1 //===- IVDescriptorsTest.cpp - IVDescriptors unit tests -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "llvm/Analysis/IVDescriptors.h"
10 #include "llvm/Analysis/AssumptionCache.h"
11 #include "llvm/Analysis/LoopInfo.h"
12 #include "llvm/Analysis/ScalarEvolution.h"
13 #include "llvm/Analysis/TargetLibraryInfo.h"
14 #include "llvm/AsmParser/Parser.h"
15 #include "llvm/IR/Dominators.h"
16 #include "llvm/Support/SourceMgr.h"
17 #include "gtest/gtest.h"
21 /// Build the loop info and scalar evolution for the function and run the Test.
22 static void runWithLoopInfoAndSE(
23 Module
&M
, StringRef FuncName
,
24 function_ref
<void(Function
&F
, LoopInfo
&LI
, ScalarEvolution
&SE
)> Test
) {
25 auto *F
= M
.getFunction(FuncName
);
26 ASSERT_NE(F
, nullptr) << "Could not find " << FuncName
;
28 TargetLibraryInfoImpl TLII
;
29 TargetLibraryInfo
TLI(TLII
);
30 AssumptionCache
AC(*F
);
33 ScalarEvolution
SE(*F
, TLI
, AC
, DT
, LI
);
38 static std::unique_ptr
<Module
> parseIR(LLVMContext
&C
, const char *IR
) {
40 std::unique_ptr
<Module
> Mod
= parseAssemblyString(IR
, Err
, C
);
42 Err
.print("IVDescriptorsTests", errs());
46 // This tests that IVDescriptors can obtain the induction binary operator for
47 // integer induction variables. And getExactFPMathInst() correctly return the
48 // expected behavior, i.e. no FMF algebra.
49 TEST(IVDescriptorsTest
, LoopWithSingleLatch
) {
53 std::unique_ptr
<Module
> M
= parseIR(
55 R
"(define void @foo(ptr %A, i32 %ub) {
59 %i = phi i32 [ 0, %entry ], [ %inc, %for.body ]
60 %idxprom = sext i32 %i to i64
61 %arrayidx = getelementptr inbounds i32, ptr %A, i64 %idxprom
62 store i32 %i, ptr %arrayidx, align 4
63 %inc = add nsw i32 %i, 1
64 %cmp = icmp slt i32 %inc, %ub
65 br i1 %cmp, label %for.body, label %for.exit
74 *M
, "foo", [&](Function
&F
, LoopInfo
&LI
, ScalarEvolution
&SE
) {
75 Function::iterator FI
= F
.begin();
76 // First basic block is entry - skip it.
77 BasicBlock
*Header
= &*(++FI
);
78 assert(Header
->getName() == "for.body");
79 Loop
*L
= LI
.getLoopFor(Header
);
80 EXPECT_NE(L
, nullptr);
81 PHINode
*Inst_i
= dyn_cast
<PHINode
>(&Header
->front());
82 assert(Inst_i
->getName() == "i");
83 InductionDescriptor IndDesc
;
85 InductionDescriptor::isInductionPHI(Inst_i
, L
, &SE
, IndDesc
);
86 EXPECT_TRUE(IsInductionPHI
);
87 Instruction
*Inst_inc
= nullptr;
88 BasicBlock::iterator BBI
= Header
->begin();
90 if ((&*BBI
)->getName() == "inc")
94 assert(Inst_inc
->getName() == "inc");
95 EXPECT_EQ(IndDesc
.getInductionBinOp(), Inst_inc
);
96 EXPECT_EQ(IndDesc
.getExactFPMathInst(), nullptr);
100 // Depending on how SCEV deals with ptrtoint cast, the step of a phi could be
101 // a pointer, and InductionDescriptor used to fail with an assertion.
102 // So just check that it doesn't assert.
103 TEST(IVDescriptorsTest
, LoopWithPtrToInt
) {
107 std::unique_ptr
<Module
> M
= parseIR(Context
, R
"(
108 target datalayout = "e
-m
:e
-p
:32:32-Fi8
-i64
:64-v128
:64:128-a
:0:32-n32
-S64
"
109 target triple = "thumbv6m
-arm
-none
-eabi
"
111 declare void @widget()
112 declare void @wobble(i32)
114 define void @barney(ptr %arg, ptr %arg18, i32 %arg19) {
116 %tmp = ptrtoint ptr %arg to i32
117 %tmp20 = ptrtoint ptr %arg18 to i32
118 %tmp21 = or i32 %tmp20, %tmp
119 %tmp22 = and i32 %tmp21, 3
120 %tmp23 = icmp eq i32 %tmp22, 0
121 br i1 %tmp23, label %bb24, label %bb25
124 tail call void @widget()
128 %tmp26 = sub i32 %tmp, %tmp20
129 %tmp27 = icmp ult i32 %tmp26, %arg19
130 br i1 %tmp27, label %bb28, label %bb34
136 %tmp30 = phi i32 [ %tmp31, %bb29 ], [ %arg19, %bb28 ]
137 tail call void @wobble(i32 %tmp26)
138 %tmp31 = sub i32 %tmp30, %tmp26
139 %tmp32 = icmp ugt i32 %tmp31, %tmp26
140 br i1 %tmp32, label %bb29, label %bb33
149 runWithLoopInfoAndSE(
150 *M
, "barney", [&](Function
&F
, LoopInfo
&LI
, ScalarEvolution
&SE
) {
151 Function::iterator FI
= F
.begin();
152 // First basic block is entry - skip it.
