx
->dump(outs(), DumpOpts
);
3022 if (Relocations
&& !Disassemble
)
3023 D
.printRelocations();
3024 if (DynamicRelocations
)
3025 D
.printDynamicRelocations();
3026 if (SectionContents
)
3027 printSectionContents(O
);
3029 disassembleObject(O
, Relocations
);
3033 // Mach-O specific options:
3035 printExportsTrie(O
);
3037 printRebaseTable(O
);
3041 printLazyBindTable(O
);
3043 printWeakBindTable(O
);
3045 // Other special sections:
3047 printRawClangAST(O
);
3048 if (FaultMapSection
)
3051 dumpOffloadBinary(*O
);
3054 static void dumpObject(const COFFImportFile
*I
, const Archive
*A
,
3055 const Archive::Child
*C
= nullptr) {
3056 StringRef ArchiveName
= A
? A
->getFileName() : "";
3058 // Avoid other output when using a raw option.
3061 << ArchiveName
<< "(" << I
->getFileName() << ")"
3062 << ":\tfile format COFF-import-file"
3065 if (ArchiveHeaders
&& !MachOOpt
&& C
)
3066 printArchiveChild(ArchiveName
, *C
);
3068 printCOFFSymbolTable(*I
);
3071 /// Dump each object file in \a a;
3072 static void dumpArchive(const Archive
*A
) {
3073 Error Err
= Error::success();
3075 for (auto &C
: A
->children(Err
)) {
3077 Expected
<std::unique_ptr
<Binary
>> ChildOrErr
= C
.getAsBinary();
3079 if (auto E
= isNotObjectErrorInvalidFileType(ChildOrErr
.takeError()))
3080 reportError(std::move(E
), getFileNameForError(C
, I
), A
->getFileName());
3083 if (ObjectFile
*O
= dyn_cast
<ObjectFile
>(&*ChildOrErr
.get()))
3084 dumpObject(O
, A
, &C
);
3085 else if (COFFImportFile
*I
= dyn_cast
<COFFImportFile
>(&*ChildOrErr
.get()))
3086 dumpObject(I
, A
, &C
);
3088 reportError(errorCodeToError(object_error::invalid_file_type
),
3092 reportError(std::move(Err
), A
->getFileName());
3095 /// Open file and figure out how to dump it.
3096 static void dumpInput(StringRef file
) {
3097 // If we are using the Mach-O specific object file parser, then let it parse
3098 // the file and process the command line options. So the -arch flags can
3099 // be used to select specific slices, etc.
3101 parseInputMachO(file
);
3105 // Attempt to open the binary.
3106 OwningBinary
<Binary
> OBinary
= unwrapOrError(createBinary(file
), file
);
3107 Binary
&Binary
= *OBinary
.getBinary();
3109 if (Archive
*A
= dyn_cast
<Archive
>(&Binary
))
3111 else if (ObjectFile
*O
= dyn_cast
<ObjectFile
>(&Binary
))
3113 else if (MachOUniversalBinary
*UB
= dyn_cast
<MachOUniversalBinary
>(&Binary
))
3114 parseInputMachO(UB
);
3115 else if (OffloadBinary
*OB
= dyn_cast
<OffloadBinary
>(&Binary
))
3116 dumpOffloadSections(*OB
);
3118 reportError(errorCodeToError(object_error::invalid_file_type
), file
);
3121 template <typename T
>
3122 static void parseIntArg(const llvm::opt::InputArgList
&InputArgs
, int ID
,
3124 if (const opt::Arg
*A
= InputArgs
.getLastArg(ID
)) {
3125 StringRef
V(A
->getValue());
3126 if (!llvm::to_integer(V
, Value
, 0)) {
