Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / tools / llvm-readobj / ELFDumper.cpp
blob658c651add3b922ee71c2a7a3ba10c2cc07c5437
1 //===- ELFDumper.cpp - ELF-specific dumper --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// This file implements the ELF-specific dumper for llvm-readobj.
11 ///
12 //===----------------------------------------------------------------------===//
14 #include "ARMEHABIPrinter.h"
15 #include "DwarfCFIEHPrinter.h"
16 #include "ObjDumper.h"
17 #include "StackMapPrinter.h"
18 #include "llvm-readobj.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/PointerIntPair.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/ADT/SmallString.h"
27 #include "llvm/ADT/SmallVector.h"
28 #include "llvm/ADT/StringExtras.h"
29 #include "llvm/ADT/StringRef.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/BinaryFormat/AMDGPUMetadataVerifier.h"
32 #include "llvm/BinaryFormat/ELF.h"
33 #include "llvm/BinaryFormat/MsgPackDocument.h"
34 #include "llvm/Demangle/Demangle.h"
35 #include "llvm/Object/Archive.h"
36 #include "llvm/Object/ELF.h"
37 #include "llvm/Object/ELFObjectFile.h"
38 #include "llvm/Object/ELFTypes.h"
39 #include "llvm/Object/Error.h"
40 #include "llvm/Object/ObjectFile.h"
41 #include "llvm/Object/RelocationResolver.h"
42 #include "llvm/Object/StackMapParser.h"
43 #include "llvm/Support/AMDGPUMetadata.h"
44 #include "llvm/Support/ARMAttributeParser.h"
45 #include "llvm/Support/ARMBuildAttributes.h"
46 #include "llvm/Support/Casting.h"
47 #include "llvm/Support/Compiler.h"
48 #include "llvm/Support/Endian.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include "llvm/Support/Format.h"
51 #include "llvm/Support/FormatVariadic.h"
52 #include "llvm/Support/FormattedStream.h"
53 #include "llvm/Support/LEB128.h"
54 #include "llvm/Support/MSP430AttributeParser.h"
55 #include "llvm/Support/MSP430Attributes.h"
56 #include "llvm/Support/MathExtras.h"
57 #include "llvm/Support/MipsABIFlags.h"
58 #include "llvm/Support/RISCVAttributeParser.h"
59 #include "llvm/Support/RISCVAttributes.h"
60 #include "llvm/Support/ScopedPrinter.h"
61 #include "llvm/Support/raw_ostream.h"
62 #include <algorithm>
63 #include <cinttypes>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstdlib>
67 #include <iterator>
68 #include <memory>
69 #include <optional>
70 #include <string>
71 #include <system_error>
72 #include <vector>
74 using namespace llvm;
75 using namespace llvm::object;
76 using namespace ELF;
78 #define LLVM_READOBJ_ENUM_CASE(ns, enum) \
79 case ns::enum: \
80 return #enum;
82 #define ENUM_ENT(enum, altName) \
83 { #enum, altName, ELF::enum }
85 #define ENUM_ENT_1(enum) \
86 { #enum, #enum, ELF::enum }
88 namespace {
90 template <class ELFT> struct RelSymbol {
91 RelSymbol(const typename ELFT::Sym *S, StringRef N)
92 : Sym(S), Name(N.str()) {}
93 const typename ELFT::Sym *Sym;
94 std::string Name;
97 /// Represents a contiguous uniform range in the file. We cannot just create a
98 /// range directly because when creating one of these from the .dynamic table
99 /// the size, entity size and virtual address are different entries in arbitrary
100 /// order (DT_REL, DT_RELSZ, DT_RELENT for example).
101 struct DynRegionInfo {
102 DynRegionInfo(const Binary &Owner, const ObjDumper &D)
103 : Obj(&Owner), Dumper(&D) {}
104 DynRegionInfo(const Binary &Owner, const ObjDumper &D, const uint8_t *A,
105 uint64_t S, uint64_t ES)
106 : Addr(A), Size(S), EntSize(ES), Obj(&Owner), Dumper(&D) {}
108 /// Address in current address space.
109 const uint8_t *Addr = nullptr;
110 /// Size in bytes of the region.
111 uint64_t Size = 0;
112 /// Size of each entity in the region.
113 uint64_t EntSize = 0;
115 /// Owner object. Used for error reporting.
116 const Binary *Obj;
117 /// Dumper used for error reporting.
118 const ObjDumper *Dumper;
119 /// Error prefix. Used for error reporting to provide more information.
120 std::string Context;
121 /// Region size name. Used for error reporting.
122 StringRef SizePrintName = "size";
123 /// Entry size name. Used for error reporting. If this field is empty, errors
124 /// will not mention the entry size.
125 StringRef EntSizePrintName = "entry size";
127 template <typename Type> ArrayRef<Type> getAsArrayRef() const {
128 const Type *Start = reinterpret_cast<const Type *>(Addr);
129 if (!Start)
130 return {Start, Start};
132 const uint64_t Offset =
133 Addr - (const uint8_t *)Obj->getMemoryBufferRef().getBufferStart();
134 const uint64_t ObjSize = Obj->getMemoryBufferRef().getBufferSize();
136 if (Size > ObjSize - Offset) {
137 Dumper->reportUniqueWarning(
138 "unable to read data at 0x" + Twine::utohexstr(Offset) +
139 " of size 0x" + Twine::utohexstr(Size) + " (" + SizePrintName +
140 "): it goes past the end of the file of size 0x" +
141 Twine::utohexstr(ObjSize));
142 return {Start, Start};
145 if (EntSize == sizeof(Type) && (Size % EntSize == 0))
146 return {Start, Start + (Size / EntSize)};
148 std::string Msg;
149 if (!Context.empty())
150 Msg += Context + " has ";
152 Msg += ("invalid " + SizePrintName + " (0x" + Twine::utohexstr(Size) + ")")
153 .str();
154 if (!EntSizePrintName.empty())
155 Msg +=
156 (" or " + EntSizePrintName + " (0x" + Twine::utohexstr(EntSize) + ")")
157 .str();
159 Dumper->reportUniqueWarning(Msg);
160 return {Start, Start};
164 struct GroupMember {
165 StringRef Name;
166 uint64_t Index;
169 struct GroupSection {
170 StringRef Name;
171 std::string Signature;
172 uint64_t ShName;
173 uint64_t Index;
174 uint32_t Link;
175 uint32_t Info;
176 uint32_t Type;
177 std::vector<GroupMember> Members;
180 namespace {
182 struct NoteType {
183 uint32_t ID;
184 StringRef Name;
187 } // namespace
189 template <class ELFT> class Relocation {
190 public:
191 Relocation(const typename ELFT::Rel &R, bool IsMips64EL)
192 : Type(R.getType(IsMips64EL)), Symbol(R.getSymbol(IsMips64EL)),
193 Offset(R.r_offset), Info(R.r_info) {}
195 Relocation(const typename ELFT::Rela &R, bool IsMips64EL)
196 : Relocation((const typename ELFT::Rel &)R, IsMips64EL) {
197 Addend = R.r_addend;
200 uint32_t Type;
201 uint32_t Symbol;
202 typename ELFT::uint Offset;
203 typename ELFT::uint Info;
204 std::optional<int64_t> Addend;
207 template <class ELFT> class MipsGOTParser;
209 template <typename ELFT> class ELFDumper : public ObjDumper {
210 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
212 public:
213 ELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer);
215 void printUnwindInfo() override;
216 void printNeededLibraries() override;
217 void printHashTable() override;
218 void printGnuHashTable() override;
219 void printLoadName() override;
220 void printVersionInfo() override;
221 void printArchSpecificInfo() override;
222 void printStackMap() const override;
223 void printMemtag() override;
224 ArrayRef<uint8_t> getMemtagGlobalsSectionContents(uint64_t ExpectedAddr);
226 // Hash histogram shows statistics of how efficient the hash was for the
227 // dynamic symbol table. The table shows the number of hash buckets for
228 // different lengths of chains as an absolute number and percentage of the
229 // total buckets, and the cumulative coverage of symbols for each set of
230 // buckets.
231 void printHashHistograms() override;
233 const object::ELFObjectFile<ELFT> &getElfObject() const { return ObjF; };
235 std::string describe(const Elf_Shdr &Sec) const;
237 unsigned getHashTableEntSize() const {
238 // EM_S390 and ELF::EM_ALPHA platforms use 8-bytes entries in SHT_HASH
239 // sections. This violates the ELF specification.
240 if (Obj.getHeader().e_machine == ELF::EM_S390 ||
241 Obj.getHeader().e_machine == ELF::EM_ALPHA)
242 return 8;
243 return 4;
246 std::vector<EnumEntry<unsigned>>
247 getOtherFlagsFromSymbol(const Elf_Ehdr &Header, const Elf_Sym &Symbol) const;
249 Elf_Dyn_Range dynamic_table() const {
250 // A valid .dynamic section contains an array of entries terminated
251 // with a DT_NULL entry. However, sometimes the section content may
252 // continue past the DT_NULL entry, so to dump the section correctly,
253 // we first find the end of the entries by iterating over them.
254 Elf_Dyn_Range Table = DynamicTable.template getAsArrayRef<Elf_Dyn>();
256 size_t Size = 0;
257 while (Size < Table.size())
258 if (Table[Size++].getTag() == DT_NULL)
259 break;
261 return Table.slice(0, Size);
264 Elf_Sym_Range dynamic_symbols() const {
265 if (!DynSymRegion)
266 return Elf_Sym_Range();
267 return DynSymRegion->template getAsArrayRef<Elf_Sym>();
270 const Elf_Shdr *findSectionByName(StringRef Name) const;
272 StringRef getDynamicStringTable() const { return DynamicStringTable; }
274 protected:
275 virtual void printVersionSymbolSection(const Elf_Shdr *Sec) = 0;
276 virtual void printVersionDefinitionSection(const Elf_Shdr *Sec) = 0;
277 virtual void printVersionDependencySection(const Elf_Shdr *Sec) = 0;
279 void
280 printDependentLibsHelper(function_ref<void(const Elf_Shdr &)> OnSectionStart,
281 function_ref<void(StringRef, uint64_t)> OnLibEntry);
283 virtual void printRelRelaReloc(const Relocation<ELFT> &R,
284 const RelSymbol<ELFT> &RelSym) = 0;
285 virtual void printRelrReloc(const Elf_Relr &R) = 0;
286 virtual void printDynamicRelocHeader(unsigned Type, StringRef Name,
287 const DynRegionInfo &Reg) {}
288 void printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
289 const Elf_Shdr &Sec, const Elf_Shdr *SymTab);
290 void printDynamicReloc(const Relocation<ELFT> &R);
291 void printDynamicRelocationsHelper();
292 void printRelocationsHelper(const Elf_Shdr &Sec);
293 void forEachRelocationDo(
294 const Elf_Shdr &Sec, bool RawRelr,
295 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
296 const Elf_Shdr &, const Elf_Shdr *)>
297 RelRelaFn,
298 llvm::function_ref<void(const Elf_Relr &)> RelrFn);
300 virtual void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
301 bool NonVisibilityBitsUsed,
302 bool ExtraSymInfo) const {};
303 virtual void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
304 DataRegion<Elf_Word> ShndxTable,
305 std::optional<StringRef> StrTable, bool IsDynamic,
306 bool NonVisibilityBitsUsed,
307 bool ExtraSymInfo) const = 0;
309 virtual void printMipsABIFlags() = 0;
310 virtual void printMipsGOT(const MipsGOTParser<ELFT> &Parser) = 0;
311 virtual void printMipsPLT(const MipsGOTParser<ELFT> &Parser) = 0;
313 virtual void printMemtag(
314 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
315 const ArrayRef<uint8_t> AndroidNoteDesc,
316 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) = 0;
318 virtual void printHashHistogram(const Elf_Hash &HashTable) const;
319 virtual void printGnuHashHistogram(const Elf_GnuHash &GnuHashTable) const;
320 virtual void printHashHistogramStats(size_t NBucket, size_t MaxChain,
321 size_t TotalSyms, ArrayRef<size_t> Count,
322 bool IsGnu) const = 0;
324 Expected<ArrayRef<Elf_Versym>>
325 getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
326 StringRef *StrTab, const Elf_Shdr **SymTabSec) const;
327 StringRef getPrintableSectionName(const Elf_Shdr &Sec) const;
329 std::vector<GroupSection> getGroups();
331 // Returns the function symbol index for the given address. Matches the
332 // symbol's section with FunctionSec when specified.
333 // Returns std::nullopt if no function symbol can be found for the address or
334 // in case it is not defined in the specified section.
335 SmallVector<uint32_t> getSymbolIndexesForFunctionAddress(
336 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec);
337 bool printFunctionStackSize(uint64_t SymValue,
338 std::optional<const Elf_Shdr *> FunctionSec,
339 const Elf_Shdr &StackSizeSec, DataExtractor Data,
340 uint64_t *Offset);
341 void printStackSize(const Relocation<ELFT> &R, const Elf_Shdr &RelocSec,
342 unsigned Ndx, const Elf_Shdr *SymTab,
343 const Elf_Shdr *FunctionSec, const Elf_Shdr &StackSizeSec,
344 const RelocationResolver &Resolver, DataExtractor Data);
345 virtual void printStackSizeEntry(uint64_t Size,
346 ArrayRef<std::string> FuncNames) = 0;
348 void printRelocatableStackSizes(std::function<void()> PrintHeader);
349 void printNonRelocatableStackSizes(std::function<void()> PrintHeader);
351 const object::ELFObjectFile<ELFT> &ObjF;
352 const ELFFile<ELFT> &Obj;
353 StringRef FileName;
355 Expected<DynRegionInfo> createDRI(uint64_t Offset, uint64_t Size,
356 uint64_t EntSize) {
357 if (Offset + Size < Offset || Offset + Size > Obj.getBufSize())
358 return createError("offset (0x" + Twine::utohexstr(Offset) +
359 ") + size (0x" + Twine::utohexstr(Size) +
360 ") is greater than the file size (0x" +
361 Twine::utohexstr(Obj.getBufSize()) + ")");
362 return DynRegionInfo(ObjF, *this, Obj.base() + Offset, Size, EntSize);
365 void printAttributes(unsigned, std::unique_ptr<ELFAttributeParser>,
366 llvm::endianness);
367 void printMipsReginfo();
368 void printMipsOptions();
370 std::pair<const Elf_Phdr *, const Elf_Shdr *> findDynamic();
371 void loadDynamicTable();
372 void parseDynamicTable();
374 Expected<StringRef> getSymbolVersion(const Elf_Sym &Sym,
375 bool &IsDefault) const;
376 Expected<SmallVector<std::optional<VersionEntry>, 0> *> getVersionMap() const;
378 DynRegionInfo DynRelRegion;
379 DynRegionInfo DynRelaRegion;
380 DynRegionInfo DynRelrRegion;
381 DynRegionInfo DynPLTRelRegion;
382 std::optional<DynRegionInfo> DynSymRegion;
383 DynRegionInfo DynSymTabShndxRegion;
384 DynRegionInfo DynamicTable;
385 StringRef DynamicStringTable;
386 const Elf_Hash *HashTable = nullptr;
387 const Elf_GnuHash *GnuHashTable = nullptr;
388 const Elf_Shdr *DotSymtabSec = nullptr;
389 const Elf_Shdr *DotDynsymSec = nullptr;
390 const Elf_Shdr *DotAddrsigSec = nullptr;
391 DenseMap<const Elf_Shdr *, ArrayRef<Elf_Word>> ShndxTables;
392 std::optional<uint64_t> SONameOffset;
393 std::optional<DenseMap<uint64_t, std::vector<uint32_t>>> AddressToIndexMap;
395 const Elf_Shdr *SymbolVersionSection = nullptr; // .gnu.version
396 const Elf_Shdr *SymbolVersionNeedSection = nullptr; // .gnu.version_r
397 const Elf_Shdr *SymbolVersionDefSection = nullptr; // .gnu.version_d
399 std::string getFullSymbolName(const Elf_Sym &Symbol, unsigned SymIndex,
400 DataRegion<Elf_Word> ShndxTable,
401 std::optional<StringRef> StrTable,
402 bool IsDynamic) const;
403 Expected<unsigned>
404 getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
405 DataRegion<Elf_Word> ShndxTable) const;
406 Expected<StringRef> getSymbolSectionName(const Elf_Sym &Symbol,
407 unsigned SectionIndex) const;
408 std::string getStaticSymbolName(uint32_t Index) const;
409 StringRef getDynamicString(uint64_t Value) const;
411 void printSymbolsHelper(bool IsDynamic, bool ExtraSymInfo) const;
412 std::string getDynamicEntry(uint64_t Type, uint64_t Value) const;
414 Expected<RelSymbol<ELFT>> getRelocationTarget(const Relocation<ELFT> &R,
415 const Elf_Shdr *SymTab) const;
417 ArrayRef<Elf_Word> getShndxTable(const Elf_Shdr *Symtab) const;
419 private:
420 mutable SmallVector<std::optional<VersionEntry>, 0> VersionMap;
423 template <class ELFT>
424 std::string ELFDumper<ELFT>::describe(const Elf_Shdr &Sec) const {
425 return ::describe(Obj, Sec);
428 namespace {
430 template <class ELFT> struct SymtabLink {
431 typename ELFT::SymRange Symbols;
432 StringRef StringTable;
433 const typename ELFT::Shdr *SymTab;
436 // Returns the linked symbol table, symbols and associated string table for a
437 // given section.
438 template <class ELFT>
439 Expected<SymtabLink<ELFT>> getLinkAsSymtab(const ELFFile<ELFT> &Obj,
440 const typename ELFT::Shdr &Sec,
441 unsigned ExpectedType) {
442 Expected<const typename ELFT::Shdr *> SymtabOrErr =
443 Obj.getSection(Sec.sh_link);
444 if (!SymtabOrErr)
445 return createError("invalid section linked to " + describe(Obj, Sec) +
446 ": " + toString(SymtabOrErr.takeError()));
448 if ((*SymtabOrErr)->sh_type != ExpectedType)
449 return createError(
450 "invalid section linked to " + describe(Obj, Sec) + ": expected " +
451 object::getELFSectionTypeName(Obj.getHeader().e_machine, ExpectedType) +
452 ", but got " +
453 object::getELFSectionTypeName(Obj.getHeader().e_machine,
454 (*SymtabOrErr)->sh_type));
456 Expected<StringRef> StrTabOrErr = Obj.getLinkAsStrtab(**SymtabOrErr);
457 if (!StrTabOrErr)
458 return createError(
459 "can't get a string table for the symbol table linked to " +
460 describe(Obj, Sec) + ": " + toString(StrTabOrErr.takeError()));
462 Expected<typename ELFT::SymRange> SymsOrErr = Obj.symbols(*SymtabOrErr);
463 if (!SymsOrErr)
464 return createError("unable to read symbols from the " + describe(Obj, Sec) +
465 ": " + toString(SymsOrErr.takeError()));
467 return SymtabLink<ELFT>{*SymsOrErr, *StrTabOrErr, *SymtabOrErr};
470 } // namespace
472 template <class ELFT>
473 Expected<ArrayRef<typename ELFT::Versym>>
474 ELFDumper<ELFT>::getVersionTable(const Elf_Shdr &Sec, ArrayRef<Elf_Sym> *SymTab,
475 StringRef *StrTab,
476 const Elf_Shdr **SymTabSec) const {
477 assert((!SymTab && !StrTab && !SymTabSec) || (SymTab && StrTab && SymTabSec));
478 if (reinterpret_cast<uintptr_t>(Obj.base() + Sec.sh_offset) %
479 sizeof(uint16_t) !=
481 return createError("the " + describe(Sec) + " is misaligned");
483 Expected<ArrayRef<Elf_Versym>> VersionsOrErr =
484 Obj.template getSectionContentsAsArray<Elf_Versym>(Sec);
485 if (!VersionsOrErr)
486 return createError("cannot read content of " + describe(Sec) + ": " +
487 toString(VersionsOrErr.takeError()));
489 Expected<SymtabLink<ELFT>> SymTabOrErr =
490 getLinkAsSymtab(Obj, Sec, SHT_DYNSYM);
491 if (!SymTabOrErr) {
492 reportUniqueWarning(SymTabOrErr.takeError());
493 return *VersionsOrErr;
496 if (SymTabOrErr->Symbols.size() != VersionsOrErr->size())
497 reportUniqueWarning(describe(Sec) + ": the number of entries (" +
498 Twine(VersionsOrErr->size()) +
499 ") does not match the number of symbols (" +
500 Twine(SymTabOrErr->Symbols.size()) +
501 ") in the symbol table with index " +
502 Twine(Sec.sh_link));
504 if (SymTab) {
505 *SymTab = SymTabOrErr->Symbols;
506 *StrTab = SymTabOrErr->StringTable;
507 *SymTabSec = SymTabOrErr->SymTab;
509 return *VersionsOrErr;
512 template <class ELFT>
513 void ELFDumper<ELFT>::printSymbolsHelper(bool IsDynamic,
514 bool ExtraSymInfo) const {
515 std::optional<StringRef> StrTable;
516 size_t Entries = 0;
517 Elf_Sym_Range Syms(nullptr, nullptr);
518 const Elf_Shdr *SymtabSec = IsDynamic ? DotDynsymSec : DotSymtabSec;
520 if (IsDynamic) {
521 StrTable = DynamicStringTable;
522 Syms = dynamic_symbols();
523 Entries = Syms.size();
524 } else if (DotSymtabSec) {
525 if (Expected<StringRef> StrTableOrErr =
526 Obj.getStringTableForSymtab(*DotSymtabSec))
527 StrTable = *StrTableOrErr;
528 else
529 reportUniqueWarning(
530 "unable to get the string table for the SHT_SYMTAB section: " +
531 toString(StrTableOrErr.takeError()));
533 if (Expected<Elf_Sym_Range> SymsOrErr = Obj.symbols(DotSymtabSec))
534 Syms = *SymsOrErr;
535 else
536 reportUniqueWarning(
537 "unable to read symbols from the SHT_SYMTAB section: " +
538 toString(SymsOrErr.takeError()));
539 Entries = DotSymtabSec->getEntityCount();
541 if (Syms.empty())
542 return;
544 // The st_other field has 2 logical parts. The first two bits hold the symbol
545 // visibility (STV_*) and the remainder hold other platform-specific values.
546 bool NonVisibilityBitsUsed =
547 llvm::any_of(Syms, [](const Elf_Sym &S) { return S.st_other & ~0x3; });
549 DataRegion<Elf_Word> ShndxTable =
550 IsDynamic ? DataRegion<Elf_Word>(
551 (const Elf_Word *)this->DynSymTabShndxRegion.Addr,
552 this->getElfObject().getELFFile().end())
553 : DataRegion<Elf_Word>(this->getShndxTable(SymtabSec));
555 printSymtabMessage(SymtabSec, Entries, NonVisibilityBitsUsed, ExtraSymInfo);
556 for (const Elf_Sym &Sym : Syms)
557 printSymbol(Sym, &Sym - Syms.begin(), ShndxTable, StrTable, IsDynamic,
558 NonVisibilityBitsUsed, ExtraSymInfo);
561 template <typename ELFT> class GNUELFDumper : public ELFDumper<ELFT> {
562 formatted_raw_ostream &OS;
564 public:
565 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
567 GNUELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
568 : ELFDumper<ELFT>(ObjF, Writer),
569 OS(static_cast<formatted_raw_ostream &>(Writer.getOStream())) {
570 assert(&this->W.getOStream() == &llvm::fouts());
573 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
574 ArrayRef<std::string> InputFilenames,
575 const Archive *A) override;
576 void printFileHeaders() override;
577 void printGroupSections() override;
578 void printRelocations() override;
579 void printSectionHeaders() override;
580 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols,
581 bool ExtraSymInfo) override;
582 void printHashSymbols() override;
583 void printSectionDetails() override;
584 void printDependentLibs() override;
585 void printDynamicTable() override;
586 void printDynamicRelocations() override;
587 void printSymtabMessage(const Elf_Shdr *Symtab, size_t Offset,
588 bool NonVisibilityBitsUsed,
589 bool ExtraSymInfo) const override;
590 void printProgramHeaders(bool PrintProgramHeaders,
591 cl::boolOrDefault PrintSectionMapping) override;
592 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
593 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
594 void printVersionDependencySection(const Elf_Shdr *Sec) override;
595 void printCGProfile() override;
596 void printBBAddrMaps() override;
597 void printAddrsig() override;
598 void printNotes() override;
599 void printELFLinkerOptions() override;
600 void printStackSizes() override;
601 void printMemtag(
602 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
603 const ArrayRef<uint8_t> AndroidNoteDesc,
604 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
605 void printHashHistogramStats(size_t NBucket, size_t MaxChain,
606 size_t TotalSyms, ArrayRef<size_t> Count,
607 bool IsGnu) const override;
609 private:
610 void printHashTableSymbols(const Elf_Hash &HashTable);
611 void printGnuHashTableSymbols(const Elf_GnuHash &GnuHashTable);
613 struct Field {
614 std::string Str;
615 unsigned Column;
617 Field(StringRef S, unsigned Col) : Str(std::string(S)), Column(Col) {}
618 Field(unsigned Col) : Column(Col) {}
621 template <typename T, typename TEnum>
622 std::string printFlags(T Value, ArrayRef<EnumEntry<TEnum>> EnumValues,
623 TEnum EnumMask1 = {}, TEnum EnumMask2 = {},
624 TEnum EnumMask3 = {}) const {
625 std::string Str;
626 for (const EnumEntry<TEnum> &Flag : EnumValues) {
627 if (Flag.Value == 0)
628 continue;
630 TEnum EnumMask{};
631 if (Flag.Value & EnumMask1)
632 EnumMask = EnumMask1;
633 else if (Flag.Value & EnumMask2)
634 EnumMask = EnumMask2;
635 else if (Flag.Value & EnumMask3)
636 EnumMask = EnumMask3;
637 bool IsEnum = (Flag.Value & EnumMask) != 0;
638 if ((!IsEnum && (Value & Flag.Value) == Flag.Value) ||
639 (IsEnum && (Value & EnumMask) == Flag.Value)) {
640 if (!Str.empty())
641 Str += ", ";
642 Str += Flag.AltName;
645 return Str;
648 formatted_raw_ostream &printField(struct Field F) const {
649 if (F.Column != 0)
650 OS.PadToColumn(F.Column);
651 OS << F.Str;
652 OS.flush();
653 return OS;
655 void printHashedSymbol(const Elf_Sym *Sym, unsigned SymIndex,
656 DataRegion<Elf_Word> ShndxTable, StringRef StrTable,
657 uint32_t Bucket);
658 void printRelrReloc(const Elf_Relr &R) override;
659 void printRelRelaReloc(const Relocation<ELFT> &R,
660 const RelSymbol<ELFT> &RelSym) override;
661 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
662 DataRegion<Elf_Word> ShndxTable,
663 std::optional<StringRef> StrTable, bool IsDynamic,
664 bool NonVisibilityBitsUsed,
665 bool ExtraSymInfo) const override;
666 void printDynamicRelocHeader(unsigned Type, StringRef Name,
667 const DynRegionInfo &Reg) override;
669 std::string getSymbolSectionNdx(const Elf_Sym &Symbol, unsigned SymIndex,
670 DataRegion<Elf_Word> ShndxTable,
671 bool ExtraSymInfo = false) const;
672 void printProgramHeaders() override;
673 void printSectionMapping() override;
674 void printGNUVersionSectionProlog(const typename ELFT::Shdr &Sec,
675 const Twine &Label, unsigned EntriesNum);
677 void printStackSizeEntry(uint64_t Size,
678 ArrayRef<std::string> FuncNames) override;
680 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
681 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
682 void printMipsABIFlags() override;
685 template <typename ELFT> class LLVMELFDumper : public ELFDumper<ELFT> {
686 public:
687 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
689 LLVMELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
690 : ELFDumper<ELFT>(ObjF, Writer), W(Writer) {}
692 void printFileHeaders() override;
693 void printGroupSections() override;
694 void printRelocations() override;
695 void printSectionHeaders() override;
696 void printSymbols(bool PrintSymbols, bool PrintDynamicSymbols,
697 bool ExtraSymInfo) override;
698 void printDependentLibs() override;
699 void printDynamicTable() override;
700 void printDynamicRelocations() override;
701 void printProgramHeaders(bool PrintProgramHeaders,
702 cl::boolOrDefault PrintSectionMapping) override;
703 void printVersionSymbolSection(const Elf_Shdr *Sec) override;
704 void printVersionDefinitionSection(const Elf_Shdr *Sec) override;
705 void printVersionDependencySection(const Elf_Shdr *Sec) override;
706 void printCGProfile() override;
707 void printBBAddrMaps() override;
708 void printAddrsig() override;
709 void printNotes() override;
710 void printELFLinkerOptions() override;
711 void printStackSizes() override;
712 void printMemtag(
713 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
714 const ArrayRef<uint8_t> AndroidNoteDesc,
715 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) override;
716 void printSymbolSection(const Elf_Sym &Symbol, unsigned SymIndex,
717 DataRegion<Elf_Word> ShndxTable) const;
718 void printHashHistogramStats(size_t NBucket, size_t MaxChain,
719 size_t TotalSyms, ArrayRef<size_t> Count,
720 bool IsGnu) const override;
722 private:
723 void printRelrReloc(const Elf_Relr &R) override;
724 void printRelRelaReloc(const Relocation<ELFT> &R,
725 const RelSymbol<ELFT> &RelSym) override;
727 void printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
728 DataRegion<Elf_Word> ShndxTable,
729 std::optional<StringRef> StrTable, bool IsDynamic,
730 bool /*NonVisibilityBitsUsed*/,
731 bool /*ExtraSymInfo*/) const override;
732 void printProgramHeaders() override;
733 void printSectionMapping() override {}
734 void printStackSizeEntry(uint64_t Size,
735 ArrayRef<std::string> FuncNames) override;
737 void printMipsGOT(const MipsGOTParser<ELFT> &Parser) override;
738 void printMipsPLT(const MipsGOTParser<ELFT> &Parser) override;
739 void printMipsABIFlags() override;
740 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const;
742 protected:
743 virtual std::string getGroupSectionHeaderName() const;
744 void printSymbolOtherField(const Elf_Sym &Symbol) const;
745 virtual void printExpandedRelRelaReloc(const Relocation<ELFT> &R,
746 StringRef SymbolName,
747 StringRef RelocName);
748 virtual void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
749 StringRef SymbolName,
750 StringRef RelocName);
751 virtual void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
752 const unsigned SecNdx);
753 virtual void printSectionGroupMembers(StringRef Name, uint64_t Idx) const;
754 virtual void printEmptyGroupMessage() const;
756 ScopedPrinter &W;
759 // JSONELFDumper shares most of the same implementation as LLVMELFDumper except
760 // it uses a JSONScopedPrinter.
761 template <typename ELFT> class JSONELFDumper : public LLVMELFDumper<ELFT> {
762 public:
763 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
765 JSONELFDumper(const object::ELFObjectFile<ELFT> &ObjF, ScopedPrinter &Writer)
766 : LLVMELFDumper<ELFT>(ObjF, Writer) {}
768 std::string getGroupSectionHeaderName() const override;
770 void printFileSummary(StringRef FileStr, ObjectFile &Obj,
771 ArrayRef<std::string> InputFilenames,
772 const Archive *A) override;
773 virtual void printZeroSymbolOtherField(const Elf_Sym &Symbol) const override;
775 void printDefaultRelRelaReloc(const Relocation<ELFT> &R,
776 StringRef SymbolName,
777 StringRef RelocName) override;
779 void printRelocationSectionInfo(const Elf_Shdr &Sec, StringRef Name,
780 const unsigned SecNdx) override;
782 void printSectionGroupMembers(StringRef Name, uint64_t Idx) const override;
784 void printEmptyGroupMessage() const override;
786 private:
787 std::unique_ptr<DictScope> FileScope;
790 } // end anonymous namespace
792 namespace llvm {
794 template <class ELFT>
795 static std::unique_ptr<ObjDumper>
796 createELFDumper(const ELFObjectFile<ELFT> &Obj, ScopedPrinter &Writer) {
797 if (opts::Output == opts::GNU)
798 return std::make_unique<GNUELFDumper<ELFT>>(Obj, Writer);
799 else if (opts::Output == opts::JSON)
800 return std::make_unique<JSONELFDumper<ELFT>>(Obj, Writer);
801 return std::make_unique<LLVMELFDumper<ELFT>>(Obj, Writer);
804 std::unique_ptr<ObjDumper> createELFDumper(const object::ELFObjectFileBase &Obj,
805 ScopedPrinter &Writer) {
806 // Little-endian 32-bit
807 if (const ELF32LEObjectFile *ELFObj = dyn_cast<ELF32LEObjectFile>(&Obj))
808 return createELFDumper(*ELFObj, Writer);
810 // Big-endian 32-bit
811 if (const ELF32BEObjectFile *ELFObj = dyn_cast<ELF32BEObjectFile>(&Obj))
812 return createELFDumper(*ELFObj, Writer);
814 // Little-endian 64-bit
815 if (const ELF64LEObjectFile *ELFObj = dyn_cast<ELF64LEObjectFile>(&Obj))
816 return createELFDumper(*ELFObj, Writer);
818 // Big-endian 64-bit
819 return createELFDumper(*cast<ELF64BEObjectFile>(&Obj), Writer);
822 } // end namespace llvm
824 template <class ELFT>
825 Expected<SmallVector<std::optional<VersionEntry>, 0> *>
826 ELFDumper<ELFT>::getVersionMap() const {
827 // If the VersionMap has already been loaded or if there is no dynamic symtab
828 // or version table, there is nothing to do.
829 if (!VersionMap.empty() || !DynSymRegion || !SymbolVersionSection)
830 return &VersionMap;
832 Expected<SmallVector<std::optional<VersionEntry>, 0>> MapOrErr =
833 Obj.loadVersionMap(SymbolVersionNeedSection, SymbolVersionDefSection);
834 if (MapOrErr)
835 VersionMap = *MapOrErr;
836 else
837 return MapOrErr.takeError();
839 return &VersionMap;
842 template <typename ELFT>
843 Expected<StringRef> ELFDumper<ELFT>::getSymbolVersion(const Elf_Sym &Sym,
844 bool &IsDefault) const {
845 // This is a dynamic symbol. Look in the GNU symbol version table.
846 if (!SymbolVersionSection) {
847 // No version table.
848 IsDefault = false;
849 return "";
852 assert(DynSymRegion && "DynSymRegion has not been initialised");
853 // Determine the position in the symbol table of this entry.
854 size_t EntryIndex = (reinterpret_cast<uintptr_t>(&Sym) -
855 reinterpret_cast<uintptr_t>(DynSymRegion->Addr)) /
856 sizeof(Elf_Sym);
858 // Get the corresponding version index entry.
