Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / unittests / ADT / ArrayRefTest.cpp
blobfb25ee19c0b207cd87b5f47a0f2df8ea9b5a8386
1 //===- llvm/unittest/ADT/ArrayRefTest.cpp - ArrayRef unit tests -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #include "llvm/ADT/ArrayRef.h"
10 #include "llvm/Support/Allocator.h"
11 #include "llvm/Support/raw_ostream.h"
12 #include "gtest/gtest.h"
13 #include <limits>
14 #include <vector>
15 using namespace llvm;
17 // Check that the ArrayRef-of-pointer converting constructor only allows adding
18 // cv qualifiers (not removing them, or otherwise changing the type)
19 static_assert(std::is_convertible_v<ArrayRef<int *>, ArrayRef<const int *>>,
20 "Adding const");
21 static_assert(std::is_convertible_v<ArrayRef<int *>, ArrayRef<volatile int *>>,
22 "Adding volatile");
23 static_assert(!std::is_convertible_v<ArrayRef<int *>, ArrayRef<float *>>,
24 "Changing pointer of one type to a pointer of another");
25 static_assert(!std::is_convertible_v<ArrayRef<const int *>, ArrayRef<int *>>,
26 "Removing const");
27 static_assert(!std::is_convertible_v<ArrayRef<volatile int *>, ArrayRef<int *>>,
28 "Removing volatile");
30 // Check that we can't accidentally assign a temporary location to an ArrayRef.
31 // (Unfortunately we can't make use of the same thing with constructors.)
32 static_assert(!std::is_assignable_v<ArrayRef<int *> &, int *>,
33 "Assigning from single prvalue element");
34 static_assert(!std::is_assignable_v<ArrayRef<int *> &, int *&&>,
35 "Assigning from single xvalue element");
36 static_assert(std::is_assignable_v<ArrayRef<int *> &, int *&>,
37 "Assigning from single lvalue element");
38 static_assert(
39 !std::is_assignable_v<ArrayRef<int *> &, std::initializer_list<int *>>,
40 "Assigning from an initializer list");
42 namespace {
44 TEST(ArrayRefTest, AllocatorCopy) {
45 BumpPtrAllocator Alloc;
46 static const uint16_t Words1[] = { 1, 4, 200, 37 };
47 ArrayRef<uint16_t> Array1 = ArrayRef(Words1, 4);
48 static const uint16_t Words2[] = { 11, 4003, 67, 64000, 13 };
49 ArrayRef<uint16_t> Array2 = ArrayRef(Words2, 5);
50 ArrayRef<uint16_t> Array1c = Array1.copy(Alloc);
51 ArrayRef<uint16_t> Array2c = Array2.copy(Alloc);
52 EXPECT_TRUE(Array1.equals(Array1c));
53 EXPECT_NE(Array1.data(), Array1c.data());
54 EXPECT_TRUE(Array2.equals(Array2c));
55 EXPECT_NE(Array2.data(), Array2c.data());
57 // Check that copy can cope with uninitialized memory.
58 struct NonAssignable {
59 const char *Ptr;
61 NonAssignable(const char *Ptr) : Ptr(Ptr) {}
62 NonAssignable(const NonAssignable &RHS) = default;
63 void operator=(const NonAssignable &RHS) { assert(RHS.Ptr != nullptr); }
64 bool operator==(const NonAssignable &RHS) const { return Ptr == RHS.Ptr; }
65 } Array3Src[] = {"hello", "world"};
66 ArrayRef<NonAssignable> Array3Copy = ArrayRef(Array3Src).copy(Alloc);
67 EXPECT_EQ(ArrayRef(Array3Src), Array3Copy);
68 EXPECT_NE(ArrayRef(Array3Src).data(), Array3Copy.data());
71 // This test is pure UB given the ArrayRef<> implementation.
72 // You are not allowed to produce non-null pointers given null base pointer.