3127 reportCmdLineError(A
->getSpelling() +
3128 ": expected a non-negative integer, but got '" + V
+
3134 static object::BuildID
parseBuildIDArg(const opt::Arg
*A
) {
3135 StringRef
V(A
->getValue());
3136 object::BuildID BID
= parseBuildID(V
);
3138 reportCmdLineError(A
->getSpelling() + ": expected a build ID, but got '" +
3143 void objdump::invalidArgValue(const opt::Arg
*A
) {
3144 reportCmdLineError("'" + StringRef(A
->getValue()) +
3145 "' is not a valid value for '" + A
->getSpelling() + "'");
3148 static std::vector
<std::string
>
3149 commaSeparatedValues(const llvm::opt::InputArgList
&InputArgs
, int ID
) {
3150 std::vector
<std::string
> Values
;
3151 for (StringRef Value
: InputArgs
.getAllArgValues(ID
)) {
3152 llvm::SmallVector
<StringRef
, 2> SplitValues
;
3153 llvm::SplitString(Value
, SplitValues
, ",");
3154 for (StringRef SplitValue
: SplitValues
)
3155 Values
.push_back(SplitValue
.str());
3160 static void parseOtoolOptions(const llvm::opt::InputArgList
&InputArgs
) {
3162 FullLeadingAddr
= true;
3165 ArchName
= InputArgs
.getLastArgValue(OTOOL_arch
).str();
3166 LinkOptHints
= InputArgs
.hasArg(OTOOL_C
);
3167 if (InputArgs
.hasArg(OTOOL_d
))
3168 FilterSections
.push_back("__DATA,__data");
3169 DylibId
= InputArgs
.hasArg(OTOOL_D
);
3170 UniversalHeaders
= InputArgs
.hasArg(OTOOL_f
);
3171 DataInCode
= InputArgs
.hasArg(OTOOL_G
);
3172 FirstPrivateHeader
= InputArgs
.hasArg(OTOOL_h
);
3173 IndirectSymbols
= InputArgs
.hasArg(OTOOL_I
);
3174 ShowRawInsn
= InputArgs
.hasArg(OTOOL_j
);
3175 PrivateHeaders
= InputArgs
.hasArg(OTOOL_l
);
3176 DylibsUsed
= InputArgs
.hasArg(OTOOL_L
);
3177 MCPU
= InputArgs
.getLastArgValue(OTOOL_mcpu_EQ
).str();
3178 ObjcMetaData
= InputArgs
.hasArg(OTOOL_o
);
3179 DisSymName
= InputArgs
.getLastArgValue(OTOOL_p
).str();
3180 InfoPlist
= InputArgs
.hasArg(OTOOL_P
);
3181 Relocations
= InputArgs
.hasArg(OTOOL_r
);
3182 if (const Arg
*A
= InputArgs
.getLastArg(OTOOL_s
)) {
3183 auto Filter
= (A
->getValue(0) + StringRef(",") + A
->getValue(1)).str();
3184 FilterSections
.push_back(Filter
);
3186 if (InputArgs
.hasArg(OTOOL_t
))
3187 FilterSections
.push_back("__TEXT,__text");
3188 Verbose
= InputArgs
.hasArg(OTOOL_v
) || InputArgs
.hasArg(OTOOL_V
) ||
3189 InputArgs
.hasArg(OTOOL_o
);
3190 SymbolicOperands
= InputArgs
.hasArg(OTOOL_V
);
3191 if (InputArgs
.hasArg(OTOOL_x
))
3192 FilterSections
.push_back(",__text");
3193 LeadingAddr
= LeadingHeaders
= !InputArgs
.hasArg(OTOOL_X
);
3195 ChainedFixups
= InputArgs
.hasArg(OTOOL_chained_fixups
);
3196 DyldInfo
= InputArgs
.hasArg(OTOOL_dyld_info
);
3198 InputFilenames
= InputArgs
.getAllArgValues(OTOOL_INPUT
);
3199 if (InputFilenames
.empty())
3200 reportCmdLineError("no input file");
3202 for (const Arg
*A
: InputArgs
) {
3203 const Option
&O
= A
->getOption();
3204 if (O
.getGroup().isValid() && O