859 Expected<const Elf_Versym *> EntryOrErr =
860 Obj.template getEntry<Elf_Versym>(*SymbolVersionSection, EntryIndex);
861 if (!EntryOrErr)
862 return EntryOrErr.takeError();
864 unsigned Version = (*EntryOrErr)->vs_index;
865 if (Version == VER_NDX_LOCAL || Version == VER_NDX_GLOBAL) {
866 IsDefault = false;
867 return "";
870 Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
871 getVersionMap();
872 if (!MapOrErr)
873 return MapOrErr.takeError();
875 return Obj.getSymbolVersionByIndex(Version, IsDefault, **MapOrErr,
876 Sym.st_shndx == ELF::SHN_UNDEF);
879 template <typename ELFT>
880 Expected<RelSymbol<ELFT>>
881 ELFDumper<ELFT>::getRelocationTarget(const Relocation<ELFT> &R,
882 const Elf_Shdr *SymTab) const {
883 if (R.Symbol == 0)
884 return RelSymbol<ELFT>(nullptr, "");
886 Expected<const Elf_Sym *> SymOrErr =
887 Obj.template getEntry<Elf_Sym>(*SymTab, R.Symbol);
888 if (!SymOrErr)
889 return createError("unable to read an entry with index " + Twine(R.Symbol) +
890 " from " + describe(*SymTab) + ": " +
891 toString(SymOrErr.takeError()));
892 const Elf_Sym *Sym = *SymOrErr;
893 if (!Sym)
894 return RelSymbol<ELFT>(nullptr, "");
896 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(*SymTab);
897 if (!StrTableOrErr)
898 return StrTableOrErr.takeError();
900 const Elf_Sym *FirstSym =
901 cantFail(Obj.template getEntry<Elf_Sym>(*SymTab, 0));
902 std::string SymbolName =
903 getFullSymbolName(*Sym, Sym - FirstSym, getShndxTable(SymTab),
904 *StrTableOrErr, SymTab->sh_type == SHT_DYNSYM);
905 return RelSymbol<ELFT>(Sym, SymbolName);
908 template <typename ELFT>
909 ArrayRef<typename ELFT::Word>
910 ELFDumper<ELFT>::getShndxTable(const Elf_Shdr *Symtab) const {
911 if (Symtab) {
912 auto It = ShndxTables.find(Symtab);
913 if (It != ShndxTables.end())
914 return It->second;
916 return {};
919 static std::string maybeDemangle(StringRef Name) {
920 return opts::Demangle ? demangle(Name) : Name.str();
923 template <typename ELFT>
924 std::string ELFDumper<ELFT>::getStaticSymbolName(uint32_t Index) const {
925 auto Warn = [&](Error E) -> std::string {
926 reportUniqueWarning("unable to read the name of symbol with index " +
927 Twine(Index) + ": " + toString(std::move(E)));
928 return "<?>";
931 Expected<const typename ELFT::Sym *> SymOrErr =
932 Obj.getSymbol(DotSymtabSec, Index);
933 if (!SymOrErr)
934 return Warn(SymOrErr.takeError());
936 Expected<StringRef> StrTabOrErr = Obj.getStringTableForSymtab(*DotSymtabSec);
937 if (!StrTabOrErr)
938 return Warn(StrTabOrErr.takeError());
940 Expected<StringRef> NameOrErr = (*SymOrErr)->getName(*StrTabOrErr);
941 if (!NameOrErr)
942 return Warn(NameOrErr.takeError());
943 return maybeDemangle(*NameOrErr);
946 template <typename ELFT>
947 std::string ELFDumper<ELFT>::getFullSymbolName(
948 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
949 std::optional<StringRef> StrTable, bool IsDynamic) const {
950 if (!StrTable)
951 return "<?>";
953 std::string SymbolName;
954 if (Expected<StringRef> NameOrErr = Symbol.getName(*StrTable)) {
955 SymbolName = maybeDemangle(*NameOrErr);
956 } else {
957 reportUniqueWarning(NameOrErr.takeError());
958 return "<?>";
961 if (SymbolName.empty() && Symbol.getType() == ELF::STT_SECTION) {
962 Expected<unsigned> SectionIndex =
963 getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
964 if (!SectionIndex) {
965 reportUniqueWarning(SectionIndex.takeError());
966 return "<?>";
968 Expected<StringRef> NameOrErr = getSymbolSectionName(Symbol, *SectionIndex);
969 if (!NameOrErr) {
970 reportUniqueWarning(NameOrErr.takeError());
971 return ("<section " + Twine(*SectionIndex) + ">").str();
973 return std::string(*NameOrErr);
976 if (!IsDynamic)
977 return SymbolName;
979 bool IsDefault;
980 Expected<StringRef> VersionOrErr = getSymbolVersion(Symbol, IsDefault);
981 if (!VersionOrErr) {
982 reportUniqueWarning(VersionOrErr.takeError());
983 return SymbolName + "@<corrupt>";
986 if (!VersionOrErr->empty()) {
987 SymbolName += (IsDefault ? "@@" : "@");
988 SymbolName += *VersionOrErr;
990 return SymbolName;
993 template <typename ELFT>
994 Expected<unsigned>
995 ELFDumper<ELFT>::getSymbolSectionIndex(const Elf_Sym &Symbol, unsigned SymIndex,
996 DataRegion<Elf_Word> ShndxTable) const {
997 unsigned Ndx = Symbol.st_shndx;
998 if (Ndx == SHN_XINDEX)
999 return object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex,
1000 ShndxTable);
1001 if (Ndx != SHN_UNDEF && Ndx < SHN_LORESERVE)
1002 return Ndx;
1004 auto CreateErr = [&](const Twine &Name,
1005 std::optional<unsigned> Offset = std::nullopt) {
1006 std::string Desc;
1007 if (Offset)
1008 Desc = (Name + "+0x" + Twine::utohexstr(*Offset)).str();
1009 else
1010 Desc = Name.str();
1011 return createError(
1012 "unable to get section index for symbol with st_shndx = 0x" +
1013 Twine::utohexstr(Ndx) + " (" + Desc + ")");
1016 if (Ndx >= ELF::SHN_LOPROC && Ndx <= ELF::SHN_HIPROC)
1017 return CreateErr("SHN_LOPROC", Ndx - ELF::SHN_LOPROC);
1018 if (Ndx >= ELF::SHN_LOOS && Ndx <= ELF::SHN_HIOS)
1019 return CreateErr("SHN_LOOS", Ndx - ELF::SHN_LOOS);
1020 if (Ndx == ELF::SHN_UNDEF)
1021 return CreateErr("SHN_UNDEF");
1022 if (Ndx == ELF::SHN_ABS)
1023 return CreateErr("SHN_ABS");
1024 if (Ndx == ELF::SHN_COMMON)
1025 return CreateErr("SHN_COMMON");
1026 return CreateErr("SHN_LORESERVE", Ndx - SHN_LORESERVE);
1029 template <typename ELFT>
1030 Expected<StringRef>
1031 ELFDumper<ELFT>::getSymbolSectionName(const Elf_Sym &Symbol,
1032 unsigned SectionIndex) const {
1033 Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(SectionIndex);
1034 if (!SecOrErr)
1035 return SecOrErr.takeError();
1036 return Obj.getSectionName(**SecOrErr);
1039 template <class ELFO>
1040 static const typename ELFO::Elf_Shdr *
1041 findNotEmptySectionByAddress(const ELFO &Obj, StringRef FileName,
1042 uint64_t Addr) {
1043 for (const typename ELFO::Elf_Shdr &Shdr : cantFail(Obj.sections()))
1044 if (Shdr.sh_addr == Addr && Shdr.sh_size > 0)
1045 return &Shdr;
1046 return nullptr;
1049 const EnumEntry<unsigned> ElfClass[] = {
1050 {"None", "none", ELF::ELFCLASSNONE},
1051 {"32-bit", "ELF32", ELF::ELFCLASS32},
1052 {"64-bit", "ELF64", ELF::ELFCLASS64},
1055 const EnumEntry<unsigned> ElfDataEncoding[] = {
1056 {"None", "none", ELF::ELFDATANONE},
1057 {"LittleEndian", "2's complement, little endian", ELF::ELFDATA2LSB},
1058 {"BigEndian", "2's complement, big endian", ELF::ELFDATA2MSB},
1061 const EnumEntry<unsigned> ElfObjectFileType[] = {
1062 {"None", "NONE (none)", ELF::ET_NONE},
1063 {"Relocatable", "REL (Relocatable file)", ELF::ET_REL},
1064 {"Executable", "EXEC (Executable file)", ELF::ET_EXEC},
1065 {"SharedObject", "DYN (Shared object file)", ELF::ET_DYN},
1066 {"Core", "CORE (Core file)", ELF::ET_CORE},
1069 const EnumEntry<unsigned> ElfOSABI[] = {
1070 {"SystemV", "UNIX - System V", ELF::ELFOSABI_NONE},
1071 {"HPUX", "UNIX - HP-UX", ELF::ELFOSABI_HPUX},
1072 {"NetBSD", "UNIX - NetBSD", ELF::ELFOSABI_NETBSD},
1073 {"GNU/Linux", "UNIX - GNU", ELF::ELFOSABI_LINUX},
1074 {"GNU/Hurd", "GNU/Hurd", ELF::ELFOSABI_HURD},
1075 {"Solaris", "UNIX - Solaris", ELF::ELFOSABI_SOLARIS},
1076 {"AIX", "UNIX - AIX", ELF::ELFOSABI_AIX},
1077 {"IRIX", "UNIX - IRIX", ELF::ELFOSABI_IRIX},
1078 {"FreeBSD", "UNIX - FreeBSD", ELF::ELFOSABI_FREEBSD},
1079 {"TRU64", "UNIX - TRU64", ELF::ELFOSABI_TRU64},
1080 {"Modesto", "Novell - Modesto", ELF::ELFOSABI_MODESTO},
1081 {"OpenBSD", "UNIX - OpenBSD", ELF::ELFOSABI_OPENBSD},
1082 {"OpenVMS", "VMS - OpenVMS", ELF::ELFOSABI_OPENVMS},
1083 {"NSK", "HP - Non-Stop Kernel", ELF::ELFOSABI_NSK},
1084 {"AROS", "AROS", ELF::ELFOSABI_AROS},
1085 {"FenixOS", "FenixOS", ELF::ELFOSABI_FENIXOS},
1086 {"CloudABI", "CloudABI", ELF::ELFOSABI_CLOUDABI},
1087 {"Standalone", "Standalone App", ELF::ELFOSABI_STANDALONE}
1090 const EnumEntry<unsigned> AMDGPUElfOSABI[] = {
1091 {"AMDGPU_HSA", "AMDGPU - HSA", ELF::ELFOSABI_AMDGPU_HSA},
1092 {"AMDGPU_PAL", "AMDGPU - PAL", ELF::ELFOSABI_AMDGPU_PAL},
1093 {"AMDGPU_MESA3D", "AMDGPU - MESA3D", ELF::ELFOSABI_AMDGPU_MESA3D}
1096 const EnumEntry<unsigned> ARMElfOSABI[] = {
1097 {"ARM", "ARM", ELF::ELFOSABI_ARM}
1100 const EnumEntry<unsigned> C6000ElfOSABI[] = {
1101 {"C6000_ELFABI", "Bare-metal C6000", ELF::ELFOSABI_C6000_ELFABI},
1102 {"C6000_LINUX", "Linux C6000", ELF::ELFOSABI_C6000_LINUX}
1105 const EnumEntry<unsigned> ElfMachineType[] = {
1106 ENUM_ENT(EM_NONE, "None"),
1107 ENUM_ENT(EM_M32, "WE32100"),
1108 ENUM_ENT(EM_SPARC, "Sparc"),
1109 ENUM_ENT(EM_386, "Intel 80386"),
1110 ENUM_ENT(EM_68K, "MC68000"),
1111 ENUM_ENT(EM_88K, "MC88000"),
1112 ENUM_ENT(EM_IAMCU, "EM_IAMCU"),
1113 ENUM_ENT(EM_860, "Intel 80860"),
1114 ENUM_ENT(EM_MIPS, "MIPS R3000"),
1115 ENUM_ENT(EM_S370, "IBM System/370"),
1116 ENUM_ENT(EM_MIPS_RS3_LE, "MIPS R3000 little-endian"),
1117 ENUM_ENT(EM_PARISC, "HPPA"),
1118 ENUM_ENT(EM_VPP500, "Fujitsu VPP500"),
1119 ENUM_ENT(EM_SPARC32PLUS, "Sparc v8+"),
1120 ENUM_ENT(EM_960, "Intel 80960"),
1121 ENUM_ENT(EM_PPC, "PowerPC"),
1122 ENUM_ENT(EM_PPC64, "PowerPC64"),
1123 ENUM_ENT(EM_S390, "IBM S/390"),
1124 ENUM_ENT(EM_SPU, "SPU"),
1125 ENUM_ENT(EM_V800, "NEC V800 series"),
1126 ENUM_ENT(EM_FR20, "Fujistsu FR20"),
1127 ENUM_ENT(EM_RH32, "TRW RH-32"),
1128 ENUM_ENT(EM_RCE, "Motorola RCE"),
1129 ENUM_ENT(EM_ARM, "ARM"),
1130 ENUM_ENT(EM_ALPHA, "EM_ALPHA"),
1131 ENUM_ENT(EM_SH, "Hitachi SH"),
1132 ENUM_ENT(EM_SPARCV9, "Sparc v9"),
1133 ENUM_ENT(EM_TRICORE, "Siemens Tricore"),
1134 ENUM_ENT(EM_ARC, "ARC"),
1135 ENUM_ENT(EM_H8_300, "Hitachi H8/300"),
1136 ENUM_ENT(EM_H8_300H, "Hitachi H8/300H"),
1137 ENUM_ENT(EM_H8S, "Hitachi H8S"),
1138 ENUM_ENT(EM_H8_500, "Hitachi H8/500"),
1139 ENUM_ENT(EM_IA_64, "Intel IA-64"),
1140 ENUM_ENT(EM_MIPS_X, "Stanford MIPS-X"),
1141 ENUM_ENT(EM_COLDFIRE, "Motorola Coldfire"),
1142 ENUM_ENT(EM_68HC12, "Motorola MC68HC12 Microcontroller"),
1143 ENUM_ENT(EM_MMA, "Fujitsu Multimedia Accelerator"),
1144 ENUM_ENT(EM_PCP, "Siemens PCP"),
1145 ENUM_ENT(EM_NCPU, "Sony nCPU embedded RISC processor"),
1146 ENUM_ENT(EM_NDR1, "Denso NDR1 microprocesspr"),
1147 ENUM_ENT(EM_STARCORE, "Motorola Star*Core processor"),
1148 ENUM_ENT(EM_ME16, "Toyota ME16 processor"),
1149 ENUM_ENT(EM_ST100, "STMicroelectronics ST100 processor"),
1150 ENUM_ENT(EM_TINYJ, "Advanced Logic Corp. TinyJ embedded processor"),
1151 ENUM_ENT(EM_X86_64, "Advanced Micro Devices X86-64"),
1152 ENUM_ENT(EM_PDSP, "Sony DSP processor"),
1153 ENUM_ENT(EM_PDP10, "Digital Equipment Corp. PDP-10"),
1154 ENUM_ENT(EM_PDP11, "Digital Equipment Corp. PDP-11"),
1155 ENUM_ENT(EM_FX66, "Siemens FX66 microcontroller"),
1156 ENUM_ENT(EM_ST9PLUS, "STMicroelectronics ST9+ 8/16 bit microcontroller"),
1157 ENUM_ENT(EM_ST7, "STMicroelectronics ST7 8-bit microcontroller"),
1158 ENUM_ENT(EM_68HC16, "Motorola MC68HC16 Microcontroller"),
1159 ENUM_ENT(EM_68HC11, "Motorola MC68HC11 Microcontroller"),
1160 ENUM_ENT(EM_68HC08, "Motorola MC68HC08 Microcontroller"),
1161 ENUM_ENT(EM_68HC05, "Motorola MC68HC05 Microcontroller"),
1162 ENUM_ENT(EM_SVX, "Silicon Graphics SVx"),
1163 ENUM_ENT(EM_ST19, "STMicroelectronics ST19 8-bit microcontroller"),
1164 ENUM_ENT(EM_VAX, "Digital VAX"),
1165 ENUM_ENT(EM_CRIS, "Axis Communications 32-bit embedded processor"),
1166 ENUM_ENT(EM_JAVELIN, "Infineon Technologies 32-bit embedded cpu"),
1167 ENUM_ENT(EM_FIREPATH, "Element 14 64-bit DSP processor"),
1168 ENUM_ENT(EM_ZSP, "LSI Logic's 16-bit DSP processor"),
1169 ENUM_ENT(EM_MMIX, "Donald Knuth's educational 64-bit processor"),
1170 ENUM_ENT(EM_HUANY, "Harvard Universitys's machine-independent object format"),
1171 ENUM_ENT(EM_PRISM, "Vitesse Prism"),
1172 ENUM_ENT(EM_AVR, "Atmel AVR 8-bit microcontroller"),
1173 ENUM_ENT(EM_FR30, "Fujitsu FR30"),
1174 ENUM_ENT(EM_D10V, "Mitsubishi D10V"),
1175 ENUM_ENT(EM_D30V, "Mitsubishi D30V"),
1176 ENUM_ENT(EM_V850, "NEC v850"),
1177 ENUM_ENT(EM_M32R, "Renesas M32R (formerly Mitsubishi M32r)"),
1178 ENUM_ENT(EM_MN10300, "Matsushita MN10300"),
1179 ENUM_ENT(EM_MN10200, "Matsushita MN10200"),
1180 ENUM_ENT(EM_PJ, "picoJava"),
1181 ENUM_ENT(EM_OPENRISC, "OpenRISC 32-bit embedded processor"),
1182 ENUM_ENT(EM_ARC_COMPACT, "EM_ARC_COMPACT"),
1183 ENUM_ENT(EM_XTENSA, "Tensilica Xtensa Processor"),
1184 ENUM_ENT(EM_VIDEOCORE, "Alphamosaic VideoCore processor"),
1185 ENUM_ENT(EM_TMM_GPP, "Thompson Multimedia General Purpose Processor"),
1186 ENUM_ENT(EM_NS32K, "National Semiconductor 32000 series"),
1187 ENUM_ENT(EM_TPC, "Tenor Network TPC processor"),
1188 ENUM_ENT(EM_SNP1K, "EM_SNP1K"),
1189 ENUM_ENT(EM_ST200, "STMicroelectronics ST200 microcontroller"),
1190 ENUM_ENT(EM_IP2K, "Ubicom IP2xxx 8-bit microcontrollers"),
1191 ENUM_ENT(EM_MAX, "MAX Processor"),
1192 ENUM_ENT(EM_CR, "National Semiconductor CompactRISC"),
1193 ENUM_ENT(EM_F2MC16, "Fujitsu F2MC16"),
1194 ENUM_ENT(EM_MSP430, "Texas Instruments msp430 microcontroller"),
1195 ENUM_ENT(EM_BLACKFIN, "Analog Devices Blackfin"),
1196 ENUM_ENT(EM_SE_C33, "S1C33 Family of Seiko Epson processors"),
1197 ENUM_ENT(EM_SEP, "Sharp embedded microprocessor"),
1198 ENUM_ENT(EM_ARCA, "Arca RISC microprocessor"),
1199 ENUM_ENT(EM_UNICORE, "Unicore"),
1200 ENUM_ENT(EM_EXCESS, "eXcess 16/32/64-bit configurable embedded CPU"),
1201 ENUM_ENT(EM_DXP, "Icera Semiconductor Inc. Deep Execution Processor"),
1202 ENUM_ENT(EM_ALTERA_NIOS2, "Altera Nios"),
1203 ENUM_ENT(EM_CRX, "National Semiconductor CRX microprocessor"),
1204 ENUM_ENT(EM_XGATE, "Motorola XGATE embedded processor"),
1205 ENUM_ENT(EM_C166, "Infineon Technologies xc16x"),
1206 ENUM_ENT(EM_M16C, "Renesas M16C"),
1207 ENUM_ENT(EM_DSPIC30F, "Microchip Technology dsPIC30F Digital Signal Controller"),
1208 ENUM_ENT(EM_CE, "Freescale Communication Engine RISC core"),
1209 ENUM_ENT(EM_M32C, "Renesas M32C"),
1210 ENUM_ENT(EM_TSK3000, "Altium TSK3000 core"),
1211 ENUM_ENT(EM_RS08, "Freescale RS08 embedded processor"),
1212 ENUM_ENT(EM_SHARC, "EM_SHARC"),
1213 ENUM_ENT(EM_ECOG2, "Cyan Technology eCOG2 microprocessor"),
1214 ENUM_ENT(EM_SCORE7, "SUNPLUS S+Core"),
1215 ENUM_ENT(EM_DSP24, "New Japan Radio (NJR) 24-bit DSP Processor"),
1216 ENUM_ENT(EM_VIDEOCORE3, "Broadcom VideoCore III processor"),
1217 ENUM_ENT(EM_LATTICEMICO32, "Lattice Mico32"),
1218 ENUM_ENT(EM_SE_C17, "Seiko Epson C17 family"),
1219 ENUM_ENT(EM_TI_C6000, "Texas Instruments TMS320C6000 DSP family"),
1220 ENUM_ENT(EM_TI_C2000, "Texas Instruments TMS320C2000 DSP family"),
1221 ENUM_ENT(EM_TI_C5500, "Texas Instruments TMS320C55x DSP family"),
1222 ENUM_ENT(EM_MMDSP_PLUS, "STMicroelectronics 64bit VLIW Data Signal Processor"),
1223 ENUM_ENT(EM_CYPRESS_M8C, "Cypress M8C microprocessor"),
1224 ENUM_ENT(EM_R32C, "Renesas R32C series microprocessors"),
1225 ENUM_ENT(EM_TRIMEDIA, "NXP Semiconductors TriMedia architecture family"),
1226 ENUM_ENT(EM_HEXAGON, "Qualcomm Hexagon"),
1227 ENUM_ENT(EM_8051, "Intel 8051 and variants"),
1228 ENUM_ENT(EM_STXP7X, "STMicroelectronics STxP7x family"),
1229 ENUM_ENT(EM_NDS32, "Andes Technology compact code size embedded RISC processor family"),
1230 ENUM_ENT(EM_ECOG1, "Cyan Technology eCOG1 microprocessor"),
1231 // FIXME: Following EM_ECOG1X definitions is dead code since EM_ECOG1X has
1232 // an identical number to EM_ECOG1.
1233 ENUM_ENT(EM_ECOG1X, "Cyan Technology eCOG1X family"),
1234 ENUM_ENT(EM_MAXQ30, "Dallas Semiconductor MAXQ30 Core microcontrollers"),
1235 ENUM_ENT(EM_XIMO16, "New Japan Radio (NJR) 16-bit DSP Processor"),
1236 ENUM_ENT(EM_MANIK, "M2000 Reconfigurable RISC Microprocessor"),
1237 ENUM_ENT(EM_CRAYNV2, "Cray Inc. NV2 vector architecture"),
1238 ENUM_ENT(EM_RX, "Renesas RX"),
1239 ENUM_ENT(EM_METAG, "Imagination Technologies Meta processor architecture"),
1240 ENUM_ENT(EM_MCST_ELBRUS, "MCST Elbrus general purpose hardware architecture"),
1241 ENUM_ENT(EM_ECOG16, "Cyan Technology eCOG16 family"),
1242 ENUM_ENT(EM_CR16, "National Semiconductor CompactRISC 16-bit processor"),
1243 ENUM_ENT(EM_ETPU, "Freescale Extended Time Processing Unit"),
1244 ENUM_ENT(EM_SLE9X, "Infineon Technologies SLE9X core"),
1245 ENUM_ENT(EM_L10M, "EM_L10M"),
1246 ENUM_ENT(EM_K10M, "EM_K10M"),
1247 ENUM_ENT(EM_AARCH64, "AArch64"),
1248 ENUM_ENT(EM_AVR32, "Atmel Corporation 32-bit microprocessor family"),
1249 ENUM_ENT(EM_STM8, "STMicroeletronics STM8 8-bit microcontroller"),
1250 ENUM_ENT(EM_TILE64, "Tilera TILE64 multicore architecture family"),
1251 ENUM_ENT(EM_TILEPRO, "Tilera TILEPro multicore architecture family"),
1252 ENUM_ENT(EM_MICROBLAZE, "Xilinx MicroBlaze 32-bit RISC soft processor core"),
1253 ENUM_ENT(EM_CUDA, "NVIDIA CUDA architecture"),
1254 ENUM_ENT(EM_TILEGX, "Tilera TILE-Gx multicore architecture family"),
1255 ENUM_ENT(EM_CLOUDSHIELD, "EM_CLOUDSHIELD"),
1256 ENUM_ENT(EM_COREA_1ST, "EM_COREA_1ST"),
1257 ENUM_ENT(EM_COREA_2ND, "EM_COREA_2ND"),
1258 ENUM_ENT(EM_ARC_COMPACT2, "EM_ARC_COMPACT2"),
1259 ENUM_ENT(EM_OPEN8, "EM_OPEN8"),
1260 ENUM_ENT(EM_RL78, "Renesas RL78"),
1261 ENUM_ENT(EM_VIDEOCORE5, "Broadcom VideoCore V processor"),
1262 ENUM_ENT(EM_78KOR, "EM_78KOR"),
1263 ENUM_ENT(EM_56800EX, "EM_56800EX"),
1264 ENUM_ENT(EM_AMDGPU, "EM_AMDGPU"),
1265 ENUM_ENT(EM_RISCV, "RISC-V"),
1266 ENUM_ENT(EM_LANAI, "EM_LANAI"),
1267 ENUM_ENT(EM_BPF, "EM_BPF"),
1268 ENUM_ENT(EM_VE, "NEC SX-Aurora Vector Engine"),
1269 ENUM_ENT(EM_LOONGARCH, "LoongArch"),
1272 const EnumEntry<unsigned> ElfSymbolBindings[] = {
1273 {"Local", "LOCAL", ELF::STB_LOCAL},
1274 {"Global", "GLOBAL", ELF::STB_GLOBAL},
1275 {"Weak", "WEAK", ELF::STB_WEAK},
1276 {"Unique", "UNIQUE", ELF::STB_GNU_UNIQUE}};
1278 const EnumEntry<unsigned> ElfSymbolVisibilities[] = {
1279 {"DEFAULT", "DEFAULT", ELF::STV_DEFAULT},
1280 {"INTERNAL", "INTERNAL", ELF::STV_INTERNAL},
1281 {"HIDDEN", "HIDDEN", ELF::STV_HIDDEN},
1282 {"PROTECTED", "PROTECTED", ELF::STV_PROTECTED}};
1284 const EnumEntry<unsigned> AMDGPUSymbolTypes[] = {
1285 { "AMDGPU_HSA_KERNEL", ELF::STT_AMDGPU_HSA_KERNEL }
1288 static const char *getGroupType(uint32_t Flag) {
1289 if (Flag & ELF::GRP_COMDAT)
1290 return "COMDAT";
1291 else
1292 return "(unknown)";
1295 const EnumEntry<unsigned> ElfSectionFlags[] = {
1296 ENUM_ENT(SHF_WRITE, "W"),
1297 ENUM_ENT(SHF_ALLOC, "A"),
1298 ENUM_ENT(SHF_EXECINSTR, "X"),
1299 ENUM_ENT(SHF_MERGE, "M"),
1300 ENUM_ENT(SHF_STRINGS, "S"),
1301 ENUM_ENT(SHF_INFO_LINK, "I"),
1302 ENUM_ENT(SHF_LINK_ORDER, "L"),
1303 ENUM_ENT(SHF_OS_NONCONFORMING, "O"),
1304 ENUM_ENT(SHF_GROUP, "G"),
1305 ENUM_ENT(SHF_TLS, "T"),
1306 ENUM_ENT(SHF_COMPRESSED, "C"),
1307 ENUM_ENT(SHF_EXCLUDE, "E"),
1310 const EnumEntry<unsigned> ElfGNUSectionFlags[] = {
1311 ENUM_ENT(SHF_GNU_RETAIN, "R")
1314 const EnumEntry<unsigned> ElfSolarisSectionFlags[] = {
1315 ENUM_ENT(SHF_SUNW_NODISCARD, "R")
1318 const EnumEntry<unsigned> ElfXCoreSectionFlags[] = {
1319 ENUM_ENT(XCORE_SHF_CP_SECTION, ""),
1320 ENUM_ENT(XCORE_SHF_DP_SECTION, "")
1323 const EnumEntry<unsigned> ElfARMSectionFlags[] = {
1324 ENUM_ENT(SHF_ARM_PURECODE, "y")
1327 const EnumEntry<unsigned> ElfHexagonSectionFlags[] = {
1328 ENUM_ENT(SHF_HEX_GPREL, "")
1331 const EnumEntry<unsigned> ElfMipsSectionFlags[] = {
1332 ENUM_ENT(SHF_MIPS_NODUPES, ""),
1333 ENUM_ENT(SHF_MIPS_NAMES, ""),
1334 ENUM_ENT(SHF_MIPS_LOCAL, ""),
1335 ENUM_ENT(SHF_MIPS_NOSTRIP, ""),
1336 ENUM_ENT(SHF_MIPS_GPREL, ""),
1337 ENUM_ENT(SHF_MIPS_MERGE, ""),
1338 ENUM_ENT(SHF_MIPS_ADDR, ""),
1339 ENUM_ENT(SHF_MIPS_STRING, "")
1342 const EnumEntry<unsigned> ElfX86_64SectionFlags[] = {
1343 ENUM_ENT(SHF_X86_64_LARGE, "l")
1346 static std::vector<EnumEntry<unsigned>>
1347 getSectionFlagsForTarget(unsigned EOSAbi, unsigned EMachine) {
1348 std::vector<EnumEntry<unsigned>> Ret(std::begin(ElfSectionFlags),
1349 std::end(ElfSectionFlags));
1350 switch (EOSAbi) {
1351 case ELFOSABI_SOLARIS:
1352 Ret.insert(Ret.end(), std::begin(ElfSolarisSectionFlags),
1353 std::end(ElfSolarisSectionFlags));
1354 break;
1355 default:
1356 Ret.insert(Ret.end(), std::begin(ElfGNUSectionFlags),
1357 std::end(ElfGNUSectionFlags));
1358 break;
1360 switch (EMachine) {
1361 case EM_ARM:
1362 Ret.insert(Ret.end(), std::begin(ElfARMSectionFlags),
1363 std::end(ElfARMSectionFlags));
1364 break;
1365 case EM_HEXAGON:
1366 Ret.insert(Ret.end(), std::begin(ElfHexagonSectionFlags),
1367 std::end(ElfHexagonSectionFlags));
1368 break;
1369 case EM_MIPS:
1370 Ret.insert(Ret.end(), std::begin(ElfMipsSectionFlags),
1371 std::end(ElfMipsSectionFlags));
1372 break;
1373 case EM_X86_64:
1374 Ret.insert(Ret.end(), std::begin(ElfX86_64SectionFlags),
1375 std::end(ElfX86_64SectionFlags));
1376 break;
1377 case EM_XCORE:
1378 Ret.insert(Ret.end(), std::begin(ElfXCoreSectionFlags),
1379 std::end(ElfXCoreSectionFlags));
1380 break;
1381 default:
1382 break;
1384 return Ret;
1387 static std::string getGNUFlags(unsigned EOSAbi, unsigned EMachine,
1388 uint64_t Flags) {
1389 // Here we are trying to build the flags string in the same way as GNU does.
1390 // It is not that straightforward. Imagine we have sh_flags == 0x90000000.
1391 // SHF_EXCLUDE ("E") has a value of 0x80000000 and SHF_MASKPROC is 0xf0000000.
1392 // GNU readelf will not print "E" or "Ep" in this case, but will print just
1393 // "p". It only will print "E" when no other processor flag is set.
1394 std::string Str;
1395 bool HasUnknownFlag = false;
1396 bool HasOSFlag = false;
1397 bool HasProcFlag = false;
1398 std::vector<EnumEntry<unsigned>> FlagsList =
1399 getSectionFlagsForTarget(EOSAbi, EMachine);
1400 while (Flags) {
1401 // Take the least significant bit as a flag.
1402 uint64_t Flag = Flags & -Flags;
1403 Flags -= Flag;
1405 // Find the flag in the known flags list.
1406 auto I = llvm::find_if(FlagsList, [=](const EnumEntry<unsigned> &E) {
1407 // Flags with empty names are not printed in GNU style output.
1408 return E.Value == Flag && !E.AltName.empty();
1410 if (I != FlagsList.end()) {
1411 Str += I->AltName;
1412 continue;
1415 // If we did not find a matching regular flag, then we deal with an OS
1416 // specific flag, processor specific flag or an unknown flag.
1417 if (Flag & ELF::SHF_MASKOS) {
1418 HasOSFlag = true;
1419 Flags &= ~ELF::SHF_MASKOS;
1420 } else if (Flag & ELF::SHF_MASKPROC) {
1421 HasProcFlag = true;
1422 // Mask off all the processor-specific bits. This removes the SHF_EXCLUDE
1423 // bit if set so that it doesn't also get printed.
1424 Flags &= ~ELF::SHF_MASKPROC;
1425 } else {
1426 HasUnknownFlag = true;
1430 // "o", "p" and "x" are printed last.
1431 if (HasOSFlag)
1432 Str += "o";
1433 if (HasProcFlag)
1434 Str += "p";
1435 if (HasUnknownFlag)
1436 Str += "x";
1437 return Str;
1440 static StringRef segmentTypeToString(unsigned Arch, unsigned Type) {
1441 // Check potentially overlapped processor-specific program header type.
1442 switch (Arch) {
1443 case ELF::EM_ARM:
1444 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_ARM_EXIDX); }
1445 break;
1446 case ELF::EM_MIPS:
1447 case ELF::EM_MIPS_RS3_LE:
1448 switch (Type) {
1449 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_REGINFO);
1450 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_RTPROC);
1451 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_OPTIONS);
1452 LLVM_READOBJ_ENUM_CASE(ELF, PT_MIPS_ABIFLAGS);
1454 break;
1455 case ELF::EM_RISCV:
1456 switch (Type) { LLVM_READOBJ_ENUM_CASE(ELF, PT_RISCV_ATTRIBUTES); }
1459 switch (Type) {
1460 LLVM_READOBJ_ENUM_CASE(ELF, PT_NULL);
1461 LLVM_READOBJ_ENUM_CASE(ELF, PT_LOAD);
1462 LLVM_READOBJ_ENUM_CASE(ELF, PT_DYNAMIC);
1463 LLVM_READOBJ_ENUM_CASE(ELF, PT_INTERP);
1464 LLVM_READOBJ_ENUM_CASE(ELF, PT_NOTE);
1465 LLVM_READOBJ_ENUM_CASE(ELF, PT_SHLIB);
1466 LLVM_READOBJ_ENUM_CASE(ELF, PT_PHDR);
1467 LLVM_READOBJ_ENUM_CASE(ELF, PT_TLS);
1469 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_EH_FRAME);
1470 LLVM_READOBJ_ENUM_CASE(ELF, PT_SUNW_UNWIND);
1472 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_STACK);
1473 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_RELRO);
1474 LLVM_READOBJ_ENUM_CASE(ELF, PT_GNU_PROPERTY);
1476 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_MUTABLE);
1477 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_RANDOMIZE);
1478 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_WXNEEDED);
1479 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_NOBTCFI);
1480 LLVM_READOBJ_ENUM_CASE(ELF, PT_OPENBSD_BOOTDATA);
1481 default:
1482 return "";
1486 static std::string getGNUPtType(unsigned Arch, unsigned Type) {
1487 StringRef Seg = segmentTypeToString(Arch, Type);
1488 if (Seg.empty())
1489 return std::string("<unknown>: ") + to_string(format_hex(Type, 1));
1491 // E.g. "PT_ARM_EXIDX" -> "EXIDX".
1492 if (Seg.consume_front("PT_ARM_"))
1493 return Seg.str();
1495 // E.g. "PT_MIPS_REGINFO" -> "REGINFO".
1496 if (Seg.consume_front("PT_MIPS_"))
1497 return Seg.str();
1499 // E.g. "PT_RISCV_ATTRIBUTES"
1500 if (Seg.consume_front("PT_RISCV_"))
1501 return Seg.str();
1503 // E.g. "PT_LOAD" -> "LOAD".
1504 assert(Seg.startswith("PT_"));
1505 return Seg.drop_front(3).str();
1508 const EnumEntry<unsigned> ElfSegmentFlags[] = {
1509 LLVM_READOBJ_ENUM_ENT(ELF, PF_X),
1510 LLVM_READOBJ_ENUM_ENT(ELF, PF_W),
1511 LLVM_READOBJ_ENUM_ENT(ELF, PF_R)
1514 const EnumEntry<unsigned> ElfHeaderMipsFlags[] = {
1515 ENUM_ENT(EF_MIPS_NOREORDER, "noreorder"),
1516 ENUM_ENT(EF_MIPS_PIC, "pic"),
1517 ENUM_ENT(EF_MIPS_CPIC, "cpic"),
1518 ENUM_ENT(EF_MIPS_ABI2, "abi2"),
1519 ENUM_ENT(EF_MIPS_32BITMODE, "32bitmode"),
1520 ENUM_ENT(EF_MIPS_FP64, "fp64"),
1521 ENUM_ENT(EF_MIPS_NAN2008, "nan2008"),
1522 ENUM_ENT(EF_MIPS_ABI_O32, "o32"),
1523 ENUM_ENT(EF_MIPS_ABI_O64, "o64"),
1524 ENUM_ENT(EF_MIPS_ABI_EABI32, "eabi32"),
1525 ENUM_ENT(EF_MIPS_ABI_EABI64, "eabi64"),
1526 ENUM_ENT(EF_MIPS_MACH_3900, "3900"),
1527 ENUM_ENT(EF_MIPS_MACH_4010, "4010"),
1528 ENUM_ENT(EF_MIPS_MACH_4100, "4100"),
1529 ENUM_ENT(EF_MIPS_MACH_4650, "4650"),
1530 ENUM_ENT(EF_MIPS_MACH_4120, "4120"),
1531 ENUM_ENT(EF_MIPS_MACH_4111, "4111"),
1532 ENUM_ENT(EF_MIPS_MACH_SB1, "sb1"),
1533 ENUM_ENT(EF_MIPS_MACH_OCTEON, "octeon"),
1534 ENUM_ENT(EF_MIPS_MACH_XLR, "xlr"),
1535 ENUM_ENT(EF_MIPS_MACH_OCTEON2, "octeon2"),
1536 ENUM_ENT(EF_MIPS_MACH_OCTEON3, "octeon3"),
1537 ENUM_ENT(EF_MIPS_MACH_5400, "5400"),
1538 ENUM_ENT(EF_MIPS_MACH_5900, "5900"),
1539 ENUM_ENT(EF_MIPS_MACH_5500, "5500"),
1540 ENUM_ENT(EF_MIPS_MACH_9000, "9000"),
1541 ENUM_ENT(EF_MIPS_MACH_LS2E, "loongson-2e"),
1542 ENUM_ENT(EF_MIPS_MACH_LS2F, "loongson-2f"),
1543 ENUM_ENT(EF_MIPS_MACH_LS3A, "loongson-3a"),
1544 ENUM_ENT(EF_MIPS_MICROMIPS, "micromips"),
1545 ENUM_ENT(EF_MIPS_ARCH_ASE_M16, "mips16"),
1546 ENUM_ENT(EF_MIPS_ARCH_ASE_MDMX, "mdmx"),
1547 ENUM_ENT(EF_MIPS_ARCH_1, "mips1"),
1548 ENUM_ENT(EF_MIPS_ARCH_2, "mips2"),
1549 ENUM_ENT(EF_MIPS_ARCH_3, "mips3"),
1550 ENUM_ENT(EF_MIPS_ARCH_4, "mips4"),
1551 ENUM_ENT(EF_MIPS_ARCH_5, "mips5"),
1552 ENUM_ENT(EF_MIPS_ARCH_32, "mips32"),
1553 ENUM_ENT(EF_MIPS_ARCH_64, "mips64"),
1554 ENUM_ENT(EF_MIPS_ARCH_32R2, "mips32r2"),
1555 ENUM_ENT(EF_MIPS_ARCH_64R2, "mips64r2"),
1556 ENUM_ENT(EF_MIPS_ARCH_32R6, "mips32r6"),
1557 ENUM_ENT(EF_MIPS_ARCH_64R6, "mips64r6")
1560 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion3[] = {
1561 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1562 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1563 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1564 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1565 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1566 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1567 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1568 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1569 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1570 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1571 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1572 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1573 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1574 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1575 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1576 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1577 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1578 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1579 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1580 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1581 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1582 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1583 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1584 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1585 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1586 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1587 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1588 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1589 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1590 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1591 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1592 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1593 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1594 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1595 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1596 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1597 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1598 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1599 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1600 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1601 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX941),
1602 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX942),
1603 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1604 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1605 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1606 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1607 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1608 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1609 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1610 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1611 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1612 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1613 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1614 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1615 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1616 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1617 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1618 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1150),
1619 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1151),
1620 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_V3),
1621 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_V3)
1624 const EnumEntry<unsigned> ElfHeaderAMDGPUFlagsABIVersion4[] = {
1625 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_NONE),
1626 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R600),
1627 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_R630),
1628 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RS880),
1629 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV670),
1630 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV710),
1631 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV730),
1632 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_RV770),
1633 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CEDAR),
1634 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CYPRESS),
1635 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_JUNIPER),
1636 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_REDWOOD),
1637 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_SUMO),
1638 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_BARTS),
1639 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAICOS),
1640 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_CAYMAN),
1641 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_R600_TURKS),
1642 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX600),
1643 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX601),
1644 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX602),
1645 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX700),
1646 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX701),
1647 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX702),
1648 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX703),
1649 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX704),
1650 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX705),
1651 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX801),
1652 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX802),
1653 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX803),
1654 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX805),
1655 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX810),
1656 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX900),
1657 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX902),
1658 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX904),
1659 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX906),
1660 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX908),
1661 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX909),
1662 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90A),
1663 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX90C),
1664 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX940),
1665 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX941),
1666 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX942),
1667 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1010),
1668 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1011),
1669 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1012),
1670 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1013),
1671 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1030),
1672 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1031),
1673 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1032),
1674 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1033),
1675 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1034),
1676 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1035),
1677 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1036),
1678 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1100),
1679 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1101),
1680 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1102),
1681 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1103),
1682 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1150),
1683 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_MACH_AMDGCN_GFX1151),
1684 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ANY_V4),
1685 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_OFF_V4),
1686 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_XNACK_ON_V4),
1687 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ANY_V4),
1688 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_OFF_V4),
1689 LLVM_READOBJ_ENUM_ENT(ELF, EF_AMDGPU_FEATURE_SRAMECC_ON_V4)
1692 const EnumEntry<unsigned> ElfHeaderRISCVFlags[] = {
1693 ENUM_ENT(EF_RISCV_RVC, "RVC"),
1694 ENUM_ENT(EF_RISCV_FLOAT_ABI_SINGLE, "single-float ABI"),
1695 ENUM_ENT(EF_RISCV_FLOAT_ABI_DOUBLE, "double-float ABI"),
1696 ENUM_ENT(EF_RISCV_FLOAT_ABI_QUAD, "quad-float ABI"),
1697 ENUM_ENT(EF_RISCV_RVE, "RVE"),
1698 ENUM_ENT(EF_RISCV_TSO, "TSO"),
1701 const EnumEntry<unsigned> ElfHeaderAVRFlags[] = {
1702 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR1),
1703 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR2),
1704 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR25),
1705 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR3),
1706 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR31),
1707 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR35),
1708 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR4),
1709 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR5),
1710 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR51),
1711 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVR6),
1712 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_AVRTINY),
1713 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA1),
1714 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA2),
1715 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA3),
1716 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA4),
1717 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA5),
1718 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA6),
1719 LLVM_READOBJ_ENUM_ENT(ELF, EF_AVR_ARCH_XMEGA7),
1720 ENUM_ENT(EF_AVR_LINKRELAX_PREPARED, "relaxable"),
1723 const EnumEntry<unsigned> ElfHeaderLoongArchFlags[] = {
1724 ENUM_ENT(EF_LOONGARCH_ABI_SOFT_FLOAT, "SOFT-FLOAT"),
1725 ENUM_ENT(EF_LOONGARCH_ABI_SINGLE_FLOAT, "SINGLE-FLOAT"),
1726 ENUM_ENT(EF_LOONGARCH_ABI_DOUBLE_FLOAT, "DOUBLE-FLOAT"),
1727 ENUM_ENT(EF_LOONGARCH_OBJABI_V0, "OBJ-v0"),
1728 ENUM_ENT(EF_LOONGARCH_OBJABI_V1, "OBJ-v1"),
1731 static const EnumEntry<unsigned> ElfHeaderXtensaFlags[] = {
1732 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_MACH_NONE),
1733 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_INSN),
1734 LLVM_READOBJ_ENUM_ENT(ELF, EF_XTENSA_XT_LIT)
1737 const EnumEntry<unsigned> ElfSymOtherFlags[] = {
1738 LLVM_READOBJ_ENUM_ENT(ELF, STV_INTERNAL),
1739 LLVM_READOBJ_ENUM_ENT(ELF, STV_HIDDEN),
1740 LLVM_READOBJ_ENUM_ENT(ELF, STV_PROTECTED)
1743 const EnumEntry<unsigned> ElfMipsSymOtherFlags[] = {
1744 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1745 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1746 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PIC),
1747 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MICROMIPS)
1750 const EnumEntry<unsigned> ElfAArch64SymOtherFlags[] = {
1751 LLVM_READOBJ_ENUM_ENT(ELF, STO_AARCH64_VARIANT_PCS)
1754 const EnumEntry<unsigned> ElfMips16SymOtherFlags[] = {
1755 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_OPTIONAL),
1756 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_PLT),
1757 LLVM_READOBJ_ENUM_ENT(ELF, STO_MIPS_MIPS16)
1760 const EnumEntry<unsigned> ElfRISCVSymOtherFlags[] = {
1761 LLVM_READOBJ_ENUM_ENT(ELF, STO_RISCV_VARIANT_CC)};
1763 static const char *getElfMipsOptionsOdkType(unsigned Odk) {
1764 switch (Odk) {
1765 LLVM_READOBJ_ENUM_CASE(ELF, ODK_NULL);
1766 LLVM_READOBJ_ENUM_CASE(ELF, ODK_REGINFO);
1767 LLVM_READOBJ_ENUM_CASE(ELF, ODK_EXCEPTIONS);
1768 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAD);
1769 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWPATCH);
1770 LLVM_READOBJ_ENUM_CASE(ELF, ODK_FILL);
1771 LLVM_READOBJ_ENUM_CASE(ELF, ODK_TAGS);
1772 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWAND);
1773 LLVM_READOBJ_ENUM_CASE(ELF, ODK_HWOR);
1774 LLVM_READOBJ_ENUM_CASE(ELF, ODK_GP_GROUP);
1775 LLVM_READOBJ_ENUM_CASE(ELF, ODK_IDENT);
1776 LLVM_READOBJ_ENUM_CASE(ELF, ODK_PAGESIZE);
1777 default:
1778 return "Unknown";
1782 template <typename ELFT>
1783 std::pair<const typename ELFT::Phdr *, const typename ELFT::Shdr *>
1784 ELFDumper<ELFT>::findDynamic() {
1785 // Try to locate the PT_DYNAMIC header.
1786 const Elf_Phdr *DynamicPhdr = nullptr;
1787 if (Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = Obj.program_headers()) {
1788 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
1789 if (Phdr.p_type != ELF::PT_DYNAMIC)
1790 continue;
1791 DynamicPhdr = &Phdr;
1792 break;
1794 } else {
1795 reportUniqueWarning(
1796 "unable to read program headers to locate the PT_DYNAMIC segment: " +
1797 toString(PhdrsOrErr.takeError()));
1800 // Try to locate the .dynamic section in the sections header table.
1801 const Elf_Shdr *DynamicSec = nullptr;
1802 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
1803 if (Sec.sh_type != ELF::SHT_DYNAMIC)
1804 continue;
1805 DynamicSec = &Sec;
1806 break;
1809 if (DynamicPhdr && ((DynamicPhdr->p_offset + DynamicPhdr->p_filesz >
1810 ObjF.getMemoryBufferRef().getBufferSize()) ||
1811 (DynamicPhdr->p_offset + DynamicPhdr->p_filesz <
1812 DynamicPhdr->p_offset))) {
1813 reportUniqueWarning(
1814 "PT_DYNAMIC segment offset (0x" +
1815 Twine::utohexstr(DynamicPhdr->p_offset) + ") + file size (0x" +
1816 Twine::utohexstr(DynamicPhdr->p_filesz) +
1817 ") exceeds the size of the file (0x" +
1818 Twine::utohexstr(ObjF.getMemoryBufferRef().getBufferSize()) + ")");
1819 // Don't use the broken dynamic header.
1820 DynamicPhdr = nullptr;
1823 if (DynamicPhdr && DynamicSec) {
1824 if (DynamicSec->sh_addr + DynamicSec->sh_size >
1825 DynamicPhdr->p_vaddr + DynamicPhdr->p_memsz ||
1826 DynamicSec->sh_addr < DynamicPhdr->p_vaddr)
1827 reportUniqueWarning(describe(*DynamicSec) +
1828 " is not contained within the "
1829 "PT_DYNAMIC segment");
1831 if (DynamicSec->sh_addr != DynamicPhdr->p_vaddr)
1832 reportUniqueWarning(describe(*DynamicSec) + " is not at the start of "
1833 "PT_DYNAMIC segment");
1836 return std::make_pair(DynamicPhdr, DynamicSec);
1839 template <typename ELFT>
1840 void ELFDumper<ELFT>::loadDynamicTable() {
1841 const Elf_Phdr *DynamicPhdr;
1842 const Elf_Shdr *DynamicSec;
1843 std::tie(DynamicPhdr, DynamicSec) = findDynamic();
1844 if (!DynamicPhdr && !DynamicSec)
1845 return;
1847 DynRegionInfo FromPhdr(ObjF, *this);
1848 bool IsPhdrTableValid = false;
1849 if (DynamicPhdr) {
1850 // Use cantFail(), because p_offset/p_filesz fields of a PT_DYNAMIC are
1851 // validated in findDynamic() and so createDRI() is not expected to fail.
1852 FromPhdr = cantFail(createDRI(DynamicPhdr->p_offset, DynamicPhdr->p_filesz,
1853 sizeof(Elf_Dyn)));
1854 FromPhdr.SizePrintName = "PT_DYNAMIC size";
1855 FromPhdr.EntSizePrintName = "";
1856 IsPhdrTableValid = !FromPhdr.template getAsArrayRef<Elf_Dyn>().empty();
1859 // Locate the dynamic table described in a section header.
1860 // Ignore sh_entsize and use the expected value for entry size explicitly.
1861 // This allows us to dump dynamic sections with a broken sh_entsize
1862 // field.
1863 DynRegionInfo FromSec(ObjF, *this);
1864 bool IsSecTableValid = false;
1865 if (DynamicSec) {
1866 Expected<DynRegionInfo> RegOrErr =
1867 createDRI(DynamicSec->sh_offset, DynamicSec->sh_size, sizeof(Elf_Dyn));
1868 if (RegOrErr) {
1869 FromSec = *RegOrErr;
1870 FromSec.Context = describe(*DynamicSec);
1871 FromSec.EntSizePrintName = "";
1872 IsSecTableValid = !FromSec.template getAsArrayRef<Elf_Dyn>().empty();
1873 } else {
1874 reportUniqueWarning("unable to read the dynamic table from " +
1875 describe(*DynamicSec) + ": " +
1876 toString(RegOrErr.takeError()));
1880 // When we only have information from one of the SHT_DYNAMIC section header or
1881 // PT_DYNAMIC program header, just use that.
1882 if (!DynamicPhdr || !DynamicSec) {
1883 if ((DynamicPhdr && IsPhdrTableValid) || (DynamicSec && IsSecTableValid)) {
1884 DynamicTable = DynamicPhdr ? FromPhdr : FromSec;
1885 parseDynamicTable();
1886 } else {
1887 reportUniqueWarning("no valid dynamic table was found");
1889 return;
1892 // At this point we have tables found from the section header and from the
1893 // dynamic segment. Usually they match, but we have to do sanity checks to
1894 // verify that.
1896 if (FromPhdr.Addr != FromSec.Addr)
1897 reportUniqueWarning("SHT_DYNAMIC section header and PT_DYNAMIC "
1898 "program header disagree about "
1899 "the location of the dynamic table");
1901 if (!IsPhdrTableValid && !IsSecTableValid) {
1902 reportUniqueWarning("no valid dynamic table was found");
1903 return;
1906 // Information in the PT_DYNAMIC program header has priority over the
1907 // information in a section header.