73 TEST(ArrayRefTest, DISABLED_SizeTSizedOperations) {
74 ArrayRef<char> AR(nullptr, std::numeric_limits<ptrdiff_t>::max());
76 // Check that drop_back accepts size_t-sized numbers.
77 EXPECT_EQ(1U, AR.drop_back(AR.size() - 1).size());
79 // Check that drop_front accepts size_t-sized numbers.
80 EXPECT_EQ(1U, AR.drop_front(AR.size() - 1).size());
82 // Check that slice accepts size_t-sized numbers.
83 EXPECT_EQ(1U, AR.slice(AR.size() - 1).size());
84 EXPECT_EQ(AR.size() - 1, AR.slice(1, AR.size() - 1).size());
87 TEST(ArrayRefTest, DropBack) {
88 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
89 ArrayRef<int> AR1(TheNumbers);
90 ArrayRef<int> AR2(TheNumbers, AR1.size() - 1);
91 EXPECT_TRUE(AR1.drop_back().equals(AR2));
94 TEST(ArrayRefTest, DropFront) {
95 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
96 ArrayRef<int> AR1(TheNumbers);
97 ArrayRef<int> AR2(&TheNumbers[2], AR1.size() - 2);
98 EXPECT_TRUE(AR1.drop_front(2).equals(AR2));
101 TEST(ArrayRefTest, DropWhile) {
102 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
103 ArrayRef<int> AR1(TheNumbers);
104 ArrayRef<int> Expected = AR1.drop_front(3);
105 EXPECT_EQ(Expected, AR1.drop_while([](const int &N) { return N % 2 == 1; }));
107 EXPECT_EQ(AR1, AR1.drop_while([](const int &N) { return N < 0; }));
108 EXPECT_EQ(ArrayRef<int>(),
109 AR1.drop_while([](const int &N) { return N > 0; }));
112 TEST(ArrayRefTest, DropUntil) {
113 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
114 ArrayRef<int> AR1(TheNumbers);
115 ArrayRef<int> Expected = AR1.drop_front(3);
116 EXPECT_EQ(Expected, AR1.drop_until([](const int &N) { return N % 2 == 0; }));
118 EXPECT_EQ(ArrayRef<int>(),
119 AR1.drop_until([](const int &N) { return N < 0; }));
120 EXPECT_EQ(AR1, AR1.drop_until([](const int &N) { return N > 0; }));
123 TEST(ArrayRefTest, TakeBack) {
124 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
125 ArrayRef<int> AR1(TheNumbers);
126 ArrayRef<int> AR2(AR1.end() - 1, 1);
127 EXPECT_TRUE(AR1.take_back().equals(AR2));
130 TEST(ArrayRefTest, TakeFront) {
131 static const int TheNumbers[] = {4, 8, 15, 16, 23, 42};
132 ArrayRef<int> AR1(TheNumbers);
133 ArrayRef<int> AR2(AR1.data(), 2);
134 EXPECT_TRUE(AR1.take_front(2).equals(AR2));
137 TEST(ArrayRefTest, TakeWhile) {
138 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
139 ArrayRef<int> AR1(TheNumbers);
140 ArrayRef<int> Expected = AR1.take_front(3);
141 EXPECT_EQ(Expected, AR1.take_while([](const int &N) { return N % 2 == 1; }));
143 EXPECT_EQ(ArrayRef<int>(),
144 AR1.take_while([](const int &N) { return N < 0; }));
145 EXPECT_EQ(AR1, AR1.take_while([](const int &N) { return N > 0; }));
148 TEST(ArrayRefTest, TakeUntil) {
149 static const int TheNumbers[] = {1, 3, 5, 8, 10, 11};
150 ArrayRef<int> AR1(TheNumbers);
151 ArrayRef<int> Expected = AR1.take_front(3);
