Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / tools / llvm-xray / xray-color-helper.cpp
blob3dd5143ca8d0b96374fbae47c3a71c3370700d71
1 //===-- xray-graph.cpp: XRay Function Call Graph Renderer -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // A class to get a color from a specified gradient.
11 //===----------------------------------------------------------------------===//
13 #include "xray-color-helper.h"
14 #include "llvm/Support/FormatVariadic.h"
15 #include "llvm/Support/raw_ostream.h"
16 #include <cmath>
18 using namespace llvm;
19 using namespace xray;
21 // Sequential ColorMaps, which are used to represent information
22 // from some minimum to some maximum.
24 const std::tuple<uint8_t, uint8_t, uint8_t> SequentialMaps[][9] = {
25 {// The greys color scheme from http://colorbrewer2.org/
26 std::make_tuple(255, 255, 255), std::make_tuple(240, 240, 240),
27 std::make_tuple(217, 217, 217), std::make_tuple(189, 189, 189),
28 std::make_tuple(150, 150, 150), std::make_tuple(115, 115, 115),
29 std::make_tuple(82, 82, 82), std::make_tuple(37, 37, 37),
30 std::make_tuple(0, 0, 0)},
31 {// The OrRd color scheme from http://colorbrewer2.org/
32 std::make_tuple(255, 247, 236), std::make_tuple(254, 232, 200),
33 std::make_tuple(253, 212, 158), std::make_tuple(253, 187, 132),
34 std::make_tuple(252, 141, 89), std::make_tuple(239, 101, 72),
35 std::make_tuple(215, 48, 31), std::make_tuple(179, 0, 0),
36 std::make_tuple(127, 0, 0)},
37 {// The PuBu color scheme from http://colorbrewer2.org/
38 std::make_tuple(255, 247, 251), std::make_tuple(236, 231, 242),
39 std::make_tuple(208, 209, 230), std::make_tuple(166, 189, 219),
40 std::make_tuple(116, 169, 207), std::make_tuple(54, 144, 192),
41 std::make_tuple(5, 112, 176), std::make_tuple(4, 90, 141),
42 std::make_tuple(2, 56, 88)}};
44 // Sequential Maps extend the last colors given out of range inputs.
45 const std::tuple<uint8_t, uint8_t, uint8_t> SequentialBounds[][2] = {
46 {// The Bounds for the greys color scheme
47 std::make_tuple(255, 255, 255), std::make_tuple(0, 0, 0)},
48 {// The Bounds for the OrRd color Scheme
49 std::make_tuple(255, 247, 236), std::make_tuple(127, 0, 0)},
50 {// The Bounds for the PuBu color Scheme
51 std::make_tuple(255, 247, 251), std::make_tuple(2, 56, 88)}};
53 ColorHelper::ColorHelper(ColorHelper::SequentialScheme S)
54 : MinIn(0.0), MaxIn(1.0), ColorMap(SequentialMaps[static_cast<int>(S)]),
55 BoundMap(SequentialBounds[static_cast<int>(S)]) {}
57 // Diverging ColorMaps, which are used to represent information
58 // representing differenes, or a range that goes from negative to positive.
59 // These take an input in the range [-1,1].
61 const std::tuple<uint8_t, uint8_t, uint8_t> DivergingCoeffs[][11] = {
62 {// The PiYG color scheme from http://colorbrewer2.org/
63 std::make_tuple(142, 1, 82), std::make_tuple(197, 27, 125),
64 std::make_tuple(222, 119, 174), std::make_tuple(241, 182, 218),
65 std::make_tuple(253, 224, 239), std::make_tuple(247, 247, 247),
66 std::make_tuple(230, 245, 208), std::make_tuple(184, 225, 134),
67 std::make_tuple(127, 188, 65), std::make_tuple(77, 146, 33),
68 std::make_tuple(39, 100, 25)}};
70 // Diverging maps use out of bounds ranges to show missing data. Missing Right
71 // Being below min, and missing left being above max.
72 const std::tuple<uint8_t, uint8_t, uint8_t> DivergingBounds[][2] = {
73 {// The PiYG color scheme has green and red for missing right and left
74 // respectively.
75 std::make_tuple(255, 0, 0), std::make_tuple(0, 255, 0)}};
77 ColorHelper::ColorHelper(ColorHelper::DivergingScheme S)
78 : MinIn(-1.0), MaxIn(1.0), ColorMap(DivergingCoeffs[static_cast<int>(S)]),
79 BoundMap(DivergingBounds[static_cast<int>(S)]) {}
81 // Takes a tuple of uint8_ts representing a color in RGB and converts them to
82 // HSV represented by a tuple of doubles
83 static std::tuple<double, double, double>
84 convertToHSV(const std::tuple<uint8_t, uint8_t, uint8_t> &Color) {
85 double Scaled[3] = {std::get<0>(Color) / 255.0, std::get<1>(Color) / 255.0,
86 std::get<2>(Color) / 255.0};
87 int Min = 0;
88 int Max = 0;
89 for (int i = 1; i < 3; ++i) {
90 if (Scaled[i] < Scaled[Min])
91 Min = i;
92 if (Scaled[i] > Scaled[Max])
93 Max = i;
96 double C = Scaled[Max] - Scaled[Min];
98 double HPrime =
99 (C == 0) ? 0 : (Scaled[(Max + 1) % 3] - Scaled[(Max + 2) % 3]) / C;
100 HPrime = HPrime + 2.0 * Max;
102 double H = (HPrime < 0) ? (HPrime + 6.0) * 60
103 : HPrime * 60; // Scale to between 0 and 360
104 double V = Scaled[Max];
106 double S = (V == 0.0) ? 0.0 : C / V;
108 return std::make_tuple(H, S, V);
111 // Takes a double precision number, clips it between 0 and 1 and then converts
112 // that to an integer between 0x00 and 0xFF with proxpper rounding.