1908 if (IsPhdrTableValid) {
1909 if (!IsSecTableValid)
1910 reportUniqueWarning(
1911 "SHT_DYNAMIC dynamic table is invalid: PT_DYNAMIC will be used");
1912 DynamicTable = FromPhdr;
1913 } else {
1914 reportUniqueWarning(
1915 "PT_DYNAMIC dynamic table is invalid: SHT_DYNAMIC will be used");
1916 DynamicTable = FromSec;
1919 parseDynamicTable();
1922 template <typename ELFT>
1923 ELFDumper<ELFT>::ELFDumper(const object::ELFObjectFile<ELFT> &O,
1924 ScopedPrinter &Writer)
1925 : ObjDumper(Writer, O.getFileName()), ObjF(O), Obj(O.getELFFile()),
1926 FileName(O.getFileName()), DynRelRegion(O, *this),
1927 DynRelaRegion(O, *this), DynRelrRegion(O, *this),
1928 DynPLTRelRegion(O, *this), DynSymTabShndxRegion(O, *this),
1929 DynamicTable(O, *this) {
1930 if (!O.IsContentValid())
1931 return;
1933 typename ELFT::ShdrRange Sections = cantFail(Obj.sections());
1934 for (const Elf_Shdr &Sec : Sections) {
1935 switch (Sec.sh_type) {
1936 case ELF::SHT_SYMTAB:
1937 if (!DotSymtabSec)
1938 DotSymtabSec = &Sec;
1939 break;
1940 case ELF::SHT_DYNSYM:
1941 if (!DotDynsymSec)
1942 DotDynsymSec = &Sec;
1944 if (!DynSymRegion) {
1945 Expected<DynRegionInfo> RegOrErr =
1946 createDRI(Sec.sh_offset, Sec.sh_size, Sec.sh_entsize);
1947 if (RegOrErr) {
1948 DynSymRegion = *RegOrErr;
1949 DynSymRegion->Context = describe(Sec);
1951 if (Expected<StringRef> E = Obj.getStringTableForSymtab(Sec))
1952 DynamicStringTable = *E;
1953 else
1954 reportUniqueWarning("unable to get the string table for the " +
1955 describe(Sec) + ": " + toString(E.takeError()));
1956 } else {
1957 reportUniqueWarning("unable to read dynamic symbols from " +
1958 describe(Sec) + ": " +
1959 toString(RegOrErr.takeError()));
1962 break;
1963 case ELF::SHT_SYMTAB_SHNDX: {
1964 uint32_t SymtabNdx = Sec.sh_link;
1965 if (SymtabNdx >= Sections.size()) {
1966 reportUniqueWarning(
1967 "unable to get the associated symbol table for " + describe(Sec) +
1968 ": sh_link (" + Twine(SymtabNdx) +
1969 ") is greater than or equal to the total number of sections (" +
1970 Twine(Sections.size()) + ")");
1971 continue;
1974 if (Expected<ArrayRef<Elf_Word>> ShndxTableOrErr =
1975 Obj.getSHNDXTable(Sec)) {
1976 if (!ShndxTables.insert({&Sections[SymtabNdx], *ShndxTableOrErr})
1977 .second)
1978 reportUniqueWarning(
1979 "multiple SHT_SYMTAB_SHNDX sections are linked to " +
1980 describe(Sec));
1981 } else {
1982 reportUniqueWarning(ShndxTableOrErr.takeError());
1984 break;
1986 case ELF::SHT_GNU_versym:
1987 if (!SymbolVersionSection)
1988 SymbolVersionSection = &Sec;
1989 break;
1990 case ELF::SHT_GNU_verdef:
1991 if (!SymbolVersionDefSection)
1992 SymbolVersionDefSection = &Sec;
1993 break;
1994 case ELF::SHT_GNU_verneed:
1995 if (!SymbolVersionNeedSection)
1996 SymbolVersionNeedSection = &Sec;
1997 break;
1998 case ELF::SHT_LLVM_ADDRSIG:
1999 if (!DotAddrsigSec)
2000 DotAddrsigSec = &Sec;
2001 break;
2005 loadDynamicTable();
2008 template <typename ELFT> void ELFDumper<ELFT>::parseDynamicTable() {
2009 auto toMappedAddr = [&](uint64_t Tag, uint64_t VAddr) -> const uint8_t * {
2010 auto MappedAddrOrError = Obj.toMappedAddr(VAddr, [&](const Twine &Msg) {
2011 this->reportUniqueWarning(Msg);
2012 return Error::success();
2014 if (!MappedAddrOrError) {
2015 this->reportUniqueWarning("unable to parse DT_" +
2016 Obj.getDynamicTagAsString(Tag) + ": " +
2017 llvm::toString(MappedAddrOrError.takeError()));
2018 return nullptr;
2020 return MappedAddrOrError.get();
2023 const char *StringTableBegin = nullptr;
2024 uint64_t StringTableSize = 0;
2025 std::optional<DynRegionInfo> DynSymFromTable;
2026 for (const Elf_Dyn &Dyn : dynamic_table()) {
2027 switch (Dyn.d_tag) {
2028 case ELF::DT_HASH:
2029 HashTable = reinterpret_cast<const Elf_Hash *>(
2030 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2031 break;
2032 case ELF::DT_GNU_HASH:
2033 GnuHashTable = reinterpret_cast<const Elf_GnuHash *>(
2034 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2035 break;
2036 case ELF::DT_STRTAB:
2037 StringTableBegin = reinterpret_cast<const char *>(
2038 toMappedAddr(Dyn.getTag(), Dyn.getPtr()));
2039 break;
2040 case ELF::DT_STRSZ:
2041 StringTableSize = Dyn.getVal();
2042 break;
2043 case ELF::DT_SYMTAB: {
2044 // If we can't map the DT_SYMTAB value to an address (e.g. when there are
2045 // no program headers), we ignore its value.
2046 if (const uint8_t *VA = toMappedAddr(Dyn.getTag(), Dyn.getPtr())) {
2047 DynSymFromTable.emplace(ObjF, *this);
2048 DynSymFromTable->Addr = VA;
2049 DynSymFromTable->EntSize = sizeof(Elf_Sym);
2050 DynSymFromTable->EntSizePrintName = "";
2052 break;
2054 case ELF::DT_SYMENT: {
2055 uint64_t Val = Dyn.getVal();
2056 if (Val != sizeof(Elf_Sym))
2057 this->reportUniqueWarning("DT_SYMENT value of 0x" +
2058 Twine::utohexstr(Val) +
2059 " is not the size of a symbol (0x" +
2060 Twine::utohexstr(sizeof(Elf_Sym)) + ")");
2061 break;
2063 case ELF::DT_RELA:
2064 DynRelaRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2065 break;
2066 case ELF::DT_RELASZ:
2067 DynRelaRegion.Size = Dyn.getVal();
2068 DynRelaRegion.SizePrintName = "DT_RELASZ value";
2069 break;
2070 case ELF::DT_RELAENT:
2071 DynRelaRegion.EntSize = Dyn.getVal();
2072 DynRelaRegion.EntSizePrintName = "DT_RELAENT value";
2073 break;
2074 case ELF::DT_SONAME:
2075 SONameOffset = Dyn.getVal();
2076 break;
2077 case ELF::DT_REL:
2078 DynRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2079 break;
2080 case ELF::DT_RELSZ:
2081 DynRelRegion.Size = Dyn.getVal();
2082 DynRelRegion.SizePrintName = "DT_RELSZ value";
2083 break;
2084 case ELF::DT_RELENT:
2085 DynRelRegion.EntSize = Dyn.getVal();
2086 DynRelRegion.EntSizePrintName = "DT_RELENT value";
2087 break;
2088 case ELF::DT_RELR:
2089 case ELF::DT_ANDROID_RELR:
2090 DynRelrRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2091 break;
2092 case ELF::DT_RELRSZ:
2093 case ELF::DT_ANDROID_RELRSZ:
2094 DynRelrRegion.Size = Dyn.getVal();
2095 DynRelrRegion.SizePrintName = Dyn.d_tag == ELF::DT_RELRSZ
2096 ? "DT_RELRSZ value"
2097 : "DT_ANDROID_RELRSZ value";
2098 break;
2099 case ELF::DT_RELRENT:
2100 case ELF::DT_ANDROID_RELRENT:
2101 DynRelrRegion.EntSize = Dyn.getVal();
2102 DynRelrRegion.EntSizePrintName = Dyn.d_tag == ELF::DT_RELRENT
2103 ? "DT_RELRENT value"
2104 : "DT_ANDROID_RELRENT value";
2105 break;
2106 case ELF::DT_PLTREL:
2107 if (Dyn.getVal() == DT_REL)
2108 DynPLTRelRegion.EntSize = sizeof(Elf_Rel);
2109 else if (Dyn.getVal() == DT_RELA)
2110 DynPLTRelRegion.EntSize = sizeof(Elf_Rela);
2111 else
2112 reportUniqueWarning(Twine("unknown DT_PLTREL value of ") +
2113 Twine((uint64_t)Dyn.getVal()));
2114 DynPLTRelRegion.EntSizePrintName = "PLTREL entry size";
2115 break;
2116 case ELF::DT_JMPREL:
2117 DynPLTRelRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2118 break;
2119 case ELF::DT_PLTRELSZ:
2120 DynPLTRelRegion.Size = Dyn.getVal();
2121 DynPLTRelRegion.SizePrintName = "DT_PLTRELSZ value";
2122 break;
2123 case ELF::DT_SYMTAB_SHNDX:
2124 DynSymTabShndxRegion.Addr = toMappedAddr(Dyn.getTag(), Dyn.getPtr());
2125 DynSymTabShndxRegion.EntSize = sizeof(Elf_Word);
2126 break;
2130 if (StringTableBegin) {
2131 const uint64_t FileSize = Obj.getBufSize();
2132 const uint64_t Offset = (const uint8_t *)StringTableBegin - Obj.base();
2133 if (StringTableSize > FileSize - Offset)
2134 reportUniqueWarning(
2135 "the dynamic string table at 0x" + Twine::utohexstr(Offset) +
2136 " goes past the end of the file (0x" + Twine::utohexstr(FileSize) +
2137 ") with DT_STRSZ = 0x" + Twine::utohexstr(StringTableSize));
2138 else
2139 DynamicStringTable = StringRef(StringTableBegin, StringTableSize);
2142 const bool IsHashTableSupported = getHashTableEntSize() == 4;
2143 if (DynSymRegion) {
2144 // Often we find the information about the dynamic symbol table
2145 // location in the SHT_DYNSYM section header. However, the value in
2146 // DT_SYMTAB has priority, because it is used by dynamic loaders to
2147 // locate .dynsym at runtime. The location we find in the section header
2148 // and the location we find here should match.
2149 if (DynSymFromTable && DynSymFromTable->Addr != DynSymRegion->Addr)
2150 reportUniqueWarning(
2151 createError("SHT_DYNSYM section header and DT_SYMTAB disagree about "
2152 "the location of the dynamic symbol table"));
2154 // According to the ELF gABI: "The number of symbol table entries should
2155 // equal nchain". Check to see if the DT_HASH hash table nchain value
2156 // conflicts with the number of symbols in the dynamic symbol table
2157 // according to the section header.
2158 if (HashTable && IsHashTableSupported) {
2159 if (DynSymRegion->EntSize == 0)
2160 reportUniqueWarning("SHT_DYNSYM section has sh_entsize == 0");
2161 else if (HashTable->nchain != DynSymRegion->Size / DynSymRegion->EntSize)
2162 reportUniqueWarning(
2163 "hash table nchain (" + Twine(HashTable->nchain) +
2164 ") differs from symbol count derived from SHT_DYNSYM section "
2165 "header (" +
2166 Twine(DynSymRegion->Size / DynSymRegion->EntSize) + ")");
2170 // Delay the creation of the actual dynamic symbol table until now, so that
2171 // checks can always be made against the section header-based properties,
2172 // without worrying about tag order.
2173 if (DynSymFromTable) {
2174 if (!DynSymRegion) {
2175 DynSymRegion = DynSymFromTable;
2176 } else {
2177 DynSymRegion->Addr = DynSymFromTable->Addr;
2178 DynSymRegion->EntSize = DynSymFromTable->EntSize;
2179 DynSymRegion->EntSizePrintName = DynSymFromTable->EntSizePrintName;
2183 // Derive the dynamic symbol table size from the DT_HASH hash table, if
2184 // present.
2185 if (HashTable && IsHashTableSupported && DynSymRegion) {
2186 const uint64_t FileSize = Obj.getBufSize();
2187 const uint64_t DerivedSize =
2188 (uint64_t)HashTable->nchain * DynSymRegion->EntSize;
2189 const uint64_t Offset = (const uint8_t *)DynSymRegion->Addr - Obj.base();
2190 if (DerivedSize > FileSize - Offset)
2191 reportUniqueWarning(
2192 "the size (0x" + Twine::utohexstr(DerivedSize) +
2193 ") of the dynamic symbol table at 0x" + Twine::utohexstr(Offset) +
2194 ", derived from the hash table, goes past the end of the file (0x" +
2195 Twine::utohexstr(FileSize) + ") and will be ignored");
2196 else
2197 DynSymRegion->Size = HashTable->nchain * DynSymRegion->EntSize;
2201 template <typename ELFT> void ELFDumper<ELFT>::printVersionInfo() {
2202 // Dump version symbol section.
2203 printVersionSymbolSection(SymbolVersionSection);
2205 // Dump version definition section.
2206 printVersionDefinitionSection(SymbolVersionDefSection);
2208 // Dump version dependency section.
2209 printVersionDependencySection(SymbolVersionNeedSection);
2212 #define LLVM_READOBJ_DT_FLAG_ENT(prefix, enum) \
2213 { #enum, prefix##_##enum }
2215 const EnumEntry<unsigned> ElfDynamicDTFlags[] = {
2216 LLVM_READOBJ_DT_FLAG_ENT(DF, ORIGIN),
2217 LLVM_READOBJ_DT_FLAG_ENT(DF, SYMBOLIC),
2218 LLVM_READOBJ_DT_FLAG_ENT(DF, TEXTREL),
2219 LLVM_READOBJ_DT_FLAG_ENT(DF, BIND_NOW),
2220 LLVM_READOBJ_DT_FLAG_ENT(DF, STATIC_TLS)
2223 const EnumEntry<unsigned> ElfDynamicDTFlags1[] = {
2224 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOW),
2225 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAL),
2226 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GROUP),
2227 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODELETE),
2228 LLVM_READOBJ_DT_FLAG_ENT(DF_1, LOADFLTR),
2229 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INITFIRST),
2230 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOOPEN),
2231 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ORIGIN),
2232 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DIRECT),
2233 LLVM_READOBJ_DT_FLAG_ENT(DF_1, TRANS),
2234 LLVM_READOBJ_DT_FLAG_ENT(DF_1, INTERPOSE),
2235 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODEFLIB),
2236 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODUMP),
2237 LLVM_READOBJ_DT_FLAG_ENT(DF_1, CONFALT),
2238 LLVM_READOBJ_DT_FLAG_ENT(DF_1, ENDFILTEE),
2239 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELDNE),
2240 LLVM_READOBJ_DT_FLAG_ENT(DF_1, DISPRELPND),
2241 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NODIRECT),
2242 LLVM_READOBJ_DT_FLAG_ENT(DF_1, IGNMULDEF),
2243 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOKSYMS),
2244 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NOHDR),
2245 LLVM_READOBJ_DT_FLAG_ENT(DF_1, EDITED),
2246 LLVM_READOBJ_DT_FLAG_ENT(DF_1, NORELOC),
2247 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SYMINTPOSE),
2248 LLVM_READOBJ_DT_FLAG_ENT(DF_1, GLOBAUDIT),
2249 LLVM_READOBJ_DT_FLAG_ENT(DF_1, SINGLETON),
2250 LLVM_READOBJ_DT_FLAG_ENT(DF_1, PIE),
2253 const EnumEntry<unsigned> ElfDynamicDTMipsFlags[] = {
2254 LLVM_READOBJ_DT_FLAG_ENT(RHF, NONE),
2255 LLVM_READOBJ_DT_FLAG_ENT(RHF, QUICKSTART),
2256 LLVM_READOBJ_DT_FLAG_ENT(RHF, NOTPOT),
2257 LLVM_READOBJ_DT_FLAG_ENT(RHS, NO_LIBRARY_REPLACEMENT),
2258 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_MOVE),
2259 LLVM_READOBJ_DT_FLAG_ENT(RHF, SGI_ONLY),
2260 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_INIT),
2261 LLVM_READOBJ_DT_FLAG_ENT(RHF, DELTA_C_PLUS_PLUS),
2262 LLVM_READOBJ_DT_FLAG_ENT(RHF, GUARANTEE_START_INIT),
2263 LLVM_READOBJ_DT_FLAG_ENT(RHF, PIXIE),
2264 LLVM_READOBJ_DT_FLAG_ENT(RHF, DEFAULT_DELAY_LOAD),
2265 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTART),
2266 LLVM_READOBJ_DT_FLAG_ENT(RHF, REQUICKSTARTED),
2267 LLVM_READOBJ_DT_FLAG_ENT(RHF, CORD),
2268 LLVM_READOBJ_DT_FLAG_ENT(RHF, NO_UNRES_UNDEF),
2269 LLVM_READOBJ_DT_FLAG_ENT(RHF, RLD_ORDER_SAFE)
2272 #undef LLVM_READOBJ_DT_FLAG_ENT
2274 template <typename T, typename TFlag>
2275 void printFlags(T Value, ArrayRef<EnumEntry<TFlag>> Flags, raw_ostream &OS) {
2276 SmallVector<EnumEntry<TFlag>, 10> SetFlags;
2277 for (const EnumEntry<TFlag> &Flag : Flags)
2278 if (Flag.Value != 0 && (Value & Flag.Value) == Flag.Value)
2279 SetFlags.push_back(Flag);
2281 for (const EnumEntry<TFlag> &Flag : SetFlags)
2282 OS << Flag.Name << " ";
2285 template <class ELFT>
2286 const typename ELFT::Shdr *
2287 ELFDumper<ELFT>::findSectionByName(StringRef Name) const {
2288 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
2289 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Shdr)) {
2290 if (*NameOrErr == Name)
2291 return &Shdr;
2292 } else {
2293 reportUniqueWarning("unable to read the name of " + describe(Shdr) +
2294 ": " + toString(NameOrErr.takeError()));
2297 return nullptr;
2300 template <class ELFT>
2301 std::string ELFDumper<ELFT>::getDynamicEntry(uint64_t Type,
2302 uint64_t Value) const {
2303 auto FormatHexValue = [](uint64_t V) {
2304 std::string Str;
2305 raw_string_ostream OS(Str);
2306 const char *ConvChar =
2307 (opts::Output == opts::GNU) ? "0x%" PRIx64 : "0x%" PRIX64;
2308 OS << format(ConvChar, V);
2309 return OS.str();
2312 auto FormatFlags = [](uint64_t V,
2313 llvm::ArrayRef<llvm::EnumEntry<unsigned int>> Array) {
2314 std::string Str;
2315 raw_string_ostream OS(Str);
2316 printFlags(V, Array, OS);
2317 return OS.str();
2320 // Handle custom printing of architecture specific tags
2321 switch (Obj.getHeader().e_machine) {
2322 case EM_AARCH64:
2323 switch (Type) {
2324 case DT_AARCH64_BTI_PLT:
2325 case DT_AARCH64_PAC_PLT:
2326 case DT_AARCH64_VARIANT_PCS:
2327 case DT_AARCH64_MEMTAG_GLOBALSSZ:
2328 return std::to_string(Value);
2329 case DT_AARCH64_MEMTAG_MODE:
2330 switch (Value) {
2331 case 0:
2332 return "Synchronous (0)";
2333 case 1:
2334 return "Asynchronous (1)";
2335 default:
2336 return (Twine("Unknown (") + Twine(Value) + ")").str();
2338 case DT_AARCH64_MEMTAG_HEAP:
2339 case DT_AARCH64_MEMTAG_STACK:
2340 switch (Value) {
2341 case 0:
2342 return "Disabled (0)";
2343 case 1:
2344 return "Enabled (1)";
2345 default:
2346 return (Twine("Unknown (") + Twine(Value) + ")").str();
2348 case DT_AARCH64_MEMTAG_GLOBALS:
2349 return (Twine("0x") + utohexstr(Value, /*LowerCase=*/true)).str();
2350 default:
2351 break;
2353 break;
2354 case EM_HEXAGON:
2355 switch (Type) {
2356 case DT_HEXAGON_VER:
2357 return std::to_string(Value);
2358 case DT_HEXAGON_SYMSZ:
2359 case DT_HEXAGON_PLT:
2360 return FormatHexValue(Value);
2361 default:
2362 break;
2364 break;
2365 case EM_MIPS:
2366 switch (Type) {
2367 case DT_MIPS_RLD_VERSION:
2368 case DT_MIPS_LOCAL_GOTNO:
2369 case DT_MIPS_SYMTABNO:
2370 case DT_MIPS_UNREFEXTNO:
2371 return std::to_string(Value);
2372 case DT_MIPS_TIME_STAMP:
2373 case DT_MIPS_ICHECKSUM:
2374 case DT_MIPS_IVERSION:
2375 case DT_MIPS_BASE_ADDRESS:
2376 case DT_MIPS_MSYM:
2377 case DT_MIPS_CONFLICT:
2378 case DT_MIPS_LIBLIST:
2379 case DT_MIPS_CONFLICTNO:
2380 case DT_MIPS_LIBLISTNO:
2381 case DT_MIPS_GOTSYM:
2382 case DT_MIPS_HIPAGENO:
2383 case DT_MIPS_RLD_MAP:
2384 case DT_MIPS_DELTA_CLASS:
2385 case DT_MIPS_DELTA_CLASS_NO:
2386 case DT_MIPS_DELTA_INSTANCE:
2387 case DT_MIPS_DELTA_RELOC:
2388 case DT_MIPS_DELTA_RELOC_NO:
2389 case DT_MIPS_DELTA_SYM:
2390 case DT_MIPS_DELTA_SYM_NO:
2391 case DT_MIPS_DELTA_CLASSSYM:
2392 case DT_MIPS_DELTA_CLASSSYM_NO:
2393 case DT_MIPS_CXX_FLAGS:
2394 case DT_MIPS_PIXIE_INIT:
2395 case DT_MIPS_SYMBOL_LIB:
2396 case DT_MIPS_LOCALPAGE_GOTIDX:
2397 case DT_MIPS_LOCAL_GOTIDX:
2398 case DT_MIPS_HIDDEN_GOTIDX:
2399 case DT_MIPS_PROTECTED_GOTIDX:
2400 case DT_MIPS_OPTIONS:
2401 case DT_MIPS_INTERFACE:
2402 case DT_MIPS_DYNSTR_ALIGN:
2403 case DT_MIPS_INTERFACE_SIZE:
2404 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
2405 case DT_MIPS_PERF_SUFFIX:
2406 case DT_MIPS_COMPACT_SIZE:
2407 case DT_MIPS_GP_VALUE:
2408 case DT_MIPS_AUX_DYNAMIC:
2409 case DT_MIPS_PLTGOT:
2410 case DT_MIPS_RWPLT:
2411 case DT_MIPS_RLD_MAP_REL:
2412 case DT_MIPS_XHASH:
2413 return FormatHexValue(Value);
2414 case DT_MIPS_FLAGS:
2415 return FormatFlags(Value, ArrayRef(ElfDynamicDTMipsFlags));
2416 default:
2417 break;
2419 break;
2420 default:
2421 break;
2424 switch (Type) {
2425 case DT_PLTREL:
2426 if (Value == DT_REL)
2427 return "REL";
2428 if (Value == DT_RELA)
2429 return "RELA";
2430 [[fallthrough]];
2431 case DT_PLTGOT:
2432 case DT_HASH:
2433 case DT_STRTAB:
2434 case DT_SYMTAB:
2435 case DT_RELA:
2436 case DT_INIT:
2437 case DT_FINI:
2438 case DT_REL:
2439 case DT_JMPREL:
2440 case DT_INIT_ARRAY:
2441 case DT_FINI_ARRAY:
2442 case DT_PREINIT_ARRAY:
2443 case DT_DEBUG:
2444 case DT_VERDEF:
2445 case DT_VERNEED:
2446 case DT_VERSYM:
2447 case DT_GNU_HASH:
2448 case DT_NULL:
2449 return FormatHexValue(Value);
2450 case DT_RELACOUNT:
2451 case DT_RELCOUNT:
2452 case DT_VERDEFNUM:
2453 case DT_VERNEEDNUM:
2454 return std::to_string(Value);
2455 case DT_PLTRELSZ:
2456 case DT_RELASZ:
2457 case DT_RELAENT:
2458 case DT_STRSZ:
2459 case DT_SYMENT:
2460 case DT_RELSZ:
2461 case DT_RELENT:
2462 case DT_INIT_ARRAYSZ:
2463 case DT_FINI_ARRAYSZ:
2464 case DT_PREINIT_ARRAYSZ:
2465 case DT_RELRSZ:
2466 case DT_RELRENT:
2467 case DT_ANDROID_RELSZ:
2468 case DT_ANDROID_RELASZ:
2469 return std::to_string(Value) + " (bytes)";
2470 case DT_NEEDED:
2471 case DT_SONAME:
2472 case DT_AUXILIARY:
2473 case DT_USED:
2474 case DT_FILTER:
2475 case DT_RPATH:
2476 case DT_RUNPATH: {
2477 const std::map<uint64_t, const char *> TagNames = {
2478 {DT_NEEDED, "Shared library"}, {DT_SONAME, "Library soname"},
2479 {DT_AUXILIARY, "Auxiliary library"}, {DT_USED, "Not needed object"},
2480 {DT_FILTER, "Filter library"}, {DT_RPATH, "Library rpath"},
2481 {DT_RUNPATH, "Library runpath"},
2484 return (Twine(TagNames.at(Type)) + ": [" + getDynamicString(Value) + "]")
2485 .str();
2487 case DT_FLAGS:
2488 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags));
2489 case DT_FLAGS_1:
2490 return FormatFlags(Value, ArrayRef(ElfDynamicDTFlags1));
2491 default:
2492 return FormatHexValue(Value);
2496 template <class ELFT>
2497 StringRef ELFDumper<ELFT>::getDynamicString(uint64_t Value) const {
2498 if (DynamicStringTable.empty() && !DynamicStringTable.data()) {
2499 reportUniqueWarning("string table was not found");
2500 return "<?>";
2503 auto WarnAndReturn = [this](const Twine &Msg, uint64_t Offset) {
2504 reportUniqueWarning("string table at offset 0x" + Twine::utohexstr(Offset) +
2505 Msg);
2506 return "<?>";
2509 const uint64_t FileSize = Obj.getBufSize();
2510 const uint64_t Offset =
2511 (const uint8_t *)DynamicStringTable.data() - Obj.base();
2512 if (DynamicStringTable.size() > FileSize - Offset)
2513 return WarnAndReturn(" with size 0x" +
2514 Twine::utohexstr(DynamicStringTable.size()) +
2515 " goes past the end of the file (0x" +
2516 Twine::utohexstr(FileSize) + ")",
2517 Offset);
2519 if (Value >= DynamicStringTable.size())
2520 return WarnAndReturn(
2521 ": unable to read the string at 0x" + Twine::utohexstr(Offset + Value) +
2522 ": it goes past the end of the table (0x" +
2523 Twine::utohexstr(Offset + DynamicStringTable.size()) + ")",
2524 Offset);
2526 if (DynamicStringTable.back() != '\0')
2527 return WarnAndReturn(": unable to read the string at 0x" +
2528 Twine::utohexstr(Offset + Value) +
2529 ": the string table is not null-terminated",
2530 Offset);
2532 return DynamicStringTable.data() + Value;
2535 template <class ELFT> void ELFDumper<ELFT>::printUnwindInfo() {
2536 DwarfCFIEH::PrinterContext<ELFT> Ctx(W, ObjF);
2537 Ctx.printUnwindInformation();
2540 // The namespace is needed to fix the compilation with GCC older than 7.0+.
2541 namespace {
2542 template <> void ELFDumper<ELF32LE>::printUnwindInfo() {
2543 if (Obj.getHeader().e_machine == EM_ARM) {
2544 ARM::EHABI::PrinterContext<ELF32LE> Ctx(W, Obj, ObjF.getFileName(),
2545 DotSymtabSec);
2546 Ctx.PrintUnwindInformation();
2548 DwarfCFIEH::PrinterContext<ELF32LE> Ctx(W, ObjF);
2549 Ctx.printUnwindInformation();
2551 } // namespace
2553 template <class ELFT> void ELFDumper<ELFT>::printNeededLibraries() {
2554 ListScope D(W, "NeededLibraries");
2556 std::vector<StringRef> Libs;
2557 for (const auto &Entry : dynamic_table())
2558 if (Entry.d_tag == ELF::DT_NEEDED)
2559 Libs.push_back(getDynamicString(Entry.d_un.d_val));
2561 llvm::sort(Libs);
2563 for (StringRef L : Libs)
2564 W.startLine() << L << "\n";
2567 template <class ELFT>
2568 static Error checkHashTable(const ELFDumper<ELFT> &Dumper,
2569 const typename ELFT::Hash *H,
2570 bool *IsHeaderValid = nullptr) {
2571 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
2572 const uint64_t SecOffset = (const uint8_t *)H - Obj.base();
2573 if (Dumper.getHashTableEntSize() == 8) {
2574 auto It = llvm::find_if(ElfMachineType, [&](const EnumEntry<unsigned> &E) {
2575 return E.Value == Obj.getHeader().e_machine;
2577 if (IsHeaderValid)
2578 *IsHeaderValid = false;
2579 return createError("the hash table at 0x" + Twine::utohexstr(SecOffset) +
2580 " is not supported: it contains non-standard 8 "
2581 "byte entries on " +
2582 It->AltName + " platform");
2585 auto MakeError = [&](const Twine &Msg = "") {
2586 return createError("the hash table at offset 0x" +
2587 Twine::utohexstr(SecOffset) +
2588 " goes past the end of the file (0x" +
2589 Twine::utohexstr(Obj.getBufSize()) + ")" + Msg);
2592 // Each SHT_HASH section starts from two 32-bit fields: nbucket and nchain.
2593 const unsigned HeaderSize = 2 * sizeof(typename ELFT::Word);
2595 if (IsHeaderValid)
2596 *IsHeaderValid = Obj.getBufSize() - SecOffset >= HeaderSize;
2598 if (Obj.getBufSize() - SecOffset < HeaderSize)
2599 return MakeError();
2601 if (Obj.getBufSize() - SecOffset - HeaderSize <
2602 ((uint64_t)H->nbucket + H->nchain) * sizeof(typename ELFT::Word))
2603 return MakeError(", nbucket = " + Twine(H->nbucket) +
2604 ", nchain = " + Twine(H->nchain));
2605 return Error::success();
2608 template <class ELFT>
2609 static Error checkGNUHashTable(const ELFFile<ELFT> &Obj,
2610 const typename ELFT::GnuHash *GnuHashTable,
2611 bool *IsHeaderValid = nullptr) {
2612 const uint8_t *TableData = reinterpret_cast<const uint8_t *>(GnuHashTable);
2613 assert(TableData >= Obj.base() && TableData < Obj.base() + Obj.getBufSize() &&
2614 "GnuHashTable must always point to a location inside the file");
2616 uint64_t TableOffset = TableData - Obj.base();
2617 if (IsHeaderValid)
2618 *IsHeaderValid = TableOffset + /*Header size:*/ 16 < Obj.getBufSize();
2619 if (TableOffset + 16 + (uint64_t)GnuHashTable->nbuckets * 4 +
2620 (uint64_t)GnuHashTable->maskwords * sizeof(typename ELFT::Off) >=
2621 Obj.getBufSize())
2622 return createError("unable to dump the SHT_GNU_HASH "
2623 "section at 0x" +
2624 Twine::utohexstr(TableOffset) +
2625 ": it goes past the end of the file");
2626 return Error::success();
2629 template <typename ELFT> void ELFDumper<ELFT>::printHashTable() {
2630 DictScope D(W, "HashTable");
2631 if (!HashTable)
2632 return;
2634 bool IsHeaderValid;
2635 Error Err = checkHashTable(*this, HashTable, &IsHeaderValid);
2636 if (IsHeaderValid) {
2637 W.printNumber("Num Buckets", HashTable->nbucket);
2638 W.printNumber("Num Chains", HashTable->nchain);
2641 if (Err) {
2642 reportUniqueWarning(std::move(Err));
2643 return;
2646 W.printList("Buckets", HashTable->buckets());
2647 W.printList("Chains", HashTable->chains());
2650 template <class ELFT>
2651 static Expected<ArrayRef<typename ELFT::Word>>
2652 getGnuHashTableChains(std::optional<DynRegionInfo> DynSymRegion,
2653 const typename ELFT::GnuHash *GnuHashTable) {
2654 if (!DynSymRegion)
2655 return createError("no dynamic symbol table found");
2657 ArrayRef<typename ELFT::Sym> DynSymTable =
2658 DynSymRegion->template getAsArrayRef<typename ELFT::Sym>();
2659 size_t NumSyms = DynSymTable.size();
2660 if (!NumSyms)
2661 return createError("the dynamic symbol table is empty");
2663 if (GnuHashTable->symndx < NumSyms)
2664 return GnuHashTable->values(NumSyms);
2666 // A normal empty GNU hash table section produced by linker might have
2667 // symndx set to the number of dynamic symbols + 1 (for the zero symbol)
2668 // and have dummy null values in the Bloom filter and in the buckets
2669 // vector (or no values at all). It happens because the value of symndx is not
2670 // important for dynamic loaders when the GNU hash table is empty. They just
2671 // skip the whole object during symbol lookup. In such cases, the symndx value
2672 // is irrelevant and we should not report a warning.
2673 ArrayRef<typename ELFT::Word> Buckets = GnuHashTable->buckets();
2674 if (!llvm::all_of(Buckets, [](typename ELFT::Word V) { return V == 0; }))
2675 return createError(
2676 "the first hashed symbol index (" + Twine(GnuHashTable->symndx) +
2677 ") is greater than or equal to the number of dynamic symbols (" +
2678 Twine(NumSyms) + ")");
2679 // There is no way to represent an array of (dynamic symbols count - symndx)
2680 // length.
2681 return ArrayRef<typename ELFT::Word>();
2684 template <typename ELFT>
2685 void ELFDumper<ELFT>::printGnuHashTable() {
2686 DictScope D(W, "GnuHashTable");
2687 if (!GnuHashTable)
2688 return;
2690 bool IsHeaderValid;
2691 Error Err = checkGNUHashTable<ELFT>(Obj, GnuHashTable, &IsHeaderValid);
2692 if (IsHeaderValid) {
2693 W.printNumber("Num Buckets", GnuHashTable->nbuckets);
2694 W.printNumber("First Hashed Symbol Index", GnuHashTable->symndx);
2695 W.printNumber("Num Mask Words", GnuHashTable->maskwords);
2696 W.printNumber("Shift Count", GnuHashTable->shift2);
2699 if (Err) {
2700 reportUniqueWarning(std::move(Err));
2701 return;
2704 ArrayRef<typename ELFT::Off> BloomFilter = GnuHashTable->filter();
2705 W.printHexList("Bloom Filter", BloomFilter);
2707 ArrayRef<Elf_Word> Buckets = GnuHashTable->buckets();
2708 W.printList("Buckets", Buckets);
2710 Expected<ArrayRef<Elf_Word>> Chains =
2711 getGnuHashTableChains<ELFT>(DynSymRegion, GnuHashTable);
2712 if (!Chains) {
2713 reportUniqueWarning("unable to dump 'Values' for the SHT_GNU_HASH "
2714 "section: " +
2715 toString(Chains.takeError()));
2716 return;
2719 W.printHexList("Values", *Chains);
2722 template <typename ELFT> void ELFDumper<ELFT>::printHashHistograms() {
2723 // Print histogram for the .hash section.
2724 if (this->HashTable) {
2725 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
2726 this->reportUniqueWarning(std::move(E));
2727 else
2728 printHashHistogram(*this->HashTable);
2731 // Print histogram for the .gnu.hash section.
2732 if (this->GnuHashTable) {
2733 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
2734 this->reportUniqueWarning(std::move(E));
2735 else
2736 printGnuHashHistogram(*this->GnuHashTable);
2740 template <typename ELFT>
2741 void ELFDumper<ELFT>::printHashHistogram(const Elf_Hash &HashTable) const {
2742 size_t NBucket = HashTable.nbucket;
2743 size_t NChain = HashTable.nchain;
2744 ArrayRef<Elf_Word> Buckets = HashTable.buckets();
2745 ArrayRef<Elf_Word> Chains = HashTable.chains();
2746 size_t TotalSyms = 0;
2747 // If hash table is correct, we have at least chains with 0 length.
2748 size_t MaxChain = 1;
2750 if (NChain == 0 || NBucket == 0)
2751 return;
2753 std::vector<size_t> ChainLen(NBucket, 0);
2754 // Go over all buckets and note chain lengths of each bucket (total
2755 // unique chain lengths).
2756 for (size_t B = 0; B < NBucket; ++B) {
2757 BitVector Visited(NChain);
2758 for (size_t C = Buckets[B]; C < NChain; C = Chains[C]) {
2759 if (C == ELF::STN_UNDEF)
2760 break;
2761 if (Visited[C]) {
2762 this->reportUniqueWarning(
2763 ".hash section is invalid: bucket " + Twine(C) +
2764 ": a cycle was detected in the linked chain");
2765 break;
2767 Visited[C] = true;
2768 if (MaxChain <= ++ChainLen[B])
2769 ++MaxChain;
2771 TotalSyms += ChainLen[B];
2774 if (!TotalSyms)
2775 return;
2777 std::vector<size_t> Count(MaxChain, 0);
2778 // Count how long is the chain for each bucket.
2779 for (size_t B = 0; B < NBucket; B++)
2780 ++Count[ChainLen[B]];
2781 // Print Number of buckets with each chain lengths and their cumulative
2782 // coverage of the symbols.
2783 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/false);
2786 template <class ELFT>
2787 void ELFDumper<ELFT>::printGnuHashHistogram(
2788 const Elf_GnuHash &GnuHashTable) const {
2789 Expected<ArrayRef<Elf_Word>> ChainsOrErr =
2790 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHashTable);
2791 if (!ChainsOrErr) {
2792 this->reportUniqueWarning("unable to print the GNU hash table histogram: " +
2793 toString(ChainsOrErr.takeError()));
2794 return;
2797 ArrayRef<Elf_Word> Chains = *ChainsOrErr;
2798 size_t Symndx = GnuHashTable.symndx;
2799 size_t TotalSyms = 0;
2800 size_t MaxChain = 1;
2802 size_t NBucket = GnuHashTable.nbuckets;
2803 if (Chains.empty() || NBucket == 0)
2804 return;
2806 ArrayRef<Elf_Word> Buckets = GnuHashTable.buckets();
2807 std::vector<size_t> ChainLen(NBucket, 0);
2808 for (size_t B = 0; B < NBucket; ++B) {
2809 if (!Buckets[B])
2810 continue;
2811 size_t Len = 1;
2812 for (size_t C = Buckets[B] - Symndx;
2813 C < Chains.size() && (Chains[C] & 1) == 0; ++C)
2814 if (MaxChain < ++Len)
2815 ++MaxChain;
2816 ChainLen[B] = Len;
2817 TotalSyms += Len;
2819 ++MaxChain;
2821 if (!TotalSyms)
2822 return;
2824 std::vector<size_t> Count(MaxChain, 0);
2825 for (size_t B = 0; B < NBucket; ++B)
2826 ++Count[ChainLen[B]];
2827 // Print Number of buckets with each chain lengths and their cumulative
2828 // coverage of the symbols.
2829 printHashHistogramStats(NBucket, MaxChain, TotalSyms, Count, /*IsGnu=*/true);
2832 template <typename ELFT> void ELFDumper<ELFT>::printLoadName() {
2833 StringRef SOName = "<Not found>";
2834 if (SONameOffset)
2835 SOName = getDynamicString(*SONameOffset);
2836 W.printString("LoadName", SOName);
2839 template <class ELFT> void ELFDumper<ELFT>::printArchSpecificInfo() {
2840 switch (Obj.getHeader().e_machine) {
2841 case EM_ARM:
2842 if (Obj.isLE())
2843 printAttributes(ELF::SHT_ARM_ATTRIBUTES,
2844 std::make_unique<ARMAttributeParser>(&W),
2845 llvm::endianness::little);
2846 else
2847 reportUniqueWarning("attribute printing not implemented for big-endian "
2848 "ARM objects");
2849 break;
2850 case EM_RISCV:
2851 if (Obj.isLE())
2852 printAttributes(ELF::SHT_RISCV_ATTRIBUTES,
2853 std::make_unique<RISCVAttributeParser>(&W),
2854 llvm::endianness::little);
2855 else
2856 reportUniqueWarning("attribute printing not implemented for big-endian "
2857 "RISC-V objects");
2858 break;
2859 case EM_MSP430:
2860 printAttributes(ELF::SHT_MSP430_ATTRIBUTES,
2861 std::make_unique<MSP430AttributeParser>(&W),
2862 llvm::endianness::little);
2863 break;
2864 case EM_MIPS: {
2865 printMipsABIFlags();
2866 printMipsOptions();
2867 printMipsReginfo();
2868 MipsGOTParser<ELFT> Parser(*this);
2869 if (Error E = Parser.findGOT(dynamic_table(), dynamic_symbols()))
2870 reportUniqueWarning(std::move(E));
2871 else if (!Parser.isGotEmpty())
2872 printMipsGOT(Parser);
2874 if (Error E = Parser.findPLT(dynamic_table()))
2875 reportUniqueWarning(std::move(E));
2876 else if (!Parser.isPltEmpty())
2877 printMipsPLT(Parser);
2878 break;
2880 default:
2881 break;
2885 template <class ELFT>
2886 void ELFDumper<ELFT>::printAttributes(
2887 unsigned AttrShType, std::unique_ptr<ELFAttributeParser> AttrParser,
2888 llvm::endianness Endianness) {
2889 assert((AttrShType != ELF::SHT_NULL) && AttrParser &&
2890 "Incomplete ELF attribute implementation");
2891 DictScope BA(W, "BuildAttributes");
2892 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
2893 if (Sec.sh_type != AttrShType)
2894 continue;
2896 ArrayRef<uint8_t> Contents;
2897 if (Expected<ArrayRef<uint8_t>> ContentOrErr =
2898 Obj.getSectionContents(Sec)) {
2899 Contents = *ContentOrErr;
2900 if (Contents.empty()) {
2901 reportUniqueWarning("the " + describe(Sec) + " is empty");
2902 continue;
2904 } else {
2905 reportUniqueWarning("unable to read the content of the " + describe(Sec) +
2906 ": " + toString(ContentOrErr.takeError()));
2907 continue;
2910 W.printHex("FormatVersion", Contents[0]);
2912 if (Error E = AttrParser->parse(Contents, Endianness))
2913 reportUniqueWarning("unable to dump attributes from the " +
2914 describe(Sec) + ": " + toString(std::move(E)));
2918 namespace {
2920 template <class ELFT> class MipsGOTParser {
2921 public:
2922 LLVM_ELF_IMPORT_TYPES_ELFT(ELFT)
2923 using Entry = typename ELFT::Addr;
2924 using Entries = ArrayRef<Entry>;
2926 const bool IsStatic;
2927 const ELFFile<ELFT> &Obj;
2928 const ELFDumper<ELFT> &Dumper;
2930 MipsGOTParser(const ELFDumper<ELFT> &D);
2931 Error findGOT(Elf_Dyn_Range DynTable, Elf_Sym_Range DynSyms);
2932 Error findPLT(Elf_Dyn_Range DynTable);
2934 bool isGotEmpty() const { return GotEntries.empty(); }
2935 bool isPltEmpty() const { return PltEntries.empty(); }
2937 uint64_t getGp() const;
2939 const Entry *getGotLazyResolver() const;
2940 const Entry *getGotModulePointer() const;
2941 const Entry *getPltLazyResolver() const;
2942 const Entry *getPltModulePointer() const;
2944 Entries getLocalEntries() const;
2945 Entries getGlobalEntries() const;
2946 Entries getOtherEntries() const;
2947 Entries getPltEntries() const;
2949 uint64_t getGotAddress(const Entry * E) const;
2950 int64_t getGotOffset(const Entry * E) const;
2951 const Elf_Sym *getGotSym(const Entry *E) const;
2953 uint64_t getPltAddress(const Entry * E) const;
2954 const Elf_Sym *getPltSym(const Entry *E) const;
2956 StringRef getPltStrTable() const { return PltStrTable; }
2957 const Elf_Shdr *getPltSymTable() const { return PltSymTable; }
2959 private:
2960 const Elf_Shdr *GotSec;
2961 size_t LocalNum;
2962 size_t GlobalNum;
2964 const Elf_Shdr *PltSec;
2965 const Elf_Shdr *PltRelSec;
2966 const Elf_Shdr *PltSymTable;
2967 StringRef FileName;
2969 Elf_Sym_Range GotDynSyms;
2970 StringRef PltStrTable;
2972 Entries GotEntries;
2973 Entries PltEntries;
2976 } // end anonymous namespace
2978 template <class ELFT>
2979 MipsGOTParser<ELFT>::MipsGOTParser(const ELFDumper<ELFT> &D)
2980 : IsStatic(D.dynamic_table().empty()), Obj(D.getElfObject().getELFFile()),
2981 Dumper(D), GotSec(nullptr), LocalNum(0), GlobalNum(0), PltSec(nullptr),
2982 PltRelSec(nullptr), PltSymTable(nullptr),
2983 FileName(D.getElfObject().getFileName()) {}
2985 template <class ELFT>
2986 Error MipsGOTParser<ELFT>::findGOT(Elf_Dyn_Range DynTable,
2987 Elf_Sym_Range DynSyms) {
2988 // See "Global Offset Table" in Chapter 5 in the following document
2989 // for detailed GOT description.