.getGroup().getID() == OTOOL_grp_obsolete
) {
3205 reportCmdLineWarning(O
.getPrefixedName() +
3206 " is obsolete and not implemented");
3211 static void parseObjdumpOptions(const llvm::opt::InputArgList
&InputArgs
) {
3212 parseIntArg(InputArgs
, OBJDUMP_adjust_vma_EQ
, AdjustVMA
);
3213 AllHeaders
= InputArgs
.hasArg(OBJDUMP_all_headers
);
3214 ArchName
= InputArgs
.getLastArgValue(OBJDUMP_arch_name_EQ
).str();
3215 ArchiveHeaders
= InputArgs
.hasArg(OBJDUMP_archive_headers
);
3216 Demangle
= InputArgs
.hasArg(OBJDUMP_demangle
);
3217 Disassemble
= InputArgs
.hasArg(OBJDUMP_disassemble
);
3218 DisassembleAll
= InputArgs
.hasArg(OBJDUMP_disassemble_all
);
3219 SymbolDescription
= InputArgs
.hasArg(OBJDUMP_symbol_description
);
3220 TracebackTable
= InputArgs
.hasArg(OBJDUMP_traceback_table
);
3221 DisassembleSymbols
=
3222 commaSeparatedValues(InputArgs
, OBJDUMP_disassemble_symbols_EQ
);
3223 DisassembleZeroes
= InputArgs
.hasArg(OBJDUMP_disassemble_zeroes
);
3224 if (const opt::Arg
*A
= InputArgs
.getLastArg(OBJDUMP_dwarf_EQ
)) {
3225 DwarfDumpType
= StringSwitch
<DIDumpType
>(A
->getValue())
3226 .Case("frames", DIDT_DebugFrame
)
3227 .Default(DIDT_Null
);
3228 if (DwarfDumpType
== DIDT_Null
)
3231 DynamicRelocations
= InputArgs
.hasArg(OBJDUMP_dynamic_reloc
);
3232 FaultMapSection
= InputArgs
.hasArg(OBJDUMP_fault_map_section
);
3233 Offloading
= InputArgs
.hasArg(OBJDUMP_offloading
);
3234 FileHeaders
= InputArgs
.hasArg(OBJDUMP_file_headers
);
3235 SectionContents
= InputArgs
.hasArg(OBJDUMP_full_contents
);
3236 PrintLines
= InputArgs
.hasArg(OBJDUMP_line_numbers
);
3237 InputFilenames
= InputArgs
.getAllArgValues(OBJDUMP_INPUT
);
3238 MachOOpt
= InputArgs
.hasArg(OBJDUMP_macho
);
3239 MCPU
= InputArgs
.getLastArgValue(OBJDUMP_mcpu_EQ
).str();
3240 MAttrs
= commaSeparatedValues(InputArgs
, OBJDUMP_mattr_EQ
);
3241 ShowRawInsn
= !InputArgs
.hasArg(OBJDUMP_no_show_raw_insn
);
3242 LeadingAddr
= !InputArgs
.hasArg(OBJDUMP_no_leading_addr
);
3243 RawClangAST
= InputArgs
.hasArg(OBJDUMP_raw_clang_ast
);
3244 Relocations
= InputArgs
.hasArg(OBJDUMP_reloc
);
3246 InputArgs
.hasFlag(OBJDUMP_print_imm_hex
, OBJDUMP_no_print_imm_hex
, true);
3247 PrivateHeaders
= InputArgs
.hasArg(OBJDUMP_private_headers
);
3248 FilterSections
= InputArgs
.getAllArgValues(OBJDUMP_section_EQ
);
3249 SectionHeaders
= InputArgs
.hasArg(OBJDUMP_section_headers
);
3250 ShowAllSymbols
= InputArgs
.hasArg(OBJDUMP_show_all_symbols
);
3251 ShowLMA
= InputArgs
.hasArg(OBJDUMP_show_lma
);
3252 PrintSource
= InputArgs
.hasArg(OBJDUMP_source
);
3253 parseIntArg(InputArgs
, OBJDUMP_start_address_EQ
, StartAddress
);
3254 HasStartAddressFlag
= InputArgs
.hasArg(OBJDUMP_start_address_EQ
);
3255 parseIntArg(InputArgs
, OBJDUMP_stop_address_EQ
, StopAddress
);
3256 HasStopAddressFlag
= InputArgs
.hasArg(OBJDUMP_stop_address_EQ
);
3257 SymbolTable