152 EXPECT_EQ(Expected, AR1.take_until([](const int &N) { return N % 2 == 0; }));
154 EXPECT_EQ(AR1, AR1.take_until([](const int &N) { return N < 0; }));
155 EXPECT_EQ(ArrayRef<int>(),
156 AR1.take_until([](const int &N) { return N > 0; }));
159 TEST(ArrayRefTest, Equals) {
160 static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
161 ArrayRef<int> AR1(A1);
162 EXPECT_TRUE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8}));
163 EXPECT_FALSE(AR1.equals({8, 1, 2, 4, 5, 6, 6, 7}));
164 EXPECT_FALSE(AR1.equals({2, 4, 5, 6, 6, 7, 8, 1}));
165 EXPECT_FALSE(AR1.equals({0, 1, 2, 4, 5, 6, 6, 7}));
166 EXPECT_FALSE(AR1.equals({1, 2, 42, 4, 5, 6, 7, 8}));
167 EXPECT_FALSE(AR1.equals({42, 2, 3, 4, 5, 6, 7, 8}));
168 EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 42}));
169 EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7}));
170 EXPECT_FALSE(AR1.equals({1, 2, 3, 4, 5, 6, 7, 8, 9}));
172 ArrayRef<int> AR1a = AR1.drop_back();
173 EXPECT_TRUE(AR1a.equals({1, 2, 3, 4, 5, 6, 7}));
174 EXPECT_FALSE(AR1a.equals({1, 2, 3, 4, 5, 6, 7, 8}));
176 ArrayRef<int> AR1b = AR1a.slice(2, 4);
177 EXPECT_TRUE(AR1b.equals({3, 4, 5, 6}));
178 EXPECT_FALSE(AR1b.equals({2, 3, 4, 5, 6}));
179 EXPECT_FALSE(AR1b.equals({3, 4, 5, 6, 7}));
182 TEST(ArrayRefTest, EmptyEquals) {
183 EXPECT_TRUE(ArrayRef<unsigned>() == ArrayRef<unsigned>());
186 TEST(ArrayRefTest, ConstConvert) {
187 int buf[4];
188 for (int i = 0; i < 4; ++i)
189 buf[i] = i;
191 static int *A[] = {&buf[0], &buf[1], &buf[2], &buf[3]};
192 ArrayRef<const int *> a((ArrayRef<int *>(A)));
193 a = ArrayRef<int *>(A);
196 static std::vector<int> ReturnTest12() { return {1, 2}; }
197 static void ArgTest12(ArrayRef<int> A) {
198 EXPECT_EQ(2U, A.size());
199 EXPECT_EQ(1, A[0]);
200 EXPECT_EQ(2, A[1]);
203 TEST(ArrayRefTest, InitializerList) {
204 std::initializer_list<int> init_list = { 0, 1, 2, 3, 4 };
205 ArrayRef<int> A = init_list;
206 for (int i = 0; i < 5; ++i)
207 EXPECT_EQ(i, A[i]);
209 std::vector<int> B = ReturnTest12();
210 A = B;
211 EXPECT_EQ(1, A[0]);
212 EXPECT_EQ(2, A[1]);
214 ArgTest12({1, 2});
217 TEST(ArrayRefTest, EmptyInitializerList) {
218 ArrayRef<int> A = {};
219 EXPECT_TRUE(A.empty());
221 A = {};
222 EXPECT_TRUE(A.empty());
225 TEST(ArrayRefTest, ArrayRef) {
226 static const int A1[] = {1, 2, 3, 4, 5, 6, 7, 8};
228 // A copy is expected for non-const ArrayRef (thin copy)
229 ArrayRef<int> AR1(A1);
230 const ArrayRef<int> &AR1Ref = ArrayRef(AR1);
231 EXPECT_NE(&AR1, &AR1Ref);
232 EXPECT_TRUE(AR1.equals(AR1Ref));
234 // A copy is expected for non-const ArrayRef (thin copy)
235 const ArrayRef<int> AR2(A1);
236 const ArrayRef<int> &AR2Ref = ArrayRef(AR2);
237 EXPECT_NE(&AR2Ref, &AR2);
238 EXPECT_TRUE(AR2.equals(AR2Ref));
241 TEST(ArrayRefTest, OwningArrayRef) {
242 static const int A1[] = {0, 1};
243 OwningArrayRef<int> A{ArrayRef(A1)};