2990 // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
2992 // Find static GOT secton.
2993 if (IsStatic) {
2994 GotSec = Dumper.findSectionByName(".got");
2995 if (!GotSec)
2996 return Error::success();
2998 ArrayRef<uint8_t> Content =
2999 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3000 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3001 Content.size() / sizeof(Entry));
3002 LocalNum = GotEntries.size();
3003 return Error::success();
3006 // Lookup dynamic table tags which define the GOT layout.
3007 std::optional<uint64_t> DtPltGot;
3008 std::optional<uint64_t> DtLocalGotNum;
3009 std::optional<uint64_t> DtGotSym;
3010 for (const auto &Entry : DynTable) {
3011 switch (Entry.getTag()) {
3012 case ELF::DT_PLTGOT:
3013 DtPltGot = Entry.getVal();
3014 break;
3015 case ELF::DT_MIPS_LOCAL_GOTNO:
3016 DtLocalGotNum = Entry.getVal();
3017 break;
3018 case ELF::DT_MIPS_GOTSYM:
3019 DtGotSym = Entry.getVal();
3020 break;
3024 if (!DtPltGot && !DtLocalGotNum && !DtGotSym)
3025 return Error::success();
3027 if (!DtPltGot)
3028 return createError("cannot find PLTGOT dynamic tag");
3029 if (!DtLocalGotNum)
3030 return createError("cannot find MIPS_LOCAL_GOTNO dynamic tag");
3031 if (!DtGotSym)
3032 return createError("cannot find MIPS_GOTSYM dynamic tag");
3034 size_t DynSymTotal = DynSyms.size();
3035 if (*DtGotSym > DynSymTotal)
3036 return createError("DT_MIPS_GOTSYM value (" + Twine(*DtGotSym) +
3037 ") exceeds the number of dynamic symbols (" +
3038 Twine(DynSymTotal) + ")");
3040 GotSec = findNotEmptySectionByAddress(Obj, FileName, *DtPltGot);
3041 if (!GotSec)
3042 return createError("there is no non-empty GOT section at 0x" +
3043 Twine::utohexstr(*DtPltGot));
3045 LocalNum = *DtLocalGotNum;
3046 GlobalNum = DynSymTotal - *DtGotSym;
3048 ArrayRef<uint8_t> Content =
3049 unwrapOrError(FileName, Obj.getSectionContents(*GotSec));
3050 GotEntries = Entries(reinterpret_cast<const Entry *>(Content.data()),
3051 Content.size() / sizeof(Entry));
3052 GotDynSyms = DynSyms.drop_front(*DtGotSym);
3054 return Error::success();
3057 template <class ELFT>
3058 Error MipsGOTParser<ELFT>::findPLT(Elf_Dyn_Range DynTable) {
3059 // Lookup dynamic table tags which define the PLT layout.
3060 std::optional<uint64_t> DtMipsPltGot;
3061 std::optional<uint64_t> DtJmpRel;
3062 for (const auto &Entry : DynTable) {
3063 switch (Entry.getTag()) {
3064 case ELF::DT_MIPS_PLTGOT:
3065 DtMipsPltGot = Entry.getVal();
3066 break;
3067 case ELF::DT_JMPREL:
3068 DtJmpRel = Entry.getVal();
3069 break;
3073 if (!DtMipsPltGot && !DtJmpRel)
3074 return Error::success();
3076 // Find PLT section.
3077 if (!DtMipsPltGot)
3078 return createError("cannot find MIPS_PLTGOT dynamic tag");
3079 if (!DtJmpRel)
3080 return createError("cannot find JMPREL dynamic tag");
3082 PltSec = findNotEmptySectionByAddress(Obj, FileName, *DtMipsPltGot);
3083 if (!PltSec)
3084 return createError("there is no non-empty PLTGOT section at 0x" +
3085 Twine::utohexstr(*DtMipsPltGot));
3087 PltRelSec = findNotEmptySectionByAddress(Obj, FileName, *DtJmpRel);
3088 if (!PltRelSec)
3089 return createError("there is no non-empty RELPLT section at 0x" +
3090 Twine::utohexstr(*DtJmpRel));
3092 if (Expected<ArrayRef<uint8_t>> PltContentOrErr =
3093 Obj.getSectionContents(*PltSec))
3094 PltEntries =
3095 Entries(reinterpret_cast<const Entry *>(PltContentOrErr->data()),
3096 PltContentOrErr->size() / sizeof(Entry));
3097 else
3098 return createError("unable to read PLTGOT section content: " +
3099 toString(PltContentOrErr.takeError()));
3101 if (Expected<const Elf_Shdr *> PltSymTableOrErr =
3102 Obj.getSection(PltRelSec->sh_link))
3103 PltSymTable = *PltSymTableOrErr;
3104 else
3105 return createError("unable to get a symbol table linked to the " +
3106 describe(Obj, *PltRelSec) + ": " +
3107 toString(PltSymTableOrErr.takeError()));
3109 if (Expected<StringRef> StrTabOrErr =
3110 Obj.getStringTableForSymtab(*PltSymTable))
3111 PltStrTable = *StrTabOrErr;
3112 else
3113 return createError("unable to get a string table for the " +
3114 describe(Obj, *PltSymTable) + ": " +
3115 toString(StrTabOrErr.takeError()));
3117 return Error::success();
3120 template <class ELFT> uint64_t MipsGOTParser<ELFT>::getGp() const {
3121 return GotSec->sh_addr + 0x7ff0;
3124 template <class ELFT>
3125 const typename MipsGOTParser<ELFT>::Entry *
3126 MipsGOTParser<ELFT>::getGotLazyResolver() const {
3127 return LocalNum > 0 ? &GotEntries[0] : nullptr;
3130 template <class ELFT>
3131 const typename MipsGOTParser<ELFT>::Entry *
3132 MipsGOTParser<ELFT>::getGotModulePointer() const {
3133 if (LocalNum < 2)
3134 return nullptr;
3135 const Entry &E = GotEntries[1];
3136 if ((E >> (sizeof(Entry) * 8 - 1)) == 0)
3137 return nullptr;
3138 return &E;
3141 template <class ELFT>
3142 typename MipsGOTParser<ELFT>::Entries
3143 MipsGOTParser<ELFT>::getLocalEntries() const {
3144 size_t Skip = getGotModulePointer() ? 2 : 1;
3145 if (LocalNum - Skip <= 0)
3146 return Entries();
3147 return GotEntries.slice(Skip, LocalNum - Skip);
3150 template <class ELFT>
3151 typename MipsGOTParser<ELFT>::Entries
3152 MipsGOTParser<ELFT>::getGlobalEntries() const {
3153 if (GlobalNum == 0)
3154 return Entries();
3155 return GotEntries.slice(LocalNum, GlobalNum);
3158 template <class ELFT>
3159 typename MipsGOTParser<ELFT>::Entries
3160 MipsGOTParser<ELFT>::getOtherEntries() const {
3161 size_t OtherNum = GotEntries.size() - LocalNum - GlobalNum;
3162 if (OtherNum == 0)
3163 return Entries();
3164 return GotEntries.slice(LocalNum + GlobalNum, OtherNum);
3167 template <class ELFT>
3168 uint64_t MipsGOTParser<ELFT>::getGotAddress(const Entry *E) const {
3169 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3170 return GotSec->sh_addr + Offset;
3173 template <class ELFT>
3174 int64_t MipsGOTParser<ELFT>::getGotOffset(const Entry *E) const {
3175 int64_t Offset = std::distance(GotEntries.data(), E) * sizeof(Entry);
3176 return Offset - 0x7ff0;
3179 template <class ELFT>
3180 const typename MipsGOTParser<ELFT>::Elf_Sym *
3181 MipsGOTParser<ELFT>::getGotSym(const Entry *E) const {
3182 int64_t Offset = std::distance(GotEntries.data(), E);
3183 return &GotDynSyms[Offset - LocalNum];
3186 template <class ELFT>
3187 const typename MipsGOTParser<ELFT>::Entry *
3188 MipsGOTParser<ELFT>::getPltLazyResolver() const {
3189 return PltEntries.empty() ? nullptr : &PltEntries[0];
3192 template <class ELFT>
3193 const typename MipsGOTParser<ELFT>::Entry *
3194 MipsGOTParser<ELFT>::getPltModulePointer() const {
3195 return PltEntries.size() < 2 ? nullptr : &PltEntries[1];
3198 template <class ELFT>
3199 typename MipsGOTParser<ELFT>::Entries
3200 MipsGOTParser<ELFT>::getPltEntries() const {
3201 if (PltEntries.size() <= 2)
3202 return Entries();
3203 return PltEntries.slice(2, PltEntries.size() - 2);
3206 template <class ELFT>
3207 uint64_t MipsGOTParser<ELFT>::getPltAddress(const Entry *E) const {
3208 int64_t Offset = std::distance(PltEntries.data(), E) * sizeof(Entry);
3209 return PltSec->sh_addr + Offset;
3212 template <class ELFT>
3213 const typename MipsGOTParser<ELFT>::Elf_Sym *
3214 MipsGOTParser<ELFT>::getPltSym(const Entry *E) const {
3215 int64_t Offset = std::distance(getPltEntries().data(), E);
3216 if (PltRelSec->sh_type == ELF::SHT_REL) {
3217 Elf_Rel_Range Rels = unwrapOrError(FileName, Obj.rels(*PltRelSec));
3218 return unwrapOrError(FileName,
3219 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3220 } else {
3221 Elf_Rela_Range Rels = unwrapOrError(FileName, Obj.relas(*PltRelSec));
3222 return unwrapOrError(FileName,
3223 Obj.getRelocationSymbol(Rels[Offset], PltSymTable));
3227 const EnumEntry<unsigned> ElfMipsISAExtType[] = {
3228 {"None", Mips::AFL_EXT_NONE},
3229 {"Broadcom SB-1", Mips::AFL_EXT_SB1},
3230 {"Cavium Networks Octeon", Mips::AFL_EXT_OCTEON},
3231 {"Cavium Networks Octeon2", Mips::AFL_EXT_OCTEON2},
3232 {"Cavium Networks OcteonP", Mips::AFL_EXT_OCTEONP},
3233 {"Cavium Networks Octeon3", Mips::AFL_EXT_OCTEON3},
3234 {"LSI R4010", Mips::AFL_EXT_4010},
3235 {"Loongson 2E", Mips::AFL_EXT_LOONGSON_2E},
3236 {"Loongson 2F", Mips::AFL_EXT_LOONGSON_2F},
3237 {"Loongson 3A", Mips::AFL_EXT_LOONGSON_3A},
3238 {"MIPS R4650", Mips::AFL_EXT_4650},
3239 {"MIPS R5900", Mips::AFL_EXT_5900},
3240 {"MIPS R10000", Mips::AFL_EXT_10000},
3241 {"NEC VR4100", Mips::AFL_EXT_4100},
3242 {"NEC VR4111/VR4181", Mips::AFL_EXT_4111},
3243 {"NEC VR4120", Mips::AFL_EXT_4120},
3244 {"NEC VR5400", Mips::AFL_EXT_5400},
3245 {"NEC VR5500", Mips::AFL_EXT_5500},
3246 {"RMI Xlr", Mips::AFL_EXT_XLR},
3247 {"Toshiba R3900", Mips::AFL_EXT_3900}
3250 const EnumEntry<unsigned> ElfMipsASEFlags[] = {
3251 {"DSP", Mips::AFL_ASE_DSP},
3252 {"DSPR2", Mips::AFL_ASE_DSPR2},
3253 {"Enhanced VA Scheme", Mips::AFL_ASE_EVA},
3254 {"MCU", Mips::AFL_ASE_MCU},
3255 {"MDMX", Mips::AFL_ASE_MDMX},
3256 {"MIPS-3D", Mips::AFL_ASE_MIPS3D},
3257 {"MT", Mips::AFL_ASE_MT},
3258 {"SmartMIPS", Mips::AFL_ASE_SMARTMIPS},
3259 {"VZ", Mips::AFL_ASE_VIRT},
3260 {"MSA", Mips::AFL_ASE_MSA},
3261 {"MIPS16", Mips::AFL_ASE_MIPS16},
3262 {"microMIPS", Mips::AFL_ASE_MICROMIPS},
3263 {"XPA", Mips::AFL_ASE_XPA},
3264 {"CRC", Mips::AFL_ASE_CRC},
3265 {"GINV", Mips::AFL_ASE_GINV},
3268 const EnumEntry<unsigned> ElfMipsFpABIType[] = {
3269 {"Hard or soft float", Mips::Val_GNU_MIPS_ABI_FP_ANY},
3270 {"Hard float (double precision)", Mips::Val_GNU_MIPS_ABI_FP_DOUBLE},
3271 {"Hard float (single precision)", Mips::Val_GNU_MIPS_ABI_FP_SINGLE},
3272 {"Soft float", Mips::Val_GNU_MIPS_ABI_FP_SOFT},
3273 {"Hard float (MIPS32r2 64-bit FPU 12 callee-saved)",
3274 Mips::Val_GNU_MIPS_ABI_FP_OLD_64},
3275 {"Hard float (32-bit CPU, Any FPU)", Mips::Val_GNU_MIPS_ABI_FP_XX},
3276 {"Hard float (32-bit CPU, 64-bit FPU)", Mips::Val_GNU_MIPS_ABI_FP_64},
3277 {"Hard float compat (32-bit CPU, 64-bit FPU)",
3278 Mips::Val_GNU_MIPS_ABI_FP_64A}
3281 static const EnumEntry<unsigned> ElfMipsFlags1[] {
3282 {"ODDSPREG", Mips::AFL_FLAGS1_ODDSPREG},
3285 static int getMipsRegisterSize(uint8_t Flag) {
3286 switch (Flag) {
3287 case Mips::AFL_REG_NONE:
3288 return 0;
3289 case Mips::AFL_REG_32:
3290 return 32;
3291 case Mips::AFL_REG_64:
3292 return 64;
3293 case Mips::AFL_REG_128:
3294 return 128;
3295 default:
3296 return -1;
3300 template <class ELFT>
3301 static void printMipsReginfoData(ScopedPrinter &W,
3302 const Elf_Mips_RegInfo<ELFT> &Reginfo) {
3303 W.printHex("GP", Reginfo.ri_gp_value);
3304 W.printHex("General Mask", Reginfo.ri_gprmask);
3305 W.printHex("Co-Proc Mask0", Reginfo.ri_cprmask[0]);
3306 W.printHex("Co-Proc Mask1", Reginfo.ri_cprmask[1]);
3307 W.printHex("Co-Proc Mask2", Reginfo.ri_cprmask[2]);
3308 W.printHex("Co-Proc Mask3", Reginfo.ri_cprmask[3]);
3311 template <class ELFT> void ELFDumper<ELFT>::printMipsReginfo() {
3312 const Elf_Shdr *RegInfoSec = findSectionByName(".reginfo");
3313 if (!RegInfoSec) {
3314 W.startLine() << "There is no .reginfo section in the file.\n";
3315 return;
3318 Expected<ArrayRef<uint8_t>> ContentsOrErr =
3319 Obj.getSectionContents(*RegInfoSec);
3320 if (!ContentsOrErr) {
3321 this->reportUniqueWarning(
3322 "unable to read the content of the .reginfo section (" +
3323 describe(*RegInfoSec) + "): " + toString(ContentsOrErr.takeError()));
3324 return;
3327 if (ContentsOrErr->size() < sizeof(Elf_Mips_RegInfo<ELFT>)) {
3328 this->reportUniqueWarning("the .reginfo section has an invalid size (0x" +
3329 Twine::utohexstr(ContentsOrErr->size()) + ")");
3330 return;
3333 DictScope GS(W, "MIPS RegInfo");
3334 printMipsReginfoData(W, *reinterpret_cast<const Elf_Mips_RegInfo<ELFT> *>(
3335 ContentsOrErr->data()));
3338 template <class ELFT>
3339 static Expected<const Elf_Mips_Options<ELFT> *>
3340 readMipsOptions(const uint8_t *SecBegin, ArrayRef<uint8_t> &SecData,
3341 bool &IsSupported) {
3342 if (SecData.size() < sizeof(Elf_Mips_Options<ELFT>))
3343 return createError("the .MIPS.options section has an invalid size (0x" +
3344 Twine::utohexstr(SecData.size()) + ")");
3346 const Elf_Mips_Options<ELFT> *O =
3347 reinterpret_cast<const Elf_Mips_Options<ELFT> *>(SecData.data());
3348 const uint8_t Size = O->size;
3349 if (Size > SecData.size()) {
3350 const uint64_t Offset = SecData.data() - SecBegin;
3351 const uint64_t SecSize = Offset + SecData.size();
3352 return createError("a descriptor of size 0x" + Twine::utohexstr(Size) +
3353 " at offset 0x" + Twine::utohexstr(Offset) +
3354 " goes past the end of the .MIPS.options "
3355 "section of size 0x" +
3356 Twine::utohexstr(SecSize));
3359 IsSupported = O->kind == ODK_REGINFO;
3360 const size_t ExpectedSize =
3361 sizeof(Elf_Mips_Options<ELFT>) + sizeof(Elf_Mips_RegInfo<ELFT>);
3363 if (IsSupported)
3364 if (Size < ExpectedSize)
3365 return createError(
3366 "a .MIPS.options entry of kind " +
3367 Twine(getElfMipsOptionsOdkType(O->kind)) +
3368 " has an invalid size (0x" + Twine::utohexstr(Size) +
3369 "), the expected size is 0x" + Twine::utohexstr(ExpectedSize));
3371 SecData = SecData.drop_front(Size);
3372 return O;
3375 template <class ELFT> void ELFDumper<ELFT>::printMipsOptions() {
3376 const Elf_Shdr *MipsOpts = findSectionByName(".MIPS.options");
3377 if (!MipsOpts) {
3378 W.startLine() << "There is no .MIPS.options section in the file.\n";
3379 return;
3382 DictScope GS(W, "MIPS Options");
3384 ArrayRef<uint8_t> Data =
3385 unwrapOrError(ObjF.getFileName(), Obj.getSectionContents(*MipsOpts));
3386 const uint8_t *const SecBegin = Data.begin();
3387 while (!Data.empty()) {
3388 bool IsSupported;
3389 Expected<const Elf_Mips_Options<ELFT> *> OptsOrErr =
3390 readMipsOptions<ELFT>(SecBegin, Data, IsSupported);
3391 if (!OptsOrErr) {
3392 reportUniqueWarning(OptsOrErr.takeError());
3393 break;
3396 unsigned Kind = (*OptsOrErr)->kind;
3397 const char *Type = getElfMipsOptionsOdkType(Kind);
3398 if (!IsSupported) {
3399 W.startLine() << "Unsupported MIPS options tag: " << Type << " (" << Kind
3400 << ")\n";
3401 continue;
3404 DictScope GS(W, Type);
3405 if (Kind == ODK_REGINFO)
3406 printMipsReginfoData(W, (*OptsOrErr)->getRegInfo());
3407 else
3408 llvm_unreachable("unexpected .MIPS.options section descriptor kind");
3412 template <class ELFT> void ELFDumper<ELFT>::printStackMap() const {
3413 const Elf_Shdr *StackMapSection = findSectionByName(".llvm_stackmaps");
3414 if (!StackMapSection)
3415 return;
3417 auto Warn = [&](Error &&E) {
3418 this->reportUniqueWarning("unable to read the stack map from " +
3419 describe(*StackMapSection) + ": " +
3420 toString(std::move(E)));
3423 Expected<ArrayRef<uint8_t>> ContentOrErr =
3424 Obj.getSectionContents(*StackMapSection);
3425 if (!ContentOrErr) {
3426 Warn(ContentOrErr.takeError());
3427 return;
3430 if (Error E = StackMapParser<ELFT::TargetEndianness>::validateHeader(
3431 *ContentOrErr)) {
3432 Warn(std::move(E));
3433 return;
3436 prettyPrintStackMap(W, StackMapParser<ELFT::TargetEndianness>(*ContentOrErr));
3439 template <class ELFT>
3440 void ELFDumper<ELFT>::printReloc(const Relocation<ELFT> &R, unsigned RelIndex,
3441 const Elf_Shdr &Sec, const Elf_Shdr *SymTab) {
3442 Expected<RelSymbol<ELFT>> Target = getRelocationTarget(R, SymTab);
3443 if (!Target)
3444 reportUniqueWarning("unable to print relocation " + Twine(RelIndex) +
3445 " in " + describe(Sec) + ": " +
3446 toString(Target.takeError()));
3447 else
3448 printRelRelaReloc(R, *Target);
3451 template <class ELFT>
3452 std::vector<EnumEntry<unsigned>>
3453 ELFDumper<ELFT>::getOtherFlagsFromSymbol(const Elf_Ehdr &Header,
3454 const Elf_Sym &Symbol) const {
3455 std::vector<EnumEntry<unsigned>> SymOtherFlags(std::begin(ElfSymOtherFlags),
3456 std::end(ElfSymOtherFlags));
3457 if (Header.e_machine == EM_MIPS) {
3458 // Someone in their infinite wisdom decided to make STO_MIPS_MIPS16
3459 // flag overlap with other ST_MIPS_xxx flags. So consider both
3460 // cases separately.
3461 if ((Symbol.st_other & STO_MIPS_MIPS16) == STO_MIPS_MIPS16)
3462 SymOtherFlags.insert(SymOtherFlags.end(),
3463 std::begin(ElfMips16SymOtherFlags),
3464 std::end(ElfMips16SymOtherFlags));
3465 else
3466 SymOtherFlags.insert(SymOtherFlags.end(),
3467 std::begin(ElfMipsSymOtherFlags),
3468 std::end(ElfMipsSymOtherFlags));
3469 } else if (Header.e_machine == EM_AARCH64) {
3470 SymOtherFlags.insert(SymOtherFlags.end(),
3471 std::begin(ElfAArch64SymOtherFlags),
3472 std::end(ElfAArch64SymOtherFlags));
3473 } else if (Header.e_machine == EM_RISCV) {
3474 SymOtherFlags.insert(SymOtherFlags.end(), std::begin(ElfRISCVSymOtherFlags),
3475 std::end(ElfRISCVSymOtherFlags));
3477 return SymOtherFlags;
3480 static inline void printFields(formatted_raw_ostream &OS, StringRef Str1,
3481 StringRef Str2) {
3482 OS.PadToColumn(2u);
3483 OS << Str1;
3484 OS.PadToColumn(37u);
3485 OS << Str2 << "\n";
3486 OS.flush();
3489 template <class ELFT>
3490 static std::string getSectionHeadersNumString(const ELFFile<ELFT> &Obj,
3491 StringRef FileName) {
3492 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3493 if (ElfHeader.e_shnum != 0)
3494 return to_string(ElfHeader.e_shnum);
3496 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3497 if (!ArrOrErr) {
3498 // In this case we can ignore an error, because we have already reported a
3499 // warning about the broken section header table earlier.
3500 consumeError(ArrOrErr.takeError());
3501 return "<?>";
3504 if (ArrOrErr->empty())
3505 return "0";
3506 return "0 (" + to_string((*ArrOrErr)[0].sh_size) + ")";
3509 template <class ELFT>
3510 static std::string getSectionHeaderTableIndexString(const ELFFile<ELFT> &Obj,
3511 StringRef FileName) {
3512 const typename ELFT::Ehdr &ElfHeader = Obj.getHeader();
3513 if (ElfHeader.e_shstrndx != SHN_XINDEX)
3514 return to_string(ElfHeader.e_shstrndx);
3516 Expected<ArrayRef<typename ELFT::Shdr>> ArrOrErr = Obj.sections();
3517 if (!ArrOrErr) {
3518 // In this case we can ignore an error, because we have already reported a
3519 // warning about the broken section header table earlier.
3520 consumeError(ArrOrErr.takeError());
3521 return "<?>";
3524 if (ArrOrErr->empty())
3525 return "65535 (corrupt: out of range)";
3526 return to_string(ElfHeader.e_shstrndx) + " (" +
3527 to_string((*ArrOrErr)[0].sh_link) + ")";
3530 static const EnumEntry<unsigned> *getObjectFileEnumEntry(unsigned Type) {
3531 auto It = llvm::find_if(ElfObjectFileType, [&](const EnumEntry<unsigned> &E) {
3532 return E.Value == Type;
3534 if (It != ArrayRef(ElfObjectFileType).end())
3535 return It;
3536 return nullptr;
3539 template <class ELFT>
3540 void GNUELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
3541 ArrayRef<std::string> InputFilenames,
3542 const Archive *A) {
3543 if (InputFilenames.size() > 1 || A) {
3544 this->W.startLine() << "\n";
3545 this->W.printString("File", FileStr);
3549 template <class ELFT> void GNUELFDumper<ELFT>::printFileHeaders() {
3550 const Elf_Ehdr &e = this->Obj.getHeader();
3551 OS << "ELF Header:\n";
3552 OS << " Magic: ";
3553 std::string Str;
3554 for (int i = 0; i < ELF::EI_NIDENT; i++)
3555 OS << format(" %02x", static_cast<int>(e.e_ident[i]));
3556 OS << "\n";
3557 Str = enumToString(e.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
3558 printFields(OS, "Class:", Str);
3559 Str = enumToString(e.e_ident[ELF::EI_DATA], ArrayRef(ElfDataEncoding));
3560 printFields(OS, "Data:", Str);
3561 OS.PadToColumn(2u);
3562 OS << "Version:";
3563 OS.PadToColumn(37u);
3564 OS << utohexstr(e.e_ident[ELF::EI_VERSION]);
3565 if (e.e_version == ELF::EV_CURRENT)
3566 OS << " (current)";
3567 OS << "\n";
3568 Str = enumToString(e.e_ident[ELF::EI_OSABI], ArrayRef(ElfOSABI));
3569 printFields(OS, "OS/ABI:", Str);
3570 printFields(OS,
3571 "ABI Version:", std::to_string(e.e_ident[ELF::EI_ABIVERSION]));
3573 if (const EnumEntry<unsigned> *E = getObjectFileEnumEntry(e.e_type)) {
3574 Str = E->AltName.str();
3575 } else {
3576 if (e.e_type >= ET_LOPROC)
3577 Str = "Processor Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3578 else if (e.e_type >= ET_LOOS)
3579 Str = "OS Specific: (" + utohexstr(e.e_type, /*LowerCase=*/true) + ")";
3580 else
3581 Str = "<unknown>: " + utohexstr(e.e_type, /*LowerCase=*/true);
3583 printFields(OS, "Type:", Str);
3585 Str = enumToString(e.e_machine, ArrayRef(ElfMachineType));
3586 printFields(OS, "Machine:", Str);
3587 Str = "0x" + utohexstr(e.e_version);
3588 printFields(OS, "Version:", Str);
3589 Str = "0x" + utohexstr(e.e_entry);
3590 printFields(OS, "Entry point address:", Str);
3591 Str = to_string(e.e_phoff) + " (bytes into file)";
3592 printFields(OS, "Start of program headers:", Str);
3593 Str = to_string(e.e_shoff) + " (bytes into file)";
3594 printFields(OS, "Start of section headers:", Str);
3595 std::string ElfFlags;
3596 if (e.e_machine == EM_MIPS)
3597 ElfFlags = printFlags(
3598 e.e_flags, ArrayRef(ElfHeaderMipsFlags), unsigned(ELF::EF_MIPS_ARCH),
3599 unsigned(ELF::EF_MIPS_ABI), unsigned(ELF::EF_MIPS_MACH));
3600 else if (e.e_machine == EM_RISCV)
3601 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderRISCVFlags));
3602 else if (e.e_machine == EM_AVR)
3603 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderAVRFlags),
3604 unsigned(ELF::EF_AVR_ARCH_MASK));
3605 else if (e.e_machine == EM_LOONGARCH)
3606 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
3607 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
3608 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
3609 else if (e.e_machine == EM_XTENSA)
3610 ElfFlags = printFlags(e.e_flags, ArrayRef(ElfHeaderXtensaFlags),
3611 unsigned(ELF::EF_XTENSA_MACH));
3612 Str = "0x" + utohexstr(e.e_flags);
3613 if (!ElfFlags.empty())
3614 Str = Str + ", " + ElfFlags;
3615 printFields(OS, "Flags:", Str);
3616 Str = to_string(e.e_ehsize) + " (bytes)";
3617 printFields(OS, "Size of this header:", Str);
3618 Str = to_string(e.e_phentsize) + " (bytes)";
3619 printFields(OS, "Size of program headers:", Str);
3620 Str = to_string(e.e_phnum);
3621 printFields(OS, "Number of program headers:", Str);
3622 Str = to_string(e.e_shentsize) + " (bytes)";
3623 printFields(OS, "Size of section headers:", Str);
3624 Str = getSectionHeadersNumString(this->Obj, this->FileName);
3625 printFields(OS, "Number of section headers:", Str);
3626 Str = getSectionHeaderTableIndexString(this->Obj, this->FileName);
3627 printFields(OS, "Section header string table index:", Str);
3630 template <class ELFT> std::vector<GroupSection> ELFDumper<ELFT>::getGroups() {
3631 auto GetSignature = [&](const Elf_Sym &Sym, unsigned SymNdx,
3632 const Elf_Shdr &Symtab) -> StringRef {
3633 Expected<StringRef> StrTableOrErr = Obj.getStringTableForSymtab(Symtab);
3634 if (!StrTableOrErr) {
3635 reportUniqueWarning("unable to get the string table for " +
3636 describe(Symtab) + ": " +
3637 toString(StrTableOrErr.takeError()));
3638 return "<?>";
3641 StringRef Strings = *StrTableOrErr;
3642 if (Sym.st_name >= Strings.size()) {
3643 reportUniqueWarning("unable to get the name of the symbol with index " +
3644 Twine(SymNdx) + ": st_name (0x" +
3645 Twine::utohexstr(Sym.st_name) +
3646 ") is past the end of the string table of size 0x" +
3647 Twine::utohexstr(Strings.size()));
3648 return "<?>";
3651 return StrTableOrErr->data() + Sym.st_name;
3654 std::vector<GroupSection> Ret;
3655 uint64_t I = 0;
3656 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
3657 ++I;
3658 if (Sec.sh_type != ELF::SHT_GROUP)
3659 continue;
3661 StringRef Signature = "<?>";
3662 if (Expected<const Elf_Shdr *> SymtabOrErr = Obj.getSection(Sec.sh_link)) {
3663 if (Expected<const Elf_Sym *> SymOrErr =
3664 Obj.template getEntry<Elf_Sym>(**SymtabOrErr, Sec.sh_info))
3665 Signature = GetSignature(**SymOrErr, Sec.sh_info, **SymtabOrErr);
3666 else
3667 reportUniqueWarning("unable to get the signature symbol for " +
3668 describe(Sec) + ": " +
3669 toString(SymOrErr.takeError()));
3670 } else {
3671 reportUniqueWarning("unable to get the symbol table for " +
3672 describe(Sec) + ": " +
3673 toString(SymtabOrErr.takeError()));
3676 ArrayRef<Elf_Word> Data;
3677 if (Expected<ArrayRef<Elf_Word>> ContentsOrErr =
3678 Obj.template getSectionContentsAsArray<Elf_Word>(Sec)) {
3679 if (ContentsOrErr->empty())
3680 reportUniqueWarning("unable to read the section group flag from the " +
3681 describe(Sec) + ": the section is empty");
3682 else
3683 Data = *ContentsOrErr;
3684 } else {
3685 reportUniqueWarning("unable to get the content of the " + describe(Sec) +
3686 ": " + toString(ContentsOrErr.takeError()));
3689 Ret.push_back({getPrintableSectionName(Sec),
3690 maybeDemangle(Signature),
3691 Sec.sh_name,
3692 I - 1,
3693 Sec.sh_link,
3694 Sec.sh_info,
3695 Data.empty() ? Elf_Word(0) : Data[0],
3696 {}});
3698 if (Data.empty())
3699 continue;
3701 std::vector<GroupMember> &GM = Ret.back().Members;
3702 for (uint32_t Ndx : Data.slice(1)) {
3703 if (Expected<const Elf_Shdr *> SecOrErr = Obj.getSection(Ndx)) {
3704 GM.push_back({getPrintableSectionName(**SecOrErr), Ndx});
3705 } else {
3706 reportUniqueWarning("unable to get the section with index " +
3707 Twine(Ndx) + " when dumping the " + describe(Sec) +
3708 ": " + toString(SecOrErr.takeError()));
3709 GM.push_back({"<?>", Ndx});
3713 return Ret;
3716 static DenseMap<uint64_t, const GroupSection *>
3717 mapSectionsToGroups(ArrayRef<GroupSection> Groups) {
3718 DenseMap<uint64_t, const GroupSection *> Ret;
3719 for (const GroupSection &G : Groups)
3720 for (const GroupMember &GM : G.Members)
3721 Ret.insert({GM.Index, &G});
3722 return Ret;
3725 template <class ELFT> void GNUELFDumper<ELFT>::printGroupSections() {
3726 std::vector<GroupSection> V = this->getGroups();
3727 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
3728 for (const GroupSection &G : V) {
3729 OS << "\n"
3730 << getGroupType(G.Type) << " group section ["
3731 << format_decimal(G.Index, 5) << "] `" << G.Name << "' [" << G.Signature
3732 << "] contains " << G.Members.size() << " sections:\n"
3733 << " [Index] Name\n";
3734 for (const GroupMember &GM : G.Members) {
3735 const GroupSection *MainGroup = Map[GM.Index];
3736 if (MainGroup != &G)
3737 this->reportUniqueWarning(
3738 "section with index " + Twine(GM.Index) +
3739 ", included in the group section with index " +
3740 Twine(MainGroup->Index) +
3741 ", was also found in the group section with index " +
3742 Twine(G.Index));
3743 OS << " [" << format_decimal(GM.Index, 5) << "] " << GM.Name << "\n";
3747 if (V.empty())
3748 OS << "There are no section groups in this file.\n";
3751 template <class ELFT>
3752 void GNUELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
3753 OS << to_string(format_hex_no_prefix(R, ELFT::Is64Bits ? 16 : 8)) << "\n";
3756 template <class ELFT>
3757 void GNUELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
3758 const RelSymbol<ELFT> &RelSym) {
3759 // First two fields are bit width dependent. The rest of them are fixed width.
3760 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
3761 Field Fields[5] = {0, 10 + Bias, 19 + 2 * Bias, 42 + 2 * Bias, 53 + 2 * Bias};
3762 unsigned Width = ELFT::Is64Bits ? 16 : 8;
3764 Fields[0].Str = to_string(format_hex_no_prefix(R.Offset, Width));
3765 Fields[1].Str = to_string(format_hex_no_prefix(R.Info, Width));
3767 SmallString<32> RelocName;
3768 this->Obj.getRelocationTypeName(R.Type, RelocName);
3769 Fields[2].Str = RelocName.c_str();
3771 if (RelSym.Sym)
3772 Fields[3].Str =
3773 to_string(format_hex_no_prefix(RelSym.Sym->getValue(), Width));
3774 if (RelSym.Sym && RelSym.Name.empty())
3775 Fields[4].Str = "<null>";
3776 else
3777 Fields[4].Str = std::string(RelSym.Name);
3779 for (const Field &F : Fields)
3780 printField(F);
3782 std::string Addend;
3783 if (std::optional<int64_t> A = R.Addend) {
3784 int64_t RelAddend = *A;
3785 if (!Fields[4].Str.empty()) {
3786 if (RelAddend < 0) {
3787 Addend = " - ";
3788 RelAddend = -static_cast<uint64_t>(RelAddend);
3789 } else {
3790 Addend = " + ";
3793 Addend += utohexstr(RelAddend, /*LowerCase=*/true);
3795 OS << Addend << "\n";
3798 template <class ELFT>
3799 static void printRelocHeaderFields(formatted_raw_ostream &OS, unsigned SType) {
3800 bool IsRela = SType == ELF::SHT_RELA || SType == ELF::SHT_ANDROID_RELA;
3801 bool IsRelr = SType == ELF::SHT_RELR || SType == ELF::SHT_ANDROID_RELR;
3802 if (ELFT::Is64Bits)
3803 OS << " ";
3804 else
3805 OS << " ";
3806 if (IsRelr && opts::RawRelr)
3807 OS << "Data ";
3808 else
3809 OS << "Offset";
3810 if (ELFT::Is64Bits)
3811 OS << " Info Type"
3812 << " Symbol's Value Symbol's Name";
3813 else
3814 OS << " Info Type Sym. Value Symbol's Name";
3815 if (IsRela)
3816 OS << " + Addend";
3817 OS << "\n";
3820 template <class ELFT>
3821 void GNUELFDumper<ELFT>::printDynamicRelocHeader(unsigned Type, StringRef Name,
3822 const DynRegionInfo &Reg) {
3823 uint64_t Offset = Reg.Addr - this->Obj.base();
3824 OS << "\n'" << Name.str().c_str() << "' relocation section at offset 0x"
3825 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << Reg.Size << " bytes:\n";
3826 printRelocHeaderFields<ELFT>(OS, Type);
3829 template <class ELFT>
3830 static bool isRelocationSec(const typename ELFT::Shdr &Sec) {
3831 return Sec.sh_type == ELF::SHT_REL || Sec.sh_type == ELF::SHT_RELA ||
3832 Sec.sh_type == ELF::SHT_RELR || Sec.sh_type == ELF::SHT_ANDROID_REL ||
3833 Sec.sh_type == ELF::SHT_ANDROID_RELA ||
3834 Sec.sh_type == ELF::SHT_ANDROID_RELR;
3837 template <class ELFT> void GNUELFDumper<ELFT>::printRelocations() {
3838 auto GetEntriesNum = [&](const Elf_Shdr &Sec) -> Expected<size_t> {
3839 // Android's packed relocation section needs to be unpacked first
3840 // to get the actual number of entries.
3841 if (Sec.sh_type == ELF::SHT_ANDROID_REL ||
3842 Sec.sh_type == ELF::SHT_ANDROID_RELA) {
3843 Expected<std::vector<typename ELFT::Rela>> RelasOrErr =
3844 this->Obj.android_relas(Sec);
3845 if (!RelasOrErr)
3846 return RelasOrErr.takeError();
3847 return RelasOrErr->size();
3850 if (!opts::RawRelr && (Sec.sh_type == ELF::SHT_RELR ||
3851 Sec.sh_type == ELF::SHT_ANDROID_RELR)) {
3852 Expected<Elf_Relr_Range> RelrsOrErr = this->Obj.relrs(Sec);
3853 if (!RelrsOrErr)
3854 return RelrsOrErr.takeError();
3855 return this->Obj.decode_relrs(*RelrsOrErr).size();
3858 return Sec.getEntityCount();
3861 bool HasRelocSections = false;
3862 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
3863 if (!isRelocationSec<ELFT>(Sec))
3864 continue;
3865 HasRelocSections = true;
3867 std::string EntriesNum = "<?>";
3868 if (Expected<size_t> NumOrErr = GetEntriesNum(Sec))
3869 EntriesNum = std::to_string(*NumOrErr);
3870 else
3871 this->reportUniqueWarning("unable to get the number of relocations in " +
3872 this->describe(Sec) + ": " +
3873 toString(NumOrErr.takeError()));
3875 uintX_t Offset = Sec.sh_offset;
3876 StringRef Name = this->getPrintableSectionName(Sec);
3877 OS << "\nRelocation section '" << Name << "' at offset 0x"
3878 << utohexstr(Offset, /*LowerCase=*/true) << " contains " << EntriesNum
3879 << " entries:\n";
3880 printRelocHeaderFields<ELFT>(OS, Sec.sh_type);
3881 this->printRelocationsHelper(Sec);
3883 if (!HasRelocSections)
3884 OS << "\nThere are no relocations in this file.\n";
3887 // Print the offset of a particular section from anyone of the ranges:
3888 // [SHT_LOOS, SHT_HIOS], [SHT_LOPROC, SHT_HIPROC], [SHT_LOUSER, SHT_HIUSER].
3889 // If 'Type' does not fall within any of those ranges, then a string is
3890 // returned as '<unknown>' followed by the type value.
3891 static std::string getSectionTypeOffsetString(unsigned Type) {
3892 if (Type >= SHT_LOOS && Type <= SHT_HIOS)
3893 return "LOOS+0x" + utohexstr(Type - SHT_LOOS);
3894 else if (Type >= SHT_LOPROC && Type <= SHT_HIPROC)
3895 return "LOPROC+0x" + utohexstr(Type - SHT_LOPROC);
3896 else if (Type >= SHT_LOUSER && Type <= SHT_HIUSER)
3897 return "LOUSER+0x" + utohexstr(Type - SHT_LOUSER);
3898 return "0x" + utohexstr(Type) + ": <unknown>";
3901 static std::string getSectionTypeString(unsigned Machine, unsigned Type) {
3902 StringRef Name = getELFSectionTypeName(Machine, Type);
3904 // Handle SHT_GNU_* type names.
3905 if (Name.consume_front("SHT_GNU_")) {
3906 if (Name == "HASH")
3907 return "GNU_HASH";
3908 // E.g. SHT_GNU_verneed -> VERNEED.