113 static uint8_t unitIntervalTo8BitChar(double B) {
114 double n = std::clamp(B, 0.0, 1.0);
115 return static_cast<uint8_t>(255 * n + 0.5);
118 // Takes a typle of doubles representing a color in HSV and converts them to
119 // RGB represented as a tuple of uint8_ts
120 static std::tuple<uint8_t, uint8_t, uint8_t>
121 convertToRGB(const std::tuple<double, double, double> &Color) {
122 const double &H = std::get<0>(Color);
123 const double &S = std::get<1>(Color);
124 const double &V = std::get<2>(Color);
126 double C = V * S;
128 double HPrime = H / 60;
129 double X = C * (1 - std::abs(std::fmod(HPrime, 2.0) - 1));
131 double RGB1[3];
132 int HPrimeInt = static_cast<int>(HPrime);
133 if (HPrimeInt % 2 == 0) {
134 RGB1[(HPrimeInt / 2) % 3] = C;
135 RGB1[(HPrimeInt / 2 + 1) % 3] = X;
136 RGB1[(HPrimeInt / 2 + 2) % 3] = 0.0;
137 } else {
138 RGB1[(HPrimeInt / 2) % 3] = X;
139 RGB1[(HPrimeInt / 2 + 1) % 3] = C;
140 RGB1[(HPrimeInt / 2 + 2) % 3] = 0.0;
143 double Min = V - C;
144 double RGB2[3] = {RGB1[0] + Min, RGB1[1] + Min, RGB1[2] + Min};
146 return std::make_tuple(unitIntervalTo8BitChar(RGB2[0]),
147 unitIntervalTo8BitChar(RGB2[1]),
148 unitIntervalTo8BitChar(RGB2[2]));
151 // The Hue component of the HSV interpolation Routine
152 static double interpolateHue(double H0, double H1, double T) {
153 double D = H1 - H0;
154 if (H0 > H1) {
155 std::swap(H0, H1);
157 D = -D;
158 T = 1 - T;
161 if (D <= 180) {
162 return H0 + T * (H1 - H0);
163 } else {
164 H0 = H0 + 360;
165 return std::fmod(H0 + T * (H1 - H0) + 720, 360);
169 // Interpolates between two HSV Colors both represented as a tuple of doubles
170 // Returns an HSV Color represented as a tuple of doubles
171 static std::tuple<double, double, double>
172 interpolateHSV(const std::tuple<double, double, double> &C0,
173 const std::tuple<double, double, double> &C1, double T) {
174 double H = interpolateHue(std::get<0>(C0), std::get<0>(C1), T);
175 double S = std::get<1>(C0) + T * (std::get<1>(C1) - std::get<1>(C0));
176 double V = std::get<2>(C0) + T * (std::get<2>(C1) - std::get<2>(C0));
177 return std::make_tuple(H, S, V);
180 // Get the Color as a tuple of uint8_ts
181 std::tuple<uint8_t, uint8_t, uint8_t>
182 ColorHelper::getColorTuple(double Point) const {
183 assert(!ColorMap.empty() && "ColorMap must not be empty!");
184 assert(!BoundMap.empty() && "BoundMap must not be empty!");
186 if (Point < MinIn)
187 return BoundMap[0];
188 if (Point > MaxIn)
189 return BoundMap[1];
191 size_t MaxIndex = ColorMap.size() - 1;
192 double IntervalWidth = MaxIn - MinIn;
193 double OffsetP = Point - MinIn;
194 double SectionWidth = IntervalWidth / static_cast<double>(MaxIndex);
195 size_t SectionNo = std::floor(OffsetP / SectionWidth);
196 double T = (OffsetP - SectionNo * SectionWidth) / SectionWidth;
198 auto &RGBColor0 = ColorMap[SectionNo];
199 auto &RGBColor1 = ColorMap[std::min(SectionNo + 1, MaxIndex)];
201 auto HSVColor0 = convertToHSV(RGBColor0);
202 auto HSVColor1 = convertToHSV(RGBColor1);
204 auto InterpolatedHSVColor = interpolateHSV(HSVColor0, HSVColor1, T);
205 return convertToRGB(InterpolatedHSVColor);
208 // A helper method to convert a color represented as tuple of uint8s to a hex
209 // string.
210 std::string
211 ColorHelper::getColorString(std::tuple<uint8_t, uint8_t, uint8_t> t) {
212 return std::string(llvm::formatv("#{0:X-2}{1:X-2}{2:X-2}", std::get<0>(t),
213 std::get<1>(t), std::get<2>(t)));
216 // Gets a color in a gradient given a number in the interval [0,1], it does this
217 // by evaluating a polynomial which maps [0, 1] -> [0, 1] for each of the R G
218 // and B values in the color. It then converts this [0,1] colors to a 24 bit
219 // color as a hex string.
220 std::string ColorHelper::getColorString(double Point) const {
221 return getColorString(getColorTuple(Point));