Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / tools / llvm-reduce / deltas / ReduceOpcodes.cpp
blob93992303daf092f248438ba122cb30186ad41ac5
1 //===- ReduceOpcodes.cpp - Specialized Delta Pass -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Try to replace instructions that are likely to codegen to simpler or smaller
10 // sequences. This is a fuzzy and target specific concept.
12 //===----------------------------------------------------------------------===//
14 #include "ReduceOpcodes.h"
15 #include "Delta.h"
16 #include "llvm/IR/IRBuilder.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/IntrinsicInst.h"
19 #include "llvm/IR/Intrinsics.h"
20 #include "llvm/IR/IntrinsicsAMDGPU.h"
22 using namespace llvm;
24 // Assume outgoing undef arguments aren't relevant.
25 // TODO: Maybe skip any trivial constant arguments.
26 static bool shouldIgnoreArgument(const Value *V) {
27 return isa<UndefValue>(V);
30 static Value *replaceIntrinsic(Module &M, IntrinsicInst *II,
31 Intrinsic::ID NewIID,
32 ArrayRef<Type *> Tys = std::nullopt) {
33 Function *NewFunc = Intrinsic::getDeclaration(&M, NewIID, Tys);
34 II->setCalledFunction(NewFunc);
35 return II;
38 static Value *reduceIntrinsic(Oracle &O, Module &M, IntrinsicInst *II) {
39 IRBuilder<> B(II);
40 switch (II->getIntrinsicID()) {
41 case Intrinsic::sqrt:
42 if (O.shouldKeep())
43 return nullptr;
45 return B.CreateFMul(II->getArgOperand(0),
46 ConstantFP::get(II->getType(), 2.0));
47 case Intrinsic::minnum:
48 case Intrinsic::maxnum:
49 case Intrinsic::minimum:
50 case Intrinsic::maximum:
51 case Intrinsic::amdgcn_fmul_legacy:
52 if (O.shouldKeep())
53 return nullptr;
54 return B.CreateFMul(II->getArgOperand(0), II->getArgOperand(1));
55 case Intrinsic::amdgcn_workitem_id_y:
56 case Intrinsic::amdgcn_workitem_id_z:
57 if (O.shouldKeep())
58 return nullptr;
59 return replaceIntrinsic(M, II, Intrinsic::amdgcn_workitem_id_x);
60 case Intrinsic::amdgcn_workgroup_id_y:
61 case Intrinsic::amdgcn_workgroup_id_z:
62 if (O.shouldKeep())
63 return nullptr;
64 return replaceIntrinsic(M, II, Intrinsic::amdgcn_workgroup_id_x);
65 case Intrinsic::amdgcn_div_fixup:
66 case Intrinsic::amdgcn_fma_legacy:
67 if (O.shouldKeep())
68 return nullptr;
69 return replaceIntrinsic(M, II, Intrinsic::fma, {II->getType()});
70 default:
71 return nullptr;
75 /// Look for calls that look like they could be replaced with a load or store.
76 static bool callLooksLikeLoadStore(CallBase *CB, Value *&DataArg,
77 Value *&PtrArg) {
78 const bool IsStore = CB->getType()->isVoidTy();
80 PtrArg = nullptr;
81 DataArg = nullptr;
82 for (Value *Arg : CB->args()) {
83 if (shouldIgnoreArgument(Arg))
84 continue;
86 if (!Arg->getType()->isSized())
87 return false;
89 if (!PtrArg && Arg->getType()->isPointerTy()) {
90 PtrArg = Arg;
91 continue;
94 if (!IsStore || DataArg)
95 return false;
97 DataArg = Arg;
100 if (IsStore && !DataArg) {
101 // FIXME: For typed pointers, use element type?
102 DataArg = ConstantInt::get(IntegerType::getInt32Ty(CB->getContext()), 0);
105 // If we didn't find any arguments, we can fill in the pointer.
106 if (!PtrArg) {
107 unsigned AS = CB->getModule()->getDataLayout().getAllocaAddrSpace();
109 PointerType *PtrTy =
110 PointerType::get(DataArg ? DataArg->getType()
111 : IntegerType::getInt32Ty(CB->getContext()),
112 AS);
114 PtrArg = ConstantPointerNull::get(PtrTy);
117 // Make sure we don't emit an invalid store with typed pointers.