3909 return Name.upper();
3912 if (Name == "SHT_SYMTAB_SHNDX")
3913 return "SYMTAB SECTION INDICES";
3915 if (Name.consume_front("SHT_"))
3916 return Name.str();
3917 return getSectionTypeOffsetString(Type);
3920 static void printSectionDescription(formatted_raw_ostream &OS,
3921 unsigned EMachine) {
3922 OS << "Key to Flags:\n";
3923 OS << " W (write), A (alloc), X (execute), M (merge), S (strings), I "
3924 "(info),\n";
3925 OS << " L (link order), O (extra OS processing required), G (group), T "
3926 "(TLS),\n";
3927 OS << " C (compressed), x (unknown), o (OS specific), E (exclude),\n";
3928 OS << " R (retain)";
3930 if (EMachine == EM_X86_64)
3931 OS << ", l (large)";
3932 else if (EMachine == EM_ARM)
3933 OS << ", y (purecode)";
3935 OS << ", p (processor specific)\n";
3938 template <class ELFT> void GNUELFDumper<ELFT>::printSectionHeaders() {
3939 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
3940 if (Sections.empty()) {
3941 OS << "\nThere are no sections in this file.\n";
3942 Expected<StringRef> SecStrTableOrErr =
3943 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
3944 if (!SecStrTableOrErr)
3945 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3946 return;
3948 unsigned Bias = ELFT::Is64Bits ? 0 : 8;
3949 OS << "There are " << to_string(Sections.size())
3950 << " section headers, starting at offset "
3951 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
3952 OS << "Section Headers:\n";
3953 Field Fields[11] = {
3954 {"[Nr]", 2}, {"Name", 7}, {"Type", 25},
3955 {"Address", 41}, {"Off", 58 - Bias}, {"Size", 65 - Bias},
3956 {"ES", 72 - Bias}, {"Flg", 75 - Bias}, {"Lk", 79 - Bias},
3957 {"Inf", 82 - Bias}, {"Al", 86 - Bias}};
3958 for (const Field &F : Fields)
3959 printField(F);
3960 OS << "\n";
3962 StringRef SecStrTable;
3963 if (Expected<StringRef> SecStrTableOrErr =
3964 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
3965 SecStrTable = *SecStrTableOrErr;
3966 else
3967 this->reportUniqueWarning(SecStrTableOrErr.takeError());
3969 size_t SectionIndex = 0;
3970 for (const Elf_Shdr &Sec : Sections) {
3971 Fields[0].Str = to_string(SectionIndex);
3972 if (SecStrTable.empty())
3973 Fields[1].Str = "<no-strings>";
3974 else
3975 Fields[1].Str = std::string(unwrapOrError<StringRef>(
3976 this->FileName, this->Obj.getSectionName(Sec, SecStrTable)));
3977 Fields[2].Str =
3978 getSectionTypeString(this->Obj.getHeader().e_machine, Sec.sh_type);
3979 Fields[3].Str =
3980 to_string(format_hex_no_prefix(Sec.sh_addr, ELFT::Is64Bits ? 16 : 8));
3981 Fields[4].Str = to_string(format_hex_no_prefix(Sec.sh_offset, 6));
3982 Fields[5].Str = to_string(format_hex_no_prefix(Sec.sh_size, 6));
3983 Fields[6].Str = to_string(format_hex_no_prefix(Sec.sh_entsize, 2));
3984 Fields[7].Str = getGNUFlags(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
3985 this->Obj.getHeader().e_machine, Sec.sh_flags);
3986 Fields[8].Str = to_string(Sec.sh_link);
3987 Fields[9].Str = to_string(Sec.sh_info);
3988 Fields[10].Str = to_string(Sec.sh_addralign);
3990 OS.PadToColumn(Fields[0].Column);
3991 OS << "[" << right_justify(Fields[0].Str, 2) << "]";
3992 for (int i = 1; i < 7; i++)
3993 printField(Fields[i]);
3994 OS.PadToColumn(Fields[7].Column);
3995 OS << right_justify(Fields[7].Str, 3);
3996 OS.PadToColumn(Fields[8].Column);
3997 OS << right_justify(Fields[8].Str, 2);
3998 OS.PadToColumn(Fields[9].Column);
3999 OS << right_justify(Fields[9].Str, 3);
4000 OS.PadToColumn(Fields[10].Column);
4001 OS << right_justify(Fields[10].Str, 2);
4002 OS << "\n";
4003 ++SectionIndex;
4005 printSectionDescription(OS, this->Obj.getHeader().e_machine);
4008 template <class ELFT>
4009 void GNUELFDumper<ELFT>::printSymtabMessage(const Elf_Shdr *Symtab,
4010 size_t Entries,
4011 bool NonVisibilityBitsUsed,
4012 bool ExtraSymInfo) const {
4013 StringRef Name;
4014 if (Symtab)
4015 Name = this->getPrintableSectionName(*Symtab);
4016 if (!Name.empty())
4017 OS << "\nSymbol table '" << Name << "'";
4018 else
4019 OS << "\nSymbol table for image";
4020 OS << " contains " << Entries << " entries:\n";
4022 if (ELFT::Is64Bits) {
4023 OS << " Num: Value Size Type Bind Vis";
4024 if (ExtraSymInfo)
4025 OS << "+Other";
4026 } else {
4027 OS << " Num: Value Size Type Bind Vis";
4028 if (ExtraSymInfo)
4029 OS << "+Other";
4032 OS.PadToColumn((ELFT::Is64Bits ? 56 : 48) + (NonVisibilityBitsUsed ? 13 : 0));
4033 if (ExtraSymInfo)
4034 OS << "Ndx(SecName) Name [+ Version Info]\n";
4035 else
4036 OS << "Ndx Name\n";
4039 template <class ELFT>
4040 std::string GNUELFDumper<ELFT>::getSymbolSectionNdx(
4041 const Elf_Sym &Symbol, unsigned SymIndex, DataRegion<Elf_Word> ShndxTable,
4042 bool ExtraSymInfo) const {
4043 unsigned SectionIndex = Symbol.st_shndx;
4044 switch (SectionIndex) {
4045 case ELF::SHN_UNDEF:
4046 return "UND";
4047 case ELF::SHN_ABS:
4048 return "ABS";
4049 case ELF::SHN_COMMON:
4050 return "COM";
4051 case ELF::SHN_XINDEX: {
4052 Expected<uint32_t> IndexOrErr =
4053 object::getExtendedSymbolTableIndex<ELFT>(Symbol, SymIndex, ShndxTable);
4054 if (!IndexOrErr) {
4055 assert(Symbol.st_shndx == SHN_XINDEX &&
4056 "getExtendedSymbolTableIndex should only fail due to an invalid "
4057 "SHT_SYMTAB_SHNDX table/reference");
4058 this->reportUniqueWarning(IndexOrErr.takeError());
4059 return "RSV[0xffff]";
4061 SectionIndex = *IndexOrErr;
4062 break;
4064 default:
4065 // Find if:
4066 // Processor specific
4067 if (SectionIndex >= ELF::SHN_LOPROC && SectionIndex <= ELF::SHN_HIPROC)
4068 return std::string("PRC[0x") +
4069 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4070 // OS specific
4071 if (SectionIndex >= ELF::SHN_LOOS && SectionIndex <= ELF::SHN_HIOS)
4072 return std::string("OS[0x") +
4073 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4074 // Architecture reserved:
4075 if (SectionIndex >= ELF::SHN_LORESERVE &&
4076 SectionIndex <= ELF::SHN_HIRESERVE)
4077 return std::string("RSV[0x") +
4078 to_string(format_hex_no_prefix(SectionIndex, 4)) + "]";
4079 break;
4082 std::string Extra;
4083 if (ExtraSymInfo) {
4084 auto Sec = this->Obj.getSection(SectionIndex);
4085 if (!Sec) {
4086 this->reportUniqueWarning(Sec.takeError());
4087 } else {
4088 auto SecName = this->Obj.getSectionName(**Sec);
4089 if (!SecName)
4090 this->reportUniqueWarning(SecName.takeError());
4091 else
4092 Extra = Twine(" (" + *SecName + ")").str();
4095 return to_string(format_decimal(SectionIndex, 3)) + Extra;
4098 template <class ELFT>
4099 void GNUELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
4100 DataRegion<Elf_Word> ShndxTable,
4101 std::optional<StringRef> StrTable,
4102 bool IsDynamic, bool NonVisibilityBitsUsed,
4103 bool ExtraSymInfo) const {
4104 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4105 Field Fields[8] = {0, 8, 17 + Bias, 23 + Bias,
4106 31 + Bias, 38 + Bias, 48 + Bias, 51 + Bias};
4107 Fields[0].Str = to_string(format_decimal(SymIndex, 6)) + ":";
4108 Fields[1].Str =
4109 to_string(format_hex_no_prefix(Symbol.st_value, ELFT::Is64Bits ? 16 : 8));
4110 Fields[2].Str = to_string(format_decimal(Symbol.st_size, 5));
4112 unsigned char SymbolType = Symbol.getType();
4113 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4114 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4115 Fields[3].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4116 else
4117 Fields[3].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4119 Fields[4].Str =
4120 enumToString(Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
4121 Fields[5].Str =
4122 enumToString(Symbol.getVisibility(), ArrayRef(ElfSymbolVisibilities));
4124 if (Symbol.st_other & ~0x3) {
4125 if (this->Obj.getHeader().e_machine == ELF::EM_AARCH64) {
4126 uint8_t Other = Symbol.st_other & ~0x3;
4127 if (Other & STO_AARCH64_VARIANT_PCS) {
4128 Other &= ~STO_AARCH64_VARIANT_PCS;
4129 Fields[5].Str += " [VARIANT_PCS";
4130 if (Other != 0)
4131 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4132 Fields[5].Str.append("]");
4134 } else if (this->Obj.getHeader().e_machine == ELF::EM_RISCV) {
4135 uint8_t Other = Symbol.st_other & ~0x3;
4136 if (Other & STO_RISCV_VARIANT_CC) {
4137 Other &= ~STO_RISCV_VARIANT_CC;
4138 Fields[5].Str += " [VARIANT_CC";
4139 if (Other != 0)
4140 Fields[5].Str.append(" | " + utohexstr(Other, /*LowerCase=*/true));
4141 Fields[5].Str.append("]");
4143 } else {
4144 Fields[5].Str +=
4145 " [<other: " + to_string(format_hex(Symbol.st_other, 2)) + ">]";
4149 Fields[6].Column += NonVisibilityBitsUsed ? 13 : 0;
4150 Fields[6].Str =
4151 getSymbolSectionNdx(Symbol, SymIndex, ShndxTable, ExtraSymInfo);
4153 Fields[7].Column += ExtraSymInfo ? 10 : 0;
4154 Fields[7].Str = this->getFullSymbolName(Symbol, SymIndex, ShndxTable,
4155 StrTable, IsDynamic);
4156 for (const Field &Entry : Fields)
4157 printField(Entry);
4158 OS << "\n";
4161 template <class ELFT>
4162 void GNUELFDumper<ELFT>::printHashedSymbol(const Elf_Sym *Symbol,
4163 unsigned SymIndex,
4164 DataRegion<Elf_Word> ShndxTable,
4165 StringRef StrTable,
4166 uint32_t Bucket) {
4167 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4168 Field Fields[9] = {0, 6, 11, 20 + Bias, 25 + Bias,
4169 34 + Bias, 41 + Bias, 49 + Bias, 53 + Bias};
4170 Fields[0].Str = to_string(format_decimal(SymIndex, 5));
4171 Fields[1].Str = to_string(format_decimal(Bucket, 3)) + ":";
4173 Fields[2].Str = to_string(
4174 format_hex_no_prefix(Symbol->st_value, ELFT::Is64Bits ? 16 : 8));
4175 Fields[3].Str = to_string(format_decimal(Symbol->st_size, 5));
4177 unsigned char SymbolType = Symbol->getType();
4178 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
4179 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
4180 Fields[4].Str = enumToString(SymbolType, ArrayRef(AMDGPUSymbolTypes));
4181 else
4182 Fields[4].Str = enumToString(SymbolType, ArrayRef(ElfSymbolTypes));
4184 Fields[5].Str =
4185 enumToString(Symbol->getBinding(), ArrayRef(ElfSymbolBindings));
4186 Fields[6].Str =
4187 enumToString(Symbol->getVisibility(), ArrayRef(ElfSymbolVisibilities));
4188 Fields[7].Str = getSymbolSectionNdx(*Symbol, SymIndex, ShndxTable);
4189 Fields[8].Str =
4190 this->getFullSymbolName(*Symbol, SymIndex, ShndxTable, StrTable, true);
4192 for (const Field &Entry : Fields)
4193 printField(Entry);
4194 OS << "\n";
4197 template <class ELFT>
4198 void GNUELFDumper<ELFT>::printSymbols(bool PrintSymbols,
4199 bool PrintDynamicSymbols,
4200 bool ExtraSymInfo) {
4201 if (!PrintSymbols && !PrintDynamicSymbols)
4202 return;
4203 // GNU readelf prints both the .dynsym and .symtab with --symbols.
4204 this->printSymbolsHelper(true, ExtraSymInfo);
4205 if (PrintSymbols)
4206 this->printSymbolsHelper(false, ExtraSymInfo);
4209 template <class ELFT>
4210 void GNUELFDumper<ELFT>::printHashTableSymbols(const Elf_Hash &SysVHash) {
4211 if (this->DynamicStringTable.empty())
4212 return;
4214 if (ELFT::Is64Bits)
4215 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4216 else
4217 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4218 OS << "\n";
4220 Elf_Sym_Range DynSyms = this->dynamic_symbols();
4221 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4222 if (!FirstSym) {
4223 this->reportUniqueWarning(
4224 Twine("unable to print symbols for the .hash table: the "
4225 "dynamic symbol table ") +
4226 (this->DynSymRegion ? "is empty" : "was not found"));
4227 return;
4230 DataRegion<Elf_Word> ShndxTable(
4231 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4232 auto Buckets = SysVHash.buckets();
4233 auto Chains = SysVHash.chains();
4234 for (uint32_t Buc = 0; Buc < SysVHash.nbucket; Buc++) {
4235 if (Buckets[Buc] == ELF::STN_UNDEF)
4236 continue;
4237 BitVector Visited(SysVHash.nchain);
4238 for (uint32_t Ch = Buckets[Buc]; Ch < SysVHash.nchain; Ch = Chains[Ch]) {
4239 if (Ch == ELF::STN_UNDEF)
4240 break;
4242 if (Visited[Ch]) {
4243 this->reportUniqueWarning(".hash section is invalid: bucket " +
4244 Twine(Ch) +
4245 ": a cycle was detected in the linked chain");
4246 break;
4249 printHashedSymbol(FirstSym + Ch, Ch, ShndxTable, this->DynamicStringTable,
4250 Buc);
4251 Visited[Ch] = true;
4256 template <class ELFT>
4257 void GNUELFDumper<ELFT>::printGnuHashTableSymbols(const Elf_GnuHash &GnuHash) {
4258 if (this->DynamicStringTable.empty())
4259 return;
4261 Elf_Sym_Range DynSyms = this->dynamic_symbols();
4262 const Elf_Sym *FirstSym = DynSyms.empty() ? nullptr : &DynSyms[0];
4263 if (!FirstSym) {
4264 this->reportUniqueWarning(
4265 Twine("unable to print symbols for the .gnu.hash table: the "
4266 "dynamic symbol table ") +
4267 (this->DynSymRegion ? "is empty" : "was not found"));
4268 return;
4271 auto GetSymbol = [&](uint64_t SymIndex,
4272 uint64_t SymsTotal) -> const Elf_Sym * {
4273 if (SymIndex >= SymsTotal) {
4274 this->reportUniqueWarning(
4275 "unable to print hashed symbol with index " + Twine(SymIndex) +
4276 ", which is greater than or equal to the number of dynamic symbols "
4277 "(" +
4278 Twine::utohexstr(SymsTotal) + ")");
4279 return nullptr;
4281 return FirstSym + SymIndex;
4284 Expected<ArrayRef<Elf_Word>> ValuesOrErr =
4285 getGnuHashTableChains<ELFT>(this->DynSymRegion, &GnuHash);
4286 ArrayRef<Elf_Word> Values;
4287 if (!ValuesOrErr)
4288 this->reportUniqueWarning("unable to get hash values for the SHT_GNU_HASH "
4289 "section: " +
4290 toString(ValuesOrErr.takeError()));
4291 else
4292 Values = *ValuesOrErr;
4294 DataRegion<Elf_Word> ShndxTable(
4295 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
4296 ArrayRef<Elf_Word> Buckets = GnuHash.buckets();
4297 for (uint32_t Buc = 0; Buc < GnuHash.nbuckets; Buc++) {
4298 if (Buckets[Buc] == ELF::STN_UNDEF)
4299 continue;
4300 uint32_t Index = Buckets[Buc];
4301 // Print whole chain.
4302 while (true) {
4303 uint32_t SymIndex = Index++;
4304 if (const Elf_Sym *Sym = GetSymbol(SymIndex, DynSyms.size()))
4305 printHashedSymbol(Sym, SymIndex, ShndxTable, this->DynamicStringTable,
4306 Buc);
4307 else
4308 break;
4310 if (SymIndex < GnuHash.symndx) {
4311 this->reportUniqueWarning(
4312 "unable to read the hash value for symbol with index " +
4313 Twine(SymIndex) +
4314 ", which is less than the index of the first hashed symbol (" +
4315 Twine(GnuHash.symndx) + ")");
4316 break;
4319 // Chain ends at symbol with stopper bit.
4320 if ((Values[SymIndex - GnuHash.symndx] & 1) == 1)
4321 break;
4326 template <class ELFT> void GNUELFDumper<ELFT>::printHashSymbols() {
4327 if (this->HashTable) {
4328 OS << "\n Symbol table of .hash for image:\n";
4329 if (Error E = checkHashTable<ELFT>(*this, this->HashTable))
4330 this->reportUniqueWarning(std::move(E));
4331 else
4332 printHashTableSymbols(*this->HashTable);
4335 // Try printing the .gnu.hash table.
4336 if (this->GnuHashTable) {
4337 OS << "\n Symbol table of .gnu.hash for image:\n";
4338 if (ELFT::Is64Bits)
4339 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4340 else
4341 OS << " Num Buc: Value Size Type Bind Vis Ndx Name";
4342 OS << "\n";
4344 if (Error E = checkGNUHashTable<ELFT>(this->Obj, this->GnuHashTable))
4345 this->reportUniqueWarning(std::move(E));
4346 else
4347 printGnuHashTableSymbols(*this->GnuHashTable);
4351 template <class ELFT> void GNUELFDumper<ELFT>::printSectionDetails() {
4352 ArrayRef<Elf_Shdr> Sections = cantFail(this->Obj.sections());
4353 if (Sections.empty()) {
4354 OS << "\nThere are no sections in this file.\n";
4355 Expected<StringRef> SecStrTableOrErr =
4356 this->Obj.getSectionStringTable(Sections, this->WarningHandler);
4357 if (!SecStrTableOrErr)
4358 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4359 return;
4361 OS << "There are " << to_string(Sections.size())
4362 << " section headers, starting at offset "
4363 << "0x" << utohexstr(this->Obj.getHeader().e_shoff, /*LowerCase=*/true) << ":\n\n";
4365 OS << "Section Headers:\n";
4367 auto PrintFields = [&](ArrayRef<Field> V) {
4368 for (const Field &F : V)
4369 printField(F);
4370 OS << "\n";
4373 PrintFields({{"[Nr]", 2}, {"Name", 7}});
4375 constexpr bool Is64 = ELFT::Is64Bits;
4376 PrintFields({{"Type", 7},
4377 {Is64 ? "Address" : "Addr", 23},
4378 {"Off", Is64 ? 40 : 32},
4379 {"Size", Is64 ? 47 : 39},
4380 {"ES", Is64 ? 54 : 46},
4381 {"Lk", Is64 ? 59 : 51},
4382 {"Inf", Is64 ? 62 : 54},
4383 {"Al", Is64 ? 66 : 57}});
4384 PrintFields({{"Flags", 7}});
4386 StringRef SecStrTable;
4387 if (Expected<StringRef> SecStrTableOrErr =
4388 this->Obj.getSectionStringTable(Sections, this->WarningHandler))
4389 SecStrTable = *SecStrTableOrErr;
4390 else
4391 this->reportUniqueWarning(SecStrTableOrErr.takeError());
4393 size_t SectionIndex = 0;
4394 const unsigned AddrSize = Is64 ? 16 : 8;
4395 for (const Elf_Shdr &S : Sections) {
4396 StringRef Name = "<?>";
4397 if (Expected<StringRef> NameOrErr =
4398 this->Obj.getSectionName(S, SecStrTable))
4399 Name = *NameOrErr;
4400 else
4401 this->reportUniqueWarning(NameOrErr.takeError());
4403 OS.PadToColumn(2);
4404 OS << "[" << right_justify(to_string(SectionIndex), 2) << "]";
4405 PrintFields({{Name, 7}});
4406 PrintFields(
4407 {{getSectionTypeString(this->Obj.getHeader().e_machine, S.sh_type), 7},
4408 {to_string(format_hex_no_prefix(S.sh_addr, AddrSize)), 23},
4409 {to_string(format_hex_no_prefix(S.sh_offset, 6)), Is64 ? 39 : 32},
4410 {to_string(format_hex_no_prefix(S.sh_size, 6)), Is64 ? 47 : 39},
4411 {to_string(format_hex_no_prefix(S.sh_entsize, 2)), Is64 ? 54 : 46},
4412 {to_string(S.sh_link), Is64 ? 59 : 51},
4413 {to_string(S.sh_info), Is64 ? 63 : 55},
4414 {to_string(S.sh_addralign), Is64 ? 66 : 58}});
4416 OS.PadToColumn(7);
4417 OS << "[" << to_string(format_hex_no_prefix(S.sh_flags, AddrSize)) << "]: ";
4419 DenseMap<unsigned, StringRef> FlagToName = {
4420 {SHF_WRITE, "WRITE"}, {SHF_ALLOC, "ALLOC"},
4421 {SHF_EXECINSTR, "EXEC"}, {SHF_MERGE, "MERGE"},
4422 {SHF_STRINGS, "STRINGS"}, {SHF_INFO_LINK, "INFO LINK"},
4423 {SHF_LINK_ORDER, "LINK ORDER"}, {SHF_OS_NONCONFORMING, "OS NONCONF"},
4424 {SHF_GROUP, "GROUP"}, {SHF_TLS, "TLS"},
4425 {SHF_COMPRESSED, "COMPRESSED"}, {SHF_EXCLUDE, "EXCLUDE"}};
4427 uint64_t Flags = S.sh_flags;
4428 uint64_t UnknownFlags = 0;
4429 ListSeparator LS;
4430 while (Flags) {
4431 // Take the least significant bit as a flag.
4432 uint64_t Flag = Flags & -Flags;
4433 Flags -= Flag;
4435 auto It = FlagToName.find(Flag);
4436 if (It != FlagToName.end())
4437 OS << LS << It->second;
4438 else
4439 UnknownFlags |= Flag;
4442 auto PrintUnknownFlags = [&](uint64_t Mask, StringRef Name) {
4443 uint64_t FlagsToPrint = UnknownFlags & Mask;
4444 if (!FlagsToPrint)
4445 return;
4447 OS << LS << Name << " ("
4448 << to_string(format_hex_no_prefix(FlagsToPrint, AddrSize)) << ")";
4449 UnknownFlags &= ~Mask;
4452 PrintUnknownFlags(SHF_MASKOS, "OS");
4453 PrintUnknownFlags(SHF_MASKPROC, "PROC");
4454 PrintUnknownFlags(uint64_t(-1), "UNKNOWN");
4456 OS << "\n";
4457 ++SectionIndex;
4459 if (!(S.sh_flags & SHF_COMPRESSED))
4460 continue;
4461 Expected<ArrayRef<uint8_t>> Data = this->Obj.getSectionContents(S);
4462 if (!Data || Data->size() < sizeof(Elf_Chdr)) {
4463 consumeError(Data.takeError());
4464 reportWarning(createError("SHF_COMPRESSED section '" + Name +
4465 "' does not have an Elf_Chdr header"),
4466 this->FileName);
4467 OS.indent(7);
4468 OS << "[<corrupt>]";
4469 } else {
4470 OS.indent(7);
4471 auto *Chdr = reinterpret_cast<const Elf_Chdr *>(Data->data());
4472 if (Chdr->ch_type == ELFCOMPRESS_ZLIB)
4473 OS << "ZLIB";
4474 else if (Chdr->ch_type == ELFCOMPRESS_ZSTD)
4475 OS << "ZSTD";
4476 else
4477 OS << format("[<unknown>: 0x%x]", unsigned(Chdr->ch_type));
4478 OS << ", " << format_hex_no_prefix(Chdr->ch_size, ELFT::Is64Bits ? 16 : 8)
4479 << ", " << Chdr->ch_addralign;
4481 OS << '\n';
4485 static inline std::string printPhdrFlags(unsigned Flag) {
4486 std::string Str;
4487 Str = (Flag & PF_R) ? "R" : " ";
4488 Str += (Flag & PF_W) ? "W" : " ";
4489 Str += (Flag & PF_X) ? "E" : " ";
4490 return Str;
4493 template <class ELFT>
4494 static bool checkTLSSections(const typename ELFT::Phdr &Phdr,
4495 const typename ELFT::Shdr &Sec) {
4496 if (Sec.sh_flags & ELF::SHF_TLS) {
4497 // .tbss must only be shown in the PT_TLS segment.
4498 if (Sec.sh_type == ELF::SHT_NOBITS)
4499 return Phdr.p_type == ELF::PT_TLS;
4501 // SHF_TLS sections are only shown in PT_TLS, PT_LOAD or PT_GNU_RELRO
4502 // segments.
4503 return (Phdr.p_type == ELF::PT_TLS) || (Phdr.p_type == ELF::PT_LOAD) ||
4504 (Phdr.p_type == ELF::PT_GNU_RELRO);
4507 // PT_TLS must only have SHF_TLS sections.
4508 return Phdr.p_type != ELF::PT_TLS;
4511 template <class ELFT>
4512 static bool checkOffsets(const typename ELFT::Phdr &Phdr,
4513 const typename ELFT::Shdr &Sec) {
4514 // SHT_NOBITS sections don't need to have an offset inside the segment.
4515 if (Sec.sh_type == ELF::SHT_NOBITS)
4516 return true;
4518 if (Sec.sh_offset < Phdr.p_offset)
4519 return false;
4521 // Only non-empty sections can be at the end of a segment.
4522 if (Sec.sh_size == 0)
4523 return (Sec.sh_offset + 1 <= Phdr.p_offset + Phdr.p_filesz);
4524 return Sec.sh_offset + Sec.sh_size <= Phdr.p_offset + Phdr.p_filesz;
4527 // Check that an allocatable section belongs to a virtual address
4528 // space of a segment.
4529 template <class ELFT>
4530 static bool checkVMA(const typename ELFT::Phdr &Phdr,
4531 const typename ELFT::Shdr &Sec) {
4532 if (!(Sec.sh_flags & ELF::SHF_ALLOC))
4533 return true;
4535 if (Sec.sh_addr < Phdr.p_vaddr)
4536 return false;
4538 bool IsTbss =
4539 (Sec.sh_type == ELF::SHT_NOBITS) && ((Sec.sh_flags & ELF::SHF_TLS) != 0);
4540 // .tbss is special, it only has memory in PT_TLS and has NOBITS properties.
4541 bool IsTbssInNonTLS = IsTbss && Phdr.p_type != ELF::PT_TLS;
4542 // Only non-empty sections can be at the end of a segment.
4543 if (Sec.sh_size == 0 || IsTbssInNonTLS)
4544 return Sec.sh_addr + 1 <= Phdr.p_vaddr + Phdr.p_memsz;
4545 return Sec.sh_addr + Sec.sh_size <= Phdr.p_vaddr + Phdr.p_memsz;
4548 template <class ELFT>
4549 static bool checkPTDynamic(const typename ELFT::Phdr &Phdr,
4550 const typename ELFT::Shdr &Sec) {
4551 if (Phdr.p_type != ELF::PT_DYNAMIC || Phdr.p_memsz == 0 || Sec.sh_size != 0)
4552 return true;
4554 // We get here when we have an empty section. Only non-empty sections can be
4555 // at the start or at the end of PT_DYNAMIC.
4556 // Is section within the phdr both based on offset and VMA?
4557 bool CheckOffset = (Sec.sh_type == ELF::SHT_NOBITS) ||
4558 (Sec.sh_offset > Phdr.p_offset &&
4559 Sec.sh_offset < Phdr.p_offset + Phdr.p_filesz);
4560 bool CheckVA = !(Sec.sh_flags & ELF::SHF_ALLOC) ||
4561 (Sec.sh_addr > Phdr.p_vaddr && Sec.sh_addr < Phdr.p_memsz);
4562 return CheckOffset && CheckVA;
4565 template <class ELFT>
4566 void GNUELFDumper<ELFT>::printProgramHeaders(
4567 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
4568 const bool ShouldPrintSectionMapping = (PrintSectionMapping != cl::BOU_FALSE);
4569 // Exit early if no program header or section mapping details were requested.
4570 if (!PrintProgramHeaders && !ShouldPrintSectionMapping)
4571 return;
4573 if (PrintProgramHeaders) {
4574 const Elf_Ehdr &Header = this->Obj.getHeader();
4575 if (Header.e_phnum == 0) {
4576 OS << "\nThere are no program headers in this file.\n";
4577 } else {
4578 printProgramHeaders();
4582 if (ShouldPrintSectionMapping)
4583 printSectionMapping();
4586 template <class ELFT> void GNUELFDumper<ELFT>::printProgramHeaders() {
4587 unsigned Bias = ELFT::Is64Bits ? 8 : 0;
4588 const Elf_Ehdr &Header = this->Obj.getHeader();
4589 Field Fields[8] = {2, 17, 26, 37 + Bias,
4590 48 + Bias, 56 + Bias, 64 + Bias, 68 + Bias};
4591 OS << "\nElf file type is "
4592 << enumToString(Header.e_type, ArrayRef(ElfObjectFileType)) << "\n"
4593 << "Entry point " << format_hex(Header.e_entry, 3) << "\n"
4594 << "There are " << Header.e_phnum << " program headers,"
4595 << " starting at offset " << Header.e_phoff << "\n\n"
4596 << "Program Headers:\n";
4597 if (ELFT::Is64Bits)
4598 OS << " Type Offset VirtAddr PhysAddr "
4599 << " FileSiz MemSiz Flg Align\n";
4600 else
4601 OS << " Type Offset VirtAddr PhysAddr FileSiz "
4602 << "MemSiz Flg Align\n";
4604 unsigned Width = ELFT::Is64Bits ? 18 : 10;
4605 unsigned SizeWidth = ELFT::Is64Bits ? 8 : 7;
4607 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4608 if (!PhdrsOrErr) {
4609 this->reportUniqueWarning("unable to dump program headers: " +
4610 toString(PhdrsOrErr.takeError()));
4611 return;
4614 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4615 Fields[0].Str = getGNUPtType(Header.e_machine, Phdr.p_type);
4616 Fields[1].Str = to_string(format_hex(Phdr.p_offset, 8));
4617 Fields[2].Str = to_string(format_hex(Phdr.p_vaddr, Width));
4618 Fields[3].Str = to_string(format_hex(Phdr.p_paddr, Width));
4619 Fields[4].Str = to_string(format_hex(Phdr.p_filesz, SizeWidth));
4620 Fields[5].Str = to_string(format_hex(Phdr.p_memsz, SizeWidth));
4621 Fields[6].Str = printPhdrFlags(Phdr.p_flags);
4622 Fields[7].Str = to_string(format_hex(Phdr.p_align, 1));
4623 for (const Field &F : Fields)
4624 printField(F);
4625 if (Phdr.p_type == ELF::PT_INTERP) {
4626 OS << "\n";
4627 auto ReportBadInterp = [&](const Twine &Msg) {
4628 this->reportUniqueWarning(
4629 "unable to read program interpreter name at offset 0x" +
4630 Twine::utohexstr(Phdr.p_offset) + ": " + Msg);
4633 if (Phdr.p_offset >= this->Obj.getBufSize()) {
4634 ReportBadInterp("it goes past the end of the file (0x" +
4635 Twine::utohexstr(this->Obj.getBufSize()) + ")");
4636 continue;
4639 const char *Data =
4640 reinterpret_cast<const char *>(this->Obj.base()) + Phdr.p_offset;
4641 size_t MaxSize = this->Obj.getBufSize() - Phdr.p_offset;
4642 size_t Len = strnlen(Data, MaxSize);
4643 if (Len == MaxSize) {
4644 ReportBadInterp("it is not null-terminated");
4645 continue;
4648 OS << " [Requesting program interpreter: ";
4649 OS << StringRef(Data, Len) << "]";
4651 OS << "\n";
4655 template <class ELFT> void GNUELFDumper<ELFT>::printSectionMapping() {
4656 OS << "\n Section to Segment mapping:\n Segment Sections...\n";
4657 DenseSet<const Elf_Shdr *> BelongsToSegment;
4658 int Phnum = 0;
4660 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
4661 if (!PhdrsOrErr) {
4662 this->reportUniqueWarning(
4663 "can't read program headers to build section to segment mapping: " +
4664 toString(PhdrsOrErr.takeError()));
4665 return;
4668 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
4669 std::string Sections;
4670 OS << format(" %2.2d ", Phnum++);
4671 // Check if each section is in a segment and then print mapping.
4672 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4673 if (Sec.sh_type == ELF::SHT_NULL)
4674 continue;
4676 // readelf additionally makes sure it does not print zero sized sections
4677 // at end of segments and for PT_DYNAMIC both start and end of section
4678 // .tbss must only be shown in PT_TLS section.
4679 if (checkTLSSections<ELFT>(Phdr, Sec) && checkOffsets<ELFT>(Phdr, Sec) &&
4680 checkVMA<ELFT>(Phdr, Sec) && checkPTDynamic<ELFT>(Phdr, Sec)) {
4681 Sections +=
4682 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4683 " ";
4684 BelongsToSegment.insert(&Sec);
4687 OS << Sections << "\n";
4688 OS.flush();
4691 // Display sections that do not belong to a segment.
4692 std::string Sections;
4693 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
4694 if (BelongsToSegment.find(&Sec) == BelongsToSegment.end())
4695 Sections +=
4696 unwrapOrError(this->FileName, this->Obj.getSectionName(Sec)).str() +
4697 ' ';
4699 if (!Sections.empty()) {
4700 OS << " None " << Sections << '\n';
4701 OS.flush();
4705 namespace {
4707 template <class ELFT>
4708 RelSymbol<ELFT> getSymbolForReloc(const ELFDumper<ELFT> &Dumper,
4709 const Relocation<ELFT> &Reloc) {
4710 using Elf_Sym = typename ELFT::Sym;
4711 auto WarnAndReturn = [&](const Elf_Sym *Sym,
4712 const Twine &Reason) -> RelSymbol<ELFT> {
4713 Dumper.reportUniqueWarning(
4714 "unable to get name of the dynamic symbol with index " +
4715 Twine(Reloc.Symbol) + ": " + Reason);
4716 return {Sym, "<corrupt>"};
4719 ArrayRef<Elf_Sym> Symbols = Dumper.dynamic_symbols();
4720 const Elf_Sym *FirstSym = Symbols.begin();
4721 if (!FirstSym)
4722 return WarnAndReturn(nullptr, "no dynamic symbol table found");
4724 // We might have an object without a section header. In this case the size of
4725 // Symbols is zero, because there is no way to know the size of the dynamic
4726 // table. We should allow this case and not print a warning.
4727 if (!Symbols.empty() && Reloc.Symbol >= Symbols.size())
4728 return WarnAndReturn(
4729 nullptr,
4730 "index is greater than or equal to the number of dynamic symbols (" +
4731 Twine(Symbols.size()) + ")");
4733 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
4734 const uint64_t FileSize = Obj.getBufSize();
4735 const uint64_t SymOffset = ((const uint8_t *)FirstSym - Obj.base()) +
4736 (uint64_t)Reloc.Symbol * sizeof(Elf_Sym);
4737 if (SymOffset + sizeof(Elf_Sym) > FileSize)
4738 return WarnAndReturn(nullptr, "symbol at 0x" + Twine::utohexstr(SymOffset) +
4739 " goes past the end of the file (0x" +
4740 Twine::utohexstr(FileSize) + ")");
4742 const Elf_Sym *Sym = FirstSym + Reloc.Symbol;
4743 Expected<StringRef> ErrOrName = Sym->getName(Dumper.getDynamicStringTable());
4744 if (!ErrOrName)
4745 return WarnAndReturn(Sym, toString(ErrOrName.takeError()));
4747 return {Sym == FirstSym ? nullptr : Sym, maybeDemangle(*ErrOrName)};
4749 } // namespace
4751 template <class ELFT>
4752 static size_t getMaxDynamicTagSize(const ELFFile<ELFT> &Obj,
4753 typename ELFT::DynRange Tags) {
4754 size_t Max = 0;
4755 for (const typename ELFT::Dyn &Dyn : Tags)
4756 Max = std::max(Max, Obj.getDynamicTagAsString(Dyn.d_tag).size());
4757 return Max;
4760 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicTable() {
4761 Elf_Dyn_Range Table = this->dynamic_table();
4762 if (Table.empty())
4763 return;
4765 OS << "Dynamic section at offset "
4766 << format_hex(reinterpret_cast<const uint8_t *>(this->DynamicTable.Addr) -
4767 this->Obj.base(),
4769 << " contains " << Table.size() << " entries:\n";
4771 // The type name is surrounded with round brackets, hence add 2.
4772 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table) + 2;
4773 // The "Name/Value" column should be indented from the "Type" column by N
4774 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
4775 // space (1) = 3.
4776 OS << " Tag" + std::string(ELFT::Is64Bits ? 16 : 8, ' ') + "Type"
4777 << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
4779 std::string ValueFmt = " %-" + std::to_string(MaxTagSize) + "s ";
4780 for (auto Entry : Table) {
4781 uintX_t Tag = Entry.getTag();
4782 std::string Type =
4783 std::string("(") + this->Obj.getDynamicTagAsString(Tag) + ")";
4784 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
4785 OS << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10)
4786 << format(ValueFmt.c_str(), Type.c_str()) << Value << "\n";
4790 template <class ELFT> void GNUELFDumper<ELFT>::printDynamicRelocations() {
4791 this->printDynamicRelocationsHelper();
4794 template <class ELFT>
4795 void ELFDumper<ELFT>::printDynamicReloc(const Relocation<ELFT> &R) {
4796 printRelRelaReloc(R, getSymbolForReloc(*this, R));
4799 template <class ELFT>
4800 void ELFDumper<ELFT>::printRelocationsHelper(const Elf_Shdr &Sec) {
4801 this->forEachRelocationDo(
4802 Sec, opts::RawRelr,
4803 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
4804 const Elf_Shdr *SymTab) { printReloc(R, Ndx, Sec, SymTab); },
4805 [&](const Elf_Relr &R) { printRelrReloc(R); });
4808 template <class ELFT> void ELFDumper<ELFT>::printDynamicRelocationsHelper() {
4809 const bool IsMips64EL = this->Obj.isMips64EL();
4810 if (this->DynRelaRegion.Size > 0) {
4811 printDynamicRelocHeader(ELF::SHT_RELA, "RELA", this->DynRelaRegion);
4812 for (const Elf_Rela &Rela :
4813 this->DynRelaRegion.template getAsArrayRef<Elf_Rela>())
4814 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4817 if (this->DynRelRegion.Size > 0) {
4818 printDynamicRelocHeader(ELF::SHT_REL, "REL", this->DynRelRegion);
4819 for (const Elf_Rel &Rel :
4820 this->DynRelRegion.template getAsArrayRef<Elf_Rel>())
4821 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4824 if (this->DynRelrRegion.Size > 0) {
4825 printDynamicRelocHeader(ELF::SHT_REL, "RELR", this->DynRelrRegion);
4826 Elf_Relr_Range Relrs =
4827 this->DynRelrRegion.template getAsArrayRef<Elf_Relr>();
4828 for (const Elf_Rel &Rel : Obj.decode_relrs(Relrs))
4829 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4832 if (this->DynPLTRelRegion.Size) {
4833 if (this->DynPLTRelRegion.EntSize == sizeof(Elf_Rela)) {
4834 printDynamicRelocHeader(ELF::SHT_RELA, "PLT", this->DynPLTRelRegion);
4835 for (const Elf_Rela &Rela :
4836 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rela>())
4837 printDynamicReloc(Relocation<ELFT>(Rela, IsMips64EL));
4838 } else {
4839 printDynamicRelocHeader(ELF::SHT_REL, "PLT", this->DynPLTRelRegion);
4840 for (const Elf_Rel &Rel :
4841 this->DynPLTRelRegion.template getAsArrayRef<Elf_Rel>())
4842 printDynamicReloc(Relocation<ELFT>(Rel, IsMips64EL));
4847 template <class ELFT>
4848 void GNUELFDumper<ELFT>::printGNUVersionSectionProlog(
4849 const typename ELFT::Shdr &Sec, const Twine &Label, unsigned EntriesNum) {
4850 // Don't inline the SecName, because it might report a warning to stderr and
4851 // corrupt the output.
4852 StringRef SecName = this->getPrintableSectionName(Sec);
4853 OS << Label << " section '" << SecName << "' "
4854 << "contains " << EntriesNum << " entries:\n";
4856 StringRef LinkedSecName = "<corrupt>";
4857 if (Expected<const typename ELFT::Shdr *> LinkedSecOrErr =
4858 this->Obj.getSection(Sec.sh_link))
4859 LinkedSecName = this->getPrintableSectionName(**LinkedSecOrErr);
4860 else
4861 this->reportUniqueWarning("invalid section linked to " +
4862 this->describe(Sec) + ": " +
4863 toString(LinkedSecOrErr.takeError()));
4865 OS << " Addr: " << format_hex_no_prefix(Sec.sh_addr, 16)
4866 << " Offset: " << format_hex(Sec.sh_offset, 8)
4867 << " Link: " << Sec.sh_link << " (" << LinkedSecName << ")\n";
4870 template <class ELFT>
4871 void GNUELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
4872 if (!Sec)
4873 return;
4875 printGNUVersionSectionProlog(*Sec, "Version symbols",
4876 Sec->sh_size / sizeof(Elf_Versym));
4877 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
4878 this->getVersionTable(*Sec, /*SymTab=*/nullptr,
4879 /*StrTab=*/nullptr, /*SymTabSec=*/nullptr);
4880 if (!VerTableOrErr) {
4881 this->reportUniqueWarning(VerTableOrErr.takeError());
4882 return;
4885 SmallVector<std::optional<VersionEntry>, 0> *VersionMap = nullptr;
4886 if (Expected<SmallVector<std::optional<VersionEntry>, 0> *> MapOrErr =
4887 this->getVersionMap())
4888 VersionMap = *MapOrErr;
4889 else
4890 this->reportUniqueWarning(MapOrErr.takeError());
4892 ArrayRef<Elf_Versym> VerTable = *VerTableOrErr;
4893 std::vector<StringRef> Versions;
4894 for (size_t I = 0, E = VerTable.size(); I < E; ++I) {
4895 unsigned Ndx = VerTable[I].vs_index;
4896 if (Ndx == VER_NDX_LOCAL || Ndx == VER_NDX_GLOBAL) {
4897 Versions.emplace_back(Ndx == VER_NDX_LOCAL ? "*local*" : "*global*");
4898 continue;
4901 if (!VersionMap) {
4902 Versions.emplace_back("<corrupt>");
4903 continue;
4906 bool IsDefault;
4907 Expected<StringRef> NameOrErr = this->Obj.getSymbolVersionByIndex(
4908 Ndx, IsDefault, *VersionMap, /*IsSymHidden=*/std::nullopt);
4909 if (!NameOrErr) {
4910 this->reportUniqueWarning("unable to get a version for entry " +
4911 Twine(I) + " of " + this->describe(*Sec) +
4912 ": " + toString(NameOrErr.takeError()));
4913 Versions.emplace_back("<corrupt>");
4914 continue;
4916 Versions.emplace_back(*NameOrErr);
4919 // readelf prints 4 entries per line.