= InputArgs
.hasArg(OBJDUMP_syms
);
3258 SymbolizeOperands
= InputArgs
.hasArg(OBJDUMP_symbolize_operands
);
3259 DynamicSymbolTable
= InputArgs
.hasArg(OBJDUMP_dynamic_syms
);
3260 TripleName
= InputArgs
.getLastArgValue(OBJDUMP_triple_EQ
).str();
3261 UnwindInfo
= InputArgs
.hasArg(OBJDUMP_unwind_info
);
3262 Wide
= InputArgs
.hasArg(OBJDUMP_wide
);
3263 Prefix
= InputArgs
.getLastArgValue(OBJDUMP_prefix
).str();
3264 parseIntArg(InputArgs
, OBJDUMP_prefix_strip
, PrefixStrip
);
3265 if (const opt::Arg
*A
= InputArgs
.getLastArg(OBJDUMP_debug_vars_EQ
)) {
3266 DbgVariables
= StringSwitch
<DebugVarsFormat
>(A
->getValue())
3267 .Case("ascii", DVASCII
)
3268 .Case("unicode", DVUnicode
)
3269 .Default(DVInvalid
);
3270 if (DbgVariables
== DVInvalid
)
3273 if (const opt::Arg
*A
= InputArgs
.getLastArg(OBJDUMP_disassembler_color_EQ
)) {
3274 DisassemblyColor
= StringSwitch
<ColorOutput
>(A
->getValue())
3275 .Case("on", ColorOutput::Enable
)
3276 .Case("off", ColorOutput::Disable
)
3277 .Case("terminal", ColorOutput::Auto
)
3278 .Default(ColorOutput::Invalid
);
3279 if (DisassemblyColor
== ColorOutput::Invalid
)
3283 parseIntArg(InputArgs
, OBJDUMP_debug_vars_indent_EQ
, DbgIndent
);
3285 parseMachOOptions(InputArgs
);
3287 // Parse -M (--disassembler-options) and deprecated
3288 // --x86-asm-syntax={att,intel}.
3290 // Note, for x86, the asm dialect (AssemblerDialect) is initialized when the
3291 // MCAsmInfo is constructed. MCInstPrinter::applyTargetSpecificCLOption is
3292 // called too late. For now we have to use the internal cl::opt option.
3293 const char *AsmSyntax
= nullptr;
3294 for (const auto *A
: InputArgs
.filtered(OBJDUMP_disassembler_options_EQ
,
3295 OBJDUMP_x86_asm_syntax_att
,
3296 OBJDUMP_x86_asm_syntax_intel
)) {
3297 switch (A
->getOption().getID()) {
3298 case OBJDUMP_x86_asm_syntax_att
:
3299 AsmSyntax
= "--x86-asm-syntax=att";
3301 case OBJDUMP_x86_asm_syntax_intel
:
3302 AsmSyntax
= "--x86-asm-syntax=intel";
3306 SmallVector
<StringRef
, 2> Values
;
3307 llvm::SplitString(A
->getValue(), Values
, ",");
3308 for (StringRef V
: Values
) {
3310 AsmSyntax
= "--x86-asm-syntax=att";
3311 else if (V
== "intel")
3312 AsmSyntax
= "--x86-asm-syntax=intel";
3314 DisassemblerOptions
.push_back(V
.str());
3318 const char *Argv
[] = {"llvm-objdump", AsmSyntax
};
3319 llvm::cl::ParseCommandLineOptions(2, Argv
);
3322 // Look up any provided build IDs, then append them to the input filenames.
3323 for (const opt::Arg
*A
: InputArgs
.filtered(OBJDUMP_build_id
)) {
3324 object::BuildID BuildID
= parseBuildIDArg(A
);
3325 std::optional
<std::string
> Path
= BIDFetcher
->fetch(BuildID
);
3327 reportCmdLineError(A
->getSpelling() + ": could not find build ID '" +
3328 A
->getValue() + "'");
3330 InputFilenames
.push_back(std::move(*Path
));
3333 // objdump defaults to a.out if no filenames specified.