118 if (IsStore && DataArg->getType()->getPointerTo(
119 cast<PointerType>(PtrArg->getType())->getAddressSpace()) !=
120 PtrArg->getType())
121 return false;
123 return true;
126 // TODO: Replace 2 pointer argument calls with memcpy
127 static Value *tryReplaceCallWithLoadStore(Oracle &O, Module &M, CallBase *CB) {
128 Value *PtrArg = nullptr;
129 Value *DataArg = nullptr;
130 if (!callLooksLikeLoadStore(CB, DataArg, PtrArg) || O.shouldKeep())
131 return nullptr;
133 IRBuilder<> B(CB);
134 if (DataArg)
135 return B.CreateStore(DataArg, PtrArg, true);
136 return B.CreateLoad(CB->getType(), PtrArg, true);
139 static bool callLooksLikeOperator(CallBase *CB,
140 SmallVectorImpl<Value *> &OperatorArgs) {
141 Type *ReturnTy = CB->getType();
142 if (!ReturnTy->isFirstClassType())
143 return false;
145 for (Value *Arg : CB->args()) {
146 if (shouldIgnoreArgument(Arg))
147 continue;
149 if (Arg->getType() != ReturnTy)
150 return false;
152 OperatorArgs.push_back(Arg);
155 return true;
158 static Value *tryReplaceCallWithOperator(Oracle &O, Module &M, CallBase *CB) {
159 SmallVector<Value *, 4> Arguments;
161 if (!callLooksLikeOperator(CB, Arguments) || Arguments.size() > 3)
162 return nullptr;
164 if (O.shouldKeep())
165 return nullptr;
167 IRBuilder<> B(CB);
168 if (CB->getType()->isFPOrFPVectorTy()) {
169 switch (Arguments.size()) {
170 case 1:
171 return B.CreateFNeg(Arguments[0]);
172 case 2:
173 return B.CreateFMul(Arguments[0], Arguments[1]);
174 case 3:
175 return B.CreateIntrinsic(Intrinsic::fma, {CB->getType()}, Arguments);
176 default:
177 return nullptr;
180 llvm_unreachable("all argument sizes handled");
183 if (CB->getType()->isIntOrIntVectorTy()) {
184 switch (Arguments.size()) {
185 case 1:
186 return B.CreateUnaryIntrinsic(Intrinsic::bswap, Arguments[0]);
187 case 2:
188 return B.CreateAnd(Arguments[0], Arguments[1]);
189 case 3:
190 return B.CreateIntrinsic(Intrinsic::fshl, {CB->getType()}, Arguments);
191 default:
192 return nullptr;
195 llvm_unreachable("all argument sizes handled");
198 return nullptr;
201 static Value *reduceInstruction(Oracle &O, Module &M, Instruction &I) {
202 IRBuilder<> B(&I);
204 // TODO: fp binary operator with constant to fneg
205 switch (I.getOpcode()) {
206 case Instruction::FDiv:
207 case Instruction::FRem:
208 if (O.shouldKeep())
209 return nullptr;
211 // Divisions tends to codegen into a long sequence or a library call.
212 return B.CreateFMul(I.getOperand(0), I.getOperand(1));
213 case Instruction::UDiv:
214 case Instruction::SDiv:
215 case Instruction::URem:
216 case Instruction::SRem:
217 if (O.shouldKeep())
218 return nullptr;
220 // Divisions tends to codegen into a long sequence or a library call.
221 return B.CreateMul(I.getOperand(0), I.getOperand(1));
222 case Instruction::Add:
223 case Instruction::Sub: {
224 if (O.shouldKeep())
225 return nullptr;
227 // Add/sub are more likely codegen to instructions with carry out side
228 // effects.
229 return B.CreateOr(I.getOperand(0), I.getOperand(1));
231 case Instruction::Call: {
232 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
233 return reduceIntrinsic(O, M, II);
235 CallBase *CB = cast<CallBase>(&I);
237 if (Value *NewOp = tryReplaceCallWithOperator(O, M, CB))
238 return NewOp;
240 if (Value *NewOp = tryReplaceCallWithLoadStore(O, M, CB))
241 return NewOp;
243 return nullptr;
245 default:
246 return nullptr;
249 return nullptr;
252 static void replaceOpcodesInModule(Oracle &O, ReducerWorkItem &WorkItem) {
253 Module &Mod = WorkItem.getModule();
255 for (Function &F : Mod) {
256 for (BasicBlock &BB : F)
257 for (Instruction &I : make_early_inc_range(BB)) {
258 Instruction *Replacement =
259 dyn_cast_or_null<Instruction>(reduceInstruction(O, Mod, I));
260 if (Replacement && Replacement != &I) {
261 if (isa<FPMathOperator>(Replacement))
262 Replacement->copyFastMathFlags(&I);
264 Replacement->copyIRFlags(&I);
265 Replacement->copyMetadata(I);
266 Replacement->takeName(&I);
267 I.replaceAllUsesWith(Replacement);
268 I.eraseFromParent();
274 void llvm::reduceOpcodesDeltaPass(TestRunner &Test) {
275 runDeltaPass(Test, replaceOpcodesInModule, "Reducing Opcodes");