4920 uint64_t Entries = VerTable.size();
4921 for (uint64_t VersymRow = 0; VersymRow < Entries; VersymRow += 4) {
4922 OS << " " << format_hex_no_prefix(VersymRow, 3) << ":";
4923 for (uint64_t I = 0; (I < 4) && (I + VersymRow) < Entries; ++I) {
4924 unsigned Ndx = VerTable[VersymRow + I].vs_index;
4925 OS << format("%4x%c", Ndx & VERSYM_VERSION,
4926 Ndx & VERSYM_HIDDEN ? 'h' : ' ');
4927 OS << left_justify("(" + std::string(Versions[VersymRow + I]) + ")", 13);
4929 OS << '\n';
4931 OS << '\n';
4934 static std::string versionFlagToString(unsigned Flags) {
4935 if (Flags == 0)
4936 return "none";
4938 std::string Ret;
4939 auto AddFlag = [&Ret, &Flags](unsigned Flag, StringRef Name) {
4940 if (!(Flags & Flag))
4941 return;
4942 if (!Ret.empty())
4943 Ret += " | ";
4944 Ret += Name;
4945 Flags &= ~Flag;
4948 AddFlag(VER_FLG_BASE, "BASE");
4949 AddFlag(VER_FLG_WEAK, "WEAK");
4950 AddFlag(VER_FLG_INFO, "INFO");
4951 AddFlag(~0, "<unknown>");
4952 return Ret;
4955 template <class ELFT>
4956 void GNUELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
4957 if (!Sec)
4958 return;
4960 printGNUVersionSectionProlog(*Sec, "Version definition", Sec->sh_info);
4962 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
4963 if (!V) {
4964 this->reportUniqueWarning(V.takeError());
4965 return;
4968 for (const VerDef &Def : *V) {
4969 OS << format(" 0x%04x: Rev: %u Flags: %s Index: %u Cnt: %u Name: %s\n",
4970 Def.Offset, Def.Version,
4971 versionFlagToString(Def.Flags).c_str(), Def.Ndx, Def.Cnt,
4972 Def.Name.data());
4973 unsigned I = 0;
4974 for (const VerdAux &Aux : Def.AuxV)
4975 OS << format(" 0x%04x: Parent %u: %s\n", Aux.Offset, ++I,
4976 Aux.Name.data());
4979 OS << '\n';
4982 template <class ELFT>
4983 void GNUELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
4984 if (!Sec)
4985 return;
4987 unsigned VerneedNum = Sec->sh_info;
4988 printGNUVersionSectionProlog(*Sec, "Version needs", VerneedNum);
4990 Expected<std::vector<VerNeed>> V =
4991 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
4992 if (!V) {
4993 this->reportUniqueWarning(V.takeError());
4994 return;
4997 for (const VerNeed &VN : *V) {
4998 OS << format(" 0x%04x: Version: %u File: %s Cnt: %u\n", VN.Offset,
4999 VN.Version, VN.File.data(), VN.Cnt);
5000 for (const VernAux &Aux : VN.AuxV)
5001 OS << format(" 0x%04x: Name: %s Flags: %s Version: %u\n", Aux.Offset,
5002 Aux.Name.data(), versionFlagToString(Aux.Flags).c_str(),
5003 Aux.Other);
5005 OS << '\n';
5008 template <class ELFT>
5009 void GNUELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
5010 size_t MaxChain,
5011 size_t TotalSyms,
5012 ArrayRef<size_t> Count,
5013 bool IsGnu) const {
5014 size_t CumulativeNonZero = 0;
5015 OS << "Histogram for" << (IsGnu ? " `.gnu.hash'" : "")
5016 << " bucket list length (total of " << NBucket << " buckets)\n"
5017 << " Length Number % of total Coverage\n";
5018 for (size_t I = 0; I < MaxChain; ++I) {
5019 CumulativeNonZero += Count[I] * I;
5020 OS << format("%7lu %-10lu (%5.1f%%) %5.1f%%\n", I, Count[I],
5021 (Count[I] * 100.0) / NBucket,
5022 (CumulativeNonZero * 100.0) / TotalSyms);
5026 template <class ELFT> void GNUELFDumper<ELFT>::printCGProfile() {
5027 OS << "GNUStyle::printCGProfile not implemented\n";
5030 template <class ELFT> void GNUELFDumper<ELFT>::printBBAddrMaps() {
5031 OS << "GNUStyle::printBBAddrMaps not implemented\n";
5034 static Expected<std::vector<uint64_t>> toULEB128Array(ArrayRef<uint8_t> Data) {
5035 std::vector<uint64_t> Ret;
5036 const uint8_t *Cur = Data.begin();
5037 const uint8_t *End = Data.end();
5038 while (Cur != End) {
5039 unsigned Size;
5040 const char *Err;
5041 Ret.push_back(decodeULEB128(Cur, &Size, End, &Err));
5042 if (Err)
5043 return createError(Err);
5044 Cur += Size;
5046 return Ret;
5049 template <class ELFT>
5050 static Expected<std::vector<uint64_t>>
5051 decodeAddrsigSection(const ELFFile<ELFT> &Obj, const typename ELFT::Shdr &Sec) {
5052 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Sec);
5053 if (!ContentsOrErr)
5054 return ContentsOrErr.takeError();
5056 if (Expected<std::vector<uint64_t>> SymsOrErr =
5057 toULEB128Array(*ContentsOrErr))
5058 return *SymsOrErr;
5059 else
5060 return createError("unable to decode " + describe(Obj, Sec) + ": " +
5061 toString(SymsOrErr.takeError()));
5064 template <class ELFT> void GNUELFDumper<ELFT>::printAddrsig() {
5065 if (!this->DotAddrsigSec)
5066 return;
5068 Expected<std::vector<uint64_t>> SymsOrErr =
5069 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
5070 if (!SymsOrErr) {
5071 this->reportUniqueWarning(SymsOrErr.takeError());
5072 return;
5075 StringRef Name = this->getPrintableSectionName(*this->DotAddrsigSec);
5076 OS << "\nAddress-significant symbols section '" << Name << "'"
5077 << " contains " << SymsOrErr->size() << " entries:\n";
5078 OS << " Num: Name\n";
5080 Field Fields[2] = {0, 8};
5081 size_t SymIndex = 0;
5082 for (uint64_t Sym : *SymsOrErr) {
5083 Fields[0].Str = to_string(format_decimal(++SymIndex, 6)) + ":";
5084 Fields[1].Str = this->getStaticSymbolName(Sym);
5085 for (const Field &Entry : Fields)
5086 printField(Entry);
5087 OS << "\n";
5091 template <typename ELFT>
5092 static std::string getGNUProperty(uint32_t Type, uint32_t DataSize,
5093 ArrayRef<uint8_t> Data) {
5094 std::string str;
5095 raw_string_ostream OS(str);
5096 uint32_t PrData;
5097 auto DumpBit = [&](uint32_t Flag, StringRef Name) {
5098 if (PrData & Flag) {
5099 PrData &= ~Flag;
5100 OS << Name;
5101 if (PrData)
5102 OS << ", ";
5106 switch (Type) {
5107 default:
5108 OS << format("<application-specific type 0x%x>", Type);
5109 return OS.str();
5110 case GNU_PROPERTY_STACK_SIZE: {
5111 OS << "stack size: ";
5112 if (DataSize == sizeof(typename ELFT::uint))
5113 OS << formatv("{0:x}",
5114 (uint64_t)(*(const typename ELFT::Addr *)Data.data()));
5115 else
5116 OS << format("<corrupt length: 0x%x>", DataSize);
5117 return OS.str();
5119 case GNU_PROPERTY_NO_COPY_ON_PROTECTED:
5120 OS << "no copy on protected";
5121 if (DataSize)
5122 OS << format(" <corrupt length: 0x%x>", DataSize);
5123 return OS.str();
5124 case GNU_PROPERTY_AARCH64_FEATURE_1_AND:
5125 case GNU_PROPERTY_X86_FEATURE_1_AND:
5126 OS << ((Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) ? "aarch64 feature: "
5127 : "x86 feature: ");
5128 if (DataSize != 4) {
5129 OS << format("<corrupt length: 0x%x>", DataSize);
5130 return OS.str();
5132 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5133 if (PrData == 0) {
5134 OS << "<None>";
5135 return OS.str();
5137 if (Type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
5138 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_BTI, "BTI");
5139 DumpBit(GNU_PROPERTY_AARCH64_FEATURE_1_PAC, "PAC");
5140 } else {
5141 DumpBit(GNU_PROPERTY_X86_FEATURE_1_IBT, "IBT");
5142 DumpBit(GNU_PROPERTY_X86_FEATURE_1_SHSTK, "SHSTK");
5144 if (PrData)
5145 OS << format("<unknown flags: 0x%x>", PrData);
5146 return OS.str();
5147 case GNU_PROPERTY_X86_FEATURE_2_NEEDED:
5148 case GNU_PROPERTY_X86_FEATURE_2_USED:
5149 OS << "x86 feature "
5150 << (Type == GNU_PROPERTY_X86_FEATURE_2_NEEDED ? "needed: " : "used: ");
5151 if (DataSize != 4) {
5152 OS << format("<corrupt length: 0x%x>", DataSize);
5153 return OS.str();
5155 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5156 if (PrData == 0) {
5157 OS << "<None>";
5158 return OS.str();
5160 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X86, "x86");
5161 DumpBit(GNU_PROPERTY_X86_FEATURE_2_X87, "x87");
5162 DumpBit(GNU_PROPERTY_X86_FEATURE_2_MMX, "MMX");
5163 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XMM, "XMM");
5164 DumpBit(GNU_PROPERTY_X86_FEATURE_2_YMM, "YMM");
5165 DumpBit(GNU_PROPERTY_X86_FEATURE_2_ZMM, "ZMM");
5166 DumpBit(GNU_PROPERTY_X86_FEATURE_2_FXSR, "FXSR");
5167 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVE, "XSAVE");
5168 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEOPT, "XSAVEOPT");
5169 DumpBit(GNU_PROPERTY_X86_FEATURE_2_XSAVEC, "XSAVEC");
5170 if (PrData)
5171 OS << format("<unknown flags: 0x%x>", PrData);
5172 return OS.str();
5173 case GNU_PROPERTY_X86_ISA_1_NEEDED:
5174 case GNU_PROPERTY_X86_ISA_1_USED:
5175 OS << "x86 ISA "
5176 << (Type == GNU_PROPERTY_X86_ISA_1_NEEDED ? "needed: " : "used: ");
5177 if (DataSize != 4) {
5178 OS << format("<corrupt length: 0x%x>", DataSize);
5179 return OS.str();
5181 PrData = support::endian::read32<ELFT::TargetEndianness>(Data.data());
5182 if (PrData == 0) {
5183 OS << "<None>";
5184 return OS.str();
5186 DumpBit(GNU_PROPERTY_X86_ISA_1_BASELINE, "x86-64-baseline");
5187 DumpBit(GNU_PROPERTY_X86_ISA_1_V2, "x86-64-v2");
5188 DumpBit(GNU_PROPERTY_X86_ISA_1_V3, "x86-64-v3");
5189 DumpBit(GNU_PROPERTY_X86_ISA_1_V4, "x86-64-v4");
5190 if (PrData)
5191 OS << format("<unknown flags: 0x%x>", PrData);
5192 return OS.str();
5196 template <typename ELFT>
5197 static SmallVector<std::string, 4> getGNUPropertyList(ArrayRef<uint8_t> Arr) {
5198 using Elf_Word = typename ELFT::Word;
5200 SmallVector<std::string, 4> Properties;
5201 while (Arr.size() >= 8) {
5202 uint32_t Type = *reinterpret_cast<const Elf_Word *>(Arr.data());
5203 uint32_t DataSize = *reinterpret_cast<const Elf_Word *>(Arr.data() + 4);
5204 Arr = Arr.drop_front(8);
5206 // Take padding size into account if present.
5207 uint64_t PaddedSize = alignTo(DataSize, sizeof(typename ELFT::uint));
5208 std::string str;
5209 raw_string_ostream OS(str);
5210 if (Arr.size() < PaddedSize) {
5211 OS << format("<corrupt type (0x%x) datasz: 0x%x>", Type, DataSize);
5212 Properties.push_back(OS.str());
5213 break;
5215 Properties.push_back(
5216 getGNUProperty<ELFT>(Type, DataSize, Arr.take_front(PaddedSize)));
5217 Arr = Arr.drop_front(PaddedSize);
5220 if (!Arr.empty())
5221 Properties.push_back("<corrupted GNU_PROPERTY_TYPE_0>");
5223 return Properties;
5226 struct GNUAbiTag {
5227 std::string OSName;
5228 std::string ABI;
5229 bool IsValid;
5232 template <typename ELFT> static GNUAbiTag getGNUAbiTag(ArrayRef<uint8_t> Desc) {
5233 typedef typename ELFT::Word Elf_Word;
5235 ArrayRef<Elf_Word> Words(reinterpret_cast<const Elf_Word *>(Desc.begin()),
5236 reinterpret_cast<const Elf_Word *>(Desc.end()));
5238 if (Words.size() < 4)
5239 return {"", "", /*IsValid=*/false};
5241 static const char *OSNames[] = {
5242 "Linux", "Hurd", "Solaris", "FreeBSD", "NetBSD", "Syllable", "NaCl",
5244 StringRef OSName = "Unknown";
5245 if (Words[0] < std::size(OSNames))
5246 OSName = OSNames[Words[0]];
5247 uint32_t Major = Words[1], Minor = Words[2], Patch = Words[3];
5248 std::string str;
5249 raw_string_ostream ABI(str);
5250 ABI << Major << "." << Minor << "." << Patch;
5251 return {std::string(OSName), ABI.str(), /*IsValid=*/true};
5254 static std::string getGNUBuildId(ArrayRef<uint8_t> Desc) {
5255 std::string str;
5256 raw_string_ostream OS(str);
5257 for (uint8_t B : Desc)
5258 OS << format_hex_no_prefix(B, 2);
5259 return OS.str();
5262 static StringRef getDescAsStringRef(ArrayRef<uint8_t> Desc) {
5263 return StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5266 template <typename ELFT>
5267 static bool printGNUNote(raw_ostream &OS, uint32_t NoteType,
5268 ArrayRef<uint8_t> Desc) {
5269 // Return true if we were able to pretty-print the note, false otherwise.
5270 switch (NoteType) {
5271 default:
5272 return false;
5273 case ELF::NT_GNU_ABI_TAG: {
5274 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
5275 if (!AbiTag.IsValid)
5276 OS << " <corrupt GNU_ABI_TAG>";
5277 else
5278 OS << " OS: " << AbiTag.OSName << ", ABI: " << AbiTag.ABI;
5279 break;
5281 case ELF::NT_GNU_BUILD_ID: {
5282 OS << " Build ID: " << getGNUBuildId(Desc);
5283 break;
5285 case ELF::NT_GNU_GOLD_VERSION:
5286 OS << " Version: " << getDescAsStringRef(Desc);
5287 break;
5288 case ELF::NT_GNU_PROPERTY_TYPE_0:
5289 OS << " Properties:";
5290 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
5291 OS << " " << Property << "\n";
5292 break;
5294 OS << '\n';
5295 return true;
5298 using AndroidNoteProperties = std::vector<std::pair<StringRef, std::string>>;
5299 static AndroidNoteProperties getAndroidNoteProperties(uint32_t NoteType,
5300 ArrayRef<uint8_t> Desc) {
5301 AndroidNoteProperties Props;
5302 switch (NoteType) {
5303 case ELF::NT_ANDROID_TYPE_MEMTAG:
5304 if (Desc.empty()) {
5305 Props.emplace_back("Invalid .note.android.memtag", "");
5306 return Props;
5309 switch (Desc[0] & NT_MEMTAG_LEVEL_MASK) {
5310 case NT_MEMTAG_LEVEL_NONE:
5311 Props.emplace_back("Tagging Mode", "NONE");
5312 break;
5313 case NT_MEMTAG_LEVEL_ASYNC:
5314 Props.emplace_back("Tagging Mode", "ASYNC");
5315 break;
5316 case NT_MEMTAG_LEVEL_SYNC:
5317 Props.emplace_back("Tagging Mode", "SYNC");
5318 break;
5319 default:
5320 Props.emplace_back(
5321 "Tagging Mode",
5322 ("Unknown (" + Twine::utohexstr(Desc[0] & NT_MEMTAG_LEVEL_MASK) + ")")
5323 .str());
5324 break;
5326 Props.emplace_back("Heap",
5327 (Desc[0] & NT_MEMTAG_HEAP) ? "Enabled" : "Disabled");
5328 Props.emplace_back("Stack",
5329 (Desc[0] & NT_MEMTAG_STACK) ? "Enabled" : "Disabled");
5330 break;
5331 default:
5332 return Props;
5334 return Props;
5337 static bool printAndroidNote(raw_ostream &OS, uint32_t NoteType,
5338 ArrayRef<uint8_t> Desc) {
5339 // Return true if we were able to pretty-print the note, false otherwise.
5340 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
5341 if (Props.empty())
5342 return false;
5343 for (const auto &KV : Props)
5344 OS << " " << KV.first << ": " << KV.second << '\n';
5345 return true;
5348 template <class ELFT>
5349 void GNUELFDumper<ELFT>::printMemtag(
5350 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
5351 const ArrayRef<uint8_t> AndroidNoteDesc,
5352 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
5353 OS << "Memtag Dynamic Entries:\n";
5354 if (DynamicEntries.empty())
5355 OS << " < none found >\n";
5356 for (const auto &DynamicEntryKV : DynamicEntries)
5357 OS << " " << DynamicEntryKV.first << ": " << DynamicEntryKV.second
5358 << "\n";
5360 if (!AndroidNoteDesc.empty()) {
5361 OS << "Memtag Android Note:\n";
5362 printAndroidNote(OS, ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc);
5365 if (Descriptors.empty())
5366 return;
5368 OS << "Memtag Global Descriptors:\n";
5369 for (const auto &[Addr, BytesToTag] : Descriptors) {
5370 OS << " 0x" << utohexstr(Addr, /*LowerCase=*/true) << ": 0x"
5371 << utohexstr(BytesToTag, /*LowerCase=*/true) << "\n";
5375 template <typename ELFT>
5376 static bool printLLVMOMPOFFLOADNote(raw_ostream &OS, uint32_t NoteType,
5377 ArrayRef<uint8_t> Desc) {
5378 switch (NoteType) {
5379 default:
5380 return false;
5381 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
5382 OS << " Version: " << getDescAsStringRef(Desc);
5383 break;
5384 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
5385 OS << " Producer: " << getDescAsStringRef(Desc);
5386 break;
5387 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
5388 OS << " Producer version: " << getDescAsStringRef(Desc);
5389 break;
5391 OS << '\n';
5392 return true;
5395 const EnumEntry<unsigned> FreeBSDFeatureCtlFlags[] = {
5396 {"ASLR_DISABLE", NT_FREEBSD_FCTL_ASLR_DISABLE},
5397 {"PROTMAX_DISABLE", NT_FREEBSD_FCTL_PROTMAX_DISABLE},
5398 {"STKGAP_DISABLE", NT_FREEBSD_FCTL_STKGAP_DISABLE},
5399 {"WXNEEDED", NT_FREEBSD_FCTL_WXNEEDED},
5400 {"LA48", NT_FREEBSD_FCTL_LA48},
5401 {"ASG_DISABLE", NT_FREEBSD_FCTL_ASG_DISABLE},
5404 struct FreeBSDNote {
5405 std::string Type;
5406 std::string Value;
5409 template <typename ELFT>
5410 static std::optional<FreeBSDNote>
5411 getFreeBSDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc, bool IsCore) {
5412 if (IsCore)
5413 return std::nullopt; // No pretty-printing yet.
5414 switch (NoteType) {
5415 case ELF::NT_FREEBSD_ABI_TAG:
5416 if (Desc.size() != 4)
5417 return std::nullopt;
5418 return FreeBSDNote{
5419 "ABI tag",
5420 utostr(support::endian::read32<ELFT::TargetEndianness>(Desc.data()))};
5421 case ELF::NT_FREEBSD_ARCH_TAG:
5422 return FreeBSDNote{"Arch tag", toStringRef(Desc).str()};
5423 case ELF::NT_FREEBSD_FEATURE_CTL: {
5424 if (Desc.size() != 4)
5425 return std::nullopt;
5426 unsigned Value =
5427 support::endian::read32<ELFT::TargetEndianness>(Desc.data());
5428 std::string FlagsStr;
5429 raw_string_ostream OS(FlagsStr);
5430 printFlags(Value, ArrayRef(FreeBSDFeatureCtlFlags), OS);
5431 if (OS.str().empty())
5432 OS << "0x" << utohexstr(Value);
5433 else
5434 OS << "(0x" << utohexstr(Value) << ")";
5435 return FreeBSDNote{"Feature flags", OS.str()};
5437 default:
5438 return std::nullopt;
5442 struct AMDNote {
5443 std::string Type;
5444 std::string Value;
5447 template <typename ELFT>
5448 static AMDNote getAMDNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5449 switch (NoteType) {
5450 default:
5451 return {"", ""};
5452 case ELF::NT_AMD_HSA_CODE_OBJECT_VERSION: {
5453 struct CodeObjectVersion {
5454 uint32_t MajorVersion;
5455 uint32_t MinorVersion;
5457 if (Desc.size() != sizeof(CodeObjectVersion))
5458 return {"AMD HSA Code Object Version",
5459 "Invalid AMD HSA Code Object Version"};
5460 std::string VersionString;
5461 raw_string_ostream StrOS(VersionString);
5462 auto Version = reinterpret_cast<const CodeObjectVersion *>(Desc.data());
5463 StrOS << "[Major: " << Version->MajorVersion
5464 << ", Minor: " << Version->MinorVersion << "]";
5465 return {"AMD HSA Code Object Version", VersionString};
5467 case ELF::NT_AMD_HSA_HSAIL: {
5468 struct HSAILProperties {
5469 uint32_t HSAILMajorVersion;
5470 uint32_t HSAILMinorVersion;
5471 uint8_t Profile;
5472 uint8_t MachineModel;
5473 uint8_t DefaultFloatRound;
5475 if (Desc.size() != sizeof(HSAILProperties))
5476 return {"AMD HSA HSAIL Properties", "Invalid AMD HSA HSAIL Properties"};
5477 auto Properties = reinterpret_cast<const HSAILProperties *>(Desc.data());
5478 std::string HSAILPropetiesString;
5479 raw_string_ostream StrOS(HSAILPropetiesString);
5480 StrOS << "[HSAIL Major: " << Properties->HSAILMajorVersion
5481 << ", HSAIL Minor: " << Properties->HSAILMinorVersion
5482 << ", Profile: " << uint32_t(Properties->Profile)
5483 << ", Machine Model: " << uint32_t(Properties->MachineModel)
5484 << ", Default Float Round: "
5485 << uint32_t(Properties->DefaultFloatRound) << "]";
5486 return {"AMD HSA HSAIL Properties", HSAILPropetiesString};
5488 case ELF::NT_AMD_HSA_ISA_VERSION: {
5489 struct IsaVersion {
5490 uint16_t VendorNameSize;
5491 uint16_t ArchitectureNameSize;
5492 uint32_t Major;
5493 uint32_t Minor;
5494 uint32_t Stepping;
5496 if (Desc.size() < sizeof(IsaVersion))
5497 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5498 auto Isa = reinterpret_cast<const IsaVersion *>(Desc.data());
5499 if (Desc.size() < sizeof(IsaVersion) +
5500 Isa->VendorNameSize + Isa->ArchitectureNameSize ||
5501 Isa->VendorNameSize == 0 || Isa->ArchitectureNameSize == 0)
5502 return {"AMD HSA ISA Version", "Invalid AMD HSA ISA Version"};
5503 std::string IsaString;
5504 raw_string_ostream StrOS(IsaString);
5505 StrOS << "[Vendor: "
5506 << StringRef((const char*)Desc.data() + sizeof(IsaVersion), Isa->VendorNameSize - 1)
5507 << ", Architecture: "
5508 << StringRef((const char*)Desc.data() + sizeof(IsaVersion) + Isa->VendorNameSize,
5509 Isa->ArchitectureNameSize - 1)
5510 << ", Major: " << Isa->Major << ", Minor: " << Isa->Minor
5511 << ", Stepping: " << Isa->Stepping << "]";
5512 return {"AMD HSA ISA Version", IsaString};
5514 case ELF::NT_AMD_HSA_METADATA: {
5515 if (Desc.size() == 0)
5516 return {"AMD HSA Metadata", ""};
5517 return {
5518 "AMD HSA Metadata",
5519 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size() - 1)};
5521 case ELF::NT_AMD_HSA_ISA_NAME: {
5522 if (Desc.size() == 0)
5523 return {"AMD HSA ISA Name", ""};
5524 return {
5525 "AMD HSA ISA Name",
5526 std::string(reinterpret_cast<const char *>(Desc.data()), Desc.size())};
5528 case ELF::NT_AMD_PAL_METADATA: {
5529 struct PALMetadata {
5530 uint32_t Key;
5531 uint32_t Value;
5533 if (Desc.size() % sizeof(PALMetadata) != 0)
5534 return {"AMD PAL Metadata", "Invalid AMD PAL Metadata"};
5535 auto Isa = reinterpret_cast<const PALMetadata *>(Desc.data());
5536 std::string MetadataString;
5537 raw_string_ostream StrOS(MetadataString);
5538 for (size_t I = 0, E = Desc.size() / sizeof(PALMetadata); I < E; ++I) {
5539 StrOS << "[" << Isa[I].Key << ": " << Isa[I].Value << "]";
5541 return {"AMD PAL Metadata", MetadataString};
5546 struct AMDGPUNote {
5547 std::string Type;
5548 std::string Value;
5551 template <typename ELFT>
5552 static AMDGPUNote getAMDGPUNote(uint32_t NoteType, ArrayRef<uint8_t> Desc) {
5553 switch (NoteType) {
5554 default:
5555 return {"", ""};
5556 case ELF::NT_AMDGPU_METADATA: {
5557 StringRef MsgPackString =
5558 StringRef(reinterpret_cast<const char *>(Desc.data()), Desc.size());
5559 msgpack::Document MsgPackDoc;
5560 if (!MsgPackDoc.readFromBlob(MsgPackString, /*Multi=*/false))
5561 return {"", ""};
5563 std::string MetadataString;
5565 // FIXME: Metadata Verifier only works with AMDHSA.
5566 // This is an ugly workaround to avoid the verifier for other MD
5567 // formats (e.g. amdpal)
5568 if (MsgPackString.contains("amdhsa.")) {
5569 AMDGPU::HSAMD::V3::MetadataVerifier Verifier(true);
5570 if (!Verifier.verify(MsgPackDoc.getRoot()))
5571 MetadataString = "Invalid AMDGPU Metadata\n";
5574 raw_string_ostream StrOS(MetadataString);
5575 if (MsgPackDoc.getRoot().isScalar()) {
5576 // TODO: passing a scalar root to toYAML() asserts:
5577 // (PolymorphicTraits<T>::getKind(Val) != NodeKind::Scalar &&
5578 // "plain scalar documents are not supported")
5579 // To avoid this crash we print the raw data instead.
5580 return {"", ""};
5582 MsgPackDoc.toYAML(StrOS);
5583 return {"AMDGPU Metadata", StrOS.str()};
5588 struct CoreFileMapping {
5589 uint64_t Start, End, Offset;
5590 StringRef Filename;
5593 struct CoreNote {
5594 uint64_t PageSize;
5595 std::vector<CoreFileMapping> Mappings;
5598 static Expected<CoreNote> readCoreNote(DataExtractor Desc) {
5599 // Expected format of the NT_FILE note description:
5600 // 1. # of file mappings (call it N)
5601 // 2. Page size
5602 // 3. N (start, end, offset) triples
5603 // 4. N packed filenames (null delimited)
5604 // Each field is an Elf_Addr, except for filenames which are char* strings.
5606 CoreNote Ret;
5607 const int Bytes = Desc.getAddressSize();
5609 if (!Desc.isValidOffsetForAddress(2))
5610 return createError("the note of size 0x" + Twine::utohexstr(Desc.size()) +
5611 " is too short, expected at least 0x" +
5612 Twine::utohexstr(Bytes * 2));
5613 if (Desc.getData().back() != 0)
5614 return createError("the note is not NUL terminated");
5616 uint64_t DescOffset = 0;
5617 uint64_t FileCount = Desc.getAddress(&DescOffset);
5618 Ret.PageSize = Desc.getAddress(&DescOffset);
5620 if (!Desc.isValidOffsetForAddress(3 * FileCount * Bytes))
5621 return createError("unable to read file mappings (found " +
5622 Twine(FileCount) + "): the note of size 0x" +
5623 Twine::utohexstr(Desc.size()) + " is too short");
5625 uint64_t FilenamesOffset = 0;
5626 DataExtractor Filenames(
5627 Desc.getData().drop_front(DescOffset + 3 * FileCount * Bytes),
5628 Desc.isLittleEndian(), Desc.getAddressSize());
5630 Ret.Mappings.resize(FileCount);
5631 size_t I = 0;
5632 for (CoreFileMapping &Mapping : Ret.Mappings) {
5633 ++I;
5634 if (!Filenames.isValidOffsetForDataOfSize(FilenamesOffset, 1))
5635 return createError(
5636 "unable to read the file name for the mapping with index " +
5637 Twine(I) + ": the note of size 0x" + Twine::utohexstr(Desc.size()) +
5638 " is truncated");
5639 Mapping.Start = Desc.getAddress(&DescOffset);
5640 Mapping.End = Desc.getAddress(&DescOffset);
5641 Mapping.Offset = Desc.getAddress(&DescOffset);
5642 Mapping.Filename = Filenames.getCStrRef(&FilenamesOffset);
5645 return Ret;
5648 template <typename ELFT>
5649 static void printCoreNote(raw_ostream &OS, const CoreNote &Note) {
5650 // Length of "0x<address>" string.
5651 const int FieldWidth = ELFT::Is64Bits ? 18 : 10;
5653 OS << " Page size: " << format_decimal(Note.PageSize, 0) << '\n';
5654 OS << " " << right_justify("Start", FieldWidth) << " "
5655 << right_justify("End", FieldWidth) << " "
5656 << right_justify("Page Offset", FieldWidth) << '\n';
5657 for (const CoreFileMapping &Mapping : Note.Mappings) {
5658 OS << " " << format_hex(Mapping.Start, FieldWidth) << " "
5659 << format_hex(Mapping.End, FieldWidth) << " "
5660 << format_hex(Mapping.Offset, FieldWidth) << "\n "
5661 << Mapping.Filename << '\n';
5665 const NoteType GenericNoteTypes[] = {
5666 {ELF::NT_VERSION, "NT_VERSION (version)"},
5667 {ELF::NT_ARCH, "NT_ARCH (architecture)"},
5668 {ELF::NT_GNU_BUILD_ATTRIBUTE_OPEN, "OPEN"},
5669 {ELF::NT_GNU_BUILD_ATTRIBUTE_FUNC, "func"},
5672 const NoteType GNUNoteTypes[] = {
5673 {ELF::NT_GNU_ABI_TAG, "NT_GNU_ABI_TAG (ABI version tag)"},
5674 {ELF::NT_GNU_HWCAP, "NT_GNU_HWCAP (DSO-supplied software HWCAP info)"},
5675 {ELF::NT_GNU_BUILD_ID, "NT_GNU_BUILD_ID (unique build ID bitstring)"},
5676 {ELF::NT_GNU_GOLD_VERSION, "NT_GNU_GOLD_VERSION (gold version)"},
5677 {ELF::NT_GNU_PROPERTY_TYPE_0, "NT_GNU_PROPERTY_TYPE_0 (property note)"},
5680 const NoteType FreeBSDCoreNoteTypes[] = {
5681 {ELF::NT_FREEBSD_THRMISC, "NT_THRMISC (thrmisc structure)"},
5682 {ELF::NT_FREEBSD_PROCSTAT_PROC, "NT_PROCSTAT_PROC (proc data)"},
5683 {ELF::NT_FREEBSD_PROCSTAT_FILES, "NT_PROCSTAT_FILES (files data)"},
5684 {ELF::NT_FREEBSD_PROCSTAT_VMMAP, "NT_PROCSTAT_VMMAP (vmmap data)"},
5685 {ELF::NT_FREEBSD_PROCSTAT_GROUPS, "NT_PROCSTAT_GROUPS (groups data)"},
5686 {ELF::NT_FREEBSD_PROCSTAT_UMASK, "NT_PROCSTAT_UMASK (umask data)"},
5687 {ELF::NT_FREEBSD_PROCSTAT_RLIMIT, "NT_PROCSTAT_RLIMIT (rlimit data)"},
5688 {ELF::NT_FREEBSD_PROCSTAT_OSREL, "NT_PROCSTAT_OSREL (osreldate data)"},
5689 {ELF::NT_FREEBSD_PROCSTAT_PSSTRINGS,
5690 "NT_PROCSTAT_PSSTRINGS (ps_strings data)"},
5691 {ELF::NT_FREEBSD_PROCSTAT_AUXV, "NT_PROCSTAT_AUXV (auxv data)"},
5694 const NoteType FreeBSDNoteTypes[] = {
5695 {ELF::NT_FREEBSD_ABI_TAG, "NT_FREEBSD_ABI_TAG (ABI version tag)"},
5696 {ELF::NT_FREEBSD_NOINIT_TAG, "NT_FREEBSD_NOINIT_TAG (no .init tag)"},
5697 {ELF::NT_FREEBSD_ARCH_TAG, "NT_FREEBSD_ARCH_TAG (architecture tag)"},
5698 {ELF::NT_FREEBSD_FEATURE_CTL,
5699 "NT_FREEBSD_FEATURE_CTL (FreeBSD feature control)"},
5702 const NoteType NetBSDCoreNoteTypes[] = {
5703 {ELF::NT_NETBSDCORE_PROCINFO,
5704 "NT_NETBSDCORE_PROCINFO (procinfo structure)"},
5705 {ELF::NT_NETBSDCORE_AUXV, "NT_NETBSDCORE_AUXV (ELF auxiliary vector data)"},
5706 {ELF::NT_NETBSDCORE_LWPSTATUS, "PT_LWPSTATUS (ptrace_lwpstatus structure)"},
5709 const NoteType OpenBSDCoreNoteTypes[] = {
5710 {ELF::NT_OPENBSD_PROCINFO, "NT_OPENBSD_PROCINFO (procinfo structure)"},
5711 {ELF::NT_OPENBSD_AUXV, "NT_OPENBSD_AUXV (ELF auxiliary vector data)"},
5712 {ELF::NT_OPENBSD_REGS, "NT_OPENBSD_REGS (regular registers)"},
5713 {ELF::NT_OPENBSD_FPREGS, "NT_OPENBSD_FPREGS (floating point registers)"},
5714 {ELF::NT_OPENBSD_WCOOKIE, "NT_OPENBSD_WCOOKIE (window cookie)"},
5717 const NoteType AMDNoteTypes[] = {
5718 {ELF::NT_AMD_HSA_CODE_OBJECT_VERSION,
5719 "NT_AMD_HSA_CODE_OBJECT_VERSION (AMD HSA Code Object Version)"},
5720 {ELF::NT_AMD_HSA_HSAIL, "NT_AMD_HSA_HSAIL (AMD HSA HSAIL Properties)"},
5721 {ELF::NT_AMD_HSA_ISA_VERSION, "NT_AMD_HSA_ISA_VERSION (AMD HSA ISA Version)"},
5722 {ELF::NT_AMD_HSA_METADATA, "NT_AMD_HSA_METADATA (AMD HSA Metadata)"},
5723 {ELF::NT_AMD_HSA_ISA_NAME, "NT_AMD_HSA_ISA_NAME (AMD HSA ISA Name)"},
5724 {ELF::NT_AMD_PAL_METADATA, "NT_AMD_PAL_METADATA (AMD PAL Metadata)"},
5727 const NoteType AMDGPUNoteTypes[] = {
5728 {ELF::NT_AMDGPU_METADATA, "NT_AMDGPU_METADATA (AMDGPU Metadata)"},
5731 const NoteType LLVMOMPOFFLOADNoteTypes[] = {
5732 {ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION,
5733 "NT_LLVM_OPENMP_OFFLOAD_VERSION (image format version)"},
5734 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER,
5735 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER (producing toolchain)"},
5736 {ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION,
5737 "NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION (producing toolchain version)"},
5740 const NoteType AndroidNoteTypes[] = {
5741 {ELF::NT_ANDROID_TYPE_IDENT, "NT_ANDROID_TYPE_IDENT"},
5742 {ELF::NT_ANDROID_TYPE_KUSER, "NT_ANDROID_TYPE_KUSER"},
5743 {ELF::NT_ANDROID_TYPE_MEMTAG,
5744 "NT_ANDROID_TYPE_MEMTAG (Android memory tagging information)"},
5747 const NoteType CoreNoteTypes[] = {
5748 {ELF::NT_PRSTATUS, "NT_PRSTATUS (prstatus structure)"},
5749 {ELF::NT_FPREGSET, "NT_FPREGSET (floating point registers)"},
5750 {ELF::NT_PRPSINFO, "NT_PRPSINFO (prpsinfo structure)"},
5751 {ELF::NT_TASKSTRUCT, "NT_TASKSTRUCT (task structure)"},
5752 {ELF::NT_AUXV, "NT_AUXV (auxiliary vector)"},
5753 {ELF::NT_PSTATUS, "NT_PSTATUS (pstatus structure)"},
5754 {ELF::NT_FPREGS, "NT_FPREGS (floating point registers)"},
5755 {ELF::NT_PSINFO, "NT_PSINFO (psinfo structure)"},
5756 {ELF::NT_LWPSTATUS, "NT_LWPSTATUS (lwpstatus_t structure)"},
5757 {ELF::NT_LWPSINFO, "NT_LWPSINFO (lwpsinfo_t structure)"},
5758 {ELF::NT_WIN32PSTATUS, "NT_WIN32PSTATUS (win32_pstatus structure)"},
5760 {ELF::NT_PPC_VMX, "NT_PPC_VMX (ppc Altivec registers)"},
5761 {ELF::NT_PPC_VSX, "NT_PPC_VSX (ppc VSX registers)"},
5762 {ELF::NT_PPC_TAR, "NT_PPC_TAR (ppc TAR register)"},
5763 {ELF::NT_PPC_PPR, "NT_PPC_PPR (ppc PPR register)"},
5764 {ELF::NT_PPC_DSCR, "NT_PPC_DSCR (ppc DSCR register)"},
5765 {ELF::NT_PPC_EBB, "NT_PPC_EBB (ppc EBB registers)"},
5766 {ELF::NT_PPC_PMU, "NT_PPC_PMU (ppc PMU registers)"},
5767 {ELF::NT_PPC_TM_CGPR, "NT_PPC_TM_CGPR (ppc checkpointed GPR registers)"},
5768 {ELF::NT_PPC_TM_CFPR,
5769 "NT_PPC_TM_CFPR (ppc checkpointed floating point registers)"},
5770 {ELF::NT_PPC_TM_CVMX,
5771 "NT_PPC_TM_CVMX (ppc checkpointed Altivec registers)"},
5772 {ELF::NT_PPC_TM_CVSX, "NT_PPC_TM_CVSX (ppc checkpointed VSX registers)"},
5773 {ELF::NT_PPC_TM_SPR, "NT_PPC_TM_SPR (ppc TM special purpose registers)"},
5774 {ELF::NT_PPC_TM_CTAR, "NT_PPC_TM_CTAR (ppc checkpointed TAR register)"},
5775 {ELF::NT_PPC_TM_CPPR, "NT_PPC_TM_CPPR (ppc checkpointed PPR register)"},
5776 {ELF::NT_PPC_TM_CDSCR, "NT_PPC_TM_CDSCR (ppc checkpointed DSCR register)"},
5778 {ELF::NT_386_TLS, "NT_386_TLS (x86 TLS information)"},
5779 {ELF::NT_386_IOPERM, "NT_386_IOPERM (x86 I/O permissions)"},
5780 {ELF::NT_X86_XSTATE, "NT_X86_XSTATE (x86 XSAVE extended state)"},
5782 {ELF::NT_S390_HIGH_GPRS, "NT_S390_HIGH_GPRS (s390 upper register halves)"},
5783 {ELF::NT_S390_TIMER, "NT_S390_TIMER (s390 timer register)"},
5784 {ELF::NT_S390_TODCMP, "NT_S390_TODCMP (s390 TOD comparator register)"},
5785 {ELF::NT_S390_TODPREG, "NT_S390_TODPREG (s390 TOD programmable register)"},
5786 {ELF::NT_S390_CTRS, "NT_S390_CTRS (s390 control registers)"},
5787 {ELF::NT_S390_PREFIX, "NT_S390_PREFIX (s390 prefix register)"},
5788 {ELF::NT_S390_LAST_BREAK,
5789 "NT_S390_LAST_BREAK (s390 last breaking event address)"},
5790 {ELF::NT_S390_SYSTEM_CALL,
5791 "NT_S390_SYSTEM_CALL (s390 system call restart data)"},
5792 {ELF::NT_S390_TDB, "NT_S390_TDB (s390 transaction diagnostic block)"},
5793 {ELF::NT_S390_VXRS_LOW,
5794 "NT_S390_VXRS_LOW (s390 vector registers 0-15 upper half)"},
5795 {ELF::NT_S390_VXRS_HIGH, "NT_S390_VXRS_HIGH (s390 vector registers 16-31)"},
5796 {ELF::NT_S390_GS_CB, "NT_S390_GS_CB (s390 guarded-storage registers)"},
5797 {ELF::NT_S390_GS_BC,
5798 "NT_S390_GS_BC (s390 guarded-storage broadcast control)"},
5800 {ELF::NT_ARM_VFP, "NT_ARM_VFP (arm VFP registers)"},
5801 {ELF::NT_ARM_TLS, "NT_ARM_TLS (AArch TLS registers)"},
5802 {ELF::NT_ARM_HW_BREAK,
5803 "NT_ARM_HW_BREAK (AArch hardware breakpoint registers)"},
5804 {ELF::NT_ARM_HW_WATCH,
5805 "NT_ARM_HW_WATCH (AArch hardware watchpoint registers)"},
5806 {ELF::NT_ARM_SVE, "NT_ARM_SVE (AArch64 SVE registers)"},
5807 {ELF::NT_ARM_PAC_MASK,
5808 "NT_ARM_PAC_MASK (AArch64 Pointer Authentication code masks)"},
5809 {ELF::NT_ARM_TAGGED_ADDR_CTRL,
5810 "NT_ARM_TAGGED_ADDR_CTRL (AArch64 Tagged Address Control)"},
5811 {ELF::NT_ARM_SSVE, "NT_ARM_SSVE (AArch64 Streaming SVE registers)"},
5812 {ELF::NT_ARM_ZA, "NT_ARM_ZA (AArch64 SME ZA registers)"},
5813 {ELF::NT_ARM_ZT, "NT_ARM_ZT (AArch64 SME ZT registers)"},
5815 {ELF::NT_FILE, "NT_FILE (mapped files)"},
5816 {ELF::NT_PRXFPREG, "NT_PRXFPREG (user_xfpregs structure)"},
5817 {ELF::NT_SIGINFO, "NT_SIGINFO (siginfo_t data)"},
5820 template <class ELFT>
5821 StringRef getNoteTypeName(const typename ELFT::Note &Note, unsigned ELFType) {
5822 uint32_t Type = Note.getType();
5823 auto FindNote = [&](ArrayRef<NoteType> V) -> StringRef {
5824 for (const NoteType &N : V)
5825 if (N.ID == Type)
5826 return N.Name;
5827 return "";
5830 StringRef Name = Note.getName();
5831 if (Name == "GNU")
5832 return FindNote(GNUNoteTypes);
5833 if (Name == "FreeBSD") {
5834 if (ELFType == ELF::ET_CORE) {
5835 // FreeBSD also places the generic core notes in the FreeBSD namespace.
5836 StringRef Result = FindNote(FreeBSDCoreNoteTypes);
5837 if (!Result.empty())
5838 return Result;
5839 return FindNote(CoreNoteTypes);
5840 } else {
5841 return FindNote(FreeBSDNoteTypes);
5844 if (ELFType == ELF::ET_CORE && Name.startswith("NetBSD-CORE")) {
5845 StringRef Result = FindNote(NetBSDCoreNoteTypes);
5846 if (!Result.empty())
5847 return Result;
5848 return FindNote(CoreNoteTypes);
5850 if (ELFType == ELF::ET_CORE && Name.startswith("OpenBSD")) {
5851 // OpenBSD also places the generic core notes in the OpenBSD namespace.
5852 StringRef Result = FindNote(OpenBSDCoreNoteTypes);
5853 if (!Result.empty())
5854 return Result;
5855 return FindNote(CoreNoteTypes);
5857 if (Name == "AMD")
5858 return FindNote(AMDNoteTypes);
5859 if (Name == "AMDGPU")
5860 return FindNote(AMDGPUNoteTypes);
5861 if (Name == "LLVMOMPOFFLOAD")
5862 return FindNote(LLVMOMPOFFLOADNoteTypes);
5863 if (Name == "Android")
5864 return FindNote(AndroidNoteTypes);
5866 if (ELFType == ELF::ET_CORE)
5867 return FindNote(CoreNoteTypes);
5868 return FindNote(GenericNoteTypes);
5871 template <class ELFT>
5872 static void processNotesHelper(
5873 const ELFDumper<ELFT> &Dumper,
5874 llvm::function_ref<void(std::optional<StringRef>, typename ELFT::Off,
5875 typename ELFT::Addr, size_t)>
5876 StartNotesFn,
5877 llvm::function_ref<Error(const typename ELFT::Note &, bool)> ProcessNoteFn,
5878 llvm::function_ref<void()> FinishNotesFn) {
5879 const ELFFile<ELFT> &Obj = Dumper.getElfObject().getELFFile();
5880 bool IsCoreFile = Obj.getHeader().e_type == ELF::ET_CORE;
5882 ArrayRef<typename ELFT::Shdr> Sections = cantFail(Obj.sections());
5883 if (!IsCoreFile && !Sections.empty()) {
5884 for (const typename ELFT::Shdr &S : Sections) {
5885 if (S.sh_type != SHT_NOTE)
5886 continue;
5887 StartNotesFn(expectedToStdOptional(Obj.getSectionName(S)), S.sh_offset,
5888 S.sh_size, S.sh_addralign);
5889 Error Err = Error::success();
5890 size_t I = 0;
5891 for (const typename ELFT::Note Note : Obj.notes(S, Err)) {
5892 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5893 Dumper.reportUniqueWarning(
5894 "unable to read note with index " + Twine(I) + " from the " +
5895 describe(Obj, S) + ": " + toString(std::move(E)));
5896 ++I;
5898 if (Err)
5899 Dumper.reportUniqueWarning("unable to read notes from the " +
5900 describe(Obj, S) + ": " +
5901 toString(std::move(Err)));
5902 FinishNotesFn();
5904 return;
5907 Expected<ArrayRef<typename ELFT::Phdr>> PhdrsOrErr = Obj.program_headers();
5908 if (!PhdrsOrErr) {
5909 Dumper.reportUniqueWarning(
5910 "unable to read program headers to locate the PT_NOTE segment: " +
5911 toString(PhdrsOrErr.takeError()));
5912 return;
5915 for (size_t I = 0, E = (*PhdrsOrErr).size(); I != E; ++I) {
5916 const typename ELFT::Phdr &P = (*PhdrsOrErr)[I];
5917 if (P.p_type != PT_NOTE)
5918 continue;
5919 StartNotesFn(/*SecName=*/std::nullopt, P.p_offset, P.p_filesz, P.p_align);
5920 Error Err = Error::success();
5921 size_t Index = 0;
5922 for (const typename ELFT::Note Note : Obj.notes(P, Err)) {
5923 if (Error E = ProcessNoteFn(Note, IsCoreFile))
5924 Dumper.reportUniqueWarning("unable to read note with index " +
5925 Twine(Index) +
5926 " from the PT_NOTE segment with index " +
5927 Twine(I) + ": " + toString(std::move(E)));
5928 ++Index;
5930 if (Err)
5931 Dumper.reportUniqueWarning(
5932 "unable to read notes from the PT_NOTE segment with index " +
5933 Twine(I) + ": " + toString(std::move(Err)));
5934 FinishNotesFn();
5938 template <class ELFT> void GNUELFDumper<ELFT>::printNotes() {
5939 size_t Align = 0;
5940 bool IsFirstHeader = true;
5941 auto PrintHeader = [&](std::optional<StringRef> SecName,
5942 const typename ELFT::Off Offset,
5943 const typename ELFT::Addr Size, size_t Al) {
5944 Align = std::max<size_t>(Al, 4);
5945 // Print a newline between notes sections to match GNU readelf.