244 OwningArrayRef<int> B(std::move(A));
245 EXPECT_EQ(A.data(), nullptr);
248 TEST(ArrayRefTest, ArrayRefFromStdArray) {
249 std::array<int, 5> A1{{42, -5, 0, 1000000, -1000000}};
250 ArrayRef<int> A2 = ArrayRef(A1);
252 EXPECT_EQ(A1.size(), A2.size());
253 for (std::size_t i = 0; i < A1.size(); ++i) {
254 EXPECT_EQ(A1[i], A2[i]);
258 static_assert(std::is_trivially_copyable_v<ArrayRef<int>>,
259 "trivially copyable");
261 TEST(ArrayRefTest, MutableArrayRefDeductionGuides) {
262 // Single element
264 int x = 0;
265 auto aref = MutableArrayRef(x);
266 static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
267 EXPECT_EQ(aref.data(), &x);
268 EXPECT_EQ(aref.size(), 1u);
270 // Make sure it's mutable still
271 aref[0] = 1;
272 EXPECT_EQ(x, 1);
275 // Pointer + length
277 int x[] = {0, 1, 2, 3};
278 auto aref = MutableArrayRef(&x[0], 4);
279 static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
280 EXPECT_EQ(aref.data(), &x[0]);
281 EXPECT_EQ(aref.size(), 4u);
284 // // Pointer + pointer
286 int x[] = {0, 1, 2, 3};
287 auto aref = MutableArrayRef(std::begin(x), std::end(x));
288 static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
289 EXPECT_EQ(aref.data(), &x[0]);
290 EXPECT_EQ(aref.size(), 4u);
293 // SmallVector
295 SmallVector<int> sv1;
296 SmallVectorImpl<int> &sv2 = sv1;
297 sv1.resize(5);
298 auto aref1 = MutableArrayRef(sv1);
299 auto aref2 = MutableArrayRef(sv2);
300 static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref1)>);
301 static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref2)>);
302 EXPECT_EQ(aref1.data(), sv1.data());
303 EXPECT_EQ(aref1.size(), sv1.size());
304 EXPECT_EQ(aref2.data(), sv2.data());
305 EXPECT_EQ(aref2.size(), sv2.size());
308 // std::vector
310 std::vector<int> x(5);
311 auto aref = MutableArrayRef(x);
312 static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
313 EXPECT_EQ(aref.data(), x.data());
314 EXPECT_EQ(aref.size(), x.size());
317 // std::array
319 std::array<int, 5> x{};
320 auto aref = MutableArrayRef(x);
321 static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
322 EXPECT_EQ(aref.data(), x.data());
323 EXPECT_EQ(aref.size(), x.size());
326 // MutableArrayRef
328 MutableArrayRef<int> x{};
329 auto aref = MutableArrayRef(x);
330 static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
331 EXPECT_EQ(aref.data(), x.data());
332 EXPECT_EQ(aref.size(), x.size());
334 const MutableArrayRef<int> y{};
335 auto aref2 = MutableArrayRef(y);
336 static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref2)>);
337 EXPECT_EQ(aref2.data(), y.data());
338 EXPECT_EQ(aref2.size(), y.size());
341 // C-style array
343 int x[] = {0, 1, 2, 3};
344 auto aref = MutableArrayRef(x);
345 static_assert(std::is_same_v<MutableArrayRef<int>, decltype(aref)>);
346 EXPECT_EQ(aref.data(), &x[0]);
347 EXPECT_EQ(aref.size(), 4u);
351 } // end anonymous namespace