153 BasicBlock
*Header
= &*(++(++(++(++FI
))));
154 assert(Header
->getName() == "bb29");
155 Loop
*L
= LI
.getLoopFor(Header
);
156 EXPECT_NE(L
, nullptr);
157 PHINode
*Inst_i
= dyn_cast
<PHINode
>(&Header
->front());
158 assert(Inst_i
->getName() == "tmp30");
159 InductionDescriptor IndDesc
;
160 bool IsInductionPHI
=
161 InductionDescriptor::isInductionPHI(Inst_i
, L
, &SE
, IndDesc
);
162 EXPECT_TRUE(IsInductionPHI
);
166 // This tests that correct identity value is returned for a RecurrenceDescriptor
167 // that describes FMin reduction idiom.
168 TEST(IVDescriptorsTest
, FMinRednIdentity
) {
172 std::unique_ptr
<Module
> M
= parseIR(Context
,
173 R
"(define float @foo(ptr %A, i64 %ub) {
178 %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ]
179 %fmin = phi float [ 1.000000e+00, %entry ], [ %fmin.next, %for.body ]
180 %arrayidx = getelementptr inbounds float, ptr %A, i64 %i
181 %ld = load float, ptr %arrayidx
182 %fmin.cmp = fcmp nnan nsz olt float %fmin, %ld
183 %fmin.next = select nnan nsz i1 %fmin.cmp, float %fmin, float %ld
184 %i.next = add nsw i64 %i, 1
185 %cmp = icmp slt i64 %i.next, %ub
186 br i1 %cmp, label %for.body, label %for.end
189 %fmin.lcssa = phi float [ %fmin.next, %for.body ]
190 ret float %fmin.lcssa
193 runWithLoopInfoAndSE(
194 *M
, "foo", [&](Function
&F
, LoopInfo
&LI
, ScalarEvolution
&SE
) {
195 Function::iterator FI
= F
.begin();
196 // First basic block is entry - skip it.
197 BasicBlock
*Header
= &*(++FI
);
198 assert(Header
->getName() == "for.body");
199 Loop
*L
= LI
.getLoopFor(Header
);
200 EXPECT_NE(L
, nullptr);
201 BasicBlock::iterator BBI
= Header
->begin();
202 assert((&*BBI
)->getName() == "i");
204 PHINode
*Phi
= dyn_cast
<PHINode
>(&*BBI
);
205 assert(Phi
->getName() == "fmin");
206 RecurrenceDescriptor Rdx
;
207 bool IsRdxPhi
= RecurrenceDescriptor::isReductionPHI(Phi
, L
, Rdx
);
208 EXPECT_TRUE(IsRdxPhi
);
209 RecurKind Kind
= Rdx
.getRecurrenceKind();
210 EXPECT_EQ(Kind
, RecurKind::FMin
);
211 Type
*Ty
= Phi
->getType();
212 Value
*Id
= Rdx
.getRecurrenceIdentity(Kind
, Ty
, Rdx
.getFastMathFlags());
213 // Identity value for FP min reduction is +Inf.
214 EXPECT_EQ(Id
, ConstantFP::getInfinity(Ty
, false /*Negative*/));
218 // This tests that correct identity value is returned for a RecurrenceDescriptor
219 // that describes FMax reduction idiom.
220 TEST(IVDescriptorsTest
, FMaxRednIdentity
) {
224 std::unique_ptr
<Module
> M
= parseIR(Context
,
225 R
"(define float @foo(ptr %A, i64 %ub) {
230 %i = phi i64 [ 0, %entry ], [ %i.next, %for.body ]
231 %fmax = phi float [ 1.000000e+00, %entry ], [ %fmax.next, %for.body ]
232 %arrayidx = getelementptr inbounds float, ptr %A, i64 %i
233 %ld = load float, ptr %arrayidx
234 %fmax.cmp = fcmp nnan nsz ogt float %fmax, %ld
235 %fmax.next = select nnan nsz i1 %fmax.cmp, float %fmax, float %ld
236 %i.next = add nsw i64 %i, 1
237 %cmp = icmp slt i64 %i.next, %ub
238 br i1 %cmp, label %for.body, label %for.end
241 %fmax.lcssa = phi float [ %fmax.next, %for.body ]
242 ret float %fmax.lcssa
245 runWithLoopInfoAndSE(
246 *M
, "foo", [&](Function
&F
, LoopInfo
&LI
, ScalarEvolution
&SE
) {
247 Function::iterator FI
= F
.begin();
248 // First basic block is entry - skip it.
249 BasicBlock
*Header
= &*(++FI
);
250 assert(Header
->getName() == "for.body");
251 Loop
*L
= LI
.getLoopFor(Header
);
252 EXPECT_NE(L
, nullptr);
253 BasicBlock::iterator BBI
= Header
->begin();
254 assert((&*BBI
)->getName() == "i");
256 PHINode
*Phi
= dyn_cast
<PHINode
>(&*BBI
);
257 assert(Phi
->getName() == "fmax");
258 RecurrenceDescriptor Rdx
;
259 bool IsRdxPhi
= RecurrenceDescriptor::isReductionPHI(Phi
, L
, Rdx
);
260 EXPECT_TRUE(IsRdxPhi
);
261 RecurKind Kind
= Rdx
.getRecurrenceKind();
262 EXPECT_EQ(Kind
, RecurKind::FMax
);
263 Type
*Ty
= Phi
->getType();
264 Value
*Id
= Rdx
.getRecurrenceIdentity(Kind
, Ty
, Rdx
.getFastMathFlags());
265 // Identity value for FP max reduction is -Inf.
266 EXPECT_EQ(Id
, ConstantFP::getInfinity(Ty
, true /*Negative*/));