5946 if (!IsFirstHeader) {
5947 OS << '\n';
5948 } else {
5949 IsFirstHeader = false;
5952 OS << "Displaying notes found ";
5954 if (SecName)
5955 OS << "in: " << *SecName << "\n";
5956 else
5957 OS << "at file offset " << format_hex(Offset, 10) << " with length "
5958 << format_hex(Size, 10) << ":\n";
5960 OS << " Owner Data size \tDescription\n";
5963 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
5964 StringRef Name = Note.getName();
5965 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align);
5966 Elf_Word Type = Note.getType();
5968 // Print the note owner/type.
5969 OS << " " << left_justify(Name, 20) << ' '
5970 << format_hex(Descriptor.size(), 10) << '\t';
5972 StringRef NoteType =
5973 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
5974 if (!NoteType.empty())
5975 OS << NoteType << '\n';
5976 else
5977 OS << "Unknown note type: (" << format_hex(Type, 10) << ")\n";
5979 // Print the description, or fallback to printing raw bytes for unknown
5980 // owners/if we fail to pretty-print the contents.
5981 if (Name == "GNU") {
5982 if (printGNUNote<ELFT>(OS, Type, Descriptor))
5983 return Error::success();
5984 } else if (Name == "FreeBSD") {
5985 if (std::optional<FreeBSDNote> N =
5986 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
5987 OS << " " << N->Type << ": " << N->Value << '\n';
5988 return Error::success();
5990 } else if (Name == "AMD") {
5991 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
5992 if (!N.Type.empty()) {
5993 OS << " " << N.Type << ":\n " << N.Value << '\n';
5994 return Error::success();
5996 } else if (Name == "AMDGPU") {
5997 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
5998 if (!N.Type.empty()) {
5999 OS << " " << N.Type << ":\n " << N.Value << '\n';
6000 return Error::success();
6002 } else if (Name == "LLVMOMPOFFLOAD") {
6003 if (printLLVMOMPOFFLOADNote<ELFT>(OS, Type, Descriptor))
6004 return Error::success();
6005 } else if (Name == "CORE") {
6006 if (Type == ELF::NT_FILE) {
6007 DataExtractor DescExtractor(
6008 Descriptor, ELFT::TargetEndianness == llvm::endianness::little,
6009 sizeof(Elf_Addr));
6010 if (Expected<CoreNote> NoteOrErr = readCoreNote(DescExtractor)) {
6011 printCoreNote<ELFT>(OS, *NoteOrErr);
6012 return Error::success();
6013 } else {
6014 return NoteOrErr.takeError();
6017 } else if (Name == "Android") {
6018 if (printAndroidNote(OS, Type, Descriptor))
6019 return Error::success();
6021 if (!Descriptor.empty()) {
6022 OS << " description data:";
6023 for (uint8_t B : Descriptor)
6024 OS << " " << format("%02x", B);
6025 OS << '\n';
6027 return Error::success();
6030 processNotesHelper(*this, /*StartNotesFn=*/PrintHeader,
6031 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/[]() {});
6034 template <class ELFT>
6035 ArrayRef<uint8_t>
6036 ELFDumper<ELFT>::getMemtagGlobalsSectionContents(uint64_t ExpectedAddr) {
6037 for (const typename ELFT::Shdr &Sec : cantFail(Obj.sections())) {
6038 if (Sec.sh_type != SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC)
6039 continue;
6040 if (Sec.sh_addr != ExpectedAddr) {
6041 reportUniqueWarning(
6042 "SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section was unexpectedly at 0x" +
6043 Twine::utohexstr(Sec.sh_addr) +
6044 ", when DT_AARCH64_MEMTAG_GLOBALS says it should be at 0x" +
6045 Twine::utohexstr(ExpectedAddr));
6046 return ArrayRef<uint8_t>();
6048 Expected<ArrayRef<uint8_t>> Contents = Obj.getSectionContents(Sec);
6049 if (auto E = Contents.takeError()) {
6050 reportUniqueWarning(
6051 "couldn't get SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section contents: " +
6052 toString(std::move(E)));
6053 return ArrayRef<uint8_t>();
6055 return Contents.get();
6057 return ArrayRef<uint8_t>();
6060 // Reserve the lower three bits of the first byte of the step distance when
6061 // encoding the memtag descriptors. Found to be the best overall size tradeoff
6062 // when compiling Android T with full MTE globals enabled.
6063 constexpr uint64_t MemtagStepVarintReservedBits = 3;
6064 constexpr uint64_t MemtagGranuleSize = 16;
6066 template <typename ELFT> void ELFDumper<ELFT>::printMemtag() {
6067 if (Obj.getHeader().e_machine != EM_AARCH64) return;
6068 std::vector<std::pair<std::string, std::string>> DynamicEntries;
6069 uint64_t MemtagGlobalsSz = 0;
6070 uint64_t MemtagGlobals = 0;
6071 for (const typename ELFT::Dyn &Entry : dynamic_table()) {
6072 uintX_t Tag = Entry.getTag();
6073 switch (Tag) {
6074 case DT_AARCH64_MEMTAG_GLOBALSSZ:
6075 MemtagGlobalsSz = Entry.getVal();
6076 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6077 getDynamicEntry(Tag, Entry.getVal()));
6078 break;
6079 case DT_AARCH64_MEMTAG_GLOBALS:
6080 MemtagGlobals = Entry.getVal();
6081 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6082 getDynamicEntry(Tag, Entry.getVal()));
6083 break;
6084 case DT_AARCH64_MEMTAG_MODE:
6085 case DT_AARCH64_MEMTAG_HEAP:
6086 case DT_AARCH64_MEMTAG_STACK:
6087 DynamicEntries.emplace_back(Obj.getDynamicTagAsString(Tag),
6088 getDynamicEntry(Tag, Entry.getVal()));
6089 break;
6093 ArrayRef<uint8_t> AndroidNoteDesc;
6094 auto FindAndroidNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
6095 if (Note.getName() == "Android" &&
6096 Note.getType() == ELF::NT_ANDROID_TYPE_MEMTAG)
6097 AndroidNoteDesc = Note.getDesc(4);
6098 return Error::success();
6101 processNotesHelper(
6102 *this,
6103 /*StartNotesFn=*/
6104 [](std::optional<StringRef>, const typename ELFT::Off,
6105 const typename ELFT::Addr, size_t) {},
6106 /*ProcessNoteFn=*/FindAndroidNote, /*FinishNotesFn=*/[]() {});
6108 ArrayRef<uint8_t> Contents = getMemtagGlobalsSectionContents(MemtagGlobals);
6109 if (Contents.size() != MemtagGlobalsSz) {
6110 reportUniqueWarning(
6111 "mismatch between DT_AARCH64_MEMTAG_GLOBALSSZ (0x" +
6112 Twine::utohexstr(MemtagGlobalsSz) +
6113 ") and SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC section size (0x" +
6114 Twine::utohexstr(Contents.size()) + ")");
6115 Contents = ArrayRef<uint8_t>();
6118 std::vector<std::pair<uint64_t, uint64_t>> GlobalDescriptors;
6119 uint64_t Address = 0;
6120 // See the AArch64 MemtagABI document for a description of encoding scheme:
6121 // https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#83encoding-of-sht_aarch64_memtag_globals_dynamic
6122 for (size_t I = 0; I < Contents.size();) {
6123 const char *Error = nullptr;
6124 unsigned DecodedBytes = 0;
6125 uint64_t Value = decodeULEB128(Contents.data() + I, &DecodedBytes,
6126 Contents.end(), &Error);
6127 I += DecodedBytes;
6128 if (Error) {
6129 reportUniqueWarning(
6130 "error decoding distance uleb, " + Twine(DecodedBytes) +
6131 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6132 GlobalDescriptors.clear();
6133 break;
6135 uint64_t Distance = Value >> MemtagStepVarintReservedBits;
6136 uint64_t GranulesToTag = Value & ((1 << MemtagStepVarintReservedBits) - 1);
6137 if (GranulesToTag == 0) {
6138 GranulesToTag = decodeULEB128(Contents.data() + I, &DecodedBytes,
6139 Contents.end(), &Error) +
6141 I += DecodedBytes;
6142 if (Error) {
6143 reportUniqueWarning(
6144 "error decoding size-only uleb, " + Twine(DecodedBytes) +
6145 " byte(s) into SHT_AARCH64_MEMTAG_GLOBALS_DYNAMIC: " + Twine(Error));
6146 GlobalDescriptors.clear();
6147 break;
6150 Address += Distance * MemtagGranuleSize;
6151 GlobalDescriptors.emplace_back(Address, GranulesToTag * MemtagGranuleSize);
6152 Address += GranulesToTag * MemtagGranuleSize;
6155 printMemtag(DynamicEntries, AndroidNoteDesc, GlobalDescriptors);
6158 template <class ELFT> void GNUELFDumper<ELFT>::printELFLinkerOptions() {
6159 OS << "printELFLinkerOptions not implemented!\n";
6162 template <class ELFT>
6163 void ELFDumper<ELFT>::printDependentLibsHelper(
6164 function_ref<void(const Elf_Shdr &)> OnSectionStart,
6165 function_ref<void(StringRef, uint64_t)> OnLibEntry) {
6166 auto Warn = [this](unsigned SecNdx, StringRef Msg) {
6167 this->reportUniqueWarning("SHT_LLVM_DEPENDENT_LIBRARIES section at index " +
6168 Twine(SecNdx) + " is broken: " + Msg);
6171 unsigned I = -1;
6172 for (const Elf_Shdr &Shdr : cantFail(Obj.sections())) {
6173 ++I;
6174 if (Shdr.sh_type != ELF::SHT_LLVM_DEPENDENT_LIBRARIES)
6175 continue;
6177 OnSectionStart(Shdr);
6179 Expected<ArrayRef<uint8_t>> ContentsOrErr = Obj.getSectionContents(Shdr);
6180 if (!ContentsOrErr) {
6181 Warn(I, toString(ContentsOrErr.takeError()));
6182 continue;
6185 ArrayRef<uint8_t> Contents = *ContentsOrErr;
6186 if (!Contents.empty() && Contents.back() != 0) {
6187 Warn(I, "the content is not null-terminated");
6188 continue;
6191 for (const uint8_t *I = Contents.begin(), *E = Contents.end(); I < E;) {
6192 StringRef Lib((const char *)I);
6193 OnLibEntry(Lib, I - Contents.begin());
6194 I += Lib.size() + 1;
6199 template <class ELFT>
6200 void ELFDumper<ELFT>::forEachRelocationDo(
6201 const Elf_Shdr &Sec, bool RawRelr,
6202 llvm::function_ref<void(const Relocation<ELFT> &, unsigned,
6203 const Elf_Shdr &, const Elf_Shdr *)>
6204 RelRelaFn,
6205 llvm::function_ref<void(const Elf_Relr &)> RelrFn) {
6206 auto Warn = [&](Error &&E,
6207 const Twine &Prefix = "unable to read relocations from") {
6208 this->reportUniqueWarning(Prefix + " " + describe(Sec) + ": " +
6209 toString(std::move(E)));
6212 // SHT_RELR/SHT_ANDROID_RELR sections do not have an associated symbol table.
6213 // For them we should not treat the value of the sh_link field as an index of
6214 // a symbol table.
6215 const Elf_Shdr *SymTab;
6216 if (Sec.sh_type != ELF::SHT_RELR && Sec.sh_type != ELF::SHT_ANDROID_RELR) {
6217 Expected<const Elf_Shdr *> SymTabOrErr = Obj.getSection(Sec.sh_link);
6218 if (!SymTabOrErr) {
6219 Warn(SymTabOrErr.takeError(), "unable to locate a symbol table for");
6220 return;
6222 SymTab = *SymTabOrErr;
6225 unsigned RelNdx = 0;
6226 const bool IsMips64EL = this->Obj.isMips64EL();
6227 switch (Sec.sh_type) {
6228 case ELF::SHT_REL:
6229 if (Expected<Elf_Rel_Range> RangeOrErr = Obj.rels(Sec)) {
6230 for (const Elf_Rel &R : *RangeOrErr)
6231 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6232 } else {
6233 Warn(RangeOrErr.takeError());
6235 break;
6236 case ELF::SHT_RELA:
6237 if (Expected<Elf_Rela_Range> RangeOrErr = Obj.relas(Sec)) {
6238 for (const Elf_Rela &R : *RangeOrErr)
6239 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6240 } else {
6241 Warn(RangeOrErr.takeError());
6243 break;
6244 case ELF::SHT_RELR:
6245 case ELF::SHT_ANDROID_RELR: {
6246 Expected<Elf_Relr_Range> RangeOrErr = Obj.relrs(Sec);
6247 if (!RangeOrErr) {
6248 Warn(RangeOrErr.takeError());
6249 break;
6251 if (RawRelr) {
6252 for (const Elf_Relr &R : *RangeOrErr)
6253 RelrFn(R);
6254 break;
6257 for (const Elf_Rel &R : Obj.decode_relrs(*RangeOrErr))
6258 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec,
6259 /*SymTab=*/nullptr);
6260 break;
6262 case ELF::SHT_ANDROID_REL:
6263 case ELF::SHT_ANDROID_RELA:
6264 if (Expected<std::vector<Elf_Rela>> RelasOrErr = Obj.android_relas(Sec)) {
6265 for (const Elf_Rela &R : *RelasOrErr)
6266 RelRelaFn(Relocation<ELFT>(R, IsMips64EL), RelNdx++, Sec, SymTab);
6267 } else {
6268 Warn(RelasOrErr.takeError());
6270 break;
6274 template <class ELFT>
6275 StringRef ELFDumper<ELFT>::getPrintableSectionName(const Elf_Shdr &Sec) const {
6276 StringRef Name = "<?>";
6277 if (Expected<StringRef> SecNameOrErr =
6278 Obj.getSectionName(Sec, this->WarningHandler))
6279 Name = *SecNameOrErr;
6280 else
6281 this->reportUniqueWarning("unable to get the name of " + describe(Sec) +
6282 ": " + toString(SecNameOrErr.takeError()));
6283 return Name;
6286 template <class ELFT> void GNUELFDumper<ELFT>::printDependentLibs() {
6287 bool SectionStarted = false;
6288 struct NameOffset {
6289 StringRef Name;
6290 uint64_t Offset;
6292 std::vector<NameOffset> SecEntries;
6293 NameOffset Current;
6294 auto PrintSection = [&]() {
6295 OS << "Dependent libraries section " << Current.Name << " at offset "
6296 << format_hex(Current.Offset, 1) << " contains " << SecEntries.size()
6297 << " entries:\n";
6298 for (NameOffset Entry : SecEntries)
6299 OS << " [" << format("%6" PRIx64, Entry.Offset) << "] " << Entry.Name
6300 << "\n";
6301 OS << "\n";
6302 SecEntries.clear();
6305 auto OnSectionStart = [&](const Elf_Shdr &Shdr) {
6306 if (SectionStarted)
6307 PrintSection();
6308 SectionStarted = true;
6309 Current.Offset = Shdr.sh_offset;
6310 Current.Name = this->getPrintableSectionName(Shdr);
6312 auto OnLibEntry = [&](StringRef Lib, uint64_t Offset) {
6313 SecEntries.push_back(NameOffset{Lib, Offset});
6316 this->printDependentLibsHelper(OnSectionStart, OnLibEntry);
6317 if (SectionStarted)
6318 PrintSection();
6321 template <class ELFT>
6322 SmallVector<uint32_t> ELFDumper<ELFT>::getSymbolIndexesForFunctionAddress(
6323 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec) {
6324 SmallVector<uint32_t> SymbolIndexes;
6325 if (!this->AddressToIndexMap) {
6326 // Populate the address to index map upon the first invocation of this
6327 // function.
6328 this->AddressToIndexMap.emplace();
6329 if (this->DotSymtabSec) {
6330 if (Expected<Elf_Sym_Range> SymsOrError =
6331 Obj.symbols(this->DotSymtabSec)) {
6332 uint32_t Index = (uint32_t)-1;
6333 for (const Elf_Sym &Sym : *SymsOrError) {
6334 ++Index;
6336 if (Sym.st_shndx == ELF::SHN_UNDEF || Sym.getType() != ELF::STT_FUNC)
6337 continue;
6339 Expected<uint64_t> SymAddrOrErr =
6340 ObjF.toSymbolRef(this->DotSymtabSec, Index).getAddress();
6341 if (!SymAddrOrErr) {
6342 std::string Name = this->getStaticSymbolName(Index);
6343 reportUniqueWarning("unable to get address of symbol '" + Name +
6344 "': " + toString(SymAddrOrErr.takeError()));
6345 return SymbolIndexes;
6348 (*this->AddressToIndexMap)[*SymAddrOrErr].push_back(Index);
6350 } else {
6351 reportUniqueWarning("unable to read the symbol table: " +
6352 toString(SymsOrError.takeError()));
6357 auto Symbols = this->AddressToIndexMap->find(SymValue);
6358 if (Symbols == this->AddressToIndexMap->end())
6359 return SymbolIndexes;
6361 for (uint32_t Index : Symbols->second) {
6362 // Check if the symbol is in the right section. FunctionSec == None
6363 // means "any section".
6364 if (FunctionSec) {
6365 const Elf_Sym &Sym = *cantFail(Obj.getSymbol(this->DotSymtabSec, Index));
6366 if (Expected<const Elf_Shdr *> SecOrErr =
6367 Obj.getSection(Sym, this->DotSymtabSec,
6368 this->getShndxTable(this->DotSymtabSec))) {
6369 if (*FunctionSec != *SecOrErr)
6370 continue;
6371 } else {
6372 std::string Name = this->getStaticSymbolName(Index);
6373 // Note: it is impossible to trigger this error currently, it is
6374 // untested.
6375 reportUniqueWarning("unable to get section of symbol '" + Name +
6376 "': " + toString(SecOrErr.takeError()));
6377 return SymbolIndexes;
6381 SymbolIndexes.push_back(Index);
6384 return SymbolIndexes;
6387 template <class ELFT>
6388 bool ELFDumper<ELFT>::printFunctionStackSize(
6389 uint64_t SymValue, std::optional<const Elf_Shdr *> FunctionSec,
6390 const Elf_Shdr &StackSizeSec, DataExtractor Data, uint64_t *Offset) {
6391 SmallVector<uint32_t> FuncSymIndexes =
6392 this->getSymbolIndexesForFunctionAddress(SymValue, FunctionSec);
6393 if (FuncSymIndexes.empty())
6394 reportUniqueWarning(
6395 "could not identify function symbol for stack size entry in " +
6396 describe(StackSizeSec));
6398 // Extract the size. The expectation is that Offset is pointing to the right
6399 // place, i.e. past the function address.
6400 Error Err = Error::success();
6401 uint64_t StackSize = Data.getULEB128(Offset, &Err);
6402 if (Err) {
6403 reportUniqueWarning("could not extract a valid stack size from " +
6404 describe(StackSizeSec) + ": " +
6405 toString(std::move(Err)));
6406 return false;
6409 if (FuncSymIndexes.empty()) {
6410 printStackSizeEntry(StackSize, {"?"});
6411 } else {
6412 SmallVector<std::string> FuncSymNames;
6413 for (uint32_t Index : FuncSymIndexes)
6414 FuncSymNames.push_back(this->getStaticSymbolName(Index));
6415 printStackSizeEntry(StackSize, FuncSymNames);
6418 return true;
6421 template <class ELFT>
6422 void GNUELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
6423 ArrayRef<std::string> FuncNames) {
6424 OS.PadToColumn(2);
6425 OS << format_decimal(Size, 11);
6426 OS.PadToColumn(18);
6428 OS << join(FuncNames.begin(), FuncNames.end(), ", ") << "\n";
6431 template <class ELFT>
6432 void ELFDumper<ELFT>::printStackSize(const Relocation<ELFT> &R,
6433 const Elf_Shdr &RelocSec, unsigned Ndx,
6434 const Elf_Shdr *SymTab,
6435 const Elf_Shdr *FunctionSec,
6436 const Elf_Shdr &StackSizeSec,
6437 const RelocationResolver &Resolver,
6438 DataExtractor Data) {
6439 // This function ignores potentially erroneous input, unless it is directly
6440 // related to stack size reporting.
6441 const Elf_Sym *Sym = nullptr;
6442 Expected<RelSymbol<ELFT>> TargetOrErr = this->getRelocationTarget(R, SymTab);
6443 if (!TargetOrErr)
6444 reportUniqueWarning("unable to get the target of relocation with index " +
6445 Twine(Ndx) + " in " + describe(RelocSec) + ": " +
6446 toString(TargetOrErr.takeError()));
6447 else
6448 Sym = TargetOrErr->Sym;
6450 uint64_t RelocSymValue = 0;
6451 if (Sym) {
6452 Expected<const Elf_Shdr *> SectionOrErr =
6453 this->Obj.getSection(*Sym, SymTab, this->getShndxTable(SymTab));
6454 if (!SectionOrErr) {
6455 reportUniqueWarning(
6456 "cannot identify the section for relocation symbol '" +
6457 (*TargetOrErr).Name + "': " + toString(SectionOrErr.takeError()));
6458 } else if (*SectionOrErr != FunctionSec) {
6459 reportUniqueWarning("relocation symbol '" + (*TargetOrErr).Name +
6460 "' is not in the expected section");
6461 // Pretend that the symbol is in the correct section and report its
6462 // stack size anyway.
6463 FunctionSec = *SectionOrErr;
6466 RelocSymValue = Sym->st_value;
6469 uint64_t Offset = R.Offset;
6470 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6471 reportUniqueWarning("found invalid relocation offset (0x" +
6472 Twine::utohexstr(Offset) + ") into " +
6473 describe(StackSizeSec) +
6474 " while trying to extract a stack size entry");
6475 return;
6478 uint64_t SymValue = Resolver(R.Type, Offset, RelocSymValue,
6479 Data.getAddress(&Offset), R.Addend.value_or(0));
6480 this->printFunctionStackSize(SymValue, FunctionSec, StackSizeSec, Data,
6481 &Offset);
6484 template <class ELFT>
6485 void ELFDumper<ELFT>::printNonRelocatableStackSizes(
6486 std::function<void()> PrintHeader) {
6487 // This function ignores potentially erroneous input, unless it is directly
6488 // related to stack size reporting.
6489 for (const Elf_Shdr &Sec : cantFail(Obj.sections())) {
6490 if (this->getPrintableSectionName(Sec) != ".stack_sizes")
6491 continue;
6492 PrintHeader();
6493 ArrayRef<uint8_t> Contents =
6494 unwrapOrError(this->FileName, Obj.getSectionContents(Sec));
6495 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6496 uint64_t Offset = 0;
6497 while (Offset < Contents.size()) {
6498 // The function address is followed by a ULEB representing the stack
6499 // size. Check for an extra byte before we try to process the entry.
6500 if (!Data.isValidOffsetForDataOfSize(Offset, sizeof(Elf_Addr) + 1)) {
6501 reportUniqueWarning(
6502 describe(Sec) +
6503 " ended while trying to extract a stack size entry");
6504 break;
6506 uint64_t SymValue = Data.getAddress(&Offset);
6507 if (!printFunctionStackSize(SymValue, /*FunctionSec=*/std::nullopt, Sec,
6508 Data, &Offset))
6509 break;
6514 template <class ELFT>
6515 void ELFDumper<ELFT>::printRelocatableStackSizes(
6516 std::function<void()> PrintHeader) {
6517 // Build a map between stack size sections and their corresponding relocation
6518 // sections.
6519 auto IsMatch = [&](const Elf_Shdr &Sec) -> bool {
6520 StringRef SectionName;
6521 if (Expected<StringRef> NameOrErr = Obj.getSectionName(Sec))
6522 SectionName = *NameOrErr;
6523 else
6524 consumeError(NameOrErr.takeError());
6526 return SectionName == ".stack_sizes";
6529 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>>
6530 StackSizeRelocMapOrErr = Obj.getSectionAndRelocations(IsMatch);
6531 if (!StackSizeRelocMapOrErr) {
6532 reportUniqueWarning("unable to get stack size map section(s): " +
6533 toString(StackSizeRelocMapOrErr.takeError()));
6534 return;
6537 for (const auto &StackSizeMapEntry : *StackSizeRelocMapOrErr) {
6538 PrintHeader();
6539 const Elf_Shdr *StackSizesELFSec = StackSizeMapEntry.first;
6540 const Elf_Shdr *RelocSec = StackSizeMapEntry.second;
6542 // Warn about stack size sections without a relocation section.
6543 if (!RelocSec) {
6544 reportWarning(createError(".stack_sizes (" + describe(*StackSizesELFSec) +
6545 ") does not have a corresponding "
6546 "relocation section"),
6547 FileName);
6548 continue;
6551 // A .stack_sizes section header's sh_link field is supposed to point
6552 // to the section that contains the functions whose stack sizes are
6553 // described in it.
6554 const Elf_Shdr *FunctionSec = unwrapOrError(
6555 this->FileName, Obj.getSection(StackSizesELFSec->sh_link));
6557 SupportsRelocation IsSupportedFn;
6558 RelocationResolver Resolver;
6559 std::tie(IsSupportedFn, Resolver) = getRelocationResolver(this->ObjF);
6560 ArrayRef<uint8_t> Contents =
6561 unwrapOrError(this->FileName, Obj.getSectionContents(*StackSizesELFSec));
6562 DataExtractor Data(Contents, Obj.isLE(), sizeof(Elf_Addr));
6564 forEachRelocationDo(
6565 *RelocSec, /*RawRelr=*/false,
6566 [&](const Relocation<ELFT> &R, unsigned Ndx, const Elf_Shdr &Sec,
6567 const Elf_Shdr *SymTab) {
6568 if (!IsSupportedFn || !IsSupportedFn(R.Type)) {
6569 reportUniqueWarning(
6570 describe(*RelocSec) +
6571 " contains an unsupported relocation with index " + Twine(Ndx) +
6572 ": " + Obj.getRelocationTypeName(R.Type));
6573 return;
6576 this->printStackSize(R, *RelocSec, Ndx, SymTab, FunctionSec,
6577 *StackSizesELFSec, Resolver, Data);
6579 [](const Elf_Relr &) {
6580 llvm_unreachable("can't get here, because we only support "
6581 "SHT_REL/SHT_RELA sections");
6586 template <class ELFT>
6587 void GNUELFDumper<ELFT>::printStackSizes() {
6588 bool HeaderHasBeenPrinted = false;
6589 auto PrintHeader = [&]() {
6590 if (HeaderHasBeenPrinted)
6591 return;
6592 OS << "\nStack Sizes:\n";
6593 OS.PadToColumn(9);
6594 OS << "Size";
6595 OS.PadToColumn(18);
6596 OS << "Functions\n";
6597 HeaderHasBeenPrinted = true;
6600 // For non-relocatable objects, look directly for sections whose name starts
6601 // with .stack_sizes and process the contents.
6602 if (this->Obj.getHeader().e_type == ELF::ET_REL)
6603 this->printRelocatableStackSizes(PrintHeader);
6604 else
6605 this->printNonRelocatableStackSizes(PrintHeader);
6608 template <class ELFT>
6609 void GNUELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
6610 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6611 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6612 OS.PadToColumn(2);
6613 OS << format_hex_no_prefix(Parser.getGotAddress(E), 8 + Bias);
6614 OS.PadToColumn(11 + Bias);
6615 OS << format_decimal(Parser.getGotOffset(E), 6) << "(gp)";
6616 OS.PadToColumn(22 + Bias);
6617 OS << format_hex_no_prefix(*E, 8 + Bias);
6618 OS.PadToColumn(31 + 2 * Bias);
6619 OS << Purpose << "\n";
6622 OS << (Parser.IsStatic ? "Static GOT:\n" : "Primary GOT:\n");
6623 OS << " Canonical gp value: "
6624 << format_hex_no_prefix(Parser.getGp(), 8 + Bias) << "\n\n";
6626 OS << " Reserved entries:\n";
6627 if (ELFT::Is64Bits)
6628 OS << " Address Access Initial Purpose\n";
6629 else
6630 OS << " Address Access Initial Purpose\n";
6631 PrintEntry(Parser.getGotLazyResolver(), "Lazy resolver");
6632 if (Parser.getGotModulePointer())
6633 PrintEntry(Parser.getGotModulePointer(), "Module pointer (GNU extension)");
6635 if (!Parser.getLocalEntries().empty()) {
6636 OS << "\n";
6637 OS << " Local entries:\n";
6638 if (ELFT::Is64Bits)
6639 OS << " Address Access Initial\n";
6640 else
6641 OS << " Address Access Initial\n";
6642 for (auto &E : Parser.getLocalEntries())
6643 PrintEntry(&E, "");
6646 if (Parser.IsStatic)
6647 return;
6649 if (!Parser.getGlobalEntries().empty()) {
6650 OS << "\n";
6651 OS << " Global entries:\n";
6652 if (ELFT::Is64Bits)
6653 OS << " Address Access Initial Sym.Val."
6654 << " Type Ndx Name\n";
6655 else
6656 OS << " Address Access Initial Sym.Val. Type Ndx Name\n";
6658 DataRegion<Elf_Word> ShndxTable(
6659 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6660 for (auto &E : Parser.getGlobalEntries()) {
6661 const Elf_Sym &Sym = *Parser.getGotSym(&E);
6662 const Elf_Sym &FirstSym = this->dynamic_symbols()[0];
6663 std::string SymName = this->getFullSymbolName(
6664 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6666 OS.PadToColumn(2);
6667 OS << to_string(format_hex_no_prefix(Parser.getGotAddress(&E), 8 + Bias));
6668 OS.PadToColumn(11 + Bias);
6669 OS << to_string(format_decimal(Parser.getGotOffset(&E), 6)) + "(gp)";
6670 OS.PadToColumn(22 + Bias);
6671 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6672 OS.PadToColumn(31 + 2 * Bias);
6673 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6674 OS.PadToColumn(40 + 3 * Bias);
6675 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6676 OS.PadToColumn(48 + 3 * Bias);
6677 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6678 ShndxTable);
6679 OS.PadToColumn(52 + 3 * Bias);
6680 OS << SymName << "\n";
6684 if (!Parser.getOtherEntries().empty())
6685 OS << "\n Number of TLS and multi-GOT entries "
6686 << Parser.getOtherEntries().size() << "\n";
6689 template <class ELFT>
6690 void GNUELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
6691 size_t Bias = ELFT::Is64Bits ? 8 : 0;
6692 auto PrintEntry = [&](const Elf_Addr *E, StringRef Purpose) {
6693 OS.PadToColumn(2);
6694 OS << format_hex_no_prefix(Parser.getPltAddress(E), 8 + Bias);
6695 OS.PadToColumn(11 + Bias);
6696 OS << format_hex_no_prefix(*E, 8 + Bias);
6697 OS.PadToColumn(20 + 2 * Bias);
6698 OS << Purpose << "\n";
6701 OS << "PLT GOT:\n\n";
6703 OS << " Reserved entries:\n";
6704 OS << " Address Initial Purpose\n";
6705 PrintEntry(Parser.getPltLazyResolver(), "PLT lazy resolver");
6706 if (Parser.getPltModulePointer())
6707 PrintEntry(Parser.getPltModulePointer(), "Module pointer");
6709 if (!Parser.getPltEntries().empty()) {
6710 OS << "\n";
6711 OS << " Entries:\n";
6712 OS << " Address Initial Sym.Val. Type Ndx Name\n";
6713 DataRegion<Elf_Word> ShndxTable(
6714 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
6715 for (auto &E : Parser.getPltEntries()) {
6716 const Elf_Sym &Sym = *Parser.getPltSym(&E);
6717 const Elf_Sym &FirstSym = *cantFail(
6718 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
6719 std::string SymName = this->getFullSymbolName(
6720 Sym, &Sym - &FirstSym, ShndxTable, this->DynamicStringTable, false);
6722 OS.PadToColumn(2);
6723 OS << to_string(format_hex_no_prefix(Parser.getPltAddress(&E), 8 + Bias));
6724 OS.PadToColumn(11 + Bias);
6725 OS << to_string(format_hex_no_prefix(E, 8 + Bias));
6726 OS.PadToColumn(20 + 2 * Bias);
6727 OS << to_string(format_hex_no_prefix(Sym.st_value, 8 + Bias));
6728 OS.PadToColumn(29 + 3 * Bias);
6729 OS << enumToString(Sym.getType(), ArrayRef(ElfSymbolTypes));
6730 OS.PadToColumn(37 + 3 * Bias);
6731 OS << getSymbolSectionNdx(Sym, &Sym - this->dynamic_symbols().begin(),
6732 ShndxTable);
6733 OS.PadToColumn(41 + 3 * Bias);
6734 OS << SymName << "\n";
6739 template <class ELFT>
6740 Expected<const Elf_Mips_ABIFlags<ELFT> *>
6741 getMipsAbiFlagsSection(const ELFDumper<ELFT> &Dumper) {
6742 const typename ELFT::Shdr *Sec = Dumper.findSectionByName(".MIPS.abiflags");
6743 if (Sec == nullptr)
6744 return nullptr;
6746 constexpr StringRef ErrPrefix = "unable to read the .MIPS.abiflags section: ";
6747 Expected<ArrayRef<uint8_t>> DataOrErr =
6748 Dumper.getElfObject().getELFFile().getSectionContents(*Sec);
6749 if (!DataOrErr)
6750 return createError(ErrPrefix + toString(DataOrErr.takeError()));
6752 if (DataOrErr->size() != sizeof(Elf_Mips_ABIFlags<ELFT>))
6753 return createError(ErrPrefix + "it has a wrong size (" +
6754 Twine(DataOrErr->size()) + ")");
6755 return reinterpret_cast<const Elf_Mips_ABIFlags<ELFT> *>(DataOrErr->data());
6758 template <class ELFT> void GNUELFDumper<ELFT>::printMipsABIFlags() {
6759 const Elf_Mips_ABIFlags<ELFT> *Flags = nullptr;
6760 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
6761 getMipsAbiFlagsSection(*this))
6762 Flags = *SecOrErr;
6763 else
6764 this->reportUniqueWarning(SecOrErr.takeError());
6765 if (!Flags)
6766 return;
6768 OS << "MIPS ABI Flags Version: " << Flags->version << "\n\n";
6769 OS << "ISA: MIPS" << int(Flags->isa_level);
6770 if (Flags->isa_rev > 1)
6771 OS << "r" << int(Flags->isa_rev);
6772 OS << "\n";
6773 OS << "GPR size: " << getMipsRegisterSize(Flags->gpr_size) << "\n";
6774 OS << "CPR1 size: " << getMipsRegisterSize(Flags->cpr1_size) << "\n";
6775 OS << "CPR2 size: " << getMipsRegisterSize(Flags->cpr2_size) << "\n";
6776 OS << "FP ABI: " << enumToString(Flags->fp_abi, ArrayRef(ElfMipsFpABIType))
6777 << "\n";
6778 OS << "ISA Extension: "
6779 << enumToString(Flags->isa_ext, ArrayRef(ElfMipsISAExtType)) << "\n";
6780 if (Flags->ases == 0)
6781 OS << "ASEs: None\n";
6782 else
6783 // FIXME: Print each flag on a separate line.
6784 OS << "ASEs: " << printFlags(Flags->ases, ArrayRef(ElfMipsASEFlags))
6785 << "\n";
6786 OS << "FLAGS 1: " << format_hex_no_prefix(Flags->flags1, 8, false) << "\n";
6787 OS << "FLAGS 2: " << format_hex_no_prefix(Flags->flags2, 8, false) << "\n";
6788 OS << "\n";
6791 template <class ELFT> void LLVMELFDumper<ELFT>::printFileHeaders() {
6792 const Elf_Ehdr &E = this->Obj.getHeader();
6794 DictScope D(W, "ElfHeader");
6796 DictScope D(W, "Ident");
6797 W.printBinary("Magic",
6798 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_MAG0, 4));
6799 W.printEnum("Class", E.e_ident[ELF::EI_CLASS], ArrayRef(ElfClass));
6800 W.printEnum("DataEncoding", E.e_ident[ELF::EI_DATA],
6801 ArrayRef(ElfDataEncoding));
6802 W.printNumber("FileVersion", E.e_ident[ELF::EI_VERSION]);
6804 auto OSABI = ArrayRef(ElfOSABI);
6805 if (E.e_ident[ELF::EI_OSABI] >= ELF::ELFOSABI_FIRST_ARCH &&
6806 E.e_ident[ELF::EI_OSABI] <= ELF::ELFOSABI_LAST_ARCH) {
6807 switch (E.e_machine) {
6808 case ELF::EM_AMDGPU:
6809 OSABI = ArrayRef(AMDGPUElfOSABI);
6810 break;
6811 case ELF::EM_ARM:
6812 OSABI = ArrayRef(ARMElfOSABI);
6813 break;
6814 case ELF::EM_TI_C6000:
6815 OSABI = ArrayRef(C6000ElfOSABI);
6816 break;
6819 W.printEnum("OS/ABI", E.e_ident[ELF::EI_OSABI], OSABI);
6820 W.printNumber("ABIVersion", E.e_ident[ELF::EI_ABIVERSION]);
6821 W.printBinary("Unused",
6822 ArrayRef<unsigned char>(E.e_ident).slice(ELF::EI_PAD));
6825 std::string TypeStr;
6826 if (const EnumEntry<unsigned> *Ent = getObjectFileEnumEntry(E.e_type)) {
6827 TypeStr = Ent->Name.str();
6828 } else {
6829 if (E.e_type >= ET_LOPROC)
6830 TypeStr = "Processor Specific";
6831 else if (E.e_type >= ET_LOOS)
6832 TypeStr = "OS Specific";
6833 else
6834 TypeStr = "Unknown";
6836 W.printString("Type", TypeStr + " (0x" + utohexstr(E.e_type) + ")");
6838 W.printEnum("Machine", E.e_machine, ArrayRef(ElfMachineType));
6839 W.printNumber("Version", E.e_version);
6840 W.printHex("Entry", E.e_entry);
6841 W.printHex("ProgramHeaderOffset", E.e_phoff);
6842 W.printHex("SectionHeaderOffset", E.e_shoff);
6843 if (E.e_machine == EM_MIPS)
6844 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderMipsFlags),
6845 unsigned(ELF::EF_MIPS_ARCH), unsigned(ELF::EF_MIPS_ABI),
6846 unsigned(ELF::EF_MIPS_MACH));
6847 else if (E.e_machine == EM_AMDGPU) {
6848 switch (E.e_ident[ELF::EI_ABIVERSION]) {
6849 default:
6850 W.printHex("Flags", E.e_flags);
6851 break;
6852 case 0:
6853 // ELFOSABI_AMDGPU_PAL, ELFOSABI_AMDGPU_MESA3D support *_V3 flags.