3334 if (InputFilenames
.empty())
3335 InputFilenames
.push_back("a.out");
3338 int llvm_objdump_main(int argc
, char **argv
, const llvm::ToolContext
&) {
3339 using namespace llvm
;
3340 InitLLVM
X(argc
, argv
);
3343 std::unique_ptr
<CommonOptTable
> T
;
3344 OptSpecifier Unknown
, HelpFlag
, HelpHiddenFlag
, VersionFlag
;
3346 StringRef Stem
= sys::path::stem(ToolName
);
3347 auto Is
= [=](StringRef Tool
) {
3348 // We need to recognize the following filenames:
3350 // llvm-objdump -> objdump
3351 // llvm-otool-10.exe -> otool
3352 // powerpc64-unknown-freebsd13-objdump -> objdump
3353 auto I
= Stem
.rfind_insensitive(Tool
);
3354 return I
!= StringRef::npos
&&
3355 (I
+ Tool
.size() == Stem
.size() || !isAlnum(Stem
[I
+ Tool
.size()]));
3358 T
= std::make_unique
<OtoolOptTable
>();
3359 Unknown
= OTOOL_UNKNOWN
;
3360 HelpFlag
= OTOOL_help
;
3361 HelpHiddenFlag
= OTOOL_help_hidden
;
3362 VersionFlag
= OTOOL_version
;
3364 T
= std::make_unique
<ObjdumpOptTable
>();
3365 Unknown
= OBJDUMP_UNKNOWN
;
3366 HelpFlag
= OBJDUMP_help
;
3367 HelpHiddenFlag
= OBJDUMP_help_hidden
;
3368 VersionFlag
= OBJDUMP_version
;
3372 StringSaver
Saver(A
);
3373 opt::InputArgList InputArgs
=
3374 T
->parseArgs(argc
, argv
, Unknown
, Saver
,
3375 [&](StringRef Msg
) { reportCmdLineError(Msg
); });
3377 if (InputArgs
.size() == 0 || InputArgs
.hasArg(HelpFlag
)) {
3378 T
->printHelp(ToolName
);
3381 if (InputArgs
.hasArg(HelpHiddenFlag
)) {
3382 T
->printHelp(ToolName
, /*ShowHidden=*/true);
3386 // Initialize targets and assembly printers/parsers.
3387 InitializeAllTargetInfos();
3388 InitializeAllTargetMCs();
3389 InitializeAllDisassemblers();
3391 if (InputArgs
.hasArg(VersionFlag
)) {
3392 cl::PrintVersionMessage();
3395 TargetRegistry::printRegisteredTargetsForVersion(outs());
3400 // Initialize debuginfod.
3401 const bool ShouldUseDebuginfodByDefault
=
3402 InputArgs
.hasArg(OBJDUMP_build_id
) || canUseDebuginfod();
3403 std::vector
<std::string
> DebugFileDirectories
=
3404 InputArgs
.getAllArgValues(OBJDUMP_debug_file_directory
);
3405 if (InputArgs
.hasFlag(OBJDUMP_debuginfod
, OBJDUMP_no_debuginfod
,
3406 ShouldUseDebuginfodByDefault
)) {
3407 HTTPClient::initialize();
3409 std::make_unique
<DebuginfodFetcher
>(std::move(DebugFileDirectories
));
3412 std::make_unique
<BuildIDFetcher
>(std::move(DebugFileDirectories
));
3416 parseOtoolOptions(InputArgs
);
3418 parseObjdumpOptions(InputArgs
);
3420 if (StartAddress
>= StopAddress
)
3421 reportCmdLineError("start address should be less than stop address");
3423 // Removes trailing separators from prefix.
3424 while (!Prefix
.empty() && sys::path::is_separator(Prefix
.back()))
3428 ArchiveHeaders
= FileHeaders
= PrivateHeaders
= Relocations
=
3429 SectionHeaders
= SymbolTable
= true;
3431 if (DisassembleAll
|| PrintSource
|| PrintLines
|| TracebackTable
||
3432 !DisassembleSymbols
.empty())
3435 if (!ArchiveHeaders
&& !Disassemble
&& DwarfDumpType
== DIDT_Null
&&
3436 !DynamicRelocations
&& !FileHeaders
&& !PrivateHeaders
&& !RawClangAST
&&
3437 !Relocations
&& !SectionHeaders
&& !SectionContents
&& !SymbolTable
&&
3438 !DynamicSymbolTable
&& !UnwindInfo
&& !FaultMapSection
&& !Offloading
&&
3440 (Bind
|| DataInCode
|| ChainedFixups
|| DyldInfo
|| DylibId
||
3441 DylibsUsed
|| ExportsTrie
|| FirstPrivateHeader
||
3442 FunctionStartsType
!= FunctionStartsMode::None
|| IndirectSymbols
||
3443 InfoPlist
|| LazyBind
|| LinkOptHints
|| ObjcMetaData
|| Rebase
||
3444 Rpaths
|| UniversalHeaders
|| WeakBind
|| !FilterSections
.empty()))) {
3445 T
->printHelp(ToolName
);
3449 DisasmSymbolSet
.insert(DisassembleSymbols
.begin(), DisassembleSymbols
.end());
3451 llvm::for_each(InputFilenames
, dumpInput
);
3453 warnOnNoMatchForSections();
3455 return EXIT_SUCCESS
;