6854 [[fallthrough]];
6855 case ELF::ELFABIVERSION_AMDGPU_HSA_V3:
6856 W.printFlags("Flags", E.e_flags,
6857 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion3),
6858 unsigned(ELF::EF_AMDGPU_MACH));
6859 break;
6860 case ELF::ELFABIVERSION_AMDGPU_HSA_V4:
6861 case ELF::ELFABIVERSION_AMDGPU_HSA_V5:
6862 W.printFlags("Flags", E.e_flags,
6863 ArrayRef(ElfHeaderAMDGPUFlagsABIVersion4),
6864 unsigned(ELF::EF_AMDGPU_MACH),
6865 unsigned(ELF::EF_AMDGPU_FEATURE_XNACK_V4),
6866 unsigned(ELF::EF_AMDGPU_FEATURE_SRAMECC_V4));
6867 break;
6869 } else if (E.e_machine == EM_RISCV)
6870 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderRISCVFlags));
6871 else if (E.e_machine == EM_AVR)
6872 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderAVRFlags),
6873 unsigned(ELF::EF_AVR_ARCH_MASK));
6874 else if (E.e_machine == EM_LOONGARCH)
6875 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderLoongArchFlags),
6876 unsigned(ELF::EF_LOONGARCH_ABI_MODIFIER_MASK),
6877 unsigned(ELF::EF_LOONGARCH_OBJABI_MASK));
6878 else if (E.e_machine == EM_XTENSA)
6879 W.printFlags("Flags", E.e_flags, ArrayRef(ElfHeaderXtensaFlags),
6880 unsigned(ELF::EF_XTENSA_MACH));
6881 else
6882 W.printFlags("Flags", E.e_flags);
6883 W.printNumber("HeaderSize", E.e_ehsize);
6884 W.printNumber("ProgramHeaderEntrySize", E.e_phentsize);
6885 W.printNumber("ProgramHeaderCount", E.e_phnum);
6886 W.printNumber("SectionHeaderEntrySize", E.e_shentsize);
6887 W.printString("SectionHeaderCount",
6888 getSectionHeadersNumString(this->Obj, this->FileName));
6889 W.printString("StringTableSectionIndex",
6890 getSectionHeaderTableIndexString(this->Obj, this->FileName));
6894 template <class ELFT> void LLVMELFDumper<ELFT>::printGroupSections() {
6895 DictScope Lists(W, "Groups");
6896 std::vector<GroupSection> V = this->getGroups();
6897 DenseMap<uint64_t, const GroupSection *> Map = mapSectionsToGroups(V);
6898 for (const GroupSection &G : V) {
6899 DictScope D(W, "Group");
6900 W.printNumber("Name", G.Name, G.ShName);
6901 W.printNumber("Index", G.Index);
6902 W.printNumber("Link", G.Link);
6903 W.printNumber("Info", G.Info);
6904 W.printHex("Type", getGroupType(G.Type), G.Type);
6905 W.printString("Signature", G.Signature);
6907 ListScope L(W, getGroupSectionHeaderName());
6908 for (const GroupMember &GM : G.Members) {
6909 const GroupSection *MainGroup = Map[GM.Index];
6910 if (MainGroup != &G)
6911 this->reportUniqueWarning(
6912 "section with index " + Twine(GM.Index) +
6913 ", included in the group section with index " +
6914 Twine(MainGroup->Index) +
6915 ", was also found in the group section with index " +
6916 Twine(G.Index));
6917 printSectionGroupMembers(GM.Name, GM.Index);
6921 if (V.empty())
6922 printEmptyGroupMessage();
6925 template <class ELFT>
6926 std::string LLVMELFDumper<ELFT>::getGroupSectionHeaderName() const {
6927 return "Section(s) in group";
6930 template <class ELFT>
6931 void LLVMELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
6932 uint64_t Idx) const {
6933 W.startLine() << Name << " (" << Idx << ")\n";
6936 template <class ELFT> void LLVMELFDumper<ELFT>::printRelocations() {
6937 ListScope D(W, "Relocations");
6939 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
6940 if (!isRelocationSec<ELFT>(Sec))
6941 continue;
6943 StringRef Name = this->getPrintableSectionName(Sec);
6944 unsigned SecNdx = &Sec - &cantFail(this->Obj.sections()).front();
6945 printRelocationSectionInfo(Sec, Name, SecNdx);
6949 template <class ELFT>
6950 void LLVMELFDumper<ELFT>::printRelrReloc(const Elf_Relr &R) {
6951 W.startLine() << W.hex(R) << "\n";
6954 template <class ELFT>
6955 void LLVMELFDumper<ELFT>::printExpandedRelRelaReloc(const Relocation<ELFT> &R,
6956 StringRef SymbolName,
6957 StringRef RelocName) {
6958 DictScope Group(W, "Relocation");
6959 W.printHex("Offset", R.Offset);
6960 W.printNumber("Type", RelocName, R.Type);
6961 W.printNumber("Symbol", !SymbolName.empty() ? SymbolName : "-", R.Symbol);
6962 if (R.Addend)
6963 W.printHex("Addend", (uintX_t)*R.Addend);
6966 template <class ELFT>
6967 void LLVMELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
6968 StringRef SymbolName,
6969 StringRef RelocName) {
6970 raw_ostream &OS = W.startLine();
6971 OS << W.hex(R.Offset) << " " << RelocName << " "
6972 << (!SymbolName.empty() ? SymbolName : "-");
6973 if (R.Addend)
6974 OS << " " << W.hex((uintX_t)*R.Addend);
6975 OS << "\n";
6978 template <class ELFT>
6979 void LLVMELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
6980 StringRef Name,
6981 const unsigned SecNdx) {
6982 DictScope D(W, (Twine("Section (") + Twine(SecNdx) + ") " + Name).str());
6983 this->printRelocationsHelper(Sec);
6986 template <class ELFT> void LLVMELFDumper<ELFT>::printEmptyGroupMessage() const {
6987 W.startLine() << "There are no group sections in the file.\n";
6990 template <class ELFT>
6991 void LLVMELFDumper<ELFT>::printRelRelaReloc(const Relocation<ELFT> &R,
6992 const RelSymbol<ELFT> &RelSym) {
6993 StringRef SymbolName = RelSym.Name;
6994 if (RelSym.Sym && RelSym.Name.empty())
6995 SymbolName = "<null>";
6996 SmallString<32> RelocName;
6997 this->Obj.getRelocationTypeName(R.Type, RelocName);
6999 if (opts::ExpandRelocs) {
7000 printExpandedRelRelaReloc(R, SymbolName, RelocName);
7001 } else {
7002 printDefaultRelRelaReloc(R, SymbolName, RelocName);
7006 template <class ELFT> void LLVMELFDumper<ELFT>::printSectionHeaders() {
7007 ListScope SectionsD(W, "Sections");
7009 int SectionIndex = -1;
7010 std::vector<EnumEntry<unsigned>> FlagsList =
7011 getSectionFlagsForTarget(this->Obj.getHeader().e_ident[ELF::EI_OSABI],
7012 this->Obj.getHeader().e_machine);
7013 for (const Elf_Shdr &Sec : cantFail(this->Obj.sections())) {
7014 DictScope SectionD(W, "Section");
7015 W.printNumber("Index", ++SectionIndex);
7016 W.printNumber("Name", this->getPrintableSectionName(Sec), Sec.sh_name);
7017 W.printHex("Type",
7018 object::getELFSectionTypeName(this->Obj.getHeader().e_machine,
7019 Sec.sh_type),
7020 Sec.sh_type);
7021 W.printFlags("Flags", Sec.sh_flags, ArrayRef(FlagsList));
7022 W.printHex("Address", Sec.sh_addr);
7023 W.printHex("Offset", Sec.sh_offset);
7024 W.printNumber("Size", Sec.sh_size);
7025 W.printNumber("Link", Sec.sh_link);
7026 W.printNumber("Info", Sec.sh_info);
7027 W.printNumber("AddressAlignment", Sec.sh_addralign);
7028 W.printNumber("EntrySize", Sec.sh_entsize);
7030 if (opts::SectionRelocations) {
7031 ListScope D(W, "Relocations");
7032 this->printRelocationsHelper(Sec);
7035 if (opts::SectionSymbols) {
7036 ListScope D(W, "Symbols");
7037 if (this->DotSymtabSec) {
7038 StringRef StrTable = unwrapOrError(
7039 this->FileName,
7040 this->Obj.getStringTableForSymtab(*this->DotSymtabSec));
7041 ArrayRef<Elf_Word> ShndxTable = this->getShndxTable(this->DotSymtabSec);
7043 typename ELFT::SymRange Symbols = unwrapOrError(
7044 this->FileName, this->Obj.symbols(this->DotSymtabSec));
7045 for (const Elf_Sym &Sym : Symbols) {
7046 const Elf_Shdr *SymSec = unwrapOrError(
7047 this->FileName,
7048 this->Obj.getSection(Sym, this->DotSymtabSec, ShndxTable));
7049 if (SymSec == &Sec)
7050 printSymbol(Sym, &Sym - &Symbols[0], ShndxTable, StrTable, false,
7051 /*NonVisibilityBitsUsed=*/false,
7052 /*ExtraSymInfo=*/false);
7057 if (opts::SectionData && Sec.sh_type != ELF::SHT_NOBITS) {
7058 ArrayRef<uint8_t> Data =
7059 unwrapOrError(this->FileName, this->Obj.getSectionContents(Sec));
7060 W.printBinaryBlock(
7061 "SectionData",
7062 StringRef(reinterpret_cast<const char *>(Data.data()), Data.size()));
7067 template <class ELFT>
7068 void LLVMELFDumper<ELFT>::printSymbolSection(
7069 const Elf_Sym &Symbol, unsigned SymIndex,
7070 DataRegion<Elf_Word> ShndxTable) const {
7071 auto GetSectionSpecialType = [&]() -> std::optional<StringRef> {
7072 if (Symbol.isUndefined())
7073 return StringRef("Undefined");
7074 if (Symbol.isProcessorSpecific())
7075 return StringRef("Processor Specific");
7076 if (Symbol.isOSSpecific())
7077 return StringRef("Operating System Specific");
7078 if (Symbol.isAbsolute())
7079 return StringRef("Absolute");
7080 if (Symbol.isCommon())
7081 return StringRef("Common");
7082 if (Symbol.isReserved() && Symbol.st_shndx != SHN_XINDEX)
7083 return StringRef("Reserved");
7084 return std::nullopt;
7087 if (std::optional<StringRef> Type = GetSectionSpecialType()) {
7088 W.printHex("Section", *Type, Symbol.st_shndx);
7089 return;
7092 Expected<unsigned> SectionIndex =
7093 this->getSymbolSectionIndex(Symbol, SymIndex, ShndxTable);
7094 if (!SectionIndex) {
7095 assert(Symbol.st_shndx == SHN_XINDEX &&
7096 "getSymbolSectionIndex should only fail due to an invalid "
7097 "SHT_SYMTAB_SHNDX table/reference");
7098 this->reportUniqueWarning(SectionIndex.takeError());
7099 W.printHex("Section", "Reserved", SHN_XINDEX);
7100 return;
7103 Expected<StringRef> SectionName =
7104 this->getSymbolSectionName(Symbol, *SectionIndex);
7105 if (!SectionName) {
7106 // Don't report an invalid section name if the section headers are missing.
7107 // In such situations, all sections will be "invalid".
7108 if (!this->ObjF.sections().empty())
7109 this->reportUniqueWarning(SectionName.takeError());
7110 else
7111 consumeError(SectionName.takeError());
7112 W.printHex("Section", "<?>", *SectionIndex);
7113 } else {
7114 W.printHex("Section", *SectionName, *SectionIndex);
7118 template <class ELFT>
7119 void LLVMELFDumper<ELFT>::printSymbolOtherField(const Elf_Sym &Symbol) const {
7120 std::vector<EnumEntry<unsigned>> SymOtherFlags =
7121 this->getOtherFlagsFromSymbol(this->Obj.getHeader(), Symbol);
7122 W.printFlags("Other", Symbol.st_other, ArrayRef(SymOtherFlags), 0x3u);
7125 template <class ELFT>
7126 void LLVMELFDumper<ELFT>::printZeroSymbolOtherField(
7127 const Elf_Sym &Symbol) const {
7128 assert(Symbol.st_other == 0 && "non-zero Other Field");
7129 // Usually st_other flag is zero. Do not pollute the output
7130 // by flags enumeration in that case.
7131 W.printNumber("Other", 0);
7134 template <class ELFT>
7135 void LLVMELFDumper<ELFT>::printSymbol(const Elf_Sym &Symbol, unsigned SymIndex,
7136 DataRegion<Elf_Word> ShndxTable,
7137 std::optional<StringRef> StrTable,
7138 bool IsDynamic,
7139 bool /*NonVisibilityBitsUsed*/,
7140 bool /*ExtraSymInfo*/) const {
7141 std::string FullSymbolName = this->getFullSymbolName(
7142 Symbol, SymIndex, ShndxTable, StrTable, IsDynamic);
7143 unsigned char SymbolType = Symbol.getType();
7145 DictScope D(W, "Symbol");
7146 W.printNumber("Name", FullSymbolName, Symbol.st_name);
7147 W.printHex("Value", Symbol.st_value);
7148 W.printNumber("Size", Symbol.st_size);
7149 W.printEnum("Binding", Symbol.getBinding(), ArrayRef(ElfSymbolBindings));
7150 if (this->Obj.getHeader().e_machine == ELF::EM_AMDGPU &&
7151 SymbolType >= ELF::STT_LOOS && SymbolType < ELF::STT_HIOS)
7152 W.printEnum("Type", SymbolType, ArrayRef(AMDGPUSymbolTypes));
7153 else
7154 W.printEnum("Type", SymbolType, ArrayRef(ElfSymbolTypes));
7155 if (Symbol.st_other == 0)
7156 printZeroSymbolOtherField(Symbol);
7157 else
7158 printSymbolOtherField(Symbol);
7159 printSymbolSection(Symbol, SymIndex, ShndxTable);
7162 template <class ELFT>
7163 void LLVMELFDumper<ELFT>::printSymbols(bool PrintSymbols,
7164 bool PrintDynamicSymbols,
7165 bool ExtraSymInfo) {
7166 if (PrintSymbols) {
7167 ListScope Group(W, "Symbols");
7168 this->printSymbolsHelper(false, ExtraSymInfo);
7170 if (PrintDynamicSymbols) {
7171 ListScope Group(W, "DynamicSymbols");
7172 this->printSymbolsHelper(true, ExtraSymInfo);
7176 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicTable() {
7177 Elf_Dyn_Range Table = this->dynamic_table();
7178 if (Table.empty())
7179 return;
7181 W.startLine() << "DynamicSection [ (" << Table.size() << " entries)\n";
7183 size_t MaxTagSize = getMaxDynamicTagSize(this->Obj, Table);
7184 // The "Name/Value" column should be indented from the "Type" column by N
7185 // spaces, where N = MaxTagSize - length of "Type" (4) + trailing
7186 // space (1) = -3.
7187 W.startLine() << " Tag" << std::string(ELFT::Is64Bits ? 16 : 8, ' ')
7188 << "Type" << std::string(MaxTagSize - 3, ' ') << "Name/Value\n";
7190 std::string ValueFmt = "%-" + std::to_string(MaxTagSize) + "s ";
7191 for (auto Entry : Table) {
7192 uintX_t Tag = Entry.getTag();
7193 std::string Value = this->getDynamicEntry(Tag, Entry.getVal());
7194 W.startLine() << " " << format_hex(Tag, ELFT::Is64Bits ? 18 : 10, true)
7195 << " "
7196 << format(ValueFmt.c_str(),
7197 this->Obj.getDynamicTagAsString(Tag).c_str())
7198 << Value << "\n";
7200 W.startLine() << "]\n";
7203 template <class ELFT> void LLVMELFDumper<ELFT>::printDynamicRelocations() {
7204 W.startLine() << "Dynamic Relocations {\n";
7205 W.indent();
7206 this->printDynamicRelocationsHelper();
7207 W.unindent();
7208 W.startLine() << "}\n";
7211 template <class ELFT>
7212 void LLVMELFDumper<ELFT>::printProgramHeaders(
7213 bool PrintProgramHeaders, cl::boolOrDefault PrintSectionMapping) {
7214 if (PrintProgramHeaders)
7215 printProgramHeaders();
7216 if (PrintSectionMapping == cl::BOU_TRUE)
7217 printSectionMapping();
7220 template <class ELFT> void LLVMELFDumper<ELFT>::printProgramHeaders() {
7221 ListScope L(W, "ProgramHeaders");
7223 Expected<ArrayRef<Elf_Phdr>> PhdrsOrErr = this->Obj.program_headers();
7224 if (!PhdrsOrErr) {
7225 this->reportUniqueWarning("unable to dump program headers: " +
7226 toString(PhdrsOrErr.takeError()));
7227 return;
7230 for (const Elf_Phdr &Phdr : *PhdrsOrErr) {
7231 DictScope P(W, "ProgramHeader");
7232 StringRef Type =
7233 segmentTypeToString(this->Obj.getHeader().e_machine, Phdr.p_type);
7235 W.printHex("Type", Type.empty() ? "Unknown" : Type, Phdr.p_type);
7236 W.printHex("Offset", Phdr.p_offset);
7237 W.printHex("VirtualAddress", Phdr.p_vaddr);
7238 W.printHex("PhysicalAddress", Phdr.p_paddr);
7239 W.printNumber("FileSize", Phdr.p_filesz);
7240 W.printNumber("MemSize", Phdr.p_memsz);
7241 W.printFlags("Flags", Phdr.p_flags, ArrayRef(ElfSegmentFlags));
7242 W.printNumber("Alignment", Phdr.p_align);
7246 template <class ELFT>
7247 void LLVMELFDumper<ELFT>::printVersionSymbolSection(const Elf_Shdr *Sec) {
7248 ListScope SS(W, "VersionSymbols");
7249 if (!Sec)
7250 return;
7252 StringRef StrTable;
7253 ArrayRef<Elf_Sym> Syms;
7254 const Elf_Shdr *SymTabSec;
7255 Expected<ArrayRef<Elf_Versym>> VerTableOrErr =
7256 this->getVersionTable(*Sec, &Syms, &StrTable, &SymTabSec);
7257 if (!VerTableOrErr) {
7258 this->reportUniqueWarning(VerTableOrErr.takeError());
7259 return;
7262 if (StrTable.empty() || Syms.empty() || Syms.size() != VerTableOrErr->size())
7263 return;
7265 ArrayRef<Elf_Word> ShNdxTable = this->getShndxTable(SymTabSec);
7266 for (size_t I = 0, E = Syms.size(); I < E; ++I) {
7267 DictScope S(W, "Symbol");
7268 W.printNumber("Version", (*VerTableOrErr)[I].vs_index & VERSYM_VERSION);
7269 W.printString("Name",
7270 this->getFullSymbolName(Syms[I], I, ShNdxTable, StrTable,
7271 /*IsDynamic=*/true));
7275 const EnumEntry<unsigned> SymVersionFlags[] = {
7276 {"Base", "BASE", VER_FLG_BASE},
7277 {"Weak", "WEAK", VER_FLG_WEAK},
7278 {"Info", "INFO", VER_FLG_INFO}};
7280 template <class ELFT>
7281 void LLVMELFDumper<ELFT>::printVersionDefinitionSection(const Elf_Shdr *Sec) {
7282 ListScope SD(W, "VersionDefinitions");
7283 if (!Sec)
7284 return;
7286 Expected<std::vector<VerDef>> V = this->Obj.getVersionDefinitions(*Sec);
7287 if (!V) {
7288 this->reportUniqueWarning(V.takeError());
7289 return;
7292 for (const VerDef &D : *V) {
7293 DictScope Def(W, "Definition");
7294 W.printNumber("Version", D.Version);
7295 W.printFlags("Flags", D.Flags, ArrayRef(SymVersionFlags));
7296 W.printNumber("Index", D.Ndx);
7297 W.printNumber("Hash", D.Hash);
7298 W.printString("Name", D.Name.c_str());
7299 W.printList(
7300 "Predecessors", D.AuxV,
7301 [](raw_ostream &OS, const VerdAux &Aux) { OS << Aux.Name.c_str(); });
7305 template <class ELFT>
7306 void LLVMELFDumper<ELFT>::printVersionDependencySection(const Elf_Shdr *Sec) {
7307 ListScope SD(W, "VersionRequirements");
7308 if (!Sec)
7309 return;
7311 Expected<std::vector<VerNeed>> V =
7312 this->Obj.getVersionDependencies(*Sec, this->WarningHandler);
7313 if (!V) {
7314 this->reportUniqueWarning(V.takeError());
7315 return;
7318 for (const VerNeed &VN : *V) {
7319 DictScope Entry(W, "Dependency");
7320 W.printNumber("Version", VN.Version);
7321 W.printNumber("Count", VN.Cnt);
7322 W.printString("FileName", VN.File.c_str());
7324 ListScope L(W, "Entries");
7325 for (const VernAux &Aux : VN.AuxV) {
7326 DictScope Entry(W, "Entry");
7327 W.printNumber("Hash", Aux.Hash);
7328 W.printFlags("Flags", Aux.Flags, ArrayRef(SymVersionFlags));
7329 W.printNumber("Index", Aux.Other);
7330 W.printString("Name", Aux.Name.c_str());
7335 template <class ELFT>
7336 void LLVMELFDumper<ELFT>::printHashHistogramStats(size_t NBucket,
7337 size_t MaxChain,
7338 size_t TotalSyms,
7339 ArrayRef<size_t> Count,
7340 bool IsGnu) const {
7341 StringRef HistName = IsGnu ? "GnuHashHistogram" : "HashHistogram";
7342 StringRef BucketName = IsGnu ? "Bucket" : "Chain";
7343 StringRef ListName = IsGnu ? "Buckets" : "Chains";
7344 DictScope Outer(W, HistName);
7345 W.printNumber("TotalBuckets", NBucket);
7346 ListScope Buckets(W, ListName);
7347 size_t CumulativeNonZero = 0;
7348 for (size_t I = 0; I < MaxChain; ++I) {
7349 CumulativeNonZero += Count[I] * I;
7350 DictScope Bucket(W, BucketName);
7351 W.printNumber("Length", I);
7352 W.printNumber("Count", Count[I]);
7353 W.printNumber("Percentage", (float)(Count[I] * 100.0) / NBucket);
7354 W.printNumber("Coverage", (float)(CumulativeNonZero * 100.0) / TotalSyms);
7358 // Returns true if rel/rela section exists, and populates SymbolIndices.
7359 // Otherwise returns false.
7360 template <class ELFT>
7361 static bool getSymbolIndices(const typename ELFT::Shdr *CGRelSection,
7362 const ELFFile<ELFT> &Obj,
7363 const LLVMELFDumper<ELFT> *Dumper,
7364 SmallVector<uint32_t, 128> &SymbolIndices) {
7365 if (!CGRelSection) {
7366 Dumper->reportUniqueWarning(
7367 "relocation section for a call graph section doesn't exist");
7368 return false;
7371 if (CGRelSection->sh_type == SHT_REL) {
7372 typename ELFT::RelRange CGProfileRel;
7373 Expected<typename ELFT::RelRange> CGProfileRelOrError =
7374 Obj.rels(*CGRelSection);
7375 if (!CGProfileRelOrError) {
7376 Dumper->reportUniqueWarning("unable to load relocations for "
7377 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7378 toString(CGProfileRelOrError.takeError()));
7379 return false;
7382 CGProfileRel = *CGProfileRelOrError;
7383 for (const typename ELFT::Rel &Rel : CGProfileRel)
7384 SymbolIndices.push_back(Rel.getSymbol(Obj.isMips64EL()));
7385 } else {
7386 // MC unconditionally produces SHT_REL, but GNU strip/objcopy may convert
7387 // the format to SHT_RELA
7388 // (https://sourceware.org/bugzilla/show_bug.cgi?id=28035)
7389 typename ELFT::RelaRange CGProfileRela;
7390 Expected<typename ELFT::RelaRange> CGProfileRelaOrError =
7391 Obj.relas(*CGRelSection);
7392 if (!CGProfileRelaOrError) {
7393 Dumper->reportUniqueWarning("unable to load relocations for "
7394 "SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7395 toString(CGProfileRelaOrError.takeError()));
7396 return false;
7399 CGProfileRela = *CGProfileRelaOrError;
7400 for (const typename ELFT::Rela &Rela : CGProfileRela)
7401 SymbolIndices.push_back(Rela.getSymbol(Obj.isMips64EL()));
7404 return true;
7407 template <class ELFT> void LLVMELFDumper<ELFT>::printCGProfile() {
7408 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7409 return Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE;
7412 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecToRelocMapOrErr =
7413 this->Obj.getSectionAndRelocations(IsMatch);
7414 if (!SecToRelocMapOrErr) {
7415 this->reportUniqueWarning("unable to get CG Profile section(s): " +
7416 toString(SecToRelocMapOrErr.takeError()));
7417 return;
7420 for (const auto &CGMapEntry : *SecToRelocMapOrErr) {
7421 const Elf_Shdr *CGSection = CGMapEntry.first;
7422 const Elf_Shdr *CGRelSection = CGMapEntry.second;
7424 Expected<ArrayRef<Elf_CGProfile>> CGProfileOrErr =
7425 this->Obj.template getSectionContentsAsArray<Elf_CGProfile>(*CGSection);
7426 if (!CGProfileOrErr) {
7427 this->reportUniqueWarning(
7428 "unable to load the SHT_LLVM_CALL_GRAPH_PROFILE section: " +
7429 toString(CGProfileOrErr.takeError()));
7430 return;
7433 SmallVector<uint32_t, 128> SymbolIndices;
7434 bool UseReloc =
7435 getSymbolIndices<ELFT>(CGRelSection, this->Obj, this, SymbolIndices);
7436 if (UseReloc && SymbolIndices.size() != CGProfileOrErr->size() * 2) {
7437 this->reportUniqueWarning(
7438 "number of from/to pairs does not match number of frequencies");
7439 UseReloc = false;
7442 ListScope L(W, "CGProfile");
7443 for (uint32_t I = 0, Size = CGProfileOrErr->size(); I != Size; ++I) {
7444 const Elf_CGProfile &CGPE = (*CGProfileOrErr)[I];
7445 DictScope D(W, "CGProfileEntry");
7446 if (UseReloc) {
7447 uint32_t From = SymbolIndices[I * 2];
7448 uint32_t To = SymbolIndices[I * 2 + 1];
7449 W.printNumber("From", this->getStaticSymbolName(From), From);
7450 W.printNumber("To", this->getStaticSymbolName(To), To);
7452 W.printNumber("Weight", CGPE.cgp_weight);
7457 template <class ELFT> void LLVMELFDumper<ELFT>::printBBAddrMaps() {
7458 bool IsRelocatable = this->Obj.getHeader().e_type == ELF::ET_REL;
7459 using Elf_Shdr = typename ELFT::Shdr;
7460 auto IsMatch = [](const Elf_Shdr &Sec) -> bool {
7461 return Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP ||
7462 Sec.sh_type == ELF::SHT_LLVM_BB_ADDR_MAP_V0;
7464 Expected<MapVector<const Elf_Shdr *, const Elf_Shdr *>> SecRelocMapOrErr =
7465 this->Obj.getSectionAndRelocations(IsMatch);
7466 if (!SecRelocMapOrErr) {
7467 this->reportUniqueWarning(
7468 "failed to get SHT_LLVM_BB_ADDR_MAP section(s): " +
7469 toString(SecRelocMapOrErr.takeError()));
7470 return;
7472 for (auto const &[Sec, RelocSec] : *SecRelocMapOrErr) {
7473 std::optional<const Elf_Shdr *> FunctionSec;
7474 if (IsRelocatable)
7475 FunctionSec =
7476 unwrapOrError(this->FileName, this->Obj.getSection(Sec->sh_link));
7477 ListScope L(W, "BBAddrMap");
7478 if (IsRelocatable && !RelocSec) {
7479 this->reportUniqueWarning("unable to get relocation section for " +
7480 this->describe(*Sec));
7481 continue;
7483 Expected<std::vector<BBAddrMap>> BBAddrMapOrErr =
7484 this->Obj.decodeBBAddrMap(*Sec, RelocSec);
7485 if (!BBAddrMapOrErr) {
7486 this->reportUniqueWarning("unable to dump " + this->describe(*Sec) +
7487 ": " + toString(BBAddrMapOrErr.takeError()));
7488 continue;
7490 for (const BBAddrMap &AM : *BBAddrMapOrErr) {
7491 DictScope D(W, "Function");
7492 W.printHex("At", AM.Addr);
7493 SmallVector<uint32_t> FuncSymIndex =
7494 this->getSymbolIndexesForFunctionAddress(AM.Addr, FunctionSec);
7495 std::string FuncName = "<?>";
7496 if (FuncSymIndex.empty())
7497 this->reportUniqueWarning(
7498 "could not identify function symbol for address (0x" +
7499 Twine::utohexstr(AM.Addr) + ") in " + this->describe(*Sec));
7500 else
7501 FuncName = this->getStaticSymbolName(FuncSymIndex.front());
7502 W.printString("Name", FuncName);
7504 ListScope L(W, "BB entries");
7505 for (const BBAddrMap::BBEntry &BBE : AM.BBEntries) {
7506 DictScope L(W);
7507 W.printNumber("ID", BBE.ID);
7508 W.printHex("Offset", BBE.Offset);
7509 W.printHex("Size", BBE.Size);
7510 W.printBoolean("HasReturn", BBE.hasReturn());
7511 W.printBoolean("HasTailCall", BBE.hasTailCall());
7512 W.printBoolean("IsEHPad", BBE.isEHPad());
7513 W.printBoolean("CanFallThrough", BBE.canFallThrough());
7514 W.printBoolean("HasIndirectBranch", BBE.hasIndirectBranch());
7520 template <class ELFT> void LLVMELFDumper<ELFT>::printAddrsig() {
7521 ListScope L(W, "Addrsig");
7522 if (!this->DotAddrsigSec)
7523 return;
7525 Expected<std::vector<uint64_t>> SymsOrErr =
7526 decodeAddrsigSection(this->Obj, *this->DotAddrsigSec);
7527 if (!SymsOrErr) {
7528 this->reportUniqueWarning(SymsOrErr.takeError());
7529 return;
7532 for (uint64_t Sym : *SymsOrErr)
7533 W.printNumber("Sym", this->getStaticSymbolName(Sym), Sym);
7536 template <typename ELFT>
7537 static bool printGNUNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7538 ScopedPrinter &W) {
7539 // Return true if we were able to pretty-print the note, false otherwise.
7540 switch (NoteType) {
7541 default:
7542 return false;
7543 case ELF::NT_GNU_ABI_TAG: {
7544 const GNUAbiTag &AbiTag = getGNUAbiTag<ELFT>(Desc);
7545 if (!AbiTag.IsValid) {
7546 W.printString("ABI", "<corrupt GNU_ABI_TAG>");
7547 return false;
7548 } else {
7549 W.printString("OS", AbiTag.OSName);
7550 W.printString("ABI", AbiTag.ABI);
7552 break;
7554 case ELF::NT_GNU_BUILD_ID: {
7555 W.printString("Build ID", getGNUBuildId(Desc));
7556 break;
7558 case ELF::NT_GNU_GOLD_VERSION:
7559 W.printString("Version", getDescAsStringRef(Desc));
7560 break;
7561 case ELF::NT_GNU_PROPERTY_TYPE_0:
7562 ListScope D(W, "Property");
7563 for (const std::string &Property : getGNUPropertyList<ELFT>(Desc))
7564 W.printString(Property);
7565 break;
7567 return true;
7570 static bool printAndroidNoteLLVMStyle(uint32_t NoteType, ArrayRef<uint8_t> Desc,
7571 ScopedPrinter &W) {
7572 // Return true if we were able to pretty-print the note, false otherwise.
7573 AndroidNoteProperties Props = getAndroidNoteProperties(NoteType, Desc);
7574 if (Props.empty())
7575 return false;
7576 for (const auto &KV : Props)
7577 W.printString(KV.first, KV.second);
7578 return true;
7581 template <class ELFT>
7582 void LLVMELFDumper<ELFT>::printMemtag(
7583 const ArrayRef<std::pair<std::string, std::string>> DynamicEntries,
7584 const ArrayRef<uint8_t> AndroidNoteDesc,
7585 const ArrayRef<std::pair<uint64_t, uint64_t>> Descriptors) {
7587 ListScope L(W, "Memtag Dynamic Entries:");
7588 if (DynamicEntries.empty())
7589 W.printString("< none found >");
7590 for (const auto &DynamicEntryKV : DynamicEntries)
7591 W.printString(DynamicEntryKV.first, DynamicEntryKV.second);
7594 if (!AndroidNoteDesc.empty()) {
7595 ListScope L(W, "Memtag Android Note:");
7596 printAndroidNoteLLVMStyle(ELF::NT_ANDROID_TYPE_MEMTAG, AndroidNoteDesc, W);
7599 if (Descriptors.empty())
7600 return;
7603 ListScope L(W, "Memtag Global Descriptors:");
7604 for (const auto &[Addr, BytesToTag] : Descriptors) {
7605 W.printHex("0x" + utohexstr(Addr), BytesToTag);
7610 template <typename ELFT>
7611 static bool printLLVMOMPOFFLOADNoteLLVMStyle(uint32_t NoteType,
7612 ArrayRef<uint8_t> Desc,
7613 ScopedPrinter &W) {
7614 switch (NoteType) {
7615 default:
7616 return false;
7617 case ELF::NT_LLVM_OPENMP_OFFLOAD_VERSION:
7618 W.printString("Version", getDescAsStringRef(Desc));
7619 break;
7620 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER:
7621 W.printString("Producer", getDescAsStringRef(Desc));
7622 break;
7623 case ELF::NT_LLVM_OPENMP_OFFLOAD_PRODUCER_VERSION:
7624 W.printString("Producer version", getDescAsStringRef(Desc));
7625 break;
7627 return true;
7630 static void printCoreNoteLLVMStyle(const CoreNote &Note, ScopedPrinter &W) {
7631 W.printNumber("Page Size", Note.PageSize);
7632 for (const CoreFileMapping &Mapping : Note.Mappings) {
7633 ListScope D(W, "Mapping");
7634 W.printHex("Start", Mapping.Start);
7635 W.printHex("End", Mapping.End);
7636 W.printHex("Offset", Mapping.Offset);
7637 W.printString("Filename", Mapping.Filename);
7641 template <class ELFT> void LLVMELFDumper<ELFT>::printNotes() {
7642 ListScope L(W, "Notes");
7644 std::unique_ptr<DictScope> NoteScope;
7645 size_t Align = 0;
7646 auto StartNotes = [&](std::optional<StringRef> SecName,
7647 const typename ELFT::Off Offset,
7648 const typename ELFT::Addr Size, size_t Al) {
7649 Align = std::max<size_t>(Al, 4);
7650 NoteScope = std::make_unique<DictScope>(W, "NoteSection");
7651 W.printString("Name", SecName ? *SecName : "<?>");
7652 W.printHex("Offset", Offset);
7653 W.printHex("Size", Size);
7656 auto EndNotes = [&] { NoteScope.reset(); };
7658 auto ProcessNote = [&](const Elf_Note &Note, bool IsCore) -> Error {
7659 DictScope D2(W, "Note");
7660 StringRef Name = Note.getName();
7661 ArrayRef<uint8_t> Descriptor = Note.getDesc(Align);
7662 Elf_Word Type = Note.getType();
7664 // Print the note owner/type.
7665 W.printString("Owner", Name);
7666 W.printHex("Data size", Descriptor.size());
7668 StringRef NoteType =
7669 getNoteTypeName<ELFT>(Note, this->Obj.getHeader().e_type);
7670 if (!NoteType.empty())
7671 W.printString("Type", NoteType);
7672 else
7673 W.printString("Type",
7674 "Unknown (" + to_string(format_hex(Type, 10)) + ")");
7676 // Print the description, or fallback to printing raw bytes for unknown
7677 // owners/if we fail to pretty-print the contents.
7678 if (Name == "GNU") {
7679 if (printGNUNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7680 return Error::success();
7681 } else if (Name == "FreeBSD") {
7682 if (std::optional<FreeBSDNote> N =
7683 getFreeBSDNote<ELFT>(Type, Descriptor, IsCore)) {
7684 W.printString(N->Type, N->Value);
7685 return Error::success();
7687 } else if (Name == "AMD") {
7688 const AMDNote N = getAMDNote<ELFT>(Type, Descriptor);
7689 if (!N.Type.empty()) {
7690 W.printString(N.Type, N.Value);
7691 return Error::success();
7693 } else if (Name == "AMDGPU") {
7694 const AMDGPUNote N = getAMDGPUNote<ELFT>(Type, Descriptor);
7695 if (!N.Type.empty()) {
7696 W.printString(N.Type, N.Value);
7697 return Error::success();
7699 } else if (Name == "LLVMOMPOFFLOAD") {
7700 if (printLLVMOMPOFFLOADNoteLLVMStyle<ELFT>(Type, Descriptor, W))
7701 return Error::success();
7702 } else if (Name == "CORE") {
7703 if (Type == ELF::NT_FILE) {
7704 DataExtractor DescExtractor(
7705 Descriptor, ELFT::TargetEndianness == llvm::endianness::little,
7706 sizeof(Elf_Addr));
7707 if (Expected<CoreNote> N = readCoreNote(DescExtractor)) {
7708 printCoreNoteLLVMStyle(*N, W);
7709 return Error::success();
7710 } else {
7711 return N.takeError();
7714 } else if (Name == "Android") {
7715 if (printAndroidNoteLLVMStyle(Type, Descriptor, W))
7716 return Error::success();
7718 if (!Descriptor.empty()) {
7719 W.printBinaryBlock("Description data", Descriptor);
7721 return Error::success();
7724 processNotesHelper(*this, /*StartNotesFn=*/StartNotes,
7725 /*ProcessNoteFn=*/ProcessNote, /*FinishNotesFn=*/EndNotes);
7728 template <class ELFT> void LLVMELFDumper<ELFT>::printELFLinkerOptions() {
7729 ListScope L(W, "LinkerOptions");
7731 unsigned I = -1;
7732 for (const Elf_Shdr &Shdr : cantFail(this->Obj.sections())) {
7733 ++I;
7734 if (Shdr.sh_type != ELF::SHT_LLVM_LINKER_OPTIONS)
7735 continue;
7737 Expected<ArrayRef<uint8_t>> ContentsOrErr =
7738 this->Obj.getSectionContents(Shdr);
7739 if (!ContentsOrErr) {
7740 this->reportUniqueWarning("unable to read the content of the "
7741 "SHT_LLVM_LINKER_OPTIONS section: " +
7742 toString(ContentsOrErr.takeError()));
7743 continue;
7745 if (ContentsOrErr->empty())
7746 continue;
7748 if (ContentsOrErr->back() != 0) {
7749 this->reportUniqueWarning("SHT_LLVM_LINKER_OPTIONS section at index " +
7750 Twine(I) +
7751 " is broken: the "
7752 "content is not null-terminated");
7753 continue;
7756 SmallVector<StringRef, 16> Strings;
7757 toStringRef(ContentsOrErr->drop_back()).split(Strings, '\0');
7758 if (Strings.size() % 2 != 0) {
7759 this->reportUniqueWarning(
7760 "SHT_LLVM_LINKER_OPTIONS section at index " + Twine(I) +
7761 " is broken: an incomplete "
7762 "key-value pair was found. The last possible key was: \"" +
7763 Strings.back() + "\"");
7764 continue;
7767 for (size_t I = 0; I < Strings.size(); I += 2)
7768 W.printString(Strings[I], Strings[I + 1]);
7772 template <class ELFT> void LLVMELFDumper<ELFT>::printDependentLibs() {
7773 ListScope L(W, "DependentLibs");
7774 this->printDependentLibsHelper(
7775 [](const Elf_Shdr &) {},
7776 [this](StringRef Lib, uint64_t) { W.printString(Lib); });
7779 template <class ELFT> void LLVMELFDumper<ELFT>::printStackSizes() {
7780 ListScope L(W, "StackSizes");
7781 if (this->Obj.getHeader().e_type == ELF::ET_REL)
7782 this->printRelocatableStackSizes([]() {});
7783 else
7784 this->printNonRelocatableStackSizes([]() {});
7787 template <class ELFT>
7788 void LLVMELFDumper<ELFT>::printStackSizeEntry(uint64_t Size,
7789 ArrayRef<std::string> FuncNames) {
7790 DictScope D(W, "Entry");
7791 W.printList("Functions", FuncNames);
7792 W.printHex("Size", Size);
7795 template <class ELFT>
7796 void LLVMELFDumper<ELFT>::printMipsGOT(const MipsGOTParser<ELFT> &Parser) {
7797 auto PrintEntry = [&](const Elf_Addr *E) {
7798 W.printHex("Address", Parser.getGotAddress(E));
7799 W.printNumber("Access", Parser.getGotOffset(E));
7800 W.printHex("Initial", *E);
7803 DictScope GS(W, Parser.IsStatic ? "Static GOT" : "Primary GOT");
7805 W.printHex("Canonical gp value", Parser.getGp());
7807 ListScope RS(W, "Reserved entries");
7809 DictScope D(W, "Entry");
7810 PrintEntry(Parser.getGotLazyResolver());
7811 W.printString("Purpose", StringRef("Lazy resolver"));
7814 if (Parser.getGotModulePointer()) {
7815 DictScope D(W, "Entry");
7816 PrintEntry(Parser.getGotModulePointer());
7817 W.printString("Purpose", StringRef("Module pointer (GNU extension)"));
7821 ListScope LS(W, "Local entries");
7822 for (auto &E : Parser.getLocalEntries()) {
7823 DictScope D(W, "Entry");
7824 PrintEntry(&E);
7828 if (Parser.IsStatic)
7829 return;
7832 ListScope GS(W, "Global entries");
7833 for (auto &E : Parser.getGlobalEntries()) {
7834 DictScope D(W, "Entry");
7836 PrintEntry(&E);
7838 const Elf_Sym &Sym = *Parser.getGotSym(&E);
7839 W.printHex("Value", Sym.st_value);
7840 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7842 const unsigned SymIndex = &Sym - this->dynamic_symbols().begin();
7843 DataRegion<Elf_Word> ShndxTable(
7844 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7845 printSymbolSection(Sym, SymIndex, ShndxTable);
7847 std::string SymName = this->getFullSymbolName(
7848 Sym, SymIndex, ShndxTable, this->DynamicStringTable, true);
7849 W.printNumber("Name", SymName, Sym.st_name);
7853 W.printNumber("Number of TLS and multi-GOT entries",
7854 uint64_t(Parser.getOtherEntries().size()));
7857 template <class ELFT>
7858 void LLVMELFDumper<ELFT>::printMipsPLT(const MipsGOTParser<ELFT> &Parser) {
7859 auto PrintEntry = [&](const Elf_Addr *E) {
7860 W.printHex("Address", Parser.getPltAddress(E));
7861 W.printHex("Initial", *E);
7864 DictScope GS(W, "PLT GOT");
7867 ListScope RS(W, "Reserved entries");
7869 DictScope D(W, "Entry");
7870 PrintEntry(Parser.getPltLazyResolver());
7871 W.printString("Purpose", StringRef("PLT lazy resolver"));
7874 if (auto E = Parser.getPltModulePointer()) {
7875 DictScope D(W, "Entry");
7876 PrintEntry(E);
7877 W.printString("Purpose", StringRef("Module pointer"));
7881 ListScope LS(W, "Entries");
7882 DataRegion<Elf_Word> ShndxTable(
7883 (const Elf_Word *)this->DynSymTabShndxRegion.Addr, this->Obj.end());
7884 for (auto &E : Parser.getPltEntries()) {
7885 DictScope D(W, "Entry");
7886 PrintEntry(&E);
7888 const Elf_Sym &Sym = *Parser.getPltSym(&E);
7889 W.printHex("Value", Sym.st_value);
7890 W.printEnum("Type", Sym.getType(), ArrayRef(ElfSymbolTypes));
7891 printSymbolSection(Sym, &Sym - this->dynamic_symbols().begin(),
7892 ShndxTable);
7894 const Elf_Sym *FirstSym = cantFail(
7895 this->Obj.template getEntry<Elf_Sym>(*Parser.getPltSymTable(), 0));
7896 std::string SymName = this->getFullSymbolName(
7897 Sym, &Sym - FirstSym, ShndxTable, Parser.getPltStrTable(), true);
7898 W.printNumber("Name", SymName, Sym.st_name);
7903 template <class ELFT> void LLVMELFDumper<ELFT>::printMipsABIFlags() {
7904 const Elf_Mips_ABIFlags<ELFT> *Flags;
7905 if (Expected<const Elf_Mips_ABIFlags<ELFT> *> SecOrErr =
7906 getMipsAbiFlagsSection(*this)) {
7907 Flags = *SecOrErr;
7908 if (!Flags) {
7909 W.startLine() << "There is no .MIPS.abiflags section in the file.\n";
7910 return;
7912 } else {
7913 this->reportUniqueWarning(SecOrErr.takeError());
7914 return;
7917 raw_ostream &OS = W.getOStream();
7918 DictScope GS(W, "MIPS ABI Flags");
7920 W.printNumber("Version", Flags->version);
7921 W.startLine() << "ISA: ";
7922 if (Flags->isa_rev <= 1)
7923 OS << format("MIPS%u", Flags->isa_level);
7924 else
7925 OS << format("MIPS%ur%u", Flags->isa_level, Flags->isa_rev);
7926 OS << "\n";
7927 W.printEnum("ISA Extension", Flags->isa_ext, ArrayRef(ElfMipsISAExtType));
7928 W.printFlags("ASEs", Flags->ases, ArrayRef(ElfMipsASEFlags));
7929 W.printEnum("FP ABI", Flags->fp_abi, ArrayRef(ElfMipsFpABIType));
7930 W.printNumber("GPR size", getMipsRegisterSize(Flags->gpr_size));
7931 W.printNumber("CPR1 size", getMipsRegisterSize(Flags->cpr1_size));
7932 W.printNumber("CPR2 size", getMipsRegisterSize(Flags->cpr2_size));
7933 W.printFlags("Flags 1", Flags->flags1, ArrayRef(ElfMipsFlags1));
7934 W.printHex("Flags 2", Flags->flags2);
7937 template <class ELFT>
7938 void JSONELFDumper<ELFT>::printFileSummary(StringRef FileStr, ObjectFile &Obj,
7939 ArrayRef<std::string> InputFilenames,
7940 const Archive *A) {
7941 FileScope = std::make_unique<DictScope>(this->W);
7942 DictScope D(this->W, "FileSummary");
7943 this->W.printString("File", FileStr);
7944 this->W.printString("Format", Obj.getFileFormatName());
7945 this->W.printString("Arch", Triple::getArchTypeName(Obj.getArch()));
7946 this->W.printString(
7947 "AddressSize",
7948 std::string(formatv("{0}bit", 8 * Obj.getBytesInAddress())));
7949 this->printLoadName();
7952 template <class ELFT>
7953 void JSONELFDumper<ELFT>::printZeroSymbolOtherField(
7954 const Elf_Sym &Symbol) const {
7955 // We want the JSON format to be uniform, since it is machine readable, so
7956 // always print the `Other` field the same way.
7957 this->printSymbolOtherField(Symbol);
7960 template <class ELFT>
7961 void JSONELFDumper<ELFT>::printDefaultRelRelaReloc(const Relocation<ELFT> &R,
7962 StringRef SymbolName,
7963 StringRef RelocName) {
7964 this->printExpandedRelRelaReloc(R, SymbolName, RelocName);
7967 template <class ELFT>
7968 void JSONELFDumper<ELFT>::printRelocationSectionInfo(const Elf_Shdr &Sec,
7969 StringRef Name,
7970 const unsigned SecNdx) {
7971 DictScope Group(this->W);
7972 this->W.printNumber("SectionIndex", SecNdx);
7973 ListScope D(this->W, "Relocs");
7974 this->printRelocationsHelper(Sec);
7977 template <class ELFT>
7978 std::string JSONELFDumper<ELFT>::getGroupSectionHeaderName() const {
7979 return "GroupSections";
7982 template <class ELFT>
7983 void JSONELFDumper<ELFT>::printSectionGroupMembers(StringRef Name,
7984 uint64_t Idx) const {
7985 DictScope Grp(this->W);
7986 this->W.printString("Name", Name);
7987 this->W.printNumber("Index", Idx);
7990 template <class ELFT> void JSONELFDumper<ELFT>::printEmptyGroupMessage() const {
7991 // JSON output does not need to print anything for